
Accepted Manuscript

Lifespan of semilinear wave equation with scale invariant dissipation and mass and
sub-Strauss power nonlinearity

Alessandro Palmieri, Ziheng Tu

PII: S0022-247X(18)30838-2
DOI: https://doi.org/10.1016/j.jmaa.2018.10.015
Reference: YJMAA 22603

To appear in: Journal of Mathematical Analysis and Applications

Received date: 23 June 2018

Please cite this article in press as: A. Palmieri, Z. Tu, Lifespan of semilinear wave equation with scale invariant dissipation and
mass and sub-Strauss power nonlinearity, J. Math. Anal. Appl. (2018), https://doi.org/10.1016/j.jmaa.2018.10.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are
providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jmaa.2018.10.015


Lifespan of semilinear wave equation with scale invariant dissipation and
mass and sub-Strauss power nonlinearity

Alessandro Palmieria, Ziheng Tub

aInstitute of Applied Analysis, Faculty for Mathematics and Computer Science, Technical University Bergakademie Freiberg,
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Abstract
In this paper, we study the blow-up of solutions for semilinear wave equations with scale-invariant

dissipation and mass in the case in which the model is somehow “wave-like”. A Strauss type critical exponent
is determined as the upper bound for the exponent in the nonlinearity in the main theorems. Two blow-up
results are obtained for the subcritical case and for the critical case, respectively. In both cases, an upper
bound lifespan estimate is given.
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1. Introduction and main results

In present paper, we consider the following strictly hyperbolic model

utt − Δu + μ1
1 + t

ut + μ2
2

(1 + t)2 u = |u|p (x, t) ∈ R
n × [0, ∞),

u(0, x) = ε f(x) x ∈ R
n, (1)

ut(0, x) = ε g(x) x ∈ R
n.

where μ1, μ2
2 � 0 and ε > 0 is a parameter that describes the smallness of initial data. The time-dependent

coefficients for the damping and for the mass term are chosen in order to have for the corresponding linear
equation

utt − Δu + μ1
1 + t

ut + μ2
2

(1 + t)2 u = 0 (2)

a scaling property. More precisely, (2) is invariant with respect to the so-called hyperbolic transformation

ũ(t, x) = u(λ(1 + t) − 1, λx) with λ > 0.

In the last years, (1) has been studied in [16, 18, 21, 22, 4, 19, 20].
It turns out that the quantity

δ := (μ1 − 1)2 − 4μ2
2

describes the interplay between the damping and the mass term in (1). For further considerations on this
interplay cf. [16, 22, 4].

Combining the results from [16, 18], it follows that the shift of the Fujita exponent pF

(
n + μ1−1− √

δ
2

)
is

the critical exponent for (1) in the case δ � (n +1)2, where pF (n) := 1+ 2
n . Therefore, (1) is “parabolic-like”
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from the point of view of the critical exponent for “large” δ. On the other hand, in [22] it has been proved
a blow-up result for δ ∈ (0, 1] provided that

1 < p � max
{

pS(n + μ1), pF

(
n + μ1−1− √

δ
2

)}
with the exception of the critical case p = pS(n + μ1) in dimension n = 1. In the preceding condition pS(r)
denotes the so-called Strauss exponent, that is, the positive root of the quadratic equation

γ(p, r) := 2 + (r + 1)p − (r − 1)p2 = 0 for r > 1. (3)

Briefly, in [22] a suitable change of variables allows transforming (1) in a semilinear wave equation with
time-dependent speed of propagation. Hence, a suitable test function, involving the modified Bessel function
of the second kind, and Kato’s lemma are used. Consequently, we see that for small and positive δ, using
the same jargon as before, (1) seems to be “wave-like”, at least concerning blow-up results.

The goal of this paper is to enlarge the range of δ for which a blow-up result can be proved for 1 < p �
pS(n + μ1). Furthermore, upper bound estimates for the lifespan of the local (in time) solution of (1) are
derived.

In the subcritical case we combine the approach from [29], in order to determine a lower bound for the
integral with respect to spatial variables of the nonlinearity, and an iteration method introduced in [10] for
the semilinear free wave equation in dimension n = 3 and very recently applied to several different models
(see [11, 12, 13, 25], for example).

In the critical case, we adapt the approach of [9], which is based in turn on that one of [32], in order to
include the scale-invariant mass term.

We briefly recall some related background concerning model (1). When μ1 = μ2 = 0, this model reduces
to the classic semilinear wave equation. In this case, the Strauss exponent pS(n) is known to be the critical
exponent. We refer to the classical works [10, 7, 30, 15, 6] for small data global existence results when
p > pS(n), and [10, 8, 24, 23, 29, 31] for the blow-up results when 1 < p � pS(n).

When μ2 = 0, model (1) is reduced to the scale invariant damping wave equation which has drawn more
and more attention recently. As mentioned in [28], such type damping is a threshold betweeen “effective”
and “non-effective” dampings. Moreover, the size of μ1 plays an important role in determining the solution
behavior type. In [1, 27] it is proved that pF (n) is critical for sufficiently large μ1, while for μ1 < μ∗ :=
n2+n+2

n+2 in [3, 14, 9, 25, 26] several blow-up results are given for p � pS(n + μ1). We note that μ∗ satisfies
the identity pF (n) = pS(n + μ∗). In particular, in [26] a different test function from that of [9] is used in the
critical case. Finally, some global (in time) existence results of small data solutions are proved for μ1 = 2
in [3, 2].

We state now the main results of this paper. According to [14], we introduce a notion of energy solution
in the following way.

Definition 1.1. Let f ∈ H1(Rn) and g ∈ L2(Rn). We say that u is an energy solution of (1) on [0, T ) if

u ∈ C([0, T ), H1(Rn)) ∩ C1([0, T ), L2(Rn)) ∩ Lp
loc(Rn × [0, T ))

satisfies∫
Rn

ut(t, x)φ(t, x) dx −
∫
Rn

ut(0, x)φ(0, x) dx −
∫ t

0

∫
Rn

ut(s, x)φt(s, x) dx ds

+
∫ t

0

∫
Rn

∇u(s, x) · ∇φ(s, x) dx ds +
∫ t

0

∫
Rn

(
μ1

1 + s
ut(s, x) + μ2

2
(1 + s)2 u(s, x)

)
φ(s, x) dx ds

=
∫ t

0

∫
Rn

|u(s, x)|pφ(s, x) dx ds (4)

for any φ ∈ C∞
0 ([0, T ) × R

n) and any t ∈ [0, T ).
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After a further integration by parts in (4), letting t → T , we find that u fulfills the definition of weak
solution of (1).

Our main results are the following two theorems, where we study the subcritical case and the critical
case, respectively.

Theorem 1.2. Let n � 1 and let μ1, μ2
2 be nonnegative constants such that δ � 0. Let us consider p

satisfying 1 < p < pS(n + μ1).
Assume that f ∈ H1(Rn) and g ∈ L2(Rn) are compactly supported in BR := {x ∈ R

n : |x| � R} and

f(x) � 0 and g(x) + μ1−1− √
δ

2 f(x) � 0. (5)

Let u be an energy solution of (1) with lifespan T = T (ε). Then, there exists a positive constant ε0 =
ε0(f, g, n, p, μ1, μ2

2, R) such that T (ε) fulfills

T (ε) � Cε−2p(p−1)/γ(p,n+μ1)

for any 0 < ε � ε0, where C is a positive constant independent of ε.

Theorem 1.3. Let n � 1 and let μ1, μ2
2 be nonnegative constants such that 0 � δ < n2. Let us consider

p = pS(n + μ1). Furthermore, we assume p > 2
n− √

δ
.

Let f ∈ H1(Rn) and g ∈ L2(Rn) be nonnegative, not identically zero and compactly supported in BR

for some R < 1.
Let us consider an energy solution u of (1) with lifespan T = T (ε). Then, there exists a positive constant

ε0 = ε0(f, g, n, p, μ1, μ2
2, R) such that for any 0 < ε � ε0 the solution u blows up in finite time. Furthermore,

it holds the following upper bound estimate for the lifespan T = T (ε) of u:

T (ε) � exp(Cε−p(p−1)) (6)

for some constant C which is independent of ε.

The remaining part of the paper is arranged as follows. In Section 2, we construct the test function that
will be employed in the proof of Theorem 1.2. Furthermore, a lower bound for the p norm of the solution of
(1) is derived. This lower bound will play in turn a fundamental role in the derivation of the lower bound
for the time-dependent functional that we will consider in the proof of Theorem 1.2. Similarly, in Section 4
we deal with the construction of a different test function, involving Gauss hypergeometric function, and we
prove some preliminary results to the proof of Theorem 1.3. In Sections 3 and 5, we provide the proofs of
Theorems 1.2 and 1.3, respectively.

2. Test function and preliminaries: subcritical case

Before starting with the construction of the test functions, we recall the definition of the modified Bessel
function of the second kind of order ν

Kν(t) =
∫ ∞

0
exp(−t cosh z) cosh(νz)dz, ν ∈ R

which is a solution of the equation(
t2 d2

dt2 + t
d

dt
− (t2 + ν2)

)
Kν(t) = 0, t > 0.

We collect some important properties concerning Kν(t) in the case in which ν is a real parameter. Interested
reader may refer to [5].
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• The limiting behavior of Kν(t):

Kν(t) =
√

π

2t
e−t[1 + O(t−1)] as t → ∞. (7)

• The derivative identity:

d

dt
Kν(t) = −Kν+1(t) + ν

t
Kν(t). (8)

Firstly, we set the auxiliary function with respect to the time variable

λ(t) := (1 + t)
μ1+1

2 K √
δ

2
(1 + t), t � 0.

It is clear by direct computation that λ(t) satisfies⎧⎪⎨⎪⎩
(

(1 + t)2 d2

dt2 − μ1(1 + t) d

dt
+ (μ1 + μ2

2 − (1 + t)2)
)

λ(t) = 0, t > 0.

λ(0) = K √
δ

2
(1), λ(∞) = 0.

(9)

Following [29], let us introduce the function

ϕ(x) :=
{∫

Sn−1 ex·ωdω for n � 2,

ex + e−x for n = 1.

The function ϕ satisfies
Δϕ(x) = ϕ(x)

and the asymptotic estimate
ϕ(x) ∼ Cn|x|− n−1

2 e|x| as |x| → ∞. (10)
We define the test function for the subcritical case

ψ(t, x) := λ(t)ϕ(x).

In the following lemma, we derive a lower bound for
∫
Rn |u(x, t)|pdx.

Lemma 2.1. Let us assume f, g such that supp f, supp g ⊂ BR for some R > 0 and (5) is fulfilled. Then,
a local energy solution u satisfies

supp u ⊂ {(t, x) ∈ [0, T ) × R
n : |x| � t + R}

and there exists a large T0, which is independent of f, g and ε, such that for any t > T0 and p > 1, it holds∫
Rn

|u(t, x)|pdx � C1εp(1 + t)n−1− n+μ1−1
2 p, (11)

where C1 = C1(f, g, ϕ, p, R) > 0.

Proof. Define the functional
F (t) :=

∫
Rn

u(t, x)ψ(t, x)dx

with ψ(t, x) = λ(t)ϕ(x) defined as above. Then, by Hölder inequality, we have∫
Rn

|u(t, x)|pdx � |F (t)|p
(∫

|x|�t+R

ψp′
(t, x)dx

)−(p−1)
. (12)
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The next step is to determine a lower bound for |F (t)| and an upper bound for the integral
∫

|x|�t+R
ψp′(t, x)dx,

respectively. From the definition of energy solution, we have∫ t

0

∫
Rn

uttψ dxds −
∫ t

0

∫
Rn

uΔψ dxds

+
∫ t

0

∫
Rn

(
∂s

( μ1
1 + s

ψu
)

− ∂s

( μ1
1 + s

ψ
)

u + μ2
2

(1 + s)2 ψu
)

dxds =
∫ t

0

∫
Rn

|u|pψ dxds.

Applying integration by parts and Δϕ = ϕ, we obtain:∫ t

0

∫
Rn

uttψ dxds +
∫ t

0

∫
Rn

uϕ
(

− λ + μ1 + μ2
2

(1 + s)2 λ − μ1
1 + s

λ′
)

dxds

+
∫
Rn

μ1
1 + s

ψ udx

∣∣∣∣t
0

=
∫ t

0

∫
Rn

|u|pψ dxds.

Simplifying the above equation by plugging (9) gives∫ t

0

∫
Rn

uttψ dxds −
∫ t

0

∫
Rn

uϕλ′′dxds +
∫
Rn

μ1
1 + s

ψu dx

∣∣∣∣t
0

=
∫ t

0

∫
Rn

|u|pψ dxds.

Hence, a further integration by parts leads to∫
Rn

(
utψ − uψt + μ1

1 + s
uψ

)
dx

∣∣∣∣t
0

=
∫ t

0

∫
Rn

|u|pψ dxds.

As the righthand side integral is positive, we obtain

F ′(t) +
(

μ1
1 + t

− 2λ′(t)
λ(t)

)
F (t) � ε

∫
Rn

(
g(x)λ(0) + (μ1λ(0) − λ′(0))f(x)

)
ϕ(x) dx.

Using (8), we have

λ′(t) = μ1+1
2 (1 + t)

μ1−1
2 K √

δ
2

(1 + t) + (1 + t)
μ1+1

2 K ′√
δ

2
(1 + t)

= μ1+1
2 (1 + t)

μ1−1
2 K √

δ
2

(1 + t) + (1 + t)
μ1+1

2

(
−K √

δ
2 +1(1 + t) +

√
δ

2(1+t) K √
δ

2
(1 + t)

)
= μ1+1+

√
δ

2 (1 + t)
μ1−1

2 K √
δ

2
(1 + t) − (1 + t)

μ1+1
2 K √

δ
2 +1(1 + t),

Also,

λ′(0) = μ1+1+
√

δ
2 K √

δ
2

(1) − K √
δ

2 +1(1),

μ1λ(0) − λ′(0) = μ1−1− √
δ

2 K √
δ

2
(1) + K √

δ
2 +1(1).

Consequently,

g(x)λ(0) + (μ1λ(0) − λ′(0))f(x) = K √
δ

2
(1)

(
g(x) + μ1−1− √

δ
2 f(x)

)
+ K √

δ
2 +1(1)f(x).

Denote
Cf,g :=

∫
Rn

(
g(x)λ(0) + (μ1λ(0) − λ′(0))f(x)

)
ϕ(x) dx,

then, since we assume compactly supported and satisfying (5) f and g , Cf,g is finite and positive. We thus
conclude that F satisfies the differential inequality

F ′(t) +
(

μ1
1 + t

− 2λ′(t)
λ(t)

)
F (t) � ε Cf,g.
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Multiplying (1+t)μ1

λ2(t) on two sides and then integrating over [0, t], we derive

F (t) � ε Cf,g
λ2(t)

(1 + t)μ1

∫ t

0

(1 + s)μ1

λ2(s) ds.

Inserting λ(t) = (1 + t)
μ1+1

2 K √
δ

2
(1 + t), we obtain the lower bound for F

F (t) � ε Cf,g

∫ t

0

(1 + t)K2√
δ

2
(1 + t)

(1 + s)K2√
δ

2
(1 + s) ds � 0. (13)

The second factor in the right-hand side of (12) can be estimated in standard way (cf. [29, estimate
(2.5)]) ∫

|x|�t+R

ψp′
(t, x) dx � λ

p
p−1 (t)

∫
|x|�t+R

ϕp′
(x) dx

� Cϕ,R(1 + t)n−1+
(

μ1+1
2 − n−1

2

)
p

p−1 e
p

p−1 (t+R)K
p

p−1√
δ

2
(1 + t), (14)

where Cϕ,R is a suitable positive constant.
Combing the estimate (13), (14) and (12), we now have

∫
Rn

|u(t, x)|pdx

� Cp
f,gC1−p

ϕ,R εp(1 + t)p−(n−1)(p−1)−
(

μ1+1
2 − n−1

2

)
pe−p(t+R)Kp√

δ
2

(1 + t)
(∫ t

0

ds

(1 + s)K2√
δ

2
(1 + s)

)p

� Cp
f,gC1−p

ϕ,R ep(1−R)εp(1 + t)(2−n−μ1) p
2 +(n−1)e−p(1+t)Kp√

δ
2

(1 + t)
(∫ t

0

ds

(1 + s)K2√
δ

2
(1 + s)

)p

.

Since (7), then for sufficient large T0 (which is independent of f, g, ε) and t > T0, we have

Kp√
δ

2
(1 + t) ∼

(
π

2(1 + t)

) p
2

e−p(t+1)

and ∫ t

0

1
(1 + s)K2√

δ
2

(1 + s)ds �
∫ t

t
2

2
π

e2(1+s)ds = 1
π

(
e2(1+t) − e2+t

)
� 1

2π
e2(1+t).

Consequently, ∫
Rn

|u(t, x)|pdx � C1εp(1 + t)
p
2 (1−n−μ1)+(n−1) for t > T0,

where C1 := 2−3p/2Cp
f,gC1−p

ϕ,R ep(1−R)π−p/2. This concludes the proof.

3. Proof of Theorem 1.2

Let u be an energy solution of (1) on [0, T ) and define

G(t) :=
∫
Rn

u(t, x) dx.
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Choosing a φ = φ(s, x) in (4) that satisfies φ ≡ 1 in {(x, s) ∈ [0, t] × R
n : |x| � s + R}, we obtain∫

Rn

ut(t, x) dx −
∫
Rn

ut(0, x) dx +
∫ t

0
ds

∫
Rn

(
μ1ut(s, x)

1 + s
+ μ2

2u(s, x)
(1 + s)2

)
dx

=
∫ t

0
ds

∫
Rn

|u(s, x)|pdx

which means that

G′(t) − G′(0) +
∫ t

0

μ1G′(s)
1 + s

ds +
∫ t

0

μ2
2G(s)

(1 + s)2 ds =
∫ t

0
ds

∫
Rn

|u(s, x)|pdx.

Since all functions in this equation aside from G′(t) are differentiable in t, G′(t) is differentiable in t as well.
Hence, we have

G′′(t) + μ1
1 + t

G′(t) + μ2
2

(1 + t)2 G(t) =
∫
Rn

|u(t, x)|pdx. (15)

Consider the quadratic equation
r2 − (μ1 − 1)r + μ2

2 = 0.

As δ � 0, there exit two real roots,

r1 = μ1 − 1 − √
δ

2 , r2 = μ1 − 1 +
√

δ

2 .

Clearly, if μ1 > 1 then both r1 and r2 are positive. Else, if 0 � μ1 < 1, both r1 and r2 are negative. When
μ1 = 1 then μ2 = 0 as δ � 0, and hence r1 = r2 = 0. Moreover, in whatever situation

r1,2 + 1 > 0.

We may rewrite (15) as(
G′(t) + r1

1 + t
G(t)

)′
+ r2 + 1

1 + t

(
G′(t) + r1

1 + t
G(t)

)
=
∫
Rn

|u(t, x)|pdx.

Multiplying by (1 + t)r2+1 and integrating over [0, t], we obtain

(1 + t)r2+1
(

G′(t) + r1
1 + t

G(t)
)

−
(

G′(0) + r1G(0)
)

=
∫ t

0
(1 + s)r2+1ds

∫
Rn

|u|pdx.

Using (5), we have

G′(t) + r1
1 + t

G(t) > (1 + t)−r2−1
∫ t

0
(1 + s)r2+1ds

∫
Rn

|u|pdx. (16)

Multiplying the above inequality by (1 + t)r1 and integrating over [0, t] gives

(1 + t)r1G(t) − G(0) >

∫ t

0
(1 + τ)r1−r2−1dτ

∫ τ

0
(1 + s)r2+1ds

∫
Rn

|u(s, x)|pdx.

By the positivity assumption on f , we have

G(t) �
∫ t

0

(
1 + τ

1 + t

)r1

dτ

∫ τ

0

(
1 + s

1 + τ

)r2+1
ds

∫
Rn

|u(s, x)|pdx. (17)

7



Furthermore, using Hölder inequality and the compactness of the support of solution with respect to x, we
get from (17)

G(t) � C0

∫ t

0

(
1 + τ

1 + t

)r1

dτ

∫ τ

0

(
1 + s

1 + τ

)r2+1
(1 + s)n(1−p)|G(s)|pds (18)

where
C0 := (meas(B1))1−pR−n(p−1) > 0.

At this moment, we are ready to prove Theorem 1.2. We shall apply an iteration method based on lower
bound estimates (11), (17) and (18).

Proof of Theorem 1.2. Plugging (11) into (17), we have for t > T0,

G(t) �
∫ t

T0

(
1 + τ

1 + t

)r1

dτ

∫ τ

T0

(
1 + s

1 + τ

)r2+1
C1εp(1 + s)n−1− n+μ1−1

2 pds

� C1εp(1 + t)−r1

∫ t

T0

(1 + τ)r1−r2−1dτ

∫ τ

T0

(1 + s)n+r2−(n+μ1−1) p
2 ds

� C1εp(1 + t)−r1

∫ t

T0

(1 + τ)r1−r2−1−(n+μ1−1) p
2 dτ

∫ τ

T0

(1 + s)n+r2ds

� C1εp(1 + t)−r2−1−(n+μ1−1) p
2

∫ t

T0

dτ

∫ τ

T0

(s − T0)n+r2ds. (19)

That is,
G(t) � C2 εp(1 + t)−r2−1−(n+μ1−1) p

2 (t − T0)n+r2+2 for t > T0, (20)
where C2 = C1

(n+r2+1)(n+r2+2) . Notice that, in (19) we may simply use the property

r1 − r2 − 1 − (n + μ1 − 1)p

2 � 0.

Now we begin our iteration argument. Assume that

G(t) � Dj(1 + t)−aj (t − T0)bj for t > T0, j = 1, 2, 3 . . . (21)

with positive constants Dj , aj and bj to be determined later. From (20) it follows that (21) is true for j = 1
with

D1 = C2εp, a1 = r2 + 1 + (n + μ1 − 1)p

2 , b1 = n + r2 + 2. (22)

Plugging (21) into (18), we have for t > T0

G(t) � C0 (1 + t)−r1

∫ t

T0

(1 + τ)r1−r2−1dτ

∫ τ

T0

(1 + s)r2+1+n(1−p)Dp
j (1 + s)−paj (s − T0)pbj ds

� C0 Dp
j (1 + t)−r2−1−n(p−1)−paj

∫ t

T0

∫ τ

T0

(s − T0)r2+1+pbj dsdτ (23)

�
C0Dp

j

(r2 + pbj + 2)(r2 + pbj + 3)(1 + t)−r2−1−n(p−1)−paj (t − T0)r2+pbj+3.

where in (23), we utilize
r1 − r2 − 1 − n(p − 1) − paj � 0.

So (21) is true if the sequences {Dj}j�1, {aj}j�1, {bj}j�1 fulfill

Dj+1 � C0
(r2 + pbj + 3)2 Dp

j , (24)

aj+1 = r2 + 1 + n(p − 1) + paj , bj+1 = r2 + 3 + pbj . (25)
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It follows from (22) and (25) that for j = 1, 2, 3 . . .

aj =
(

a1 + n + r2 + 1
p − 1

)
pj−1 −

(
n + r2 + 1

p − 1

)
= αpj−1 −

(
n + r2 + 1

p − 1

)
, (26)

bj =
(

b1 + r2 + 3
p − 1

)
pj−1 − r2 + 3

p − 1 = βpj−1 − r2 + 3
p − 1 , (27)

where we denote the positive constants

α = r2 + 1 + (n + μ1 − 1)p

2 + n + r2 + 1
p − 1 , β = n + r2 + 2 + r2 + 3

p − 1 .

Using (25) and (27), we get
bj+1 = r2 + 3 + pbj < pjβ.

Therefore, we obtain from the previous inequality and (24)

Dj+1 � C3
Dp

j

p2j
,

where
C3= C0

β2 = C0(
n + r2 + 2 + r2+3

p−1

)2 .

Hence,

log Dj � p log Dj−1 − 2(j − 1) log p + log C3

� p2 log Dj−2 − 2(p(j − 2) + (j − 1)) log p + (p + 1) log C3

� · · ·

� pj−1 log D1 − 2 log p

j−1∑
k=1

kpj−1−k + log C3

j−1∑
k=1

pk.

Using an inductive argument, the following formulas can be shown:

j−1∑
k=1

kpj−1−k = 1
p − 1

(
pj − 1
p − 1 − j

)
and

j−1∑
k=1

pk = p − pj

1 − p
,

which yield

log Dj � pj−1 log D1 − 2 log p

p − 1

(
pj − 1
p − 1 − j

)
+ log C3

p − pj

1 − p

= pj−1
(

log D1 − 2p log p

(p − 1)2 + p log C3
p − 1

)
+ 2 log p

p − 1 j + 2 log p

(p − 1)2 + p log C3
1 − p

.

Consequently, for j >
[

p log C3
2 log p − 1

p−1

]
+ 1 it holds

Dj � exp{pj−1(log D1 − Sp(∞))} (28)
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with
Sp(∞) := 2p log p

(p − 1)2 − p log C3
p − 1 .

Inserting (26), (27) and (28) into (21) gives

G(t) � exp
(
pj−1(log D1 − Sp(∞))

)
(1 + t)−αpj−1+n+ r2+1

p−1 (t − T0)βpj−1− r2+3
p−1

� exp
(
pj−1J(t)

)
(1 + t)n+ r2+1

p−1 (t − T0)− r2+3
p−1 , (29)

where
J(t) := log D1 − Sp(∞) − α log(1 + t) + β log(t − T0).

For t > 2T0 + 1, we have

J(t) � log D1 − Sp(∞) − α log(2t − 2T0) + β log(t − T0)
� log D1 − Sp(∞) + (β − α) log(t − T0) − α log 2
= log(D1 · (t − T0)β−α) − Sp(∞) − α log 2.

Note that
β − α = b1 − a1 − n + 2

p − 1 = p + 1
p − 1 − (n + μ1 − 1)p

2 = γ(p, n + μ1)
2(p − 1) .

Thus, if

t > max
{

T0 +
(

e(Sp(∞)+α log 2)+1

C2εp

)2(p−1)/γ(p,n+μ1)
, 2T0 + 1

}
,

then, we get J(t) > 1, and this in turn gives G(t) → ∞ by taking j → ∞ in (29). Therefore, there exists a
sufficiently small ε0 > 0 such that for any ε < ε0 we obtain the desired upper bound,

T � C4ε
− 2p(p−1)

γ(p,n+μ1)

with

C4 :=
(

e(Sp(∞)+α log 2)+1

C2

)2(p−1)/γ(p,n+μ1)

.

This completes our proof of Theorem 1.2.

4. Test function and preliminaries: critical case

In this section and in the next one, we adapt the approach from [9], with the purpose to include the
scale-invariant mass term.

Firstly, let us construct a suitable solution of the adjoint equation of (2) in Q1 := {(t, x) ∈ [0, ∞) × R
n :

|x| < 1 + t}. In other terms, we look for a function Φ = Φ(t, x) which solves

∂2
t Φ − ΔΦ − ∂t

( μ1
1 + t

Φ
)

+ μ2
2

(1 + t)2 Φ = 0 for any (t, x) ∈ Q1. (30)

Proposition 4.1. Let β be a real parameter. Let us make the following ansatz:

Φβ(t, x) := (1 + t)−β+1ψβ

( |x|2
(1 + t)2

)
, (31)

where ψβ ∈ C2([0, 1)). Then, Φβ solves (30) if and only if ψβ solves

z(1 − z)ψ′′
β(z) +

(
n
2 − (

β + 1
2 + μ1

2
)
z
)
ψ′

β(z) − (β(β+μ1−1)+μ2
2

4
)
ψβ(z) = 0. (32)
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Proof. For the sake of brevity we introduce the notation z := |x|2

(1+t)2 . By straightforward computations, it
follows

∂tΦβ(t, x) = (−β + 1)(1 + t)−βψβ(z) − 2(1 + t)−βz ψ′
β(z),

∂2
t Φβ(t, x) = (β − 1)β(1 + t)−β−1ψβ(z) + 4(β − 1)(1 + t)−β−1z ψ′

β(z)
+ 4(1 + t)−β−1z2 ψ′′

β(z) + 6(1 + t)−β−1z ψ′
β(z),

and

ΔΦβ(t, x) = 2n(1 + t)−β−1ψ′
β(z) + 4(1 + t)−β−1z ψ′′

β(z).

Plugging the previous relations, we obtain the following identity:

∂2
t Φβ−ΔΦβ − ∂t

( μ1
1 + t

Φβ

)
+ μ2

2
(1 + t)2 Φβ

= (1 + t)−β−1
(

4z(z − 1)ψ′′
β(z) + ((4(β − 1) + 6 + 2μ1)z − 2n)ψ′

β(z)

+ (β(β − 1) − μ1(−β + 1) + μ1 + μ2
2)ψβ(z)

)
.

Also, Φβ solves (30) if and only if ψβ is a solution to (32).

If we find a, b such that

a + b + 1 = β + 1
2 + μ1

2 , ab = β(β+μ1−1)+μ2
2

4 , (33)

then, (32) coincides with the hypergeometric equation with parameters (a, b ; n
2 ), namely,

z(1 − z)ψ′′
β(z) +

(
n
2 − (a + b + 1)z

)
ψ′

β(z) − abψβ(z) = 0.

Hence, whether a, b fulfill (33), we can choose the Gauss hypergeometric function with parameters
(a, b ; n

2 ) as solution to the above equation, i.e.,

ψβ(z) := F (a, b ; n
2 ; z) =

∞∑
k=0

(a)k(b)k

(n/2)k

zk

k! , (34)

provided that |z| < 1 or, equivalently, (t, x) ∈ Q1. In (34) the so-called Pochhammer’s symbol (m)k is
defined by

(m)k =
{

1 if k = 0,∏k
j=1(m + j − 1) if k � 0.

It is actually possible to choose a, b satisfying (33). Indeed, the quadratic equations

r2 − (
β + μ1

2 − 1
2
)
r + β(β+μ1−1)+μ2

2
4 = 0

has an independent of β and nonnegative discriminant due to the assumption δ � 0. Let us introduce

a := β
2 + μ1−1

4 +
√

δ
4 , (35)

b := β
2 + μ1−1

4 −
√

δ
4 . (36)

Then, a and b fulfill (33).
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Definition 4.2. Let a, b be defined by (35) and (36), respectively. We introduce the following function

Φβ = Φβ(t, x ; μ1, μ2) = (1 + t)−β+1ψβ

(
|x|2

(1+t)2

)
:= (1 + t)−β+1F

(
a, b ; n

2 ; |x|2

(1+t)2

)
for (t, x) ∈ Q1. (37)

According to Proposition 4.1 Φβ solves (30) in Q1. The next step is to provide the asymptotic behavior
of ψβ and ψ′

β .

Lemma 4.3. The following estimates are satisfied:

(i) if
√

δ−μ1+1
2 < β < n−μ1+1

2 , then, there exists C ′ = C ′(β, n, μ1, μ2) > 1 such that for any z ∈ [0, 1) it
holds

1 � ψβ(z) � C ′ ; (38)

(ii) if β > n−μ1−1
2 , then, there exists C ′′ = C ′′(β, n, μ1, μ2) > 1 such that for any z ∈ [0, 1) it holds

1
C′′ (1 − √

z)
n−μ1−1

2 −β �
∣∣ψ′

β(z)
∣∣ � C ′′(1 − √

z)
n−μ1−1

2 −β . (39)

Proof. (i) The assumption on β implies that a, b > 0 and a + b < n
2 . Since ψβ = F (a, b, ; n

2 ; ·), (38) follows
immediately by [17, Section 15.4 (ii), formula 15.4.20].
(ii) Because of ψ′

β = 2ab
n F (a + 1, b + 1 ; n

2 + 1 ; ·), the assumption on β and [17, Section 15.4 (ii), formula
15.4.23] imply (39).

Before proving Theorem 1.3, we derive some preliminary lemmas. First of all, we introduce the following
functionals

Gβ(t) :=
∫
Rn

|u(t, x)|p Φβ(t, x ; μ1, μ2) dx , (40)

Hβ(t) :=
∫ t

0
(t − s)(1 + s) Gβ(s) ds , (41)

Jβ(t) :=
∫ t

0
(2 + s)−3 Hβ(s) ds , (42)

where β ∈
( √

δ−μ1+1
2 , n−μ1+1

2

)
and t � 0. We remark that δ should be smaller than n2 in order to get a

nonempty range for β.

Remark 4.4. From (38) it follows that Gβ(t) ≈ (1 + t)1−β‖u(t, ·)‖p
Lp(Rn). Hence, if we prove that Jβ blows

up in finite time, then, in turn, Hβ blows up in finite time and Gβ(t) as well. Due to the previous relation,
we get hence that the lifespan of Jβ is an upper bound for the lifespan T of the energy solution solution u
of (1).

Lemma 4.5. For any β ∈
( √

δ−μ1+1
2 , n−μ1+1

2

)
and t � 0 it holds

(1 + t)2Jβ(t) � 1
2

∫ t

0
(t − s)2Gβ(s) ds.

Proof. Differentiating twice (41), we have

H′
β(t) =

∫ t

0
(1 + s) Gβ(s) ds , H′′

β(t) = (1 + t) Gβ(t). (43)
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Then, by using integration by parts, since Hβ(0) = H′
β(0) = 0, we get∫ t

0
(t − s)2Gβ(s) ds =

∫ t

0
(t − s)2(1 + s)−1H′′

β(s) ds =
∫ t

0
∂2

s [(t − s)2(1 + s)−1]Hβ(s) ds

= 2
∫ t

0
(1 + s)−3(1 + t)2Hβ(s) ds � 2 (1 + t)2Jβ(t),

which is exactly the desired inequality.

Lemma 4.6. Let us assume (f, g) ∈ H1(Rn)×L2(Rn) nonnegative, not identically zero, compactly supported
such that

supp(f), supp(g) ⊂ BR and R < 1.

Let u be a solution of (1). Then, for every β ∈
( √

δ−μ1+1
2 , n−μ1+1

2

)
such that β � 1 − μ1 and t � 0 the

following identity holds

εE0,β(f) + εE1,β(f, g) t +
∫ t

0
(t − s)Gβ(s) ds

=
∫
Rn

u(t, x)Φβ(t, x) dx +
∫ t

0
(1 + s)−β

∫
Rn

u(s, x) ψ̃β

(
|x|2

(1+s)2

)
dx ds, (44)

where

E1,β(f, g) :=
∫
Rn

(
g(x)ψβ(|x|2) + f(x)

(
(β − 1 + μ1)ψβ(|x|2) + 2|x|2ψ′

β(|x|2)
))

dx, (45)

E0,β(f) :=
∫
Rn

f(x)ψβ(|x|2) dx (46)

are positive quantities and
ψ̃β(z) := (2β + μ1 − 2)ψβ(z) + 4z ψ′

β(z). (47)

Proof. Due to the property of finite speed of propagation for solutions of strictly hyperbolic equations, for
the solution u of the semilinear Cauchy problem (1) we have supp u(t, ·) ⊂ BR+t for any t � 0, which implies
supp u ⊂ Q1, as R < 1.

For the sake of brevity, we will denote simply Φβ(t, x ; μ1, μ2) ≡ Φβ(t, x). Then, using (30), we have

Gβ(t) =
∫
Rn

(
utt(t, x) − Δu(t, x) + μ1

1+t ut(t, x) + μ2
2

(1+t)2 u(t, x)
)

Φβ(t, x) dx

−
∫
Rn

u(t, x)
(

∂2
t Φβ(t, x) − ΔΦβ(t, x) − ∂t

(
μ1

1+t Φβ(t, x)
)

+ μ2
2

(1+t)2 Φβ(t, x)
)

dx

=
∫
Rn

(
utt(t, x) + μ1

1+t ut(t, x)
)

Φβ(t, x) dx

−
∫
Rn

u(t, x)
(

∂2
t Φβ(t, x) − ∂t

(
μ1

1+t Φβ(t, x)
))

dx

= d

dt

(∫
Rn

(
ut(t, x)Φβ(t, x) − u(t, x)∂tΦβ(t, x)

)
dx + μ1

1+t

∫
Rn

u(t, x)Φβ(t, x) dx

)
, (48)

where in the second equality we used Green’s second identity (the boundary integrals with respect to x
disappear due to the support property of u).
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Since ∂tΦβ(t, x) = (1 + t)−β
(
(−β + 1)ψβ(z) − 2zψ′

β(z)
)
, then,∫

Rn

(
ut(0, x)Φβ(0, x) − u(0, x)∂tΦβ(0, x)

)
dx + μ1

∫
Rn

u(0, x)Φβ(0, x) dx

= ε

∫
Rn

(
g(x)ψβ(|x|2) − f(x)

(
(−β + 1)ψβ(|x|2) − 2|x|2ψ′

β(|x|2)
)

+ μ1f(x)ψβ(|x|2)
)

dx

= ε

∫
Rn

(
g(x)ψβ(|x|2) + f(x)

(
(β − 1 + μ1)ψβ(|x|2) + 2|x|2ψ′

β(|x|2)
))

dx = εEβ,1(f, g).

Since ψβ(|x|2) = F (a, b ; n
2 ; |x|2) � 1 and

ψ′
β(|x|2) = F ′(a, b ; n

2 ; |x|2) = 2ab
n F

(
a + 1, b + 1 ; n

2 + 1 ; |x|2) > 0

for |x| < 1 and we required β � 1 − μ1 in the assumptions, then, it results Eβ,1(f, g) > 0, as f and g are
nonnegative.

Integrating (48) over [0, t], we obtain

εEβ,1(f, g) +
∫ t

0
Gβ(s) ds

=
∫
Rn

(
ut(t, x)Φβ(t, x) − u(t, x)∂tΦβ(t, x)

)
dx + μ1

1+t

∫
Rn

u(t, x)Φβ(t, x) dx

= d

dt

(∫
Rn

u(t, x)Φβ(t, x) dx

)
− 2

∫
Rn

u(t, x)∂tΦβ(t, x) dx + μ1
1+t

∫
Rn

u(t, x)Φβ(t, x) dx

= d

dt

(∫
Rn

u(t, x)Φβ(t, x) dx

)
+ (1 + t)−β

∫
Rn

u(t, x) ψ̃β

(
|x|2

(1+t)2

)
dx,

where ψ̃β is given by (47).
A further integration over [0, t] and Fubini’s theorem provide

εEβ,1(f, g) t +
∫ t

0

∫ τ

0
Gβ(s) ds = εEβ,1(f, g) t +

∫ t

0
(t − s) Gβ(s) ds dτ

=
∫
Rn

u(t, x)Φβ(t, x) dx − ε

∫
Rn

f(x)ψβ(|x|2) dx

+
∫ t

0
(1 + s)−β

∫
Rn

u(s, x) ψ̃β

(
|x|2

(1+s)2

)
dx ds,

that is, (44).

Lemma 4.7. Let us assume (f, g) ∈ H1(Rn)×L2(Rn) nonnegative, not identically zero, compactly supported
such that

supp(f), supp(g) ⊂ BR and R < 1.

Let μ1, μ2 be nonnegative constants such that 0 � δ < n2 and let p = pS(n + μ1) be such that p > 2
n− √

δ
.

(i) Let q > p and let us consider

βq = n−μ1+1
2 − 1

q . (49)

Then,

εE0,βq (f) + εE1,βq (f, g) t +
∫ t

0
(t − s) Gβq (s) ds

� C1

(
(1 + t)

n
p′ −βq+1‖u(t, ·)‖Lp(Rn) +

∫ t

0
(1 + s)

n
p′ −βp‖u(s, ·)‖Lp(Rn) ds

)
.
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(ii) Let p = q. If βp is defined by (49), then,∫ t

0
(t − s) Gβp(s) ds

� C1

(
(1 + t)

n
p′ −βp+1‖u(t, ·)‖Lp(Rn) +

∫ t

0
(1 + s)

n
p′ −βp

(
log(2 + s)

) 1
p′ ‖u(s, ·)‖Lp(Rn) ds

)
.

Here the constant C1 > 0 does not depend on (t, x) and u.

Remark 4.8. Let us point out that the condition p > 2
n− √

δ
implies

βq � βp >
√

δ−μ1+1
2 .

for q � p. Moreover, the condition βp � 1 − μ1 is always true for p = pS(n + μ1). Indeed, βp � 1 − μ1 is
equivalent to require

1
p � n+μ1−1

2 .

Besides, p solves the quadratic equation γ(p, n + μ1) = 0. Therefore,

1
p = n+μ1−1

2 p − n+μ1+1
2 � n+μ1−1

2 if and only if p � 2(n+μ1)
n+μ1−1 .

As p = pS(n+μ1), a straightforward calculation shows that the last inequality is always fulfilled by nonnegative
parameters μ1.

Proof. By (44), using again the finite speed of propagation property, we may write

εE0,βq (f) + εE1,βq (f, g) t +
∫ t

0
(t − s) Gβq (s) ds = Iβq,1(t) +

∫ t

0
Iβq,2(s) ds, (50)

where

Iβq,1(t) :=
∫

BR+t

u(t, x)Φβq (t, x) dx,

Iβq,2(t) := (1 + t)−βq

∫
BR+t

u(t, x) ψ̃βq

(
|x|2

(1+t)2

)
dx.

Let us point out explicitly that, according to Remark 4.8 we have that the assumptions on p imply βq ∈( √
δ−μ1+1

2 , n−μ1+1
2

)
and βq � 1 − μ1. For this reason, we may use Lemma 4.6 in order to derive (50). For

βq ∈
( √

δ−μ1+1
2 , n−μ1+1

2

)
, as the hypergeometric function in (37) is uniformly bounded, we can estimate

Φβq (t, x) ≈ (1+ t)−βq+1 according to (38). Therefore, if we denote by p′ the conjugate exponent of p, Hölder
inequality implies

Iβq,1(t) �
(∫

BR+t

|u(t, x)|p dx

) 1
p
(∫

BR+t

Φβq (t, x)p′
dx

) 1
p′

� C1(1 + t)
n
p′ −βq+1‖u(t, ·)‖Lp(Rn), (51)

where throughout this proof C1 = C1(n, p, μ1, μ2, β, R) > 0 is a suitable constant that may change from line
to line.

Let us estimate now the term Iβq,2(s). We remark that for βq as in (49), then, βq > n−μ1−1
2 , since it is

q > 1. Therefore, in order to estimate ψ′
βq

we may use (39). As we underlined in the previous case, due to

15



the assumption on βq, the function ψβq is uniformly bounded. Thus, in (47) the dominant term as z → 1−

is the derivative. Hence,

|ψ̃βq
(z)| � C1(1 − √

z)
n−μ1−1

2 −βq for z ∈ [0, 1).

Consequently, by using Hölder inequality, for Iβ,2(s) we get

Iβq,2(s) � (1 + s)−βq

(∫
BR+s

|u(s, x)|p dx

) 1
p
(∫

BR+s

|ψ̃βq (s, x)|p′
dx

) 1
p′

� C1(1 + s)−βq

(∫
BR+s

(
1 − |x|

1+s

)( n−μ1−1
2 −βq)p′

dx

) 1
p′

‖u(s, ·)‖Lp(Rn)

= C1(1 + s)−βq

(∫
BR+s

(
1 − |x|

1+s

)( 1
q −1)p′

dx

) 1
p′

‖u(s, ·)‖Lp(Rn)

= C1(1 + s)−βq

(∫
BR+s

(
1 − |x|

1+s

)− p′
q′

dx

) 1
p′

‖u(s, ·)‖Lp(Rn),

where q′ denotes the conjugate exponent of q.
Using polar coordinates, we get∫

BR+s

(
1 − |x|

1+s

)− p′
q′

dx = ωn−1

∫ R+s

0

(
1 − r

1+s

)− p′
q′

rn−1 dr

= ωn−1(1 + s)n

∫ R+s
1+s

0
(1 − ρ)− p′

q′ ρn−1 dρ,

where ωn−1 is the measure of the unitary sphere ∂B1. Also,

Iβq,2(s) � C1(1 + s)−βq+ n
p′
(∫ R+s

1+s

0
(1 − ρ)− p′

q′ ρn−1 dρ

) 1
p′

‖u(s, ·)‖Lp(Rn)

� C1(1 + s)−βq+ n
p′
(∫ R+s

1+s

0
(1 − ρ)− p′

q′ dρ

) 1
p′

‖u(s, ·)‖Lp(Rn)

� C1(1 + s)−βq+ n
p′ ‖u(s, ·)‖Lp(Rn)

{
(1 − R+s

1+s )− 1
q′ + 1

p′ if q > p,( − log(1 − R+s
1+s )

) 1
p′ if q = p,

�
{

C1(1 + s)−βq+ n
p′ + 1

q′ − 1
p′ ‖u(s, ·)‖Lp(Rn) if q > p,

C1(1 + s)−βp+ n
p′
(

log(2 + s)
) 1

p′ ‖u(s, ·)‖Lp(Rn) if q = p.

Since −βq + n
p′ + 1

q′ − 1
p′ = n

p′ + 1 − n−μ1+1
2 − 1

p′ = n
p′ − βp, integrating Iβ,2(s) over [0, t], we find

∫ t

0
Iβq,2(s) ds � C1

⎧⎪⎪⎨⎪⎪⎩
∫ t

0
(1 + s)

n
p′ −βp‖u(s, ·)‖Lp(Rn) ds if q > p,∫ t

0
(1 + s)

n
p′ −βp

(
log(2 + s)

) 1
p′ ‖u(s, ·)‖Lp(Rn) ds if q = p.

(52)

Due to the assumptions on (f, g), we have E0,βq (f) > 0 and E1,βq (f, g) > 0. Then, combining (51) and
(52), from (50) we get the desired estimates in the cases q > p and q = p.
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5. Proof of Theorem 1.3

Proof. Let us consider βp+σ = n+μ1−1
2 − 1

p+σ for p = pS(n + μ1), where σ is a positive constant. Since βq is
increasing with respect to q, if we assume p > 2

n− √
δ
, then, βp+σ > βp >

√
δ−μ1+1

2 and we can apply Lemma
4.7. Also, from Lemma 4.7 (i) it follows

εE0,βp+σ (f) + εE1,βp+σ (f, g) t

� C1

(
(1 + t)

n
p′ −βp+σ+1‖u(t, ·)‖Lp(Rn) +

∫ t

0
(1 + s)

n
p′ −βp‖u(s, ·)‖Lp(Rn) ds

)
� C1

(
(1 + t)

n+1−βp

p′ +βp−βp+σ (Gβp(t))
1
p +

∫ t

0
(1 + s)

n+1−βp

p′ −1(Gβp(s))
1
p ds

)
.

Let us underline that p = p(n + μ1) implies n+1−βp

p′ = 1 + 1
p . Indeed,

n+1−βp

p′ =
(

n + 1 −
(

n−μ1+1
2 − 1

p

))(
1 − 1

p

)
= 1

p2

(
n+μ1+1

2 p + 1
)

(p − 1)

= 1
p2

(
n+μ1+1

2 p2 − n+μ1+1
2 p + p − 1

)
= 1

p2

(
p2 + p − γ(p,n+μ1)

2︸��������︷︷��������︸
=0

)
= p+1

p .

Then, integrating the preceding inequality over [0, t] and applying Fubini’s theorem and Hölder inequality,
we arrive at

εE0,βp+σ (f) t + ε
2 E1,βp+σ (f, g) t2

� C1

(∫ t

0
(1 + s)1+ 1

p +βp−βp+σ (Gβp(s))
1
p ds +

∫ t

0
(t − s)(1 + s)

1
p (Gβp(s))

1
p ds

)
� C1

(∫ t

0
(1 + s)Gβp(s) ds

) 1
p

[(∫ t

0
(1 + s)p′+(βp−βp+σ)p′

ds

) 1
p′

+
(∫ t

0
(t − s)p′

ds

) 1
p′
]

� C2

(∫ t

0
(1 + s)Gβp

(s) ds

) 1
p

(1 + t)1+ 1
p′ .

From (43), we get

εE0,βp+σ (f) t + ε
2 E1,βp+σ (f, g) t2 � C2H′

βp
(t)

1
p (1 + t)1+ 1

p′ ,

which implies for t � 1

H′
βp

(t) � C−p
2 εp

(
E0,βp+σ (f) t + 1

2 E1,βp+σ (f, g) t2
)p

(1 + t)1−2p

� C3εp(1 + t).

As the functional Hβp is nonnegative, from the previous inequality we get for t � 2

Hβp(t) �
∫ t

1
H′

βp
(s) ds � C3εp

∫ t

1
(1 + s) ds � C4εp(1 + t)2. (53)

By using Lemma 4.7 (ii), due to E0,βp(f), E1,βp(f, g) � 0 we have∫ t

0
(t − s) Gβp(s) ds

� C1

(
(1 + t)

n
p′ −βp+1‖u(t, ·)‖Lp(Rn) +

∫ t

0
(1 + s)

n
p′ −βp

(
log(2 + s)

) 1
p′ ‖u(s, ·)‖Lp(Rn) ds

)
� C1

(
(1 + t)

n+1−βp

p′ (Gβp(t))
1
p +

∫ t

0
(1 + s)

n+1−βp

p′ −1( log(2 + s)
) 1

p′ (Gβp(s))
1
p ds

)
.
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Integrating over [0, t] and using again the equality n+1−βp

p′ = 1 + 1
p , Hölder inequality and (43), we find

1
2

∫ t

0
(t − s)2 Gβp(s) ds

� C1

(∫ t

0
(1 + s)1+ 1

p (Gβp(s))
1
p ds +

∫ t

0
(t − s)(1 + s)

1
p
(

log(2 + s)
) 1

p′ (Gβp(s))
1
p ds

)
� C ′

2

(∫ t

0
(1 + s)Gβp(s) ds

) 1
p

[(∫ t

0
(1 + s)p′

ds

) 1
p′

+
(∫ t

0
(t − s)p′

log(2 + s) ds

) 1
p′
]

� C ′
3

(∫ t

0
(1 + s)Gβp(s) ds

) 1
p

(1 + t)1+ 1
p′
(

log(2 + t)
) 1

p′

� C ′
3
(H′

βp
(t)
) 1

p (2 + t)
2p−1

p
(

log(2 + t)
) 1

p′ .

From Lemma 4.5, we get

(1 + t)2Jβp(t) � C ′
3
(H′

βp
(t)
) 1

p (2 + t)
2p−1

p
(

log(2 + t)
) 1

p′ ,

and, hence, for t � 2 we have

C ′
4
(

log(2 + t)
)1−p(Jβp(t)

)p � H′
βp

(t)(2 + t)−1. (54)

By the definition of Jβp , it follows immediately (2 + t)3J ′
βp

(t) = Hβp(t) which implies

(2 + t)3J ′′
βp

(t) + 3(2 + t)2J ′
βp

(t) = H′
βp

(t).

Combining the previous identity with (54), we have

(2 + t)2J ′′
βp

(t) + 3(2 + t)J ′
βp

(t) � C ′
4
(

log(2 + t)
)1−p(Jβp(t)

)p
. (55)

Moreover, from (53), we get for t � 2 and for a suitable constant c0 > 0

Jβp(t) � C ′
4εp

∫ t

0
(2 + s)−3(1 + s)2 ds � c0 εp log(2 + t), (56)

J ′
βp

(t) � C ′
4εp(2 + t)−3(1 + t)2 � c0 εp(2 + t)−1. (57)

Let us set 2 + t = exp(τ). Let J0(τ) denote the functional Jβp(t) with respect to the new variable, that
is, J0(τ) = Jβp(exp(τ) − 2) = Jβp(t). Then,

J ′
0(τ) = (2 + t)J ′

βp
(t),

J ′′
0 (τ) = (2 + t)2J ′′

βp
(t) + (2 + t)J ′

βp
(t).

So, by using (55), (56) and (57), we find that J0(τ) satisfies for τ � log 4⎧⎪⎨⎪⎩
J ′′

0 (τ) + 2J ′
0(τ) > C ′

4τ1−pJ p
0 (τ),

J0(τ) � c0εpτ,

J ′
0(τ) � c0εp.

(58)

Employing [9, Lemma 3.1 (ii)] (see also [32], where this comparison principle for ordinary differential
inequalities is originally stated and proved), we get that the function J0(τ) blows up in finite time before
τ = Cε−p(p−1) for some constant C > 0. Also, Jβp(t) blows up before t = exp(Cε−p(p−1)) − 2. According to
what we have said in Remark 4.4, we have found for the lifespan T of u the upper bound (6). This concludes
the proof of Theorem 1.3.
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Remark 5.1. Let us explain the restriction p > 2
n− √

δ
in Theorem 1.3. Although it turns out as a technical

condition coming from the inequality βp >
√

δ−μ1+1
2 , in the massless case (μ2

2 = 0) it is equivalent to require
μ < n2+n+2

n+2 , which is exactly the restriction on μ1 in [9]. Furthermore, for n � 3 and δ < (n − 2)2 this
condition is always fulfilled. In particular, for high dimensions, namely for n � 4, we have an improvement
in the range for δ for which we can prove a blow-up result in the critical case with respect to [22], where the
restriction δ ∈ (0, 1] is required. Finally, we remind that (1) is “parabolic-like” for δ � (n + 1)2. Therefore,
the restriction δ < (n−2)2 when n � 3 is compatible with the conjecture for (1) to be “wave-like” for “small”
and nonnegative δ. Similarly, in the subcritical case, even though in Theorem 1.2 we assume δ � 0, it is
clear that the result can be sharp only for suitably “small” and nonnegative δ.

Remark 5.2. Regarding the necessity part, in the special case δ = 1 the exponent pS(n + μ1) is proved to
be really critical for n � 3 in the radially symmetric case in [19, 20]. This shows the optimality of the range
for p which is obtained in this paper for suitably “small” and nonnegative δ.
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