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In this paper, we determine the automorphism group of the p-cones (p �= 2) in 
dimension greater than two. In particular, we show that the automorphism group 
of those p-cones are the positive scalar multiples of the generalized permutation 
matrices that fix the main axis of the cone. Next, we take a look at a problem 
related to the duality theory of the p-cones. Under the Euclidean inner product 
it is well-known that a p-cone is self-dual only when p = 2. However, it was not 
known whether it is possible to construct an inner product depending on p which 
makes the p-cone self-dual. Our results show that no matter which inner product 
is considered, a p-cone will never become self-dual unless p = 2 or the dimension is 
less than three.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this work, we prove two results on the structure of the p-cones

Ln+1
p = {(t, x) ∈ R× R

n | t ≥ ‖x‖p}.

First, we describe the automorphism group of the p-cones Ln+1
p for n ≥ 2 and p �= 2, 1 < p < ∞. We show 

that every automorphism of Ln+1
p must have the format

α

(
1 0
0 P

)
, (1)

where α > 0 and P is an n × n generalized permutation matrix. The second result is that, for n ≥ 2 and 
p �= 2, it is not possible to construct an inner product on Rn+1 for which Ln+1

p becomes self-dual. In fact, the 
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second result is derived as a corollary of a stronger result that Ln+1
p and Ln+1

q cannot be linearly isomorphic 
if p < q and n ≥ 2, except when (p, q, n) = (1, ∞, 2).

The motivation for this research is partly due to the work by Gowda and Trott [5], where they determined 
the automorphism group of Ln+1

1 and Ln+1
∞ . However, they left open the problem of determining the 

automorphisms of the other p-cones, for p �= 2. Here, we recall that the case p = 2 correspond to the 
second order cones and they are symmetric, i.e., self-dual and homogeneous. The structure of second-order 
cones and their automorphisms follow from the more general theory of Jordan Algebras [4], see also [8].

In [5], Gowda and Trott also proved that Ln+1
1 and Ln+1

∞ are not homogeneous cones and they posed the 
problem of proving/disproving that Ln+1

p is not homogeneous for p �= 2, n ≥ 2. Recall that a cone is said 
to be homogeneous if its group of automorphisms acts transitively on the interior of the cone. In [6], using 
the theory of T -algebras [11], we gave a proof that Ln+1

p is not homogeneous for p �= 2, n ≥ 2. However, 
there are two unsatisfactory aspects of our previous result. The first is that we were not able to compute the 
automorphism group of Ln+1

p . The second is that although we showed that Ln+1
p is not homogeneous, we 

were unable to obtain two elements x, y in the interior of Ln+1
p such that no automorphism of Ln+1

p maps 
x to y. That is, we were unable to show concretely how homogeneity breaks down on Ln+1

p . The results 
discussed here remedy those flaws and provide an alternative proof that Ln+1

p is not homogeneous.
Another motivation for this work is the general problem of determining when a closed convex cone K ⊆ R

n

is self-dual. If Rn is equipped with some inner product 〈·, ·〉, the dual cone of K is defined as

K∗ = {y ∈ R
n | 〈x, y〉 ≥ 0, ∀x ∈ K}.

As discussed in Section 1 of [6], an often overlooked point is that K∗ depends on 〈·, ·〉. Accordingly, it is 
entirely plausible that a cone that is not self-dual under the Euclidean inner product might become self-dual 
if the inner product is chosen appropriately.

This detail is quite important because sometimes we see articles claiming that a certain cone is not a 
symmetric cone because it is not self-dual under the Euclidean inner product. This is, of course, not enough. 
As long as a cone is homogeneous and there exists some inner product that makes it self-dual, the cone can 
be investigated under the theory of Jordan Algebras.

This state of affairs brings us to the case of the p-cones. Up until the recent articles [5,6], there was no 
rigorous proof that the p-cones Ln+1

p were not symmetric when p �= 2 and n ≥ 2. Now, although we know 
that Ln+1

p is not homogeneous for p �= 2 and n ≥ 2, it still remains to investigate whether Ln+1
p could 

become self-dual under an appropriate inner product. This question was partly discussed by Miao, Lin and 
Chen in [9], where they showed that a p-cone (again, p �= 2, n ≥ 2) is not self-dual under an inner product 
induced by a diagonal matrix. The results described here show, in particular, that no inner product can 
make Ln+1

p self-dual, for p �= 2, n ≥ 2.
We now explain some of the intuition behind our proof techniques. Let n ≥ 2 and let fp : Rn\{0} → R be 

the function that maps x to ‖x‖p. When p ∈ (1, 2), we have that fp is twice differentiable only at points x for 
which xi �= 0, for all i. In contrast, if p ∈ (2, ∞), fp is twice differentiable throughout Rn \ {0}. Now, we let 
Mp be the boundary without the zero of the cone Ln+1

p . With that, Mp is exactly the graph of the function 
fp. Furthermore, Mp is a C1-embedded smooth manifold if p ∈ (1, 2). If p ∈ (2, ∞), Mp is a C2-embedded 
smooth manifold. Now, any linear bijection between Ln+1

p and Ln+1
q must map the boundary of Ln+1

p to 
the boundary of Ln+1

q , thus producing a map between Mp and Mq. Then, if p ∈ (1, 2) and q ∈ (2, ∞), there 
can be no linear bijection between Ln+1

p and Ln+1
q because this would establish a diffeomorphism between 

submanifolds that are embedded with different levels of smoothness.
Now suppose that p, q are both in (1, 2) and that there exists some linear bijection A between Ln+1

p and 
Ln+1
q . If (fp(x), x) ∈ Mp is such that fp is not twice differentiable at x, then A must map (fp(x), x) to 

a point (fq(y), y) for which fq is not twice differentiable at y. This idea is made precise in Proposition 4. 
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In particular, this fact imposes severe restrictions on how Aut(Ln+1
p ) acts on Ln+1

p and this is the key 
observation necessary for showing that the matrices in Aut(Ln+1

p ) can be written as in (1).
This work is divided as follows. In Section 2 we present the notation used in this paper and review some 

facts about cones, self-duality and p-cones. In Section 3, we discuss the tools from manifold theory necessary 
for our discussion. Finally, in Section 4 we prove our main results.

2. Preliminaries

A convex cone is a subset K of some real vector space Rn such that αx +βy ∈ K holds whenever x, y ∈ K
and α, β ≥ 0. A cone K is said to be pointed if K ∩ −K = {0}. For a subset S of Rn, the (closed) conical 
hull of S, denoted by cone(S), is the smallest closed convex cone in Rn containing S. If v ∈ R

n, we write 
R+(v) for the half-line generated by v and R++ for R+(v) \ {0}, i.e.,

R+(v) = {αv | α ≥ 0},

R++(v) = {αv | α > 0}.

A convex subset F of K is said to be a face of K if the following condition holds: If x, y ∈ K satisfies 
αx + (1 −α)y ∈ F for some α ∈ (0, 1) then x, y ∈ F holds. A one dimensional face is called an extreme ray. 
A polyhedral convex cone is a convex cone that can be expressed as the solution set of finitely many linear 
inequalities.

If 〈·, ·〉 is an inner product on Rn, we can define the dual cone of K with respect to the inner product 
〈·, ·〉 by

K∗ = {x ∈ R
n | 〈x, y〉 ≥ 0, ∀y ∈ K}.

A convex cone K is self-dual if there exists an inner product on Rn for which the dual cone coincides with 
K itself.

Two convex cones K1 and K2 in Rn are said to be isomorphic if there exists a linear bijection A ∈ GLn(R), 
called an isomorphism, such that AK1 = K2. An automorphism of a convex cone K in Rn is a map 
A ∈ GLn(R) such that AK = K. The group of all automorphisms of K is written by Aut(K) and called the 
automorphism group of K.

A convex cone K is said to be homogeneous if Aut(K) acts transitively on the interior of K, that is, for 
all elements x and y of the interior of K, there exists A ∈ Aut(K) such that y = Ax.

2.1. On self-duality

Let K ⊆ R
n be a closed convex cone. As we emphasized in Section 1, self-duality is a relative concept 

and depends on what inner product we are considering. Let 〈·, ·〉E denote the Euclidean inner product and 
consider the dual of K with respect 〈·, ·〉E .

K∗ = {y ∈ R
n | 〈x, y〉E ≥ 0, ∀x ∈ K}.

We have the following proposition.

Proposition 1. Let K ⊆ R
n be a closed convex cone and let K∗ be the dual of K with the respect to the 

Euclidean inner product 〈·, ·〉E. Then, there exists an inner product on Rn that turns K into a self-dual cone 
if and only if there exists a symmetric positive definite matrix A such that AK = K∗.
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Proof. First, suppose that there exist some inner product 〈·, ·〉K for which K becomes self-dual. Then, there 
is a symmetric positive definite matrix A such that

〈x, y〉K = 〈x,Ay〉E ,

for all x, y ∈ R
n. In fact, Aij = 〈ei, ej〉K, where ei is the i-th standard unit vector in Rn. By assumption, 

we have

K = {x ∈ R
n | 〈x,Ay〉E ≥ 0,∀y ∈ K}

= {x ∈ R
n | 〈Ax, y〉E ≥ 0,∀y ∈ K}

= A−1{z ∈ R
n | 〈z, y〉E ≥ 0,∀y ∈ K}

= A−1K∗.

This shows that AK = K∗.
Reciprocally, if AK = K∗, we define the inner product 〈·, ·〉K such that

〈x, y〉K := 〈x,Ay〉E ,

for all x, y ∈ R
n. Then, a straightforward calculation shows that the dual of K with respect 〈·, ·〉K is 

indeed K. �
Therefore, determining whether K is self-dual for some inner product boils down to determining the 

existence of a positive definite linear isomorphism between cones, which is a difficult problem in general.

2.2. p-cones

Here we present some basic facts on p-cones. The p-cone is the closed convex cone in Rn+1 defined by

Ln+1
p = {(t, x) ∈ R× R

n | t ≥ ‖x‖p}

where ‖x‖p is the p-norm on Rn:

‖x‖p = (|x1|p + · · · + |xn|p)1/p for p ∈ [1,∞) and ‖x‖∞ = max(|x1|, . . . , |xn|).

The dual cone of the p-cone with respect to the Euclidean inner product is given by (Ln+1
p )∗ = Ln+1

q

where q is the conjugate of p, that is, 1
p + 1

q = 1. The cones Ln+1
1 and Ln+1

∞ are polyhedral. Note that Ln+1
1

has 2n extreme rays

R+(1, σeni ), i = 1, . . . , n, σ ∈ {−1, 1},

where eni denotes the i-th standard unit vector in Rn. Moreover, Ln+1
∞ has 2n extreme rays

R+(1, σ1, . . . , σn), σ1, . . . , σn ∈ {−1, 1}.

The difference in the number of extreme rays shows that Ln+1
1 and Ln+1

∞ are not isomorphic if n ≥ 3. 
However, for n = 2, they are indeed isomorphic as

AL3
1 = L3

∞, A =

⎛
⎜⎝ 1 0 0

0
√

2 cos(π/4) −
√

2 sin(π/4)
0

√
2 sin(π/4)

√
2 cos(π/4)

⎞
⎟⎠ =

⎛
⎜⎝ 1 0 0

0 1 −1
0 1 1

⎞
⎟⎠ . (2)
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The second order cone Ln+1
2 is known to be a symmetric cone, that is, it is both self-dual and homogeneous, 

admitting a Jordan algebraic structure [4]. The automorphism group of the second order cone can be 
identified by the result of Loewy and Schneider [8]: ALn+1

2 = Ln+1
2 or ALn+1

2 = −Ln+1
2 holds if and only if 

ATJn+1A = μJn+1 for some μ > 0 where Jn+1 = diag(1, −1, . . . , −1).
Gowda and Trott determined the structure of the automorphism group of the p-cones in the case p = 1, ∞:

Proposition 2 (Gowda and Trott, Theorem 7 in [5]). For n ≥ 2, A belongs to Aut(Ln+1
1 ) if and only if A

has the form

A = α

(
1 0
0 P

)
,

where α > 0 and P is an n × n generalized permutation matrix, that is, a permutation matrix multiplied 
by a diagonal matrix whose diagonal elements are ±1. Moreover, Aut(Ln+1

∞ ) = Aut(Ln+1
1 ) holds.

In particular, Proposition 2 yields the following consequences.

• Ln+1
1 and Ln+1

∞ are not homogeneous for n ≥ 2 because any A ∈ Aut(Ln+1
1 ) = Aut(Ln+1

∞ ) fixes the 
“main axis” R+(1, 0, . . . , 0) of these cones.

• Ln+1
1 and Ln+1

∞ are never self-dual for n ≥ 2. This is a known fact, but we will also obtain this result 
as a consequence of Corollary 14 where Proposition 2 will be helpful to prove the case n = 2. At this 
point, we should remark that Barker and Foran proved in Theorem 3 of [1] that a self-dual polyhedral 
cone in R3 must have an odd number of extreme rays. Since L3

1 and L3
∞ have four extreme rays, Barker 

and Foran’s result implies that they are never self-dual.

3. Manifolds, tangent spaces and the Gauss map

In this subsection, we will provide a brief overview of the tools we will use from manifold theory, more 
details can be seen in Lee’s book [7] or the initial chapters of do Carmo’s book [3]. First, we recall that 
an n-dimensional smooth manifold M is a second countable Haussdorf topological space equipped with a 
collection A of maps ϕ : U → R

n with the following properties.

(i) each map ϕ ∈ A is such that ϕ(U) is an open set of Rn. Furthermore, ϕ is an homeomorphism between 
U and ϕ(U), i.e., ϕ is a continuous bijection with continuous inverse.

(ii) if ϕ : U → R
n, ψ : V → R

n both belong to A and U ∩V �= ∅, then ψ ◦ϕ−1 : ϕ−1(U ∩V ) → ψ(U ∩V ) is 
a C∞ diffeomorphism, i.e., ψ◦ϕ−1 is a bijective function such that ψ◦ϕ−1 and ϕ ◦ψ−1 have continuous 
derivatives of all orders.

(iii) for every x ∈ M , we can find a map ϕ ∈ A for which x belongs to the domain of ϕ.
(iv) if ψ is another map defined on a subset of M satisfying (i) and (ii), then ψ ∈ A. That is, A is maximal.

The set A is called a maximal smooth atlas and the maps in A are called charts. If ϕ : U → R
n is a chart 

and x ∈ U , we say that ϕ is a chart around x.
Let M1, M2 be smooth manifolds and f : M1 → M2 be a function. The function f is said to be differen-

tiable at x ∈ M1 if there is a chart ϕ of M1 around x and a chart ψ of M2 around f(x) such that

ψ ◦ f ◦ ϕ−1

is differentiable at ϕ(x). Then, f is said to be differentiable, if it is differentiable throughout M1. Similarly, 
we say that f is differentiable of class Ck if ψ ◦ f ◦ ϕ−1 is of class Ck, for every pair of charts of M1 and 
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M2 such that the image of ϕ−1 and the domain of ψ intersect. Whether a function is differentiable at some 
point or is of class Ck does not depend on the particular choice of charts. The function ψ ◦ f ◦ ϕ−1 is also 
said to be a local representation of f . If f is a bijection such that it is Ck everywhere and whose inverse 
f−1 is also Ck everywhere, then f is said to be a Ck diffeomorphism.

Let M be an n-dimensional smooth manifold. Let C∞(M) denote the ring of C∞ real functions g : M →
R. A derivation of M at x is a function v : C∞(M) → R such that for every g, h ∈ C∞(M), we have

v(gh) = (v(g))h(x) + g(x)v(h).

Given an n-dimensional smooth manifold M and x ∈ M , we write TxM for the tangent space of M at x, 
which is the subspace of derivations of M at x. It is a basic fact that the dimension of TxM as a vector 
space coincides with the dimension of M as a smooth manifold.

Let f : M1 → M2 be a C1 map between smooth manifolds. Then, at each x ∈ M1, f induces a linear map 
between dfx : TxM1 → Tf(x)M2 such that given v ∈ TxM1, dfx(v) is the derivation of M2 at f(x) satisfying

(dfx(v))(g) = v(g ◦ f),

for every g ∈ C∞(N). The map dfx is the differential map of f at x. If the linear map dfx is injective 
everywhere, then f is said to be an immersion. Furthermore, if f is a Ck diffeomorphism with k ≥ 1, then 
dfx is a linear bijection for every x. Recall that in order to check whether f is an immersion, it is enough 
to check that the local representations of f are immersions.

Now, suppose that α : (−ε, ε) → M is a C∞ curve with α(0) = x. Then dα0(0) ∈ TxM . Furthermore, 
TxM coincides with the set of velocity vectors of smooth curves passing through x. With a slight abuse of 
notation, let us write α′(t) = dα0(t). With that, we have

TxM = {α′(0) | α : (−ε, ε) → M,α(0) = x, α is C1}, (3)

see more details in Proposition 3.23 and pages 68–71 in [7]. With this, we can compute a differential dfx(v)
by first selecting a C1 curve α contained in M with α(0) = x, α′(0) = v. Then, we have dfx(v) = (f ◦α)′(0), 
see Proposition 3.24 in [7].

A map ι : M1 → M2 is said to be a Ck-embedding if it is a Ck immersion and a homeomorphism on its 
image (here, ι(M1) has the subspace topology induced from M2). Now, suppose that, in fact, M1 ⊆ M2 and 
let ι : M1 → M2 denote the inclusion map, i.e., ι(x) = x, for all x ∈ M1. If ι is a Ck embedding, we say 
that M1 is a Ck-embedded submanifold of N .

We remark that when M is an m-dimensional Ck-embedded submanifold of Rn, the requirement that ι be 
a Ck embedding has the following consequences. First, the topology of M has to be the subspace topology 
of Rn, i.e., the open sets of M are open sets of Rn intersected with M . Now, let ϕ : U → R

m be a chart of 
M . Then, ι ◦ ϕ−1 : ϕ(U) → U is a Ck diffeomorphism. That is, although ϕ−1 is C∞ when saw as a map 
between ϕ(U) and M , its class of differentiability might decrease1 when seen as a map between U and Rm. 
For embedded manifolds of Rn, as a matter of convention, we will always see the inverse of a chart ϕ as a 
function whose codomain is Rn and we will omit the embedding ι.

Furthermore, whenever M is a Ck-embedded submanifold of Rn, we will define tangent spaces in a more 
geometric way. Given x ∈ M , we will define TxM as the space of tangent vectors of C1 curves that pass 
through x:

1 Here is an example of what can happen. Let M be graph of the function f(x) = |x|. M is a differentiable manifold and to 
create a maximal smooth atlas for M we first start with a set A containing only the map ϕ : M → R that takes (|x|, x) to x. 
At this point, conditions (i), (ii), (iii) of the definition of atlas are satisfied. Then, we add to A every map ψ such that A ∪ {ψ}
still satisfies (i), (ii), (iii). The resulting set must be a maximal smooth atlas. Following the definition of differentiability between 
manifolds, the map ϕ−1 is C∞ if we see it as a map between R → M , since ϕ ◦ ϕ−1(x) = x. However, ι ◦ ϕ−1 is not even a C1

map, because |x| is not differentiable at 0.
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TxM = {α′(0) | α : (−ε, ε) → R
n, α(0) = x, α ⊆ M,α is C1}, (4)

where α ⊆ M means that α(t) ∈ M , for every t ∈ (−ε, ε). Here, since we have an ambient space, α′(0) is 
the derivative of α at 0 in the usual sense.

Both definitions of tangent spaces presented so far are equivalent in the following sense. Let T̃xM denote 
the space of derivations of M at x and let ι : M → R

n denote the inclusion map. Then, dιx is a map between 
T̃xM and TxR

n. Then, identifying TxR
n with Rn, it holds that dιx(T̃xM) = TxM . In particular, T̃xM and 

TxM have the same dimension.
Finally, we recall that for smooth manifolds, the topological notion of connectedness is equivalent to the 

notion of path-connectedness, see Proposition 1.11 in [7]. Therefore, a manifold M is connected if and only 
if for every x, y ∈ M there is a continuous curve α : [0, 1] → M such that α(0) = x and α(1) = y.

3.1. Graphs of differentiable maps

For a real valued function f : U → R defined on U ⊆ R
n, the graph of f is defined by

graph f := {(y, x) ∈ R× U | y = f(x)} ⊆ R
n+1.

In item (i) of the next proposition, for the sake of completeness, we give a proof of the well-known fact that 
if f is a Ck function, then graph f must be a Ck-embedded manifold. In item (ii) we observe the fact, also 
known but perhaps less well-known, that the converse also holds. This is important for us because if we 
know that f is C1 but not C2, then this creates an obstruction to the existence of certain maps between 
graph f and C2 manifolds.

Proposition 3. For k ≥ 1, let f : U → R be a C1 function defined on an open subset U of Rn.

(i) If f is Ck on an open subset V of U , then graph f |V is an n-dimensional Ck-embedded submanifold of 
R

n+1.
(ii) Suppose that a subset M of graph f is an n-dimensional Ck-embedded submanifold of Rn+1, with k ≥ 1. 

Then f is Ck on the open set πU (M), where πU : R × U → U is the projection onto U .

Proof. (i) The proof here is essentially the one contained Example 1.30 and Proposition 5.4 of [7], except 
that here we take into account the level of smoothness of the embedding.

First, let M = graph(f |V ) and consider the subspace topology inherited from Rn+1 (again, see Exam-
ples 1.3 and 1.30 in [7] for more details). With the subspace topology, the map ϕ : V → M , given by

ϕ(x) = (f(x), x)

is a homeomorphism between V and M , whose inverse is the projection restricted to M , that is 
ϕ−1(f(x), x) = x. Furthermore, ϕ−1 induces a maximal smooth atlas of M making ϕ−1 : M → V a 
chart.2 We now check that the inclusion ι : M → R

n+1 is a Ck embedding. A local representation for ι
is obtained by considering ι ◦ ϕ : V → R

n+1, which shows that ι is a Ck differentiable map. The inverse 
ι−1 : ι(M) → M is given by restricting the identity map in Rn+1 to M . Since the topology on M is the 
subspace topology, this establishes that ι is an homeomorphism.

Furthermore, since the (n + 1) × n Jacobian matrix Jι◦ϕ of the representation of ι has rank n, we see 
that ι is an immersion. Hence, M is a Ck-embedded submanifold of Rn+1.

2 The idea is the same as in Footnote 1, we start with A = {ϕ−1} and add every map ψ for which A ∪{ψ} still satisfies properties 
(i), (ii), (iii) of the definition of atlas.
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(ii) Take x0 ∈ πU (M). Let Φ : V → R
n be a chart of M around (f(x0), x0). We can write the map Φ−1

as

Φ−1(z) = (ψ(z), ϕ(z)) ∈ R× U for z ∈ Φ(V ),

for functions ψ : Φ(V ) → R, ϕ : Φ(V ) → U . Since Im Φ−1 ⊆ M ⊆ graph f , we have ψ(z) = f(ϕ(z)) for all 
z ∈ Φ(V ). Then we obtain a local representation ι̃ : Φ(V ) ⊆ R

n → R
n+1 of the inclusion map ι : M → R

n+1

as follows:

ι̃(z) := ι ◦ Φ−1 = (ψ(z), ϕ(z)) = (f ◦ ϕ(z), ϕ(z)).

Since M is Ck-embedded, ϕ and ψ are Ck when seen as maps Φ(V ) → R and Φ(V ) → R
n, respectively. Let 

z0 = Φ((f(x0), x0)). Then ϕ(z0) = x0 since

(f(x0), x0) = Φ−1(z0) = (ψ(z0), ϕ(z0)).

Note that rank(Jι̃(z0)) = n holds because ι is an immersion. On the other hand, since f is C1 by the 
assumption, it follows by the chain rule for the function ψ = f ◦ ϕ that

Jψ(z0) = Jf (ϕ(z0))Jϕ(z0) = Jf (x0)Jϕ(z0).

This means that each row of Jψ(z0) is a linear combination of rows of Jϕ(z0). Therefore, we conclude that

n = rank Jι̃(z0) = rank(Jψ(z0)T , Jϕ(z0)T )T = rank Jϕ(z0).

Namely, the n × n matrix Jϕ(z0) is nonsingular. Since ϕ is Ck, the inverse function theorem states that 
there exists a Ck inverse ϕ−1 : W → R

n defined on a neighborhood W of ϕ(z0) = x0. Then, we conclude 
that the function

ψ ◦ ϕ−1 = f ◦ ϕ ◦ ϕ−1 = f

is Ck on W .
To conclude, we will show that πU(M) is open. Since ϕ−1(W ) is contained in the domain Φ(V ) of the 

map ϕ, it follows that W = ϕ ◦ ϕ−1(W ) ⊆ ϕ(Φ(V )). Now, let z ∈ Φ(V ). By definition, we have

(ψ(z), ϕ(z)) = Φ−1(z) ∈ V,

which shows that ϕ(z) ∈ πU (V ). Therefore, ϕ(Φ(V )) ⊆ πU (V ) ⊆ πU (M). Hence, we have W ⊆ πU (M) and 
so πU (M) is open in Rn, since x0 was arbitrary. �

Given a diffeomorphism A between two graphs of C1 maps f, g : U → R, the next proposition shows a 
relation of the categories of differentiability of f and g through the diffeomorphism B : U → U defined by

B(x) = πU (A(f(x), x))

where πU : R × U → U is the projection onto U . The map B will play a key role in the proof of our main 
result applied with U = R

n \ {0}, f(x) = ‖x‖p and g(x) = ‖x‖q. We give an illustration of the map B in 
Fig. 1.
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Fig. 1. Illustration of the map B(x) = πU (A(f(x), x)).

Proposition 4. Let f, g : U → R be C1 maps defined on an open subset U of Rn. Suppose that A : Rn+1 →
R

n+1 is a C∞ diffeomorphism such that A(graph f) = graph g.

(i) The map B : U → U , B(x) := πU (A(f(x), x)) is a C1 diffeomorphism, where πU : R ×U → U satisfies 
πU (y, x) = x.

(ii) For k ≥ 1, f is Ck on a neighborhood of x if and only if g is Ck on a neighborhood of B(x).

Proof. (i) Since f is C1 while πU and A are C∞ maps, it must be the case that B(x) = πU (A(f(x), x))
is C1.

Let us check that the inverse of B is the map B−1(y) = πU (A−1(g(y), y)). Denote

B′(y) = πU (A−1(g(y), y)).

For any x ∈ U , the relation A(graph f) = graph g implies the existence of y ∈ U such that A(f(x), x) =
(g(y), y). Then we have

B(x) = πU (A(f(x), x)) = πU (g(y), y) = y,

and, therefore,

B′(B(x)) = B′(y) = πU (A−1(g(y), y)) = πU (f(x), x) = x.

Similarly, we obtain B(B′(y)) = y. Hence, B−1(y) = B′(y) holds.
Since B−1(y) = πU (A−1(g(y), y)) is also C1, we conclude that B is a C1 diffeomorphism.
(ii) If f is Ck on a neighborhood V of x, then graph(f |V ) is an n-dimensional Ck-embedded submanifold 

of Rn+1 by Proposition 3 (i). Then, by the assumption on A, the set M := A(graph f |V ) is also an 
n-dimensional Ck-embedded submanifold of Rn+1 which satisfies M ⊆ graph g. Therefore Proposition 3 (ii)
implies that g is Ck on the open set πU (M) = πU (A(graph f |V )) which contains the point πU (A(f(x), x)).

The converse of the assertion follows by applying the same argument to the diffeomorphism A−1 because 
A−1(graph g) = graph f and πU (A−1(g(y), y)) = x holds for y = B(x) = πU (A(f(x), x)). �
3.2. The Gauss map

In this subsection, let M be a Ck-embedded submanifold of Rn with dimension n − 1 and k ≥ 1. In this 
case, M is sometimes called a hypersurface and when n = 3, M is called a surface. The differential geometry 
of surfaces is, of course, a classical subject discussed in many books, e.g., [2].

In the theory of surfaces, a Gauss map is a continuous function that associates to x ∈ M a unit vector 
which is orthogonal to TxM . Unless M is an orientable surface, it is not possible to construct a Gauss map 
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that is defined globally over M . However, given any x ∈ M , it is always possible to construct a Gauss map 
in a neighborhood of x. For the sake of self-containment, we will give a brief account of the construction of 
the Gauss map for hypersurfaces.

For what follows, we suppose that Rn is equipped with some inner product 〈·, ·〉 and the norm is given 
by ‖x‖ =

√
〈x, x〉, for all x ∈ R

n. Recalling (4), TxM is seen as a subspace of Rn and we will equip TxM

with the same inner product 〈·, ·〉.

Definition 5. Let M be a Ck-embedded submanifold of Rn and let x ∈ M . A Cr Gauss map around x is a 
Cr function N : U → R

n such that U ⊆ M is a neighborhood of x in M and

N(x) ∈ (TxM)⊥ and ‖N(x)‖ = 1,

for all x ∈ U , where (TxM)⊥ is the orthogonal complement to TxM .

For what follows, let x1, . . . , xn ∈ R
n and let det(x1, . . . , xn) denote the determinant of the matrix such 

that its i-th column is given by xi. Since the determinant is a multilinear function, if we fix the first n − 1
elements, we obtain a linear functional f such that

f(x) = det(x1, . . . , xn−1, x).

Since f is a linear functional, there is a unique vector Λ(x1, . . . , xn−1) ∈ R
n satisfying

〈Λ(x1, . . . , xn−1), x〉 = f(x),

for all x ∈ R
n. Furthermore, Λ(x1, . . . , xn−1) = 0 is zero if and only if the xi are linearly dependent.

Proposition 6. Let M ⊆ R
n be an (n − 1) dimensional Ck-embedded manifold, with k ≥ 1. Then, for every 

chart ϕ : U → R
n−1, there exists a Ck−1 local Gauss map of M defined over U .

Proof. Let ϕ : U → R
n−1 be a chart of M . Then, ϕ−1 is a function with domain ϕ(U) (which is an open 

set of Rn−1) and codomain Rn. Let u ∈ U . It is well-known that the partial derivatives of ϕ−1 at ϕ(u) are 
a basis for TuM , e.g., page 60 and Proposition 3.15 in [7]. Let vi(u) be the partial derivative of ϕ−1 at ϕ(u)
with respect the i-th variable. We define a Gauss map N over U by letting

N(x) = Λ(v1(u), . . . , vn−1(u))
‖Λ(v1(u), . . . , vn−1(u))‖ .

Since the vi(u) are a basis for TuM , Λ(v1(u), . . . , vn−1(u)) is never zero. In addition, because ϕ−1 is of class 
Ck, N must be of class Ck−1. �
3.3. A lemma on hyperplanes and embedded submanifolds

Let M be a connected C1-embedded n − 1 dimensional submanifold of Rn (i.e., a hypersurface) that is 
contained in a finite union of distinct hyperplanes H1, . . . , Hr. The goal of this section is to prove that M
must be entirely contained in one of the hyperplanes. The intuition comes from the case n = 3: a surface 
in R3 cannot, say, be contained in H1 ∪H2 and also intersect both H1 and H2 because it would generate a 
“corner” at the intersection M ∩H1 ∩H2, thus destroying smoothness. This is illustrated in Fig. 2.

This is probably a well-known differential geometric fact but we could not find a precise reference, so we 
give a proof here. Nevertheless, our discussion is related to the following classical fact: a point in a surface for 
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Fig. 2. A surface M cannot be smooth if it is connected, contained in H1 ∪ H2, but not entirely contained in neither H1 nor H2.

which the derivative of the Gauss map vanishes is called a planar point and a connected surface in R3 such 
that all its points are planar must be a piece of a plane, see Definitions 7, 8 and the proof of Proposition 4 
of Chapter 3 of [2].

In our case, the fact that M is contained in a finite number of hyperplanes hints that the image of any 
Gauss map of M should be confined to the directions that are orthogonal to those hyperplanes. This, by 
its turn, suggests that the derivative of N should vanish everywhere, i.e., all points must be planar. In fact, 
our proof is inspired by the proof of Proposition 4 of Chapter 3 of [2] and we will use the same compactness 
argument at the end.

To start, we observe that the tangent of a curve contained in H1, . . . , Hr must also be contained in those 
hyperplanes.

Proposition 7. Let Hi = {ai}⊥ be hyperplanes in Rn for i = 1, . . . , r. Suppose that a C1 curve α : (−ε, ε) →
R

n is contained in X =
⋃r

i=1 Hi. Then, α′(0) ∈ X.

Proof. Changing the order of the hyperplanes if necessary, we may assume that

α(0) ∈ H1 ∩ · · · ∩Hs

α(0) /∈ Hs+1, . . . , Hr.

Since α is contained in X, we have s ≥ 1. Furthermore, because α is continuous, there is ε̂ > 0 such that

α(ε) /∈ Hs+1, . . . , Hr, (5)

for −ε̂ < ε < ε̂.
Now, suppose for the sake of obtaining a contradiction that α′(0) does not belong to any of these 

hyperplanes H1, . . . , Hs. Therefore, for all i ∈ {1, . . . , s}, we have

〈α(0), ai〉 = 0, 〈α′(0), ai〉 �= 0.

Since α′(·) is continuous, we can select 0 < ε̃ < ε̂ such that for all i ∈ {1, . . . , s} and ε ∈ (−ε̃, ̃ε), we have

〈α′(ε), ai〉 �= 0.

By the mean value theorem applied to 〈α(·), ai〉 on the interval [0, ̃ε/2], we obtain that 〈α(ε̃/2), ai〉 �= 0, for 
all i ∈ 1, . . . , s. Since ε̃/2 ∈ (−ε̂, ̂ε), (5) implies that

〈α(ε̃/2), ai〉 �= 0,

for i ∈ {s + 1, . . . , r} too. This shows that α(ε̃/2) /∈ X, which is a contradiction. �
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Before we prove the main lemma of this subsection, we need the following observation on finite dimensional 
vector spaces.

Proposition 8. A finite dimensional real vector space V is not a countable union of subspaces of dimension 
strictly smaller than dimV .

Proof. Suppose that V is a countable union 
⋃
Wi of subspaces of dimension smaller than dimV . Take the 

unit ball B ⊆ V . Then, B =
⋃

Wi ∩ B. However, this is not possible since each Wi ∩ B has measure zero, 
while B has nonzero measure. �

We now have all the necessary pieces to prove the main lemma.

Lemma 9. Let X ⊆ R
n be a union of finitely many hyperplanes Hi = {ai}⊥, ai �= 0, i = 1, . . . , r. Let M be 

an (n − 1) dimensional differentiable manifold that is connected, C1-embedded in Rn and contained in X. 
Then, M must be entirely contained in one of the Hi.

Proof. We proceed by induction on r. The case r = 1 is clear, so suppose that r > 1.
Consider a chart ϕ : U → R

n−1 such that U ⊆ M is connected and construct a C0 (i.e., continuous) 
Gauss map N in U , as in Proposition 6. Let u ∈ U and let us examine the tangent space TuM . We have

TuM = {α′(0) | α : (−ε, ε) → M, α(0) = u, α is C1}.

By Proposition 7,

TuM ⊆ X.

Therefore,

TuM =
r⋃

i=1
Hi ∩ TuM.

Each Hi ∩ TuM is a subspace of TuM (an intersection of subspaces is also a subspace!). By Proposition 8, 
TuM cannot be a union of subspaces of dimension less than dimTuM = n − 1. Therefore, there exists some 
index j such that Hj ∩ TuM = TuM . Since both TuM and Hj have dimension n − 1, we conclude that 
Hj = TuM .

In particular, the Gauss map N satisfies N(u) = aj/‖aj‖ or N(u) = −aj/‖aj‖. Therefore, for all u ∈ U , 
we have

N(u) ∈
{
± ai
‖ai‖

| i = 1, . . . , r
}
.

Since U is connected and N is continuous, we conclude that the Gauss map N is constant. Denote this 
constant vector by v.

Let ψ = 〈ϕ−1(·), v〉. Since ϕ is a chart, given any w ∈ ϕ(U), the differential

dϕ−1
w : Rn−1 → Tϕ−1(w)M

is a linear bijection. Since Tϕ−1(w)M is orthogonal to v, we conclude that ψ′ = 0. Therefore ψ must be 
constant and there is κ0 such that 〈ϕ−1(w), v〉 = κ0, for all w ∈ ϕ(U). That is, 〈u, v〉 = κ0, for all u ∈ U .
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Recall that, given x ∈ M , we can always obtain a chart ϕ : U → M around x such that U is connected. 
Therefore, the discussion so far shows that every x ∈ M has a neighborhood U such that U is entirely 
contained in a hyperplane

{z | 〈z, vx〉 = κx},

where vx has the same direction as one of the a1, . . . , ar. Now, fix some x ∈ M and let y ∈ M , y �= x. Since 
M is connected, there is a continuous curve α : [0, 1] → M such that α(0) = x and α(1) = y.

Similarly, for every t ∈ [0, 1], we can find a neighborhood Ut ⊆ M of α(t) such that Ut is contained in a 
hyperplane {z | 〈z, vt〉 = κt} where vt is parallel to one of a1, . . . , ar. In particular

[0, 1] ⊆
⋃

t∈[0,1]

α−1(Ut).

Since the Ut are open in M and α is continuous, the α−1(Ut) form an open cover for the compact set 
[0, 1]. Therefore, the Heine–Borel theorem implies that a finite number of the α−1(Ut) are enough to cover 
[0, 1]. As a consequence, α itself is contained in finitely many neighborhoods Ut1 , . . . Ut� . Now, we note the 
following:

• If Uti ∩ Utj �= ∅ then Uti ∩ Utj is a nonempty open set in M and therefore, an embedded submanifold 
of dimension n − 1, see Proposition 5.1 in [7]. Furthermore Uti ∩ Utj is contained in the set

H = {z ∈ R
n | 〈z, vti〉 = κti , 〈z, vtj 〉 = κtj}.

Therefore, the smooth manifold H must have at least dimension n −1. We conclude that “〈z, vti〉 = κti” 
and “〈z, vtj 〉 = κtj” define the same hyperplane. So, Uti and Utj are in fact, contained in the same 
hyperplane.

• Ut1 must intersect some of the Ut2 , . . . , Ut� because if it does not, then α−1(Ut1) and α−1(∪n
i=2Uti)

disconnect the connected set [0, 1]. Changing the order of the sets if necessary, we may therefore assume 
that Ut1 and Ut2 intersect and, therefore, lie in the same hyperplane. Similarly, the union Ut1 ∪ Ut2

must intersect one of the remaining neighborhoods Ut3 , . . . , Ut� , lest we disconnect the interval [0, 1]. By 
induction, we conclude that all neighborhoods lie in the same hyperplane.

In particular, x and y lie in the same hyperplane and, therefore, M is entirely contained in some hyperplane 
whose normal direction has the same direction as one of the a1, . . . , ar.

So far, we have shown that M is entirely contained in a hyperplane of the form

{z ∈ R
n | 〈z, v〉 = κ0}.

Without loss of generality, we may assume that v has the same direction as a1. If κ0 = 0, we are done. 
Otherwise, since v has the same direction as a1, it follows that M does not intersect H1 and

M ⊆
r⋃

i=2
Hi.

By the induction hypothesis, M must be contained in one of the H2, . . . , Hr. �
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4. Main results

In this section, we show the main results on p-cones. We begin by observing a basic fact on the differen-
tiability of p-norms.

Lemma 10. Let n ≥ 2 and p ∈ (1, ∞).

(i) ‖·‖p is C1 on Rn \ {0}.
(ii) If p ∈ (1, 2) then ‖·‖p is C2 on a neighborhood of x if and only if xi �= 0 for all i.

(iii) If p ∈ [2, ∞) then ‖·‖p is C2 on Rn \ {0}.

Proof. (i) ‖·‖p is C1 on Rn \ {0} because

∂‖·‖p
∂xi

(x) = ‖x‖1−p
p |xi|p−1 sign(xi).

(ii) If xi �= 0 for all i, it is straightforward to see that ‖·‖p is C2 on a neighborhood of x. For the converse, 
consider a point x �= 0 with xi = 0 for some i. Let us verify that ∂

2‖·‖p

∂x2
i

(x) does not exist if p ∈ (1, 2). Indeed, 
∂‖·‖p

∂xi
(x) = 0 holds and so

lim
h→0

1
h

(
∂‖·‖p
∂xi

(x + hei) −
∂‖·‖p
∂xi

(x)
)

= lim
h→0

h−1 ∂‖·‖p
∂xi

(x + hei)

= lim
h→0

h−1‖x + hei‖1−p
p |h|p−2h

= lim
h→0

‖x + hei‖1−p
p |h|p−2

=
{

+∞ (p < 2)
0 (p > 2)

.

Hence, when p ∈ (1, 2), the derivative ∂
2‖·‖p

∂x2
i

(x) exists if and only if xi �= 0.
(iii) For p > 2 (the assertion in the case p = 2 is clear),

∂2‖·‖p
∂xj∂xi

(x) = (1 − p)‖x‖1−2p
p |xixj |p−1 sign(xi) sign(xj)

holds if i �= j, otherwise we have

∂2‖·‖p
∂x2

i

(x) = (1 − p)‖x‖1−2p
p x

2(p−1)
i + (p− 1)‖x‖1−p

p |xi|p−2. �
We now move on to the main result of this paper.

Theorem 11. Let p, q ∈ [1, ∞], p ≤ q, n ≥ 2 and (p, q, n) �= (1, ∞, 2). Suppose that Ln+1
p and Ln+1

q are 
isomorphic, that is,

ALn+1
p = Ln+1

q

holds for some A ∈ GLn+1(R). Then p = q must hold. Moreover, if p �= 2, then we have A ∈ Aut(Ln+1
1 ).
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Proof. The proof consists of three parts I, II, and III.
I. First we consider the case p ∈ {1, ∞} corresponding to the case when Ln+1

p is polyhedral. Since A
preserves polyhedrality, q must be 1 or ∞ too. Note that Ln+1

1 and Ln+1
∞ cannot be isomorphic if n ≥ 3

because they have different numbers of extreme rays, see Section 2.2. Therefore, p = q = 1 or p = q = ∞ must 
hold. Since Aut(Ln+1

∞ ) = Aut(Ln+1
1 ) holds (Proposition 2), the assertion is verified in the case p ∈ {1, ∞}.

II. Now let p, q ∈ (1, ∞). Then the set

Mp := {(t, x) ∈ R× R
n \ {0} | t = ‖x‖p}

becomes a C1-embedded submanifold of Rn+1 by Lemma 10 (i) and Proposition 3 (i). Note that ALn+1
p =

Ln+1
q implies AMp = Mq since A maps the boundary of Ln+1

p onto the boundary of Ln+1
q .

It suffices to consider the case p, q ∈ (1, 2) by the following observation.

(a) The case 1 < p < 2 ≤ q < ∞ does not happen in view of Proposition 4 and Lemma 10. In fact, since 
‖·‖q is C2 on Rn \ {0} and A−1Mq = Mp holds, Proposition 4 implies that ‖·‖p is C2 on Rn \ {0} but 
this is a contradiction.

(b) If 2 ≤ p ≤ q < ∞ holds, then taking the dual of the relation ALn+1
p = Ln+1

q with respect to the 
Euclidean inner product, it follows that

A−TLn+1
p∗ = Ln+1

q∗

where p∗ and q∗ ∈ (1, 2] are the conjugates of p and q, respectively. Either p∗ = q∗ = 2 or p∗, q∗ ∈ (1, 2)
must hold by (a). If p∗ = q∗ = 2, then we are done since this implies that p = q = 2. Now, suppose 
that p∗, q∗ ∈ (1, 2). If we prove that p∗ = q∗ and A−T ∈ Aut(Ln+1

1 ), then we conclude that p = q

and A ∈ Aut(Ln+1
1 )−T . However, by Proposition 2, Aut(Ln+1

1 )−T = Aut(Ln+1
1 ). (Note that, if P is a 

generalized permutation matrix, then so is P−T .)

From cases (a), (b) we conclude that it is enough to consider the case p, q ∈ (1, 2), which we will do next.
III. Let p, q ∈ (1, 2). We show by induction on n that every A ∈ GLn+1(R) with ALn+1

p = Ln+1
q is a 

bijection from the set

E =
n⋃

i=1

⋃
σ∈{−1,1}

R++(1, σeni )

onto E itself, where eni is the i-th standard unit vector in Rn. First, let us check that this claim implies 
A ∈ Aut(Ln+1

1 ) and p = q. Taking the conical hull of the relation AE = E, we conclude that

ALn+1
1 = A(cone(E)) = cone(AE) = cone(E) = Ln+1

1 ,

where the relation cone(E) = Ln+1
1 holds because a pointed closed convex cone is the conical hull of its 

extreme rays (see Theorem 18.5 in [10]) and E is precisely the union of all the extreme rays of Ln+1
1 with 

the origin removed, see Section 2.2. Therefore, we have

A ∈ Aut(Ln+1
1 ) ⊆ Aut(Ln+1

p ),

where the last inclusion follows by Proposition 2 because ‖Px‖p = ‖x‖p for any generalized permutation 
matrix P . Then Ln+1

p = ALn+1
p = Ln+1

q and so p = q must hold.
Now, let us show the claim that A is a bijection on E. Consider the map ξp : Rn \ {0} → Mp defined by 

ξp(x) = (‖x‖p, x) whose inverse ξ−1
p : Mp → R

n \ {0} is the projection ξ−1
p (t, x) = x. By Proposition 4, the 

map B : Rn \ {0} → R
n \ {0} defined by
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B(x) = ξ−1
q ◦A|Mp

◦ ξp(x)

is a C1 diffeomorphism. Moreover, ‖·‖p is C2 on a neighborhood of x if and only if ‖·‖q is C2 on a neigh-
borhood of B(x). Since p, q ∈ (1, 2), each of the functions ‖·‖p and ‖·‖q is C2 on a neighborhood of x if and 
only if xi �= 0 for all i (Lemma 10). This implies that the set

X = {x ∈ R
n \ {0} | xi = 0 for some i}

satisfies

B(X) = X

because x belongs to X if and only if ‖·‖p and ‖·‖q are never C2 on any neighborhood of x.
III.a. Consider the case n = 2. Then the set X can be written as

X = {x ∈ R
2 \ {0} | x1 = 0 or x2 = 0}

= R++(0, 1) ∪ R++(0,−1) ∪ R++(1, 0) ∪ R++(−1, 0)

=
2⋃

i=1

⋃
σ∈{−1,1}

R++(σe2
i ).

Then ξp(X) and ξq(X) coincide with E:

ξp(X) = ξq(X) =
2⋃

i=1

⋃
σ∈{−1,1}

R++(1, σe2
i ) = E.

Moreover, A is bijective on E because

A(ξp(X)) = ξq ◦ ξ−1
q ◦A|Mp

◦ ξp(X) = ξq ◦B(X) = ξq(X).

Thus, the claim AE = E holds in the case n = 2.
III.b. Now let n ≥ 3 and suppose that the claim is valid for n − 1. Denote

Xi := {x ∈ R
n \ {0} | xi = 0}, M i

p := ξp(Xi) = {(t, x) ∈ R× R
n \ {0} : t = ‖x‖p, xi = 0}.

With that, we have

X =
n⋃

i=1
Xi.

We show that for any i ∈ {1, . . . , n} there exists j ∈ {1, . . . , n} such that

B(Xi) = Xj .

For any i, the set Xi is a connected (n − 1) dimensional C1-embedded submanifold of Rn contained in 
X. Since B : Rn \ {0} → R

n \ {0} is a C1 diffeomorphism satisfying B(X) = X, the set B(Xi) is also a 
connected (n − 1) dimensional C1-embedded submanifold of Rn contained in X. Then, since X ∪ {0} is 
the union of the hyperplanes Xi ∪ {0}, i = 1, . . . , n, it follows from Proposition 9 that B(Xi) is entirely 
contained in some hyperplane Xj ∪ {0}. Then we have
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B(Xi) ⊆ Xj .

By the same argument, the set B−1(Xj) is contained in some hyperplane Xk ∪ {0}, that is, B−1(Xj) ⊆ Xk

holds. This shows that

Xi = B−1(B(Xi)) ⊆ B−1(Xj) ⊆ Xk.

Since Xi cannot be a subset of Xk if i �= k, it follows that i = k. Then, we obtain Xi = B−1(Xj), i.e., 
B(Xi) = Xj .

Since B is a bijection, the above argument shows that there exists a permutation τ on {1, . . . , n} such 
that

B(Xi) = Xτ(i).

Then we have

A(M i
p) = ξq ◦ ξ−1

q ◦A|Mp
◦ ξp(Xi) = ξq ◦B(Xi) = ξq(Xτ(i)) = Mτ(i)

q .

Taking the linear span both sides, we also have

A(Vi) = Vτ(i) where Vi := {(t, x) ∈ R× R
n | xi = 0}.

Now we apply the induction hypothesis to the isomorphism A|Vi
as follows. Define the isomorphism ϕi :

Vi → R
n by

ϕi(t, x1, . . . , xi−1, 0, xi+1, . . . , xn) = (t, x1, . . . , xi−1, xi+1, . . . , xn)

and consider the isomorphism Ai := ϕτ(i) ◦ A|Vi
◦ ϕ−1

i : Rn → R
n. By the above argument, we see that 

Ai(Ln
p ) = Ln

q :

Ai(Ln
p ) = ϕτ(i) ◦A|Vi

◦ ϕ−1
i (Ln

p ) = ϕτ(i) ◦A(coneM i
p) = ϕτ(i)(coneMτ(i)

q ) = Ln
q .

So the induction hypothesis implies that Ai is bijective on

n−1⋃
j=1

⋃
σ∈{−1,1}

R++(1, σen−1
j ).

Therefore, A|Vi
= ϕ−1

τ(i) ◦A
−1
i ◦ ϕi is a bijection from

⋃
j∈{1,...,n}\{i}

⋃
σ∈{−1,1}

R++(1, σenj )

onto
⋃

j∈{1,...,n}\{τ(i)}

⋃
σ∈{−1,1}

R++(1, σenj ).

Combining this result for each i = 1, . . . , n, it turns out that A is bijective on

E =
n⋃

i=1

⋃
σ∈{−1,1}

R++(1, σeni ). �
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Combining the latter assertion of Theorem 11 and Proposition 2, we obtain the description of the auto-
morphism group of the p-cones.

Corollary 12. For p ∈ [1, ∞], p �= 2 and n ≥ 2, we have Aut(Ln+1
p ) = Aut(Ln+1

1 ). In particular, any 
A ∈ Aut(Ln+1

p ) can be written as

A = α

(
1 0
0 P

)
,

where α > 0 and P is an n × n generalized permutation matrix.

We can also recover our previous result on the non-homogeneity of p-cones with p �= 2. In contrast to [6], 
here we do not require the theory of T -algebras.

Corollary 13. For p ∈ [1, ∞], p �= 2 and n ≥ 2, the p-cone Ln+1
p is not homogeneous.

Proof. By Corollary 12, for any A ∈ Aut(Ln+1
p ) = Aut(Ln+1

1 ), we have that the vector (1, 0, . . . , 0) is an 
eigenvector of A. So, there is no automorphism of Ln+1

p that maps (1, 0, . . . , 0) to an interior point of Ln+1
p

that does not belong to

{(β, 0, . . . , 0) | β > 0}.

Hence, Ln+1
p cannot be homogeneous. �

Now the non-self-duality of p-cones Ln+1
p for p �= 2 and n ≥ 2 is an immediate consequence of Theorem 11

in view of Proposition 1, while we need an extra argument for the case (p, q, n) = (1, ∞, 2).

Corollary 14. For p ∈ [1, ∞], p �= 2 and n ≥ 2, the p-cone Ln+1
p is not self-dual under any inner product.

Proof. Suppose that Ln+1
p is self-dual under some inner product. Then, by Proposition 1, there exists a 

symmetric positive definite matrix A such that

ALn+1
p = Ln+1

q where 1
p

+ 1
q

= 1.

If (p, q, n) �= (1, ∞, 2), (∞, 1, 2), then p = q = 2 must hold by Theorem 11. Now let us consider the case 
(p, q, n) = (1, ∞, 2), i.e., AL3

1 = L3
∞. Recalling (2), we have BL3

1 = L3
∞ with

B =

⎛
⎜⎝ 1 0 0

0
√

2 cos(π/4) −
√

2 sin(π/4)
0

√
2 sin(π/4)

√
2 cos(π/4)

⎞
⎟⎠ =

⎛
⎜⎝ 1 0 0

0 1 −1
0 1 1

⎞
⎟⎠ .

Therefore, B−1A ∈ Aut(L3
1) holds. Then, by Proposition 2, the matrix A can be written as A = BC where 

C is of the form

C = α

⎛
⎜⎝ 1 0 0

0 ±1 0
0 0 ±1

⎞
⎟⎠ or α

⎛
⎜⎝ 1 0 0

0 0 ±1
0 ±1 0

⎞
⎟⎠ , α > 0.

Since A is symmetric, it has one of the following forms:
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α

⎛
⎜⎝ 1 0 0

0 −1 −1
0 −1 1

⎞
⎟⎠ , α

⎛
⎜⎝ 1 0 0

0 1 1
0 1 −1

⎞
⎟⎠ , α

⎛
⎜⎝ 1 0 0

0 −1 1
0 1 1

⎞
⎟⎠ , α

⎛
⎜⎝ 1 0 0

0 1 −1
0 −1 −1

⎞
⎟⎠ .

None of them is positive definite. Therefore, we obtain a contradiction. �
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