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1. Introduction

In this work, we prove two results on the structure of the p-cones
Lyt ={(t,z) eRXR™ [t > [|z],}.

First, we describe the automorphism group of the p-cones E;H'l forn>2and p# 2,1 < p < co. We show
that every automorphism of £Z+1 must have the format

(s ) g

where o > 0 and P is an n X n generalized permutation matrix. The second result is that, for n > 2 and
p # 2, it is not possible to construct an inner product on R™*! for which E;”‘l becomes self-dual. In fact, the

* Corresponding author.
E-mail addresses: ito.m@math.cst.nihon-u.ac.jp (M. Ito), lourenco@mist.i.u-tokyo.ac.jp (B.F. Lourengo).

https://doi.org/10.1016/j.jmaa.2018.10.081
0022-247X/© 2018 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.jmaa.2018.10.081
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:ito.m@math.cst.nihon-u.ac.jp
mailto:lourenco@mist.i.u-tokyo.ac.jp
https://doi.org/10.1016/j.jmaa.2018.10.081
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2018.10.081&domain=pdf

M. Ito, B.F. Lourenco / J. Math. Anal. Appl. 471 (2019) 392-410 393

second result is derived as a corollary of a stronger result that E;L‘H and EZ'H cannot be linearly isomorphic
if p < qand n > 2, except when (p,q,n) = (1,00,2).

The motivation for this research is partly due to the work by Gowda and Trott [5], where they determined
the automorphism group of E?H and L7, However, they left open the problem of determining the
automorphisms of the other p-cones, for p # 2. Here, we recall that the case p = 2 correspond to the
second order cones and they are symmetric, i.e., self-dual and homogeneous. The structure of second-order
cones and their automorphisms follow from the more general theory of Jordan Algebras [4], see also [8].

In [5], Gowda and Trott also proved that £7 and £ are not homogeneous cones and they posed the
problem of proving/disproving that [Z;‘“ is not homogeneous for p # 2, n > 2. Recall that a cone is said
to be homogeneous if its group of automorphisms acts transitively on the interior of the cone. In [6], using
the theory of T-algebras [11], we gave a proof that E;L‘H is not homogeneous for p # 2, n > 2. However,
there are two unsatisfactory aspects of our previous result. The first is that we were not able to compute the
automorphism group of £Z+1. The second is that although we showed that EZ“ is not homogeneous, we
were unable to obtain two elements z,y in the interior of E;}‘H such that no automorphism of E;H‘l maps
x to y. That is, we were unable to show concretely how homogeneity breaks down on L’;‘“‘l. The results
discussed here remedy those flaws and provide an alternative proof that E;‘H is not homogeneous.

Another motivation for this work is the general problem of determining when a closed convex cone L C R"
is self-dual. If R™ is equipped with some inner product (-, -), the dual cone of K is defined as

K*={y e R" | (z,y) > 0,Yz € K}.

As discussed in Section 1 of [6], an often overlooked point is that K* depends on (-,-). Accordingly, it is
entirely plausible that a cone that is not self-dual under the Euclidean inner product might become self-dual
if the inner product is chosen appropriately.

This detail is quite important because sometimes we see articles claiming that a certain cone is not a
symmetric cone because it is not self-dual under the Euclidean inner product. This is, of course, not enough.
As long as a cone is homogeneous and there exists some inner product that makes it self-dual, the cone can
be investigated under the theory of Jordan Algebras.

This state of affairs brings us to the case of the p-cones. Up until the recent articles [5,6], there was no
rigorous proof that the p-cones Lg“ were not symmetric when p # 2 and n > 2. Now, although we know
that ﬁZ‘H is not homogeneous for p # 2 and n > 2, it still remains to investigate whether EZ‘H could
become self-dual under an appropriate inner product. This question was partly discussed by Miao, Lin and
Chen in [9], where they showed that a p-cone (again, p # 2, n > 2) is not self-dual under an inner product
induced by a diagonal matrix. The results described here show, in particular, that no inner product can
make L7 self-dual, for p # 2, n > 2.

We now explain some of the intuition behind our proof techniques. Let n > 2 and let f, : R\ {0} — R be
the function that maps z to ||z||,. When p € (1, 2), we have that f, is twice differentiable only at points x for
which z; # 0, for all 7. In contrast, if p € (2,00), f, is twice differentiable throughout R™ \ {0}. Now, we let
M, be the boundary without the zero of the cone E;,”‘l. With that, M, is exactly the graph of the function
fp- Furthermore, M, is a C'-embedded smooth manifold if p € (1,2). If p € (2,0), M, is a C*-embedded
smooth manifold. Now, any linear bijection between E;‘H and EZH must map the boundary of EZH to
the boundary of E;“H, thus producing a map between M,, and M,. Then, if p € (1,2) and ¢ € (2, 00), there
can be no linear bijection between E;}H and E?H because this would establish a diffeomorphism between
submanifolds that are embedded with different levels of smoothness.

Now suppose that p, ¢ are both in (1,2) and that there exists some linear bijection A between E;‘“ and
Ly T (fp(x),2) € M, is such that f, is not twice differentiable at x, then A must map (f,(z),z) to
a point (f,(y),y) for which f, is not twice differentiable at y. This idea is made precise in Proposition 4.
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In particular, this fact imposes severe restrictions on how Aut(E;LH) acts on L’;“H and this is the key
observation necessary for showing that the matrices in Aut(ﬁg'H) can be written as in (1).

This work is divided as follows. In Section 2 we present the notation used in this paper and review some
facts about cones, self-duality and p-cones. In Section 3, we discuss the tools from manifold theory necessary
for our discussion. Finally, in Section 4 we prove our main results.

2. Preliminaries

A convex cone is a subset IC of some real vector space R™ such that az + Sy € K holds whenever z,y € K
and o, 8 > 0. A cone K is said to be pointed if K N —K = {0}. For a subset S of R", the (closed) conical
hull of S, denoted by cone(S), is the smallest closed convex cone in R™ containing S. If v € R™, we write
R, (v) for the half-line generated by v and R, for Ry (v) \ {0}, i.e.,

Ri(v) ={av|a >0},
Rit(v) ={av|a> 0}

A convex subset F of K is said to be a face of K if the following condition holds: If z,y € K satisfies
ar+ (1 —a)y € F for some « € (0,1) then z,y € F holds. A one dimensional face is called an extreme ray.
A polyhedral convex cone is a convex cone that can be expressed as the solution set of finitely many linear
inequalities.

If (-,-) is an inner product on R"™, we can define the dual cone of K with respect to the inner product

K*={z eR"|(z,y) >0, Vy € K}.

A convex cone K is self-dual if there exists an inner product on R™ for which the dual cone coincides with
K itself.

Two convex cones K1 and Ky in R™ are said to be isomorphic if there exists a linear bijection A € GL,(R),
called an isomorphism, such that AK; = Ks. An automorphism of a convex cone K in R™ is a map
A € GL,(R) such that AKX = K. The group of all automorphisms of K is written by Aut(X) and called the
automorphism group of K.

A convex cone K is said to be homogeneous if Aut(K) acts transitively on the interior of K, that is, for
all elements x and y of the interior of I, there exists A € Aut(K) such that y = Ax.

2.1. On self-duality

Let I C R”™ be a closed convex cone. As we emphasized in Section 1, self-duality is a relative concept
and depends on what inner product we are considering. Let (-, )z denote the Euclidean inner product and
consider the dual of K with respect (-, ).

K*={yeR"|(z,y)r > 0,Va € K}.
We have the following proposition.
Proposition 1. Let K C R™ be a closed convex cone and let K* be the dual of K with the respect to the

Euclidean inner product (-, -)g. Then, there exists an inner product on R™ that turns IC into a self-dual cone
if and only if there exists a symmetric positive definite matriz A such that AIKC = K*.
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Proof. First, suppose that there exist some inner product (-, -)x for which K becomes self-dual. Then, there
is a symmetric positive definite matrix A such that

(z,y)c = (=, Ay)E,

for all ,y € R™. In fact, A;; = (es, e;)k, where e; is the i-th standard unit vector in R™. By assumption,
we have

K={zeR"| (z,Ay)g > 0,Vy € K}
={z eR" | (Az,y)r > 0,Vy € K}
= ANz eR" | (z,y)p > 0,Vy € K}
=A"K".

This shows that AKX = K*.
Reciprocally, if AKC = K*, we define the inner product (-, )x such that

<CL’, y>IC = <l‘, Ay>E7

for all z,y € R™. Then, a straightforward calculation shows that the dual of K with respect (-, )¢ is
indeed £. O

Therefore, determining whether IC is self-dual for some inner product boils down to determining the
existence of a positive definite linear isomorphism between cones, which is a difficult problem in general.

2.2. p-cones

Here we present some basic facts on p-cones. The p-cone is the closed convex cone in R®*! defined by
1
Ly ={(t,z) eERxR" |t > |||}
where ||z||, is the p-norm on R™:
Izllp = (jz1|P + - + za[")/P for pe[1,00) and ||z]o = max(|z1], ..., [2n]).

The dual cone of the p-cone with respect to the Euclidean inner product is given by (C;‘H)* = E;”rl
where ¢ is the conjugate of p, that is, % + % = 1. The cones E?H and £ are polyhedral. Note that L?H
has 2n extreme rays

Ri(1,0¢l), i=1,...,n, oe€{-1,1},
where e? denotes the i-th standard unit vector in R™. Moreover, £ has 2" extreme rays
Ry(1,01,...,0n), o01,...,05 € {=1,1}.

The difference in the number of extreme rays shows that E’f“ and £ are not isomorphic if n > 3.
However, for n = 2, they are indeed isomorphic as

1 0 0 10 0
ALY =1L3, A=|0 2cos(r/4) —2sin(r/4) |=[0 1 -1 2)
0 2sin(r/4) V/2cos(r/4) 01 1
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The second order cone E;‘H is known to be a symmetric cone, that is, it is both self-dual and homogeneous,
admitting a Jordan algebraic structure [4]. The automorphism group of the second order cone can be
identified by the result of Loewy and Schneider [8]: ALy = £5+ or ALY = —£57 holds if and only if
AT J, 1A= pJ,yq for some p > 0 where J,, 1 = diag(1,—1,...,—1).

Gowda and Trott determined the structure of the automorphism group of the p-cones in the case p = 1, oc:

Proposition 2 (Gowda and Trott, Theorem 7 in [5]). For n > 2, A belongs to Aut(L7") if and only if A

has the form
1 0
A:

where o > 0 and P is an n X n generalized permutation matrix, that is, a permutation matriz multiplied
by a diagonal matriz whose diagonal elements are +1. Moreover, Aut(£%+") = Aut(LT) holds.

In particular, Proposition 2 yields the following consequences.

o L7 and £7+! are not homogeneous for n > 2 because any A € Aut(£7) = Aut(£7H!) fixes the
“main axis” Ry (1,0,...,0) of these cones.

o L7 and £ are never self-dual for n > 2. This is a known fact, but we will also obtain this result
as a consequence of Corollary 14 where Proposition 2 will be helpful to prove the case n = 2. At this
point, we should remark that Barker and Foran proved in Theorem 3 of [1] that a self-dual polyhedral
cone in R? must have an odd number of extreme rays. Since £3 and £2_ have four extreme rays, Barker
and Foran’s result implies that they are never self-dual.

3. Manifolds, tangent spaces and the Gauss map

In this subsection, we will provide a brief overview of the tools we will use from manifold theory, more
details can be seen in Lee’s book [7] or the initial chapters of do Carmo’s book [3]. First, we recall that
an n-dimensional smooth manifold M is a second countable Haussdorf topological space equipped with a
collection A of maps ¢ : U — R™ with the following properties.

(i) each map ¢ € A is such that ¢(U) is an open set of R”™. Furthermore, ¢ is an homeomorphism between
U and ¢(U), i.e., ¢ is a continuous bijection with continuous inverse.
(ii) if p : U — R™, 9 : V — R" both belong to A and UNV # 0, then Ypop~t: o= H(UNV) = H(UNV) is

1 L and o ~! have continuous

a C'*° diffeomorphism, i.e., Yop™" is a bijective function such that ¢ op™
derivatives of all orders.
(7i1) for every x € M, we can find a map ¢ € A for which z belongs to the domain of ¢.

(iv) if 4 is another map defined on a subset of M satisfying (i) and (i7), then ¢ € A. That is, A is maximal.

The set A is called a mazimal smooth atlas and the maps in A are called charts. If ¢ : U — R" is a chart
and x € U, we say that ¢ is a chart around z.

Let My, M5 be smooth manifolds and f : My — M be a function. The function f is said to be differen-
tiable at x € M if there is a chart ¢ of M; around x and a chart ¢ of My around f(z) such that

pofop™t

is differentiable at ¢(z). Then, f is said to be differentiable, if it is differentiable throughout M. Similarly,
we say that f is differentiable of class C* if 1) o f o ¢! is of class C*, for every pair of charts of M; and
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1

Ms such that the image of =" and the domain of ¢ intersect. Whether a function is differentiable at some

1 is also

point or is of class C*¥ does not depend on the particular choice of charts. The function ¢ o f o ¢~
said to be a local representation of f. If f is a bijection such that it is C* everywhere and whose inverse
f~1is also C* everywhere, then f is said to be a C* diffeomorphism.

Let M be an n-dimensional smooth manifold. Let C*°(M) denote the ring of C*° real functions g : M —

R. A derivation of M at x is a function v : C*°(M) — R such that for every g, h € C°(M), we have

v(gh) = (v(g)h(z) + g(x)v(h).

Given an n-dimensional smooth manifold M and = € M, we write T, M for the tangent space of M at x,
which is the subspace of derivations of M at x. It is a basic fact that the dimension of T,,M as a vector
space coincides with the dimension of M as a smooth manifold.

Let f : M; — M be a C' map between smooth manifolds. Then, at each 2 € M, f induces a linear map
between df, : T My — Ty Mo such that given v € T, My, df,(v) is the derivation of My at f(x) satisfying

(dfu(v))(g9) = v(go f),

for every g € C*°(N). The map df, is the differential map of f at x. If the linear map df,. is injective
everywhere, then f is said to be an immersion. Furthermore, if f is a C* diffeomorphism with k& > 1, then
df; is a linear bijection for every x. Recall that in order to check whether f is an immersion, it is enough
to check that the local representations of f are immersions.

Now, suppose that o : (—€,€) — M is a C* curve with «(0) = z. Then dag(0) € T, M. Furthermore,
T.M coincides with the set of velocity vectors of smooth curves passing through . With a slight abuse of
notation, let us write o/(t) = dag(t). With that, we have

T.M = {a/(0) | a: (—¢,€) = M,a(0) = z,a is C'}, (3)

see more details in Proposition 3.23 and pages 68-71 in [7]. With this, we can compute a differential df,(v)
by first selecting a C* curve « contained in M with «(0) = x, o/ (0) = v. Then, we have df.(v) = (f oa)’(0),
see Proposition 3.24 in [7].

A map ¢ : M; — Mj is said to be a C*-embedding if it is a C* immersion and a homeomorphism on its
image (here, ((M;) has the subspace topology induced from M5). Now, suppose that, in fact, M; C Ms and
let ¢ : My — M, denote the inclusion map, i.e., ((x) = z, for all z € M. If 1 is a C* embedding, we say
that M, is a C*-embedded submanifold of N.

We remark that when M is an m-dimensional C*-embedded submanifold of R, the requirement that ¢ be
a C* embedding has the following consequences. First, the topology of M has to be the subspace topology
of R™ i.e., the open sets of M are open sets of R" intersected with M. Now, let ¢ : U — R™ be a chart of
M. Then, to¢~!: oU) — U is a C* diffeomorphism. That is, although ¢! is C* when saw as a map
between o(U) and M, its class of differentiability might decrease! when seen as a map between U and R™.
For embedded manifolds of R™, as a matter of convention, we will always see the inverse of a chart ¢ as a
function whose codomain is R™ and we will omit the embedding ¢.

Furthermore, whenever M is a C*-embedded submanifold of R", we will define tangent spaces in a more
geometric way. Given z € M, we will define T, M as the space of tangent vectors of C'' curves that pass
through x:

1 Here is an example of what can happen. Let M be graph of the function f(x) = |z|. M is a differentiable manifold and to
create a maximal smooth atlas for M we first start with a set A containing only the map ¢ : M — R that takes (|z|,x) to z.
At this point, conditions (2), (zi), (¢32) of the definition of atlas are satisfied. Then, we add to A every map v such that AU {¢}
still satisfies (i), (i¢), (447). The resulting set must be a maximal smooth atlas. Following the definition of differentiability between
manifolds, the map ¢~ ' is C* if we see it as a map between R — M, since ¢ o ¢~ '(x) = x. However, t 0 ¢! is not even a C*
map, because |z| is not differentiable at 0.
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T.M ={a'(0) | a: (—¢,¢) = R", a(0) = 2,0 C M, is C*}, (4)

where @« C M means that a(t) € M, for every t € (—e, €). Here, since we have an ambient space, o/(0) is
the derivative of o at 0 in the usual sense.

Both definitions of tangent spaces presented so far are equivalent in the following sense. Let T, M denote
the space of derivations of M at x and let + : M — R"™ denote the inclusion map. Then, di, is a map between
T, M and T,R". Then, identifying T,R” with R", it holds that de, (TwM) = T, M. In particular, T, M and
T, M have the same dimension.

Finally, we recall that for smooth manifolds, the topological notion of connectedness is equivalent to the
notion of path-connectedness, see Proposition 1.11 in [7]. Therefore, a manifold M is connected if and only
if for every x,y € M there is a continuous curve « : [0,1] — M such that «(0) = z and (1) = y.

3.1. Graphs of differentiable maps
For a real valued function f : U — R defined on U C R", the graph of f is defined by
graph f := {(y,2) e Rx U | y = f(2)} CR"*".

In item (7) of the next proposition, for the sake of completeness, we give a proof of the well-known fact that
if fis a C* function, then graph f must be a C*-embedded manifold. In item (i) we observe the fact, also
known but perhaps less well-known, that the converse also holds. This is important for us because if we
know that f is C' but not C2, then this creates an obstruction to the existence of certain maps between
graph f and C? manifolds.

Proposition 3. For k > 1, let f: U — R be a C' function defined on an open subset U of R™.

(i) If f is C* on an open subset V of U, then graph f|y is an n-dimensional C*-embedded submanifold of
R+,

(i) Suppose that a subset M of graph f is an n-dimensional C*-embedded submanifold of R" !, with k > 1.
Then f is C* on the open set my (M), where my : R x U — U s the projection onto U.

Proof. (i) The proof here is essentially the one contained Example 1.30 and Proposition 5.4 of [7], except
that here we take into account the level of smoothness of the embedding.

First, let M = graph(f|y) and consider the subspace topology inherited from R"*! (again, see Exam-
ples 1.3 and 1.30 in [7] for more details). With the subspace topology, the map ¢ : V' — M, given by

is a homeomorphism between V and M, whose inverse is the projection restricted to M, that is

! induces a maximal smooth atlas of M making ¢! : M — V a

o Y(f(x),x) = z. Furthermore, ¢~
chart.”> We now check that the inclusion + : M — R"*! is a C* embedding. A local representation for ¢
is obtained by considering ¢t o ¢ : V — R™*! which shows that ¢ is a C* differentiable map. The inverse
1=t (M) — M is given by restricting the identity map in R"*! to M. Since the topology on M is the
subspace topology, this establishes that ¢ is an homeomorphism.

Furthermore, since the (n + 1) x n Jacobian matrix J,, of the representation of ¢ has rank n, we see

that ¢ is an immersion. Hence, M is a C*-embedded submanifold of R**+1.

2 The idea is the same as in Footnote 1, we start with A4 = {@71} and add every map 1 for which AU {%} still satisfies properties
(2), (4t), (441) of the definition of atlas.
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(i7) Take zg € Ty (M). Let @ : V — R™ be a chart of M around (f(z0), o). We can write the map ®~*
as

O 1(2) = (P(2),0(2) ER XU for z€ ®(V),

for functions v : ®(V) = R, ¢ : (V) — U. Since Im®~1 C M C graph f, we have 1(z) = f(¢(z)) for all
2 € ®(V). Then we obtain a local representation 7 : ®(V) C R" — R"*! of the inclusion map ¢ : M — R"*!
as follows:

i(z) =10 @7 = (P(2),9(2)) = (f 0 9(2), ().

Since M is C*-embedded, o and 9 are C* when seen as maps ®(V) — R and ®(V) — R", respectively. Let
20 = ®((f(x0),x0)). Then p(z9) = x( since

(f(zo),20) = @~ (20) = (¥(20), ¢(20)).

Note that rank(J:z(29)) = n holds because ¢ is an immersion. On the other hand, since f is C! by the
assumption, it follows by the chain rule for the function ¥ = f o ¢ that

Jy(20) = J5((20)) Jo(20) = J5(20) T (20)-

This means that each row of Jy;(29) is a linear combination of rows of J,(2g). Therefore, we conclude that
n = rank J;(20) = rank(Jy (20)7, J,(20)7)" = rank J,(2p).

Namely, the n x n matrix Ji,(20) is nonsingular. Since ¢ is C*, the inverse function theorem states that
there exists a C* inverse p~! : W — R” defined on a neighborhood W of ¢(z9) = z¢. Then, we conclude
that the function

Yop l=fopopt=Ff

is C% on W.
To conclude, we will show that 7y (M) is open. Since ¢ ~1(W) is contained in the domain ®(V') of the
map ¢, it follows that W = @ o o=} (W) C p(®(V)). Now, let z € ®(V). By definition, we have

which shows that ¢(z) € 7y (V). Therefore, o(®(V)) C 7y (V) C 7wy (M). Hence, we have W C 7y (M) and
so my (M) is open in R™, since xy was arbitrary. O

Given a diffeomorphism A between two graphs of C! maps f,g : U — R, the next proposition shows a
relation of the categories of differentiability of f and g through the diffeomorphism B : U — U defined by

B(z) = mu(A(f(x),z))

where 7y : R x U — U is the projection onto U. The map B will play a key role in the proof of our main
result applied with U = R" \ {0}, f(z) = ||z||, and g(z) = |||l We give an illustration of the map B in
Fig. 1.
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graph f graph g

. B(x) = my (A(f(x), x))

Fig. 1. Illustration of the map B(x) = wy (A(f(x), z)).

Proposition 4. Let f,g: U — R be C' maps defined on an open subset U of R™. Suppose that A : R"T1 —
R+ s a C° diffeomorphism such that A(graph f) = graph g.

(i) The map B:U — U, B(z) := my(A(f(z),z)) is a C* diffeomorphism, where my : R x U — U satisfies

U (yv IB) =Z.
(ii) For k> 1, f is C* on a neighborhood of = if and only if g is C* on a neighborhood of B(z).

Proof. (i) Since f is C! while 7y and A are C° maps, it must be the case that B(z) = my(A(f(),x))
is C1.
Let us check that the inverse of B is the map B~!(y) = ny (A7 (g(y), y)). Denote

For any x € U, the relation A(graph f) = graph g implies the existence of y € U such that A(f(z),z) =
(9(y),y). Then we have

and, therefore,

Similarly, we obtain B(B'(y)) = y. Hence, B~(y) = B’(y) holds.

Since B~1(y) = 7y (A1 (g(y),v)) is also O, we conclude that B is a C! diffeomorphism.

(i7) If f is C* on a neighborhood V of z, then graph(f|y) is an n-dimensional C*-embedded submanifold
of R"*! by Proposition 3 (7). Then, by the assumption on A, the set M := A(graph f|y) is also an
n-dimensional C*-embedded submanifold of R"*! which satisfies M C graph g. Therefore Proposition 3 (i)
implies that ¢ is C* on the open set 7y (M) = my(A(graph f|v)) which contains the point 7y (A(f(x), z)).

The converse of the assertion follows by applying the same argument to the diffeomorphism A~! because
A~Y(graph g) = graph f and 7 (A~ (g(y),y)) = x holds for y = B(z) = 7y (A(f(z),z)). O

3.2. The Gauss map

In this subsection, let M be a C*-embedded submanifold of R™ with dimension n — 1 and & > 1. In this
case, M is sometimes called a hypersurface and when n = 3, M is called a surface. The differential geometry
of surfaces is, of course, a classical subject discussed in many books, e.g., [2].

In the theory of surfaces, a Gauss map is a continuous function that associates to x € M a unit vector
which is orthogonal to T, M. Unless M is an orientable surface, it is not possible to construct a Gauss map
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that is defined globally over M. However, given any x € M, it is always possible to construct a Gauss map
in a neighborhood of x. For the sake of self-containment, we will give a brief account of the construction of
the Gauss map for hypersurfaces.

For what follows, we suppose that R™ is equipped with some inner product {-,-) and the norm is given
by ||z|| = /{x,x), for all x € R™. Recalling (4), T, M is seen as a subspace of R and we will equip T, M
with the same inner product (-, -).

Definition 5. Let M be a C*-embedded submanifold of R™ and let x € M. A C” Gauss map around z is a
C" function N : U — R"™ such that U C M is a neighborhood of x in M and

N(z) € (T,M)* and ||N(2)| =1,
for all x € U, where (T, M)+ is the orthogonal complement to 7, M.

For what follows, let z!,..., 2™ € R™ and let det(z!,...,2™) denote the determinant of the matrix such
that its i-th column is given by x?. Since the determinant is a multilinear function, if we fix the first n — 1
elements, we obtain a linear functional f such that

f(z) = det(zh, ..., 2" 1 x).

Since f is a linear functional, there is a unique vector A(z!,..., 2"~ 1) € R" satisfying

for all x € R™. Furthermore, A(z,..., 2" 1) = 0 is zero if and only if the z° are linearly dependent.

Proposition 6. Let M C R™ be an (n — 1) dimensional C*-embedded manifold, with k > 1. Then, for every
chart ¢ : U — R™™1, there exists a C*~' local Gauss map of M defined over U.

Proof. Let ¢ : U — R""! be a chart of M. Then, ¢! is a function with domain (U) (which is an open

set of R"~1) and codomain R™. Let u € U. It is well-known that the partial derivatives of o1

at ¢(u) are
a basis for T, M, e.g., page 60 and Proposition 3.15 in [7]. Let v*(u) be the partial derivative of ¢! at ¢(u)

with respect the i-th variable. We define a Gauss map N over U by letting

_ A (u), ..., 0" ()
1A (), ... o=t (W)

N(x)

1

Since the v*(u) are a basis for T, M, A(vt(u),...,v""1(u)) is never zero. In addition, because ¢! is of class

C*, N must be of class C*~1. O
8.3. A lemma on hyperplanes and embedded submanifolds

Let M be a connected C'-embedded n — 1 dimensional submanifold of R™ (i.e., a hypersurface) that is
contained in a finite union of distinct hyperplanes Hi, ..., H,.. The goal of this section is to prove that M
must be entirely contained in one of the hyperplanes. The intuition comes from the case n = 3: a surface
in R3 cannot, say, be contained in H; U Hy and also intersect both H; and Hy because it would generate a
“corner” at the intersection M N H; N Ha, thus destroying smoothness. This is illustrated in Fig. 2.

This is probably a well-known differential geometric fact but we could not find a precise reference, so we
give a proof here. Nevertheless, our discussion is related to the following classical fact: a point in a surface for
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Fig. 2. A surface M cannot be smooth if it is connected, contained in H; U Ha, but not entirely contained in neither H; nor Hs.

which the derivative of the Gauss map vanishes is called a planar point and a connected surface in R3 such
that all its points are planar must be a piece of a plane, see Definitions 7, 8 and the proof of Proposition 4
of Chapter 3 of [2].

In our case, the fact that M is contained in a finite number of hyperplanes hints that the image of any
Gauss map of M should be confined to the directions that are orthogonal to those hyperplanes. This, by
its turn, suggests that the derivative of N should vanish everywhere, i.e., all points must be planar. In fact,
our proof is inspired by the proof of Proposition 4 of Chapter 3 of [2] and we will use the same compactness
argument at the end.

To start, we observe that the tangent of a curve contained in Hy, ..., H, must also be contained in those
hyperplanes.

Proposition 7. Let H; = {a;}* be hyperplanes in R™ fori=1,...,r. Suppose that a C' curve a : (—¢,¢€) —
R™ is contained in X = J;_, H;. Then, o/(0) € X.

Proof. Changing the order of the hyperplanes if necessary, we may assume that

a(0) e Hyn---NH,
a(0) & Hyy,... Hy.

Since « is contained in X, we have s > 1. Furthermore, because « is continuous, there is € > 0 such that
ale) ¢ Heyq,..., Hy, (5)
for —é <e<e.

Now, suppose for the sake of obtaining a contradiction that a’(0) does not belong to any of these
hyperplanes Hy, ..., Hy. Therefore, for all i € {1,..., s}, we have

((0),a;) =0, (a’(0),a;) # 0.
Since «/(-) is continuous, we can select 0 < € < € such that for all i € {1,...,s} and € € (—¢,€), we have
(a'(€),a;) # 0.

By the mean value theorem applied to (a(:), a;) on the interval [0, /2], we obtain that («(€/2),a;) # 0, for
allie€1,...,s. Since €/2 € (—¢,€), (5) implies that

(a(€/2),a:) # 0,

for i € {s+1,...,r} too. This shows that «(€/2) ¢ X, which is a contradiction. O
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Before we prove the main lemma of this subsection, we need the following observation on finite dimensional
vector spaces.

Proposition 8. A finite dimensional real vector space V is not a countable union of subspaces of dimension
strictly smaller than dim V.

Proof. Suppose that V is a countable union | J W; of subspaces of dimension smaller than dim V. Take the
unit ball B C V. Then, B = |JW,; N B. However, this is not possible since each W; N B has measure zero,
while B has nonzero measure. O

We now have all the necessary pieces to prove the main lemma.

Lemma 9. Let X C R" be a union of finitely many hyperplanes H; = {a;}*, a; #0,i=1,...,r. Let M be
an (n — 1) dimensional differentiable manifold that is connected, C'-embedded in R™ and contained in X .
Then, M must be entirely contained in one of the H;.

Proof. We proceed by induction on r. The case r = 1 is clear, so suppose that » > 1.
Consider a chart ¢ : U — R""! such that U C M is connected and construct a C° (i.e., continuous)
Gauss map N in U, as in Proposition 6. Let u € U and let us examine the tangent space T, M. We have

T.M ={d'(0) | a: (€€ — M, a(0) =u, ais C'}.

By Proposition 7,

Therefore,

T.M = LTJ H,NT,M.
i=1

Each H, NT, M is a subspace of T, M (an intersection of subspaces is also a subspace!). By Proposition 8,
T, M cannot be a union of subspaces of dimension less than dim T, M = n — 1. Therefore, there exists some
index j such that H; N T,M = T, M. Since both T,,M and H; have dimension n — 1, we conclude that
H; =T,M.

In particular, the Gauss map N satisfies N(u) = a;/|a;| or N(u) = —a;/||a;||. Therefore, for all u € U,
we have

a
N(u) € {:i:—z izl,...,r}.
[ladll

Since U is connected and N is continuous, we conclude that the Gauss map N is constant. Denote this
constant vector by v.
Let 1 = (¢~ 1(-),v). Since ¢ is a chart, given any w € ¢(U), the differential

doy' RN = Toa ()M

is a linear bijection. Since T\, ~1(,,)M is orthogonal to v, we conclude that 1)’ = 0. Therefore 1) must be
constant and there is kg such that (o= (w),v) = ko, for all w € ¢(U). That is, (u,v) = kg, for all u € U.
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Recall that, given x € M, we can always obtain a chart ¢ : U — M around z such that U is connected.
Therefore, the discussion so far shows that every x € M has a neighborhood U such that U is entirely
contained in a hyperplane

{21 (2,02) = K},

where v, has the same direction as one of the a1, ..., a,. Now, fix some x € M and let y € M, y # x. Since
M is connected, there is a continuous curve « : [0,1] — M such that «(0) = z and a(1) = y.

Similarly, for every t € [0, 1], we can find a neighborhood U; C M of «(t) such that U; is contained in a
hyperplane {z | (z,v:) = K} where v, is parallel to one of a4, ..., a,. In particular

1< |J o '),

te0,1]

Since the U; are open in M and « is continuous, the a~1(U;) form an open cover for the compact set
[0,1]. Therefore, the Heine-Borel theorem implies that a finite number of the a=!(U;) are enough to cover
[0,1]. As a consequence, « itself is contained in finitely many neighborhoods Uy,, ... U,. Now, we note the
following:

o If Uy, NU;; # 0 then Uy, N Uy, is a nonempty open set in M and therefore, an embedded submanifold
of dimension n — 1, see Proposition 5.1 in [7]. Furthermore U;, N Uy, is contained in the set

H = {Z eR" ‘ <Z’Ut1:> = Rt;, <Z,Utj> = Ktj}'

Therefore, the smooth manifold H must have at least dimension n— 1. We conclude that “(z,vs,) = k¢,”
and “(z,vy;) = ky;” define the same hyperplane. So, U;; and Uy, are in fact, contained in the same
hyperplane.

o U;, must intersect some of the Uy,,...,U;, because if it does not, then a=*(Uy,) and o= (UM ,Uy,)
disconnect the connected set [0, 1]. Changing the order of the sets if necessary, we may therefore assume
that Uy, and U, intersect and, therefore, lie in the same hyperplane. Similarly, the union Uy, U Uy,
must intersect one of the remaining neighborhoods Uy, ..., Uy,, lest we disconnect the interval [0, 1]. By
induction, we conclude that all neighborhoods lie in the same hyperplane.

In particular, x and y lie in the same hyperplane and, therefore, M is entirely contained in some hyperplane

whose normal direction has the same direction as one of the aq,...,a,.
So far, we have shown that M is entirely contained in a hyperplane of the form

{z e R" | (z,v) = Ko}

Without loss of generality, we may assume that v has the same direction as a;. If K9 = 0, we are done.
Otherwise, since v has the same direction as aq, it follows that M does not intersect H; and

M C U H;.
1=2

By the induction hypothesis, M must be contained in one of the Hs,..., H,.. O
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4. Main results

In this section, we show the main results on p-cones. We begin by observing a basic fact on the differen-
tiability of p-norms.

Lemma 10. Let n > 2 and p € (1, 00).

(@) |Illp is C* on R™\ {0}.

(ii) If p € (1,2) then |||, is C* on a neighborhood of x if and only if x; # 0 for all i.
(iii) If p € [2,00) then |||, is C* on R™\ {0}.

Proof. (i) ||-||, is C* on R™\ {0} because

-llp
aLL'Z‘

() = |l 7 |:P~" sign(as).

(ii) If z; # O for all i, it is straightforward to see that ||-||, is C* on a neighborhood of . For the converse,
2
consider a point x # 0 with x; = 0 for some . Let us verify that M(a:) does not exist if p € (1,2). Indeed,

Ox?
%(w) =0 holds and so

7

1 ) . )
lim = <%(jj + hey) — %(x)) — i p-12 ||p(x+ hes)

h—0 h 8.%' axi h—0 3%‘1
— li —1 1-p p—2
hli%h llz + heill, P |R[P~=h

= li 1=P|p|P—2
lim [z + he [, |h)

:{+oo (p<2).

Hence, when p € (1, 2), the derivative ayL’z“” (x) exists if and only if z; # 0.

(7i7) For p > 2 (the assertion in the case p =2 is clear),

2 .
S () = (1= el o P s sign(e,)

holds if i # j, otherwise we have

0%-llp
Ox?

—2p 2(p—1 _ _
(2) = (1= p)llally ;"™ + (p = Dlfally Pl ©
We now move on to the main result of this paper.

Theorem 11. Let p,q € [1,00], p < ¢, n > 2 and (p,q,n) # (1,00,2). Suppose that Ly*' and Ly+ are
isomorphic, that is,

+1 __ +1
AL = L7

holds for some A € GL,1(R). Then p = q must hold. Moreover, if p # 2, then we have A € Aut(Ly1).



406 M. Ito, B.F. Lourengo / J. Math. Anal. Appl. 471 (2019) 392-410

Proof. The proof consists of three parts I, II, and III.

L. First we consider the case p € {1,00} corresponding to the case when £3*! is polyhedral. Since A
preserves polyhedrality, ¢ must be 1 or co too. Note that E’f“ and £ cannot be isomorphic if n > 3
because they have different numbers of extreme rays, see Section 2.2. Therefore,p = ¢ = 1 or p = ¢ = oo must
hold. Since Aut(L£%H") = Aut(L}™) holds (Proposition 2), the assertion is verified in the case p € {1,00}.

II. Now let p,q € (1,00). Then the set

My :={(t,z) e R xR"\ {0} [ t = [|z[,}

becomes a C'-embedded submanifold of R"*! by Lemma 10 (i) and Proposition 3 (i). Note that AL} =
Lp+! implies AM, = M, since A maps the boundary of £7*! onto the boundary of £ *1.
Tt suffices to consider the case p,q € (1,2) by the following observation.

(a) The case 1 < p < 2 < ¢ < oo does not happen in view of Proposition 4 and Lemma 10. In fact, since
]l is C? on R™\ {0} and A~1M, = M, holds, Proposition 4 implies that ||-||, is C? on R™ \ {0} but
this is a contradiction.

(b) If 2 < p < g < oo holds, then taking the dual of the relation AE;LH = £2+1 with respect to the
Euclidean inner product, it follows that

—T pn+1 _ pn+l
ATT L =

where p* and ¢* € (1, 2] are the conjugates of p and ¢, respectively. Either p* = ¢* = 2 or p*, ¢* € (1,2)
must hold by (a). If p* = ¢* = 2, then we are done since this implies that p = ¢ = 2. Now, suppose
that p*,¢* € (1,2). If we prove that p* = ¢* and A~T € Aut(L}"'), then we conclude that p = ¢
and A € Aut(£7)~T. However, by Proposition 2, Aut(£}™')~7 = Aut(£7!). (Note that, if P is a
generalized permutation matrix, then so is P~7.)

From cases (a), (b) we conclude that it is enough to consider the case p,q € (1,2), which we will do next.
I Let p,q € (1,2). We show by induction on n that every A € GL,11(R) with AL}T! = LIH! s a
bijection from the set

E=J) U Res(loel)

i=1oe{-1,1}

onto E itself, where e’ is the i-th standard unit vector in R™. First, let us check that this claim implies
A € Aut(L1h) and p = ¢q. Taking the conical hull of the relation AE = E, we conclude that

ALY = A(cone(E)) = cone(AE) = cone(E) = L7,

where the relation cone(E) = L] holds because a pointed closed convex cone is the conical hull of its
extreme rays (see Theorem 18.5 in [10]) and E is precisely the union of all the extreme rays of L7 with
the origin removed, see Section 2.2. Therefore, we have

A€ Aut(Lrth C Au‘c(ﬁ%”l)7

where the last inclusion follows by Proposition 2 because ||Px||, = ||z||, for any generalized permutation
matrix P. Then L3 = ALPH = L2 and so p = ¢ must hold.

Now, let us show the claim that A is a bijection on E. Consider the map &, : R" \ {0} — M, defined by
&p(x) = (||lzllp, ) whose inverse &' : M, — R™\ {0} is the projection &, ! (¢, 2) = x. By Proposition 4, the
map B :R"\ {0} — R™\ {0} defined by
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B(z) =&, " o A, 0 &(a)

407

is a C'! diffeomorphism. Moreover, [-||, is C? on a neighborhood of z if and only if ||-||, is C? on a neigh-
borhood of B(z). Since p,q € (1,2), each of the functions ||||, and ||-||, is C* on a neighborhood of z if and

only if ; # 0 for all ¢ (Lemma 10). This implies that the set
X ={z eR"\ {0} | x; =0 for some i}
satisfies

B(X)=X

because x belongs to X if and only if ||-||, and |-||, are never C? on any neighborhood of z.

ITI.a. Consider the case n = 2. Then the set X can be written as

X ={rcR*\ {0} |z; =0or x5 =0}
=Ri1(0,1)UR4 4 (0,-1) UR44(1,0) UR, 1 (—1,0)

2
:U U Ry (0€}).
i=loe{-1,1}

Then &,(X) and &;(X) coincide with E:
2
fp(X):gq(X):U U R++(1,ae$):E.
i=loe{-1,1}
Moreover, A is bijective on E because
A(&(X)) =& o0&, 0 Alar, 0 &5(X) = & 0 B(X) = &(X).

Thus, the claim AF = E holds in the case n = 2.
IILb. Now let n > 3 and suppose that the claim is valid for n — 1. Denote

X; = {z € R*\ {0} |2, =0}, M} :=£,(X;) = {(t,x) € R x R"\ {0} : ¢ = |||, @ = O}.

With that, we have

We show that for any ¢ € {1,...,n} there exists j € {1,...,n} such that

For any i, the set X; is a connected (n — 1) dimensional C'-embedded submanifold of R™ contained in
X. Since B : R™\ {0} — R\ {0} is a C! diffeomorphism satisfying B(X) = X, the set B(X;) is also a
connected (n — 1) dimensional C'-embedded submanifold of R™ contained in X. Then, since X U {0} is
the union of the hyperplanes X; U {0}, i = 1,...,n, it follows from Proposition 9 that B(X;) is entirely

contained in some hyperplane X; U {0}. Then we have
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B(X;) C X;.

By the same argument, the set B~!(X;) is contained in some hyperplane X U {0}, that is, B71(X;) C X,
holds. This shows that

X, =B Y(B(X;)) C BY(X;) C X.

Since X; cannot be a subset of Xy if i # k, it follows that i = k. Then, we obtain X; = B7}(X}), ie.,

B(X;) = X;.
Since B is a bijection, the above argument shows that there exists a permutation 7 on {1,...,n} such
that

B(Xi) = X7
Then we have
A(My) =406 0 Aln, 0§(Xi) = & 0 B(Xi) = §( X)) = Mg 1.
Taking the linear span both sides, we also have
A(V;) = Vo) where V;:={(t,z) € R xR" | x; = 0}.

Now we apply the induction hypothesis to the isomorphism A
Vi = R™ by

v, as follows. Define the isomorphism ¢; :

(pi(t,xl,...,$i_1,0,£i+1,...,l‘n) = (t,x1,~-~71‘i—171'i+17---7xn)

and consider the isomorphism A; := ¢, (;) o Aly, o 90;1 : R™ — R™. By the above argument, we see that
Ai(Ly) = Ly:

Ai(Lp) = @ry 0 Alv, 0 ¢y H(Ly) = pr(iy © Alcone M) = @iy (cone M7 ") = L.

So the induction hypothesis implies that A; is bijective on

n—1
U U R++(1,O’€?_1).

j=1oe{-1,1}

Therefore, A

v, = sp;(li) o A;l o ¢; is a bijection from

U U Rii(oe))

je{1,...n}\{i} oe{-1,1}

onto
U Ry (1,0€}).
je{l,..nI\{r(®))} oe{-1,1}
Combining this result for each i = 1,...,n, it turns out that A is bijective on

E = LnJ U R++(1,0’€?). O

i=1oe{—1,1}
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Combining the latter assertion of Theorem 11 and Proposition 2, we obtain the description of the auto-
morphism group of the p-cones.

Corollary 12. For p € [1,00], p # 2 and n > 2, we have Aut(ﬁZH) = Aut(L}Y). In particular, any
A € Aut(Lpt) can be written as
(10
A=« <0 P> ,

where a > 0 and P is an n X n generalized permutation matriz.

We can also recover our previous result on the non-homogeneity of p-cones with p # 2. In contrast to [6],
here we do not require the theory of T-algebras.

Corollary 13. For p € [1,00], p # 2 and n > 2, the p-cone EZ‘H is not homogeneous.

Proof. By Corollary 12, for any A € Aut([lgﬂ) = Aut(£}™), we have that the vector (1,0,...,0) is an
eigenvector of A. So, there is no automorphism of £ that maps (1,0,...,0) to an interior point of £3*!
that does not belong to

{(8,0,...,0) | B> 0}.
Hence, E;”‘l cannot be homogeneous. O

Now the non-self-duality of p-cones EZH for p # 2 and n > 2 is an immediate consequence of Theorem 11
in view of Proposition 1, while we need an extra argument for the case (p,q,n) = (1, o0, 2).

Corollary 14. For p € [1,00], p # 2 and n > 2, the p-cone Lg“ is mot self-dual under any inner product.

Proof. Suppose that E;”“ is self-dual under some inner product. Then, by Proposition 1, there exists a
symmetric positive definite matrix A such that

1 1
AE;L'H = EZ'H where — 4 - =1.
P q

If (p,q,n) # (1,00,2),(00,1,2), then p = ¢ = 2 must hold by Theorem 11. Now let us consider the case
(p,q,n) = (1,00,2), i.e., AL3 = L3_. Recalling (2), we have BL3 = £3_ with

1 0 0 1 0 O
B=|0 +2cos(r/4) —+2sin(x/4) |=[0 1 -1
0 2sin(r/4) V/2cos(r/4) 01 1

Therefore, B~*A € Aut(£3) holds. Then, by Proposition 2, the matrix A can be written as A = BC where
C' is of the form

1 0 0 1 0 0
C=al|l0 £1 0 or ol 0 0O #£1 |, a>0.
0 0 =1 0 £1 0

Since A is symmetric, it has one of the following forms:
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1 0 0 1 0 0 1 0 0 1 0 0
al0 -1 -1, a0 1 1 |, « -1 1|, af0 1 -1
0 -1 1 01 -1 0 1 1 0 -1 -1

None of them is positive definite. Therefore, we obtain a contradiction. O
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