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This paper is concerned with the existence of weak solutions to a class of nonlinear 
elliptic Navier boundary value problem involving the p(x)-Kirchhoff type triharmonic 
operator. By means of a variational approach and the theory of the variable exponent 
Sobolev spaces, we establish conditions ensuring the existence of weak solutions for 
the problem.
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1. Introduction

In this paper, we are concerned with the existence of weak solutions for the following nonlinear elliptic 
Navier boundary value problem involving the p(x)-Kirchhoff type triharmonic operator⎧⎨⎩−M

(∫
Ω

1
p(x) |∇Δu|p(x)dx

)
Δ3

p(x)u = λζ(x)|u|α(x)−2u− λξ(x)|u|β(x)−2u in Ω,

u = Δu = Δ2u = 0 on ∂Ω,
(1.1)

where Ω ⊂ Rn, with n > 3, is a bounded domain with smooth boundary, p ∈ C(Ω) with 1 < p(x) < n
3

for any x ∈ Ω, ζ, ξ, α, β ∈ C(Ω) are nonnegative functions, λ is a positive parameter and Δ3
p(x)u :=

div
(
Δ

(
|∇Δu|p(x)−2∇Δu

))
is the so-called p(x)-triharmonic operator.

Equation (1.1) is called a nonlocal problem because of the presence of the term M , which implies that 
the equation in (1.1) is no longer a pointwise equation.

The p(x)-trilaplacian possesses more complicated nonlinearities than the p-trilaplacian with p(x) ≡ p > 1
is a constant, for example, it is inhomogeneous. The study of various mathematical problems with variable 
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exponent has been received considerable attention in recent years. These problems are interesting in ap-
plications and raise many difficult mathematical problems. One of the most studied models leading to 
problem of this type is the model of motion of electrorheological fluids, which are characterized by their 
ability to drastically change the mechanical properties under the influence of an exterior electromagnetic 
field [33,37]. Problems with variable exponent growth conditions also appear in the mathematical modeling 
of stationary thermo-rheological viscous flows of non-Newtonian fluids and in the mathematical description 
of the processes filtration of an ideal barotropic gas through a porous medium [6,5]. We refer the reader to 
[15,22,34,38] for an overview of references on this subject.

A typical model of an elliptic equation with p(x)-growth conditions is

−Δp(x)u = f(x, u). (1.2)

The operator Δp(x)u := div
(
|∇u|p(x)−2∇u

)
is called the p(x)-Laplace operator and it is a natural general-

ization of the p-Laplace operator, in which p(x) ≡ p > 1 is a constant.
Problems like (1.2) with Dirichlet boundary condition have been largely considered in the literature in 

the recent years. We give in what follows a concise but complete image of the actual stage of research on 
this topic. We will use the notations such as p+ and p− where

p− := min
x∈Ω

p(x) ≤ p(x) ≤ p+ := max
x∈Ω

p(x).

In the case f(x, u) = λ|u|p(x)−2u in [20] the authors established the existence of infinitely many eigenvalues 
for problem (1.2) by using an argument based on the Ljusternik-Schnirelmann critical point theory. Denoting 
by Λ the set of all nonnegative eigenvalues, they showed that Λ is discrete, sup Λ = ∞ and pointed out inf Λ =
0 for general p(x), and only under some special conditions inf Λ > 0. In the case f(x, u) = λ|u|q(x)−2u, there 
are different papers, for example, in [19] the same authors proved that any λ > 0 is an eigenvalue of problem 
(1.2) when p+ < q− and also when q+ < p−. In [32] the authors proved the existence of a continuous family 
of eigenvalues which lies in a neighborhood of the origin when q− < p− and q(x) has subcritical growth in 
problem (1.2).

In the case f(x, u) = λv(x)|u|q(x)−2u +λw(x)|u|h(x)−2u with q and h are continuous functions on Ω such 
that 1 < q(x) < p(x) < h(x) < p∗(x) := np(x)

n−p(x) and p(x) < n, the authors [30] showed the existence of at 
least one nontrivial weak solution. There approach relies on the variable exponent theory of Lebesgue and 
Sobolev spaces combined with adequate variational methods and the Mountain Pass Theorem.

In recent years, elliptic problems involving p(x)-Kirchhoff type Laplacian operator

−M

⎛⎝∫
Ω

1
p(x) |∇u|p(x)dx

⎞⎠Δp(x)u = f(x, u), (1.3)

have been studied in many papers, we refer to [1,9,11,13], in which the authors have used different methods 
to get the existence of the solutions for (1.3). Infinitely many solutions of the problem (1.3) in the special 
case when M(t) = a + bt, has been studied by Dai and Liu in [13], by using a direct variational approach. 
In [11], the author considered the problem (1.3) in the case when M : R+ → R+ is a continuous function 
satisfying the following conditions:

(M0) There exist c2 ≥ c1 > 0, δ2 ≥ δ1 > 1 such that

c1t
δ1−1 ≤ M(t) ≤ c2t

δ2−1

for all t ∈ R+.



B. Rahal / J. Math. Anal. Appl. 478 (2019) 1133–1146 1135
(M1) For all t ∈ R+, M̂(t) ≥ M(t)t holds, where M̂(t) =
∫ t

0 M(z)dz, and the special case

f(x, u) = λ
(
a(x)|u|s1(x)−2u + b(x)|u|s2(x)−2u

)
,

where p, s1, s2 ∈ C(Ω) with

1 < s−1 ≤ s+
1 < δ1p

− < δ2p
+ < s−2 ≤ s+

2 < min
{
n,

np−

n− p−

}
.

Using the Mountain Pass Theorem and Ekeland variational principle, he has proved that the problem (1.3)
has at least two distinct, nontrivial weak solution.

The study of problems involving p(x)-biharmonic operators has been widely approached. For background 
and recent results, we refer the reader to [2,3,7,8,36] and the references therein for details. For example, 
in [2] by using critical point theory, the existence of infinitely many weak solutions for a class of Navier 
boundary-value problem depending on two parameters and involving the p(x)-biharmonic operator

{
Δ2

p(x)u = λf(x, u) + μg(x, u) in Ω,

u = Δu = 0 on ∂Ω,
(1.4)

where Δ2
p(x)u := Δ(|Δu|p(x)−2Δu), λ is a positive parameter, μ is a non-negative parameter, f, g ∈ C0(Ω ×R)

was studied. Kong [26] using variational arguments based on Ekeland’s variational principle and some 
recent theory on the generalized Lebesgue-Sobolev spaces Lp(x)(Ω) and W k,p(x)(Ω) studied p(x)-biharmonic 
nonlinear eigenvalue problem, while in [26] using variational arguments based on the Mountain Pass lemma 
and some recent theory on the generalized Lebesgue–Sobolev spaces Lp(x)(Ω) and W k,p(x)(Ω), he studied the 
multiplicity of weak solutions to a fourth-order nonlinear elliptic problem with a p(x)-biharmonic operator. 
In [21] considering different situations concerning the growth rates involved in a p(x)-biharmonic nonlinear 
eigenvalue problem, employing the Mountain Pass lemma and Ekeland’s variational principle the existence 
of a continuous family of eigenvalues was proved. In [10], Cammaroto and Vilasi derived the existence 
of infinitely many solutions for an elliptic problem involving the p(x)-biharmonic under Navier boundary 
conditions. Their approach is of variational nature and does not require any symmetry of the nonlinearities. 
Instead, a crucial role is played by suitable test functions in some variable exponent Sobolev space, of which 
they provided the abstract structure better suited to the framework. Also, many authors have looked for 
multiple solutions of elliptic equations involving p(x)-biharmonic type operators (see, for instance, [17,24,23,
26,25,29,28]). The generalization of Kirchhoff equations to the case involving the p(x)-biharmonic operator

M

⎛⎝∫
Ω

1
p(x) |Δu|p(x)dx

⎞⎠Δ2
p(x)u = f(x, u) (1.5)

is a quite new topic, so there exists only a few papers (see [4,14]). Motivated by the above references and 
some ideas in [12], the authors [14] established the existence and multiplicity of solutions for problem (1.5)
using variational method and the theory of the variable exponent Sobolev spaces.

In the present paper, considering different ordering cases of the functions α, β and p, which makes problem 
(1.1) involving a concave-convex nonlinearity, we obtain few results for problem (1.1). Since each case has 
specific challenges, we do not use a unique straightforward technique. In this context, the presentation of 
the current paper is unique. We believe that the present paper will make a contribution to the related 
literature because considering a number of different cases for the functions α, β and p is very important for 
the representation of the various physical situations described by the model equation (1.1). Motivated by 
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the ideas introduced in [3,11,32], the goal of this article is to study the existence of weak solutions of the 
problem (1.1) involving concave-convex nonlinearities.

This article is organized as follows. In section 2, we recall some basic results on the theory of Lebesgue-
Sobolev spaces with variable exponent. In section 3 and 4, we state and prove our main results respectively.

2. Preliminary results

In this section we recall some definitions and basic properties of the variable exponent Lebesgue and 
Sobolev spaces Lp(x)(Ω) and Wm,p(x)(Ω), where Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω.

Let C+(Ω) =
{
p ∈ C(Ω) such that inf

x∈Ω
p(x) > 1

}
, and define

p− := min
x∈Ω

p(x) and p+ := max
x∈Ω

p(x), ∀p ∈ C+(Ω).

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space by

Lp(x)(Ω) =

⎧⎨⎩u : Ω → R is measurable,
∫
Ω

|u(x)|p(x)dx < ∞

⎫⎬⎭ ,

under the norm

|u|p(x) = inf

⎧⎨⎩η > 0 :
∫
Ω

∣∣∣∣u(x)
η

∣∣∣∣p(x)

dx ≤ 1

⎫⎬⎭ ,

which makes 
(
Lp(x)(Ω), |.|p(x)

)
a separable and reflexive Banach space.

The variable exponent Sobolev space Wm,p(x)(Ω) is defined by

Wm,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : Dγu ∈ Lp(x)(Ω), |γ| ≤ m

}
,

where γ = (γ1, γ2, ..., γn) is a multi-index, |γ| =
n∑

i=1
γi and Dγu = ∂|γ|u

∂γ1x1...∂γnxn
. Then, the space (

Wm,p(x)(Ω), ‖.‖m,p(x)
)

equipped with the norm

‖u‖m,p(x) =
∑

|γ|≤m

|Dγu|p(x)

is a separable and reflexive Banach space, provided 1 < p− ≤ p+ < ∞. We denote by Wm,p(x)
0 (Ω) the 

closure of C∞
0 (Ω) in Wm,p(x)(Ω).

Throughout this paper, we let X = W
1,p(x)
0 (Ω) ∩W 3,p(x)(Ω). Define a norm ‖.‖X of X by

‖u‖X = ‖u‖1,p(x) + ‖u‖2,p(x) + ‖u‖3,p(x).

Moreover, it is well known that if 1 < p− ≤ p+ < ∞, the space (X, ‖.‖X) is a separable and reflexive Banach 
space, ‖u‖X and |∇Δu|p(x) are two equivalent norms on X (see [18,27]).

Let

‖u‖ = inf

⎧⎨⎩η > 0 :
∫ ∣∣∣∣∇Δu

η

∣∣∣∣p(x)

dx ≤ 1

⎫⎬⎭

Ω
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for all u ∈ X. It is easy to see that ‖u‖ is equivalent to the norms ‖u‖X and |∇Δu|p(x) in X. In this paper, 
for the convenience, we will use the norm ‖.‖ on the space X.

For any x ∈ Ω, let

p∗(x) =
{

np(x)
n−3p(x) if p(x) < n

3 ,

∞ if p(x) ≥ n
3 .

Proposition 2.1. [17,18,27] Set Φ̃(u) =
∫
Ω

|u|p(x)dx. For u ∈ Lp(x)(Ω), we have

1. |u|p(x) ≤ 1 =⇒ |u|p
+

p(x) ≤ Φ̃(u) ≤ |u|p
−

p(x).

2. |u|p(x) ≥ 1 =⇒ |u|p
−

p(x) ≤ Φ̃(u) ≤ |u|p
+

p(x).

Similar to Proposition 2.1, we have

Proposition 2.2. Set Φp(x)(u) =
∫
Ω

|∇Δu|p(x)dx for any u ∈ X. Then, we have

1. ‖u‖ ≤ 1 =⇒ ‖u‖p+ ≤ Φp(x)(u) ≤ ‖u‖p− .
2. ‖u‖ ≥ 1 =⇒ ‖u‖p− ≤ Φp(x)(u) ≤ ‖u‖p+ .

Proposition 2.3. [7,18,27] Assume that q ∈ C+(Ω) satisfy q(x) < p∗(x) on Ω. Then, there exists a continuous 
and compact embedding X ↪→ Lq(x)(Ω).

3. Main results

We say that u ∈ X is a weak solution of (1.1) if

M

⎛⎝∫
Ω

1
p(x) |∇Δu|p(x)dx

⎞⎠∫
Ω

|∇Δu|p(x)−2∇Δu · ∇Δvdx

− λ

∫
Ω

(
ζ(x)|u|α(x)−2uv − ξ(x)|u|β(x)−2uv

)
dx = 0,

for all v ∈ X.
The energy functional Iλ : X → R corresponding to the problem (1.1) is defined as

Iλ(u) = M̂

⎛⎝∫
Ω

1
p(x) |∇Δu|p(x)dx

⎞⎠− λ

∫
Ω

(
ζ(x)
α(x) |u|

α(x) − ξ(x)
β(x) |u|

β(x)
)
dx,

where M̂(t) :=
∫ t

0 M(z)dz. At this point, let us define the functionals Iλ, Ψ : X → R by

Ψ(u) = M̂

⎛⎝∫ 1
p(x) |∇Δu|p(x)dx

⎞⎠ ,
Ω
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Iλ(u) = Ψ(u) − λ

∫
Ω

(
ζ(x)
α(x) |u|

α(x) − ξ(x)
β(x) |u|

β(x)
)
dx.

In a standard way, it can be shown that Ψ is sequentially weakly lower semicontinuous, Ψ ∈ C1(X, R), and 
its Gâteaux derivative Ψ′(u) at u ∈ X is given by

< Ψ′(u), v >= M

⎛⎝∫
Ω

1
p(x) |∇Δu|p(x)dx

⎞⎠∫
Ω

|∇Δu|p(x)−2∇Δu · ∇Δvdx, for all v ∈ X.

Then, the functional Iλ is well-defined, Iλ ∈ C1(X, R), and its Gâteaux derivative I ′λ(u) at u ∈ X is 
given by

< I ′λ(u), v > = M

⎛⎝∫
Ω

1
p(x) |∇Δu|p(x)dx

⎞⎠∫
Ω

|∇Δu|p(x)−2∇Δu · ∇Δvdx

− λ

∫
Ω

(
ζ(x)|u|α(x)−2uv − ξ(x)|u|β(x)−2uv

)
dx,

for all v ∈ X. Thus, we can infer that critical points of functional Iλ are exactly the weak solutions of 
problem (1.1). Hereafter, we introduce the following assumptions on the function M(t):

(B1) There exist m2 ≥ m1 > 0 and τ ≥ μ > 1 such that for all t ∈ R+,

m1t
μ−1 ≤ M(t) ≤ m2t

τ−1.

(B2) For all t ∈ R+,

M̂(t) ≥ M(t)t,

where M̂(t) =
t∫

0

M(z)dz.

In this paper, we obtain different results for the problem (1.1). For each result, the functions α, β, 
p ∈ C+(Ω) have different ordering cases. Therefore, we split up the results of the present paper into the 
different natural parts. Moreover, in the rest of the paper, we always assume that ζ−, ξ− > 0. Now, we 
state our main result as follows.

Theorem 3.1. Assume that the conditions (B1), τp(x) < min
{

n
3 ,

np(x)
n−3p(x)

}
and

1 < α− ≤ α+ < β− ≤ β+ < τp− on Ω (3.1)

are satisfied. Then for all λ > 0, problem (1.1) has at least one nontrivial weak solution.

Theorem 3.2. Assume that the conditions (B1), β(x) < min
{

n
3 ,

np(x)
n−3p(x)

}
and

1 < α− ≤ α+ < μp− ≤ τp+ < β− on Ω (3.2)

are satisfied. Then there exists λ0 > 0 such that for any λ ∈ (0, λ0), the problem (1.1) has at least one 
nontrivial weak solution.
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Theorem 3.3. Assume that the conditions (B1), (B2), α(x) < min
{

n
3 ,

np(x)
n−3p(x)

}
and

1 < β− ≤ β+ < μp− ≤ τp+ < α− on Ω (3.3)

are satisfied. Then for any λ > 0 the problem (1.1) has at least one nontrivial weak solution.

4. Proof of the main results

4.1. Proof of Theorem 3.1

In order to prove Theorem 3.1, we need the following lemmas.

Lemma 4.1. For any a1, a2 > 0 and 0 < k < m, we have

a1s
k − a2s

m ≤ a1

(
a1

a2

) k
m−k

, ∀s ≥ 0. (4.1)

Proof. Since the function [0, +∞) � s �→ sθ is increasing for any θ > 0 it follows that

a1 − a2s
m−k < 0, ∀s >

(
a1

a2

) 1
m−k

,

and

sk(a1 − a2s
m−k) ≤ a1s

k < a1

(
a1

a2

) k
m−k

, ∀s ∈
[
0,

(
a1

a2

) 1
m−k

]
.

The above inequalities show that (4.1) holds true. �
Lemma 4.2. For any λ > 0, we have

1. Iλ is bounded from below and coercive on X.
2. Iλ is sequentially weakly lower semicontinuous on X.

Proof.
Proof of 1.) Using the hypotheses (B1) and (4.1), we deduce that for any u ∈ X with ‖u‖ > 1, the following 
hold

Iλ(u) = M̂

⎛⎝∫
Ω

1
p(x) |∇Δu|p(x)dx

⎞⎠− λ

∫
Ω

(
ζ(x)
α(x) |u|

α(x) − ξ(x)
β(x) |u|

β(x)
)
dx

≥ m1

μ

⎛⎝∫
Ω

1
p(x) |∇Δu|p(x)dx

⎞⎠μ

− λ

∫
Ω

(
ζ(x)
α(x) |u|

α(x) − ξ(x)
β(x) |u|

β(x)
)
dx

≥ m1

μ(p+)μ
[
Φp(x)(u)

]μ − λ

∫
Ω

(
ζ+

α− |u|α(x) − ξ−

β+ |u|β(x)
)
dx

≥ m1

μ(p+)μ
[
Φp(x)(u)

]μ − λζ+

α−

∫ (
ζ+β+

α−ξ−

) α(x)
β(x)−α(x)

dx
Ω
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≥ m1

μ(p+)μ
[
Φp(x)(u)

]μ − |Ω|K,

where K := λζ+

α− max
{(

ζ+β+

α−ξ−

) α−
β+−α−

,
(

ζ+β+

α−ξ−

) α+
β−−α+

}
.

Then

Iλ(u) ≥ m1

μ(p+)μ ‖u‖
μp− − |Ω|K.

Hence, Iλ is bounded from below and coercive, that is, 1.) is proved.

Proof of 2.) Let {uj} ⊂ X be a sequence such that uj ⇀ u ∈ X. Since Ψ is sequentially weakly lower 
semicontinuous. Then,

Ψ(u) ≤ lim inf
j→+∞

Ψ(uj). (4.2)

Moreover, by Proposition 2.3, X is compactly embedded to Lα(x)(Ω) and Lβ(x)(Ω):

uj → u in Lα(x)(Ω) and uj → u in Lβ(x)(Ω). (4.3)

Then, from (4.2) and (4.3) it reads

Iλ(u) ≤ lim inf
j→+∞

Ψ(uj) − λ lim
j→+∞

∫
Ω

(
ζ(x)
α(x) |uj |α(x) − ξ(x)

β(x) |uj |β(x)
)
dx

≤ lim inf
j→+∞

⎛⎝Ψ(uj) − λ

∫
Ω

(
ζ(x)
α(x) |uj |α(x) − ξ(x)

β(x) |uj |β(x)
)
dx

⎞⎠ ,

that is Iλ(u) ≤ lim inf
j→+∞

Iλ(uj). Thus, Iλ is sequentially weakly lower semicontinuous. �
Lemma 4.3. For any λ > 0 it holds

inf
u∈X

Iλ(u) < 0.

Proof. If we consider the condition (3.1), it reads

lim inf
t→0

ζ−

α+ |t|α(x) − ξ+

β− |t|β(x)

|t|τp− = +∞

uniformly in x ∈ Ω. Then, for any H > 0 there exists δ > 0 such that∣∣∣∣ inf
x∈Ω

(
ζ−

α+ |t|α(x) − ξ+

β− |t|β(x)
)∣∣∣∣ > H|t|τp−

for every 0 < |t| ≤ δ.

Take a nonzero nonnegative function ϑ ∈ C∞
0 (Ω) with inf

x∈Ω
ϑ(x) > 0, λ > 0 and put

H >
m2‖ϑ‖τp

−

− τ−1
∫

τp− .

τ(p ) λ Ω |ϑ| dx
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Moreover, choose ε > 0 such that ε sup
x∈Ω

ϑ(x) < δ, and let u0 = εϑ. Then, for any λ > 0 we have

Iλ(εϑ) = M̂

⎛⎝∫
Ω

1
p(x) |∇Δεϑ|p(x)dx

⎞⎠− λ

∫
Ω

(
ζ(x)
α(x) |εϑ|

α(x) − ξ(x)
β(x) |εϑ|

β(x)
)
dx

≤ m2

τ(p−)τ
[
Φp(x)(εϑ)

]τ − λ

∫
Ω

(
ζ−

α+ |εϑ|α(x) − ξ+

β− |εϑ|β(x)
)
dx

≤ m2

τ(p−)τ ε
τp−‖ϑ‖τp− − λHετp

−
∫
Ω

|ϑ|τp−
dx

<
m2

τ(p−)τ−1 ε
τp−

(
1
p−

− 1
)
‖ϑ‖τp−

.

So, we get inf
u∈X

Iλ(u) < 0, which completes the proof. �
Proof of Theorem 3.1. From Lemma 4.2, it follows that for any λ > 0, Iλ has a global minimizer u ∈ X

such that I ′λ(u) = 0 (see [31]). Then, u is a weak solution of the problem (1.1). Moreover, since Iλ(0) = 0
and Iλ(u) < 0 (Lemma 4.3), u �= 0, i.e. u is a nontrivial solution. �
4.2. Proof of Theorem 3.2

Under the condition (3.2), we cannot show (in a straightforward fashion) that any Palais-Smale (PS) 
sequence is bounded in X. Thus, we will look for a weak solution of (1.1) as a local minimizer of the 
functional Iλ using Ekeland’s variational principle (see [16]). We need the following auxiliary results.

Lemma 4.4. Then there exists λ0 > 0 such that for any λ ∈ (0, λ0) there exist ρ, δ > 0 such that Iλ(u) ≥ δ

for any u ∈ X with ‖u‖ = ρ.

Proof. By using the condition (3.2) and the compact embedding X ↪→ Lα(x)(Ω), we have

|u|α(x) ≤ C‖u‖, C > 0. (4.4)

Let ‖u‖ = ρ < 1. Then by (4.4) and (B1), we have

Iλ(u) = M̂

⎛⎝∫
Ω

1
p(x) |∇Δu|p(x)dx

⎞⎠− λ

∫
Ω

(
ζ(x)
α(x) |u|

α(x) − ξ(x)
β(x) |u|

β(x)
)
dx

≥ m1

μ(p+)μ
[
Φp(x)(u)

]μ − λ

∫
Ω

(
ζ+

α− |u|α(x) − ξ−

β+ |u|β(x)
)
dx

≥ m1

μ(p+)μ ‖u‖
μp+ − λζ+Cα−

α− ‖u‖α−

≥
(

m1

μ(p+)μ ‖u‖
μp+−α− − λζ+Cα−

α−

)
‖u‖α−

=
(

m1

μ(p+)μ ρ
μp+−α− − λζ+Cα−

α−

)
ρα

−
. (4.5)
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Let λ0 = m1α
−

2μ(p+)μζ+Cα−p+ ρμp
+−α− . Then for any u ∈ X with ‖u‖ = ρ, there exists δ = m1ρ

μp+

2μ(p+)μ such that 
Iλ(u) ≥ δ > 0. �
Lemma 4.5. There exists ϕ ∈ X such that ϕ ≥ 0, ϕ �= 0 and Iλ(tϕ) < 0 for t > 0 small enough.

Proof. Let ϕ ∈ C∞
0 (Ω), ϕ ≥ 0, ϕ �= 0 and t ∈ (0, 1). Since α+ < μp− < β−, it reads

Iλ(tϕ) ≤ m2t
τp−

τ(p−)τ
[
Φp(x)(ϕ)

]τ − λζ−tα
+

α+

∫
Ω

|ϕ|α(x)dx + λξ+tβ
−

β−

∫
Ω

|ϕ|β(x)dx

≤ tτp
−

⎡⎣ m2

τ(p−)τ
[
Φp(x)(ϕ)

]τ + λξ+

β−

∫
Ω

|ϕ|β(x)dx

⎤⎦− λζ−tα
+

α+

∫
Ω

|ϕ|α(x)dx

≤ tμp
−

⎡⎣ m2

τ(p−)τ
[
Φp(x)(ϕ)

]τ + λξ+

β−

∫
Ω

|ϕ|β(x)dx

⎤⎦− λζ−tα
+

α+

∫
Ω

|ϕ|α(x)dx < 0,

for t < ε
1

μp−−α+ with

0 < ε < min
{

1,
λζ−

α+

∫
Ω |ϕ|α(x)dx

m2
τ(p−)τ

[
Φp(x)(ϕ)

]τ + λξ+

β−

∫
Ω |ϕ|β(x)dx

}
,

from which we conclude that Iλ(tϕ) < 0. �
Lemma 4.6. Let (uj) ⊂ X be a bounded sequence such that Iλ(uj) is bounded and I ′λ(uj) → 0 in X−1. Then, 
(uj) is relatively compact.

Thus, we will look for a weak solution of (1.1) as a local minimizer of the functional Iλ using Ekeland’s 
variational principle. We begin by proving the following auxiliary results.

Proof. By Lemma 4.4 it follows that on the boundary of the ball centered at the origin and of radius ρ
in X, denoted by Bρ(0), we have inf

∂Bρ(0)
Iλ > 0.

On the other hand, by Lemma 4.5 there exist ϕ ∈ X such that Iλ(tϕ) < 0 for all t > 0 small enough. 
Moreover, since relation (4.5) holds for all u ∈ X with ‖u‖ < 1 small enough, i.e.

Iλ(u) ≥ m1

μ(p+)μ ‖u‖
μp+ − λζ+Cα−

α− ‖u‖α−
,

it follows that −∞ < c := inf
Bρ(0)

Iλ < 0. So, we have 0 < ε < inf
∂Bρ(0)

Iλ − inf
Bρ(0)

Iλ.

Applying Ekeland’s variational principle to the functional Iλ : Bρ(0) → R, we can find uε ∈ Bρ(0) such 
that uε ∈ Bρ(0).

Now, let us define Jλ : Bρ(0) → R by Jλ(u) := Iλ(u) + ε‖u − uε‖. It is clear that uε is a minimum point 
of Jλ and this implies that ‖I ′λ(uε)‖X−1 ≤ ε. So, we deduce that there exists a (PS)-sequence (uj) ⊂ Bρ(0)
such that

Iλ(uj) → c and I ′λ(uj) → 0 in X−1. (4.6)

Since the sequence (uj) ∈ X is bounded and X is reflexive, up to a subsequence, we get uj ⇀ u in X. So, 
by (4.6) we have < I ′λ(uj), uj − u >→ 0. Therefore, we have
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< I ′λ(uj), uj − u > = M

⎛⎝∫
Ω

1
p(x) |∇Δu|p(x)dx

⎞⎠∫
Ω

|∇Δuj |p(x)−2∇Δuj · ∇Δ(uj − u)dx

−λ

∫
Ω

(
ζ(x)|uj |α(x)−2uj(uj − u) − ξ(x)|uj |β(x)−2uj(uj − u)

)
dx → 0.

Since uj ⇀ u in X, by compact embedding, we have uj → u in Lα(x)(Ω) and uj → u in Lβ(x)(Ω). Therefore,∫
Ω

(
ζ(x)|uj |α(x)−2uj(uj − u) − ξ(x)|uj |β(x)−2uj(uj − u)

)
dx → 0.

So, we conclude that

< Ψ′(uj), uj − u >= M

⎛⎝∫
Ω

1
p(x) |∇Δu|p(x)dx

⎞⎠∫
Ω

|∇Δuj |p(x)−2∇Δuj · ∇Δ(uj − u)dx → 0.

Since the functional Ψ is of (S+) type (see [[17], Proposition 2.5]), we obtain that uj → u in X, which 
completes the proof. �
Proof of Theorem 3.2. Since Iλ ∈ C1(X, R), by the relation (4.6) it follows that Iλ(u) = c and I ′λ(u) = 0. 
Thus, u ∈ X is a nontrivial weak solution for (1.1). �
4.3. Proof of Theorem 3.3

To prove Theorem 3.3, we will apply Mountain Pass Theorem (see, e.g. [31,35]). To this end, we need 
the following lemma.

Lemma 4.7.

1. There exist γ > 0, δ > 0 such that Iλ(u) ≥ δ for any u ∈ X with ‖u‖ = γ.
2. There exists u ∈ X such that ‖u‖ > γ, Iλ(u) < 0.

Proof.
Proof of 1.) By using the condition (3.3) and the compact embedding X ↪→ Lα(x)(Ω), we have |u|α(x) ≤
C ′‖u‖, C ′ > 0.

Let ‖u‖ = γ < 1. Then we have

Iλ(u) = M̂

⎛⎝∫
Ω

1
p(x) |∇Δu|p(x)dx

⎞⎠− λ

∫
Ω

(
ζ(x)
α(x) |u|

α(x) − ξ(x)
β(x) |u|

β(x)
)
dx

≥ m1

μ(p+)μ
[
Φp(x)(u)

]μ − λ

∫
Ω

(
ζ+

α− |u|α(x) − ξ−

β+ |u|β(x)
)
dx

≥ m1

μ(p+)μ ‖u‖
μp+ − λζ+C ′ α−

α− ‖u‖α−

≥ m1
+ μ

‖u‖τp+ − λζ+C ′ α−

− ‖u‖α−
.

μ(p ) α
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Then for any u ∈ X with ‖u‖ = γ < 1 small enough, there exists δ > 0 such that Iλ(u) ≥ δ > 0, for every 
λ > 0.

Proof of 2.) Let u ∈ X with ‖u‖ = γ > 1, and t > 1. Then

Iλ(tu) ≤ m2t
τp+

τ(p−)τ
[
Φp(x)(u)

]τ − λζ+tα
+

α−

∫
Ω

|u|α(x)dx + λξ−tβ
−

β+

∫
Ω

|u|β(x)dx.

So, we conclude that Iλ(tu) → −∞ as t → +∞. �
Finally, we will show that under the condition (3.3), Lemma 4.6 holds for functional Iλ as well for all 

λ > 0. To this end, using Lemma 4.7 and the Mountain Pass Theorem, we deduce that there exists a 
(PS)-sequence, defined as in (4.6), (uj) ⊂ X for Iλ. We prove that (uj) is bounded in X. Arguing by 
contradiction. We assume that, passing eventually to a subsequence, still denoted by (uj), ‖uj‖ → +∞ as 
j → +∞. Moreover, by condition (3.3), for any real number t we have

Λ(x, t) ≥ ζ(x)
(

1
α− − 1

α(x)

)
|t|α(x) + ξ(x)

(
1

β(x) − 1
α−

)
|t|β(x)

≥ ζ−
(

1
α− − 1

α(x)

)
|t|α(x) + ξ−

(
1
β+ − 1

α−

)
|t|β(x) ≥ K0 > 0, (4.7)

where Λ(x, t) := 1
α−

(
ζ(x)|t|α(x) − ξ(x)|t|β(x))− (

ζ(x)
α(x) |t|α(x) − ξ(x)

β(x) |t|β(x)
)
.

By (4.6), (B1), (B2) and (4.7) for j large enough, we have

C(1 + ‖uj‖) ≥ Iλ(uj) −
1
α− < I ′λ(uj), uj >

= M̂

⎛⎝∫
Ω

1
p(x) |∇Δuj |p(x)dx

⎞⎠− λ

∫
Ω

(
ζ(x)
α(x) |uj |α(x) − ξ(x)

β(x) |uj |β(x)
)
dx

− 1
α−

⎛⎝M

⎛⎝∫
Ω

1
p(x) |∇Δuj |p(x)dx

⎞⎠Φp(x)(uj) − λ

∫
Ω

(
ζ(x)|uj |α(x) − ξ(x)|uj |β(x)

)
dx

⎞⎠
≥

(
1
p+ − 1

α−

)
M

⎛⎝∫
Ω

1
p(x) |∇Δuj |p(x)dx

⎞⎠Φp(x)(uj) + λ

∫
Ω

Λ(x, uj)dx

≥ m1

(p+)μ−1

(
1
p+ − 1

α−

)[
Φp(x)(uj)

]μ + λ

∫
Ω

Λ(x, uj)dx

≥ m1

(p+)μ−1

(
1
p+ − 1

α−

)
‖uj‖μp

−
+ λK0|Ω|.

Using (3.3), we infer that 1
p+ − 1

α− > 0. Then

C(1 + ‖uj‖) ≥ C0‖uj‖μp
−

+ λK0|Ω|,

where C0 = m1
(p+)μ−1

(
1
p+ − 1

α−

)
> 0.

Since μp− > 1, we get a contradiction. So, ‖uj‖ must be bounded. The rest of the proof is similar to the 
proof of Lemma 4.6, so we omit it. Therefore we obtain that uj → u in X.
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Proof of Theorem 3.3. From Lemmas 4.6 and 4.7, and the fact that Iλ(0) = 0, Iλ satisfies the Mountain 
Pass Theorem. So Iλ has a nontrivial critical point, i.e. (1.1) has at least one nontrivial weak solution. �
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