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In this paper, we prove the existence of normalized solutions to the following 
Schrödinger-Poisson equation

−Δu +
(
|x|−1 ∗ |u|2

)
u− f(u) = λu, x ∈ R3, λ ∈ R,

where f ∈ C(R, R) satisfies more general conditions which cover the case f(u) ∼
|u|q−2u with q ∈ (3, 103 ) ∪ ( 10

3 , 6). Especially, some new analytical techniques are 
presented to overcome the difficulties due to the presence of three terms in the 
corresponding energy functional which scale differently.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

This paper deals with the existence of normalized solutions to the following Schrödinger-Poisson equation:

−Δu +
(
|x|−1 ∗ |u|2

)
u− f(u) = λu, x ∈ R3 (1.1)

where f ∈ C(R, R). This class of Schrödinger-type equations with a repulsive nonlocal Coulomb potential is 
obtained by approximation of the Hartree-Fock equation describing a quantum mechanical system of many 
particles; see [10–12,19,24,25].

In (1.1), when λ ∈ R is a fixed and assigned a parameter or even with an additional external and fixed 
potential V (x), the existence of solutions of (1.1) has been intensively studied during the last decade; see, 
for example, [2–4,27] for radial or coercive potentials; [1,13,17,30] for periodic or asymptotically periodic 
potentials; we also refer to [26,31,33–35,39] for more similar variational problems. In this case, solutions can 
be obtained as critical points of the corresponding energy functional, however, nothing can be given a priori 
on the L2-norm of the solutions.
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Nowadays, since physicists are interested in normalized solutions, mathematical researchers began to 
focus on solutions having a prescribed L2-norm, that is, solutions which satisfy ‖u‖2

2 = c > 0 for a priori 
given c. Such solutions of (1.1) can be obtained by looking for critical points of the following functional

I(u) = 1
2

∫
R3

|∇u|2dx + 1
4

∫
R3

∫
R3

|u(x)|2|u(y)|2
|x− y| dxdy −

∫
R3

F (u)dx (1.2)

on the constraint

Sc =
{
u ∈ H1(R3) : ‖u‖2

2 = c
}
, (1.3)

where F (u) =
∫ u

0 f(t)dt. In this case, the parameter λ ∈ R cannot longer be fixed but instead appears as a 
Lagrange multiplier, and each critical point uc ∈ Sc of I|Sc

, corresponds a Lagrange multiplier λc ∈ R such 
that (uc, λc) solves (weakly) (1.1). In particular, if uc ∈ Sc is a minimizer of problem

σ(c) := inf
u∈Sc

I(u), (1.4)

then there exists λc ∈ R such that I ′(uc) = λcuc, namely, (uc, λc) is a solution of (1.1).
For the following Schrödinger equation

−Δu− f(u) = λu in RN , (1.5)

Stuart [29] and Jeanjean [20] obtained the existence of normalized solutions by solving the minimization 
problem

inf
u∈H1(RN ),‖u‖2=c

∫
RN

[
1
2 |∇u|2 − F (u)

]
dx

and by using a mountain pass argument on the constraint {u ∈ H1(RN ) : ‖u‖2
2 = c}, respectively. Later, 

these results on normalized solutions of (1.5) were extended in [7–9,21,40] to the following special form of 
(1.1):

−Δu +
(
|x|−1 ∗ |u|2

)
u− |u|q−2u = λu, x ∈ R3, (1.6)

where q ∈ (2, 6). We also refer to [22] for quasi-linear Schrödinger equations; [23] for Choquard equations; 
[37,38] for Kirchhoff-type equations; [5,6] for Schrödinger systems. In particular, owing to the presence of 
three terms in the corresponding energy functional which scale differently, it is more complicated to deal 
with the existence of normalized solutions for the Schrödinger-Poisson equation. Let us introduce and review 
the known results in this respect.

For the case 2 < q < 10
3 , normalized solutions can be found by considering the minimization problem:

σ(c) = inf
u∈Sc

I(u), (1.7)

since the functional I is bounded from below and coercive on Sc. Bellazzini and Siciliano in [8] and [9]
proved that σ(c) is achieved when c > 0 is small and 2 < q < 3 and when c > 0 is large and 3 < q < 10

3 , 
respectively. Subsequently, for the range 2 ≤ q ≤ 10

3 , Jeanjean and Luo in [21] explicated a threshold value 
of c > 0 separating existence and nonexistence of minimizers of σ(c). Using techniques introduced by Catto 
and Lions in [12], Sánchez and Soler in [28] showed that minimizers of σ(c) exist for q = 8 provided that 
3
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c ∈ (0, ̂c) for a suitable ĉ > 0 small enough. If an additional potential V (x) with infx∈R3 V (x) = 0 and 
lim|x|→∞ V (x) = ∞ is added to the left side of (1.6), with the compactness of the Sobolev embeddings in the 
working space, Zeng and Zhang in [40] obtained the existence of normalized solutions of (1.6) for the case 
2 < q < 10

3 . However, for the case 10
3 < q < 6, the functional I is no more bounded from below on Sc. As 

far as we know, there seems to be only one paper [7] dealt with this case. Precisely, Bellazzini, Jeanjean and 
Luo in [7] found critical points of I on Sc by looking at the mountain-pass level for c > 0 sufficiently small. 
To prove this result, they first established the mountain-pass geometry of I on Sc, and then constructed 
the special bounded Palais-Smale sequence {un} at the level γ(c) which concentrates around the set:

Mc =
{
u ∈ Sc : J(u) := d

dtI(u
t)
∣∣∣
t=1

= 0
}
, (1.8)

that is J(un) = o(1), where ut(x) = t3/2u(tx). In addition, they proved that Mc acts as a natural constrain 
and γ(c) equals to

m(c) = inf
u∈Mc

I(u). (1.9)

In spite of this fact, it does not seem possible to rule out the dichotomy of any minimizing sequence of m(c), 
that is to rule out

un ⇀ u in H1(R3) and 0 < ‖u‖2
2 < c, (1.10)

which is the main difficulty. For this, information on the derivative of I along the sequence seems neces-
sary and that is why the authors introduced Palais-Smale sequences to solve the minimization problem. To 
overcome this difficulty, with the Implicit Function Theorem, the authors in [7] proved that γ(c) is nonin-
creasing on (0, ∞), and the associated Lagrange multiplier λc ∈ R is a nonzero, here to do the latter, it is 
necessary that c > 0 is sufficiently small. However, the approach relies heavily on the q-homogeneity and 
differentiability of the nonlinearity f (see [7, Lemmas 5.2 and 5.3]), it does not work for (1.1) with more 
general f .

A natural question is whether the above result obtained in [7] on the existence of normalized solutions 
to (1.6) with 10

3 < q < 6 can be generalized to (1.1) with more general f . One purpose of the present paper 
is to address this question. To this end, we introduce the following assumptions:

(F1) f ∈ C(R, R) and there exist C > 0 and q ∈ (2, 6) such that |f(t)| ≤ C(1 + |t|q−1) for all t ∈ R;
(F2) lim|t|→0

F (t)
|t|2 = 0 and lim|t|→∞

F (t)
|t|

10
3

= +∞;

(F3) there exists a constant p ∈ (10
3 , 6) such that [f(t)t − 2F (t)]/|t|p−1t is nondecreasing on (−∞, 0) and 

(0, +∞).

Our first result is as follows.

Theorem 1.1. Assume that (F1)-(F3) hold. Then there exists c0 > 0 such that for any c ∈ (0, c0], (1.1) has 
a couple of solutions (v̄c, ̄λc) ∈ Sc ×R− such that

I(v̄c) = inf
v∈Mc

I(v) = inf
v∈Sc

max
t>0

I(vt) > 0.

Another purpose of this paper is to improve and generalize the previous results on the existence of a 
global minimizer of I on Sc in the case f(u) = |u|q−2u with 3 < q < 10

3 to a general nonlinearity satisfying 
the following conditions:
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(F4) f ∈ C(R, R), lim|t|→0
F (t)
|t|3 = 0 and there exist constants C0 > 0 and q0 ∈ (3, 103 ) such that

|f(t)| ≤ C0(1 + |t|q0−1) for all t ∈ R;
(F5) there exists a constant p0 ∈ (3, 103 ) such that lim|t|→∞

F (t)
|t|p0 > 0;

(F6) f(t)t ≥ 3F (t) ≥ 0 for all t ∈ R.

Let

c∗ := inf {c ∈ (0,+∞), σ(c) < 0} . (1.11)

In this direction, we have the following theorem.

Theorem 1.2. Assume that (F4)-(F6) hold. Then c∗ > 0, and I admits a critical point uc on Sc which is a 
global minimum of I when c ∈ [c∗, +∞). In particular, σ(c∗) = 0. Moreover, for the above critical point uc, 
there exists Lagrange multiplier λc ∈ R such that (uc, λc) is a solution of (1.1).

Remark 1.3. Unlike previous work on other elliptic PDEs, it does not seem possible to reduce the problem 
to the classical vanishing-dichotomy-compactness scenario and to the check of the associated strict subad-
ditivity inequalities due to the different scaling rates of each term in I(u). Theorem 1.1 and Theorem 1.2
improve and extend to the main existence results in [7] and [8,9,21], respectively.

Now, we give our main idea for the proof of Theorem 1.1. Since (F1)-(F3) imply that I is no more 
bounded from below on Sc, we shall look for a critical point satisfying a minimax characterization, i.e., we 
try to prove that I possesses a mountain pass geometry on Sc.

Definition 1.4. For given c > 0, we say that I(u) possesses a mountain pass geometry on Sc if there exists 
ρc > 0 such that

γ(c) = inf
g∈Γc

max
τ∈[0,1]

I(g(τ)) > max
g∈Γc

max{I(g(0)), I(g(1))}, (1.12)

where Γc = {g ∈ C([0, 1], Sc) : ‖∇g(0)‖2
2 ≤ ρc, I(g(1)) < 0}.

Let us mention that, to do that, the authors in [7] constructed the nice ‘shape’ of some sequence of paths 
{gn} ⊂ Γc, and obtained a localization lemma for a specific (PS) sequence, in which Taylor’s formula was 
used that relies on I ∈ C2(H1(R3), R). In the present paper, different from [7], we consider the following 
auxiliary functional:

Ĩ(v, t) = I(β(v, t)) = e2t

2 ‖∇v‖2
2 + et

4

∫
R3

∫
R3

v2(x)v2(y)
|x− y| dxdy − 1

e3t

∫
R3

F (e 3t
2 v)dx,

and prove that Ĩ possesses the same mountain pass geometry on Sc × R as the functional I
∣∣
Sc

, on this 
basis, obtain the (PS)γ(c) sequence {un} satisfying the extra information J(un) → 0, and then prove the 
convergence of {un}, this idea comes back to [20] in which the classical Schrödinger equation (1.5) was 
studied. Let us point out that the adaptation of the idea to our problem is not trivial at all because of the 
presence of three terms in I which scale differently. In fact, to derive the convergence of the above {un}, a 
key step is to show that γ(c) is nonincreasing. But now, the scaling technique introduced in [20] does not 
work for I. Instead, we first show that γ(c) = m(c) and then prove that the add in a suitable way L2-norm 
does not increase the mountain-pass level. This information permits to reduce the problem of convergence to 
that of showing that the associated Lagrange multiplier λ ∈ R is a nonzero. This approach is reminiscent of 
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the one developed in [7] and but here the fact I may be not C2 prevents us from using the Implicit Function 
Theorem, thus new techniques and more subtle analyses are required for more general f /∈ C1. Theorem 1.1
will be proved in Section 2.

Theorem 1.2 is a generalization of the result from [8,9,21], in which the case f(u) = |u|q−2u with 
3 < q < 10

3 was considered. To obtain the achievability of σ(c) = infSc
I, it is necessary to rule out the 

dichotomy of the minimizing sequence, that is the case (1.10) does not occur. For this purpose, as in [8,9,21], 
a key step is to prove

σ(tc) ≤ t3σ(c), ∀ t > 1. (1.13)

But, the fact that f has no homogeneity property makes the proof more delicate. In addition, the case 
c = c∗ requires a special treatment since σ(c∗) = 0. Theorem 1.2 will be proved in Section 3.

Throughout the paper we make use of the following notations:

• H1(R3) denotes the usual Sobolev space equipped with the inner product and norm

(u, v) =
∫
R3

(∇u · ∇v + uv)dx, ‖u‖ = (u, u)1/2, ∀ u, v ∈ H1(R3);

• Ls(R3)(1 ≤ s < ∞) denotes the Lebesgue space with the norm ‖u‖s =
(∫

R3 |u|sdx
)1/s;

• For any u ∈ H1(R3), ut(x) := t3/2u(tx) and ut(x) := t2u(tx);
• For any x ∈ R3 and r > 0, Br(x) := {y ∈ R3 : |y − x| < r};
• S = infu∈D1,2(R3)\{0} ‖∇u‖2

2/‖u‖2
6;

• C1, C2, · · · denote positive constants possibly different in different places.

2. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1.
First, we prove that I has a mountain pass geometry on the constraint Sc.

Lemma 2.1. Assume that (F1)-(F3) hold. Then for any c > 0, there exist 0 < k1 < k2 and u1, u2 ∈ Sc such 
that u1 ∈ Ak1 and u2 ∈ Ak2 , where

Ak1 =
{
u ∈ Sc : ‖∇u‖2

2 ≤ k1, I(u) > 0
}

(2.1)

and

Ak2 =
{
u ∈ Sc : ‖∇u‖2

2 > k2, I(u) < 0
}
. (2.2)

Moreover, I has a mountain pass geometry on the constraint Sc.

Proof. For any k > 0, set

Bk =
{
u ∈ Sc : ‖∇u‖2

2 ≤ k
}
. (2.3)

We first claim that there exist 0 < k1 < k2 such that

I(u) > 0, ∀ u ∈ Bk2 and sup I(u) < inf
u∈∂Bk

I(u). (2.4)

u∈Bk1 2
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On the one hand, by the Gagliardo-Nirenberg inequality and the Sobolev embedding inequality, we have

I(u) ≥ 1
2‖∇u‖2

2 − ε‖u‖2
2 − Cε‖u‖qq

≥ 1
2‖∇u‖2

2 − ε‖u‖2
2 − CεC(q)‖∇u‖

3(q−2)
2

2 ‖u‖
6−q
2

2 .

(2.5)

Since ε is arbitrary and 3(q−2)
2 > 2, it follows from (2.5) that there exist k2 > 0 small and ρ > 0 such that

inf
u∈∂Bk2

I(u) ≥ ρ > 0 and I(u) > 0 for u ∈ Bk2 . (2.6)

On the other hand, the Hardy-Littlewood-Sobolev inequality and the Gagliardo-Nirenberg inequality give

I(u) ≤ 1
2‖∇u‖2

2 + 1
4

∫
R3

∫
R3

u2(x)u2(y)
|x− y| dxdy ≤ 1

2‖∇u‖2
2 + C1‖u‖4

12/5

≤ 1
2‖∇u‖2

2 + C2‖∇u‖2‖u‖3
2,

(2.7)

which implies

sup
u∈Bk

|I(u)| → 0 as k → 0. (2.8)

Combining (2.6) with (2.8), there exists k1 ∈ (0, k2) small such that

sup
u∈Bk1

I(u) < ρ ≤ inf
u∈∂Bk2

I(u).

Hence, we have proved the above claim, that is (2.4) holds. Let

ut(x) = t3/2u(tx), ∀ t > 0, u ∈ H1(R3). (2.9)

Then ‖ut‖2 = ‖u‖2, and so ut ∈ Sc for any u ∈ Sc and t > 0. Note that

I(ut) = t2

2 ‖∇u‖2
2 + t

4

∫
R3

∫
R3

u2(x)u2(y)
|x− y| dxdy − 1

t3

∫
R3

F (t3/2u)dx. (2.10)

Using (F3) and (2.10), it is easy to see that I(ut) → +∞ as t → −∞. For any u ∈ Sc, there exist t1 > 0
small and t2 > 1 large such that

‖∇ut1‖2
2 = t21‖∇u‖2

2 ≤ k1, ‖∇ut2‖2
2 = t22‖∇u‖2

2 > k2 and I(ut2) < 0. (2.11)

Set u1 = ut1 and u2 = ut2 . Then (2.11) yields

‖∇u1‖2
2 ≤ k1, ‖∇u2‖2

2 > k2.

This shows that u1 ∈ Ak1 and u2 ∈ Ak2 .
We next prove that I has a mountain pass geometry on Sc (see [26,36]). For

Γc :=
{
g ∈ C([0, 1],Sc) : ‖∇g(0)‖2

2 ≤ k1, I(g(1)) < 0
}
,
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if Γc �= ∅, then for any g ∈ Γc, (2.4) implies ‖∇g(0)‖2
2 ≤ k1 < k2 < ‖∇g(1)‖2

2. Thus, by the intermediate 
value theorem, there exists τ0 ∈ (0, 1) such that ‖∇g(τ0)‖2

2 = k2, i.e., g(τ0) ∈ ∂Bk2 . We conclude from (2.4)
that

max
t∈[0,1]

I(g(t)) ≥ I(g(τ0)) ≥ inf
u∈∂Bk2

I(u) > sup
u∈Bk1

I(u), ∀ g ∈ Γc,

which, together with the arbitrariness of g ∈ Γc, implies

γ(c) = inf
g∈Γc

max
t∈[0,1]

I(g(t)) > max
g∈Γc

max{I(g(0)), I(g(1))}. (2.12)

Thus, to obtain the desired conclusion, it suffices to show that Γc �= ∅. For any u ∈ Sc, set

g0(τ) = u(1−τ)t1+τt2 , ∀ τ ∈ [0, 1].

It follows from (2.11) that g0 ∈ γ(c). Hence, Γc �= ∅ and the proof is completed. �
Second, inspired by [14,16,20], we will find a (PS) sequence for the functional I on Sc with the extra 

information J(un) → 0, where

J(u) = ‖∇u‖2
2 + 1

4

∫
R3

∫
R3

u2(x)u2(y)
|x− y| dxdy − 3

2

∫
R3

[f(u)u− 2F (u)] dx, ∀ u ∈ H1(R3). (2.13)

To this end, we define a continuous map β : H := H1(R3) ×R → H1(R3) by

β(v, t)(x) = e
3t
2 v(etx) for v ∈ H1(R3), t ∈ R, and x ∈ R3, (2.14)

where H is a Banach space equipped with the product norm ‖(v, t)‖H :=
(
‖v‖2 + |t|2

)1/2. We consider the 
following auxiliary functional:

Ĩ(v, t) = I(β(v, t)) = e2t

2 ‖∇v‖2
2 + et

4

∫
R3

∫
R3

v2(x)v2(y)
|x− y| dxdy − 1

e3t

∫
R3

F (e 3t
2 v)dx. (2.15)

It is easy to check that Ĩ ∈ C1(H, R), and for any (w, s) ∈ H,

〈
Ĩ ′(v, t), (w, s)

〉
= e2t

∫
R3

∇v · ∇wdx + e2ts‖∇v‖2
2 + ets

4

∫
R3

∫
R3

v2(x)v2(y)
|x− y| dxdy

+ et
∫
R3

∫
R3

v2(x)v(y)w(y)
|x− y| dxdy + 3s

e3t

∫
R3

F (e 3t
2 v)dx

− 1
e3t

∫
R3

f(e 3t
2 v)e 3t

2 wdx.

(2.16)

For the sets Ak1 and Ak2 defined in Lemma 2.1, set

γ̃(c) := inf
g̃∈Γ̃c

max
τ∈[0,1]

Ĩ(g̃(τ)), (2.17)

where
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Γ̃c = {g̃ ∈ C([0, 1],Sc ×R) : g̃(0) ∈ Ak1 × {0}, g̃(1) ∈ Ak2 × {0}}.

For any g ∈ Γc, let g̃0(τ) = (g(τ), 0) for τ ∈ [0, 1]. Then g̃0 ∈ Γ̃c, and so Γ̃c �= ∅. Since Γc =
{
β ◦ g̃ : g̃ ∈ Γ̃c

}
, 

the minimax values of I and Ĩ coincide, i.e., γ(c) = γ̃(c), moreover, (2.12) leads to

γ̃(c) = γ(c) > max
g∈Γc

max{I(g(0)), I(g(1))} = max
g̃∈Γ̃c

max{Ĩ(g̃(0)), Ĩ(g̃(1))}. (2.18)

Following [36], we recall that for any c > 0, Sc is a submanifold of H1(R3) with codimension 1 and the 
tangent space at Sc is defined as

Tu =

⎧⎨
⎩v ∈ H1(R3) :

∫
R3

uvdx = 0

⎫⎬
⎭ . (2.19)

The norm of the derivative of the C1 restriction functional I|Sc
is defined by

‖I|′Sc
(u)‖ = sup

v∈Tu,‖v‖=1
〈I ′(u), v〉 . (2.20)

Similarly, the tangent space at (u, t) ∈ Sc ×R is given as

T̃u,t =

⎧⎨
⎩(v, s) ∈ H :

∫
R3

uvdx = 0

⎫⎬
⎭ . (2.21)

The norm of the derivative of the C1 restriction functional Ĩ|Sc×R is defined by

‖Ĩ|′Sc×R(u, t)‖ = sup
(v,s)∈T̃u,t,‖(v,s)‖H=1

〈
Ĩ|′Sc×R(u, t), (v, s)

〉
. (2.22)

As in [20, Proposition 2.2], we have the following proposition.

Proposition 2.2. Assume that Ĩ has a mountain pass geometry on the constraint Sc×R. Let g̃n ∈ Γ̃c be such 
that

max
τ∈[0,1]

Ĩ(g̃n(τ)) ≤ γ̃(c) + 1
n
. (2.23)

Then there exists a sequence {(un, tn)} ⊂ Sc ×R such that

(i) Ĩ(un, tn) ∈
[
γ̃(c) − 1

n , γ̃(c) − 1
n

]
;

(ii) minτ∈[0,1] ‖(un, tn) − g̃n(τ)‖H ≤ 1√
n
;

(iii) ‖Ĩ|′Sc×R(un, tn)‖ ≤ 2√
n
, i.e.,

|〈Ĩ ′(un, tn), (v, s)〉| ≤ 2√
n
‖(v, s)‖H , ∀ (v, s) ∈ T̃un,tn .

Applying Proposition 2.2 to Ĩ, we have the following key lemma.

Lemma 2.3. Assume that (F1)-(F3) hold. Then for any c > 0, there exists a sequence {vn} ⊂ Sc such that

I(vn) → γ(c) > 0, I|′Sc
(vn) → 0 and J(vn) → 0. (2.24)
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Proof. Let {gn} ⊂ Γc satisfy

max
τ∈[0,1]

I(gn(τ)) ≤ γ(c) + 1
n
. (2.25)

To obtain the desired sequence, we first apply Proposition 2.2 to Ĩ. For this purpose, we define

g̃n(τ) = (gn(τ), 0), ∀ τ ∈ [0, 1].

It is easy to see that g̃n ∈ Γ̃c and Ĩ(g̃n(τ)) = I(gn(τ)). Since γ̃(c) = γ(c), it follows from (2.25) that

max
τ∈[0,1]

Ĩ(g̃n(τ)) ≤ γ̃(c) + 1
n
. (2.26)

From Proposition 2.2, there exists a sequence {(un, tn)} ⊂ Sc ×R such that

(i) Ĩ(un, tn) → γ̃(c);
(ii) minτ∈[0,1] ‖(un, tn) − (gn(τ), 0)‖H → 0;
(iii) ‖Ĩ|′Sc×R(un, tn)‖ ≤ 2√

n
.

Set vn := β(un, tn), where the definition of β is given in (2.14). Since vn ∈ Sc and γ̃(c) = γ(c), it follows 
from (i) that

I(vn) → γ(c). (2.27)

From (2.16) and (ii), we derive

〈I ′(vn), w〉 =
〈
Ĩ ′(un, tn), (β(w,−tn), 0)

〉
≤ 2√

n
‖(β(w,−tn), 0)‖H , ∀ w ∈ Tvn . (2.28)

To prove I|′Sc
(vn) → 0, by (2.28), it suffices to show that {(β(w, −tn), 0)} ⊂ Γ̃un,tn and {(β(w, −tn), 0)} is 

uniformly bounded in H. We next prove the conclusion holds. For any w ∈ Tvn , i.e.,
∫
R3

vnwdx =
∫
R3

e
3tn
2 un(etnx)w(x)dx = 0,

we have ∫
R3

un(x)β(w,−tn)dx =
∫
R3

un(x)e
−3tn

2 w(e−tnx)dx =
∫
R3

e
3tn
2 un(etnx)w(x)dx = 0,

which implies

(β(w,−tn), 0) ∈ Γ̃un,tn . (2.29)

Moreover, by (ii), we have

|tn| ≤ min
τ∈[0,1]

‖(un, tn) − g̃n(τ)‖H ≤ 1 for large n ∈ N,

which leads to



10 S. Chen et al. / J. Math. Anal. Appl. 481 (2020) 123447
‖(β(w,−tn), 0)‖2
H = ‖β(w,−tn)‖2 = e−2tn‖∇w‖2

2 + ‖w‖2
2 ≤ e2‖w‖2 for large n ∈ N. (2.30)

This shows that {(β(w, −tn), 0)} ⊂ Γ̃un,tn is uniformly bounded in H, and so I|′Sc
(vn) → 0. Finally, by (iii), 

we have

∣∣〈Ĩ ′(un, tn), (0, 1)〉
∣∣ = J(β(un, tn)) = J(vn) = o(1). (2.31)

Hence, {vn} satisfies (2.24). �
Next, we will give an additional minimax characterization of γ(c). Before this, we establish some new 

inequalities.

Lemma 2.4. Assume that (F1)-(F3) hold. Then

h(t, τ) := t−3F (t3/2τ) − F (τ) + 1 − t
3(p−2)

2

p− 2 [f(τ)τ − 2F (τ)]

≥ 0, ∀ t > 0, τ ∈ R

(2.32)

and

F (t)
|t|p−1t

is nondecreasing on both (−∞, 0) and (0,+∞). (2.33)

Proof. For any τ ∈ R, by (F1) and (F3), we have

d
dth(t, τ) = 3

2 t
−4
[
f(t3/2τ)t3/2τ − 2F (t3/2τ)

]
− 3

2 t
3(p−2)

2 −1[f(τ)τ − 2F (τ)]

= 3
2 t

3(p−2)
2 −1|τ |p

[
f(t3/2τ)t3/2τ − 2F (t3/2τ)

|t 3
2 τ |p

− f(τ)τ − 2F (τ)
|τ |p

]
{

≥ 0, t ≥ 1,
≤ 0, 0 < t < 1,

which implies that h(t, τ) ≥ h(1, τ) = 0 for all t > 0 and τ ∈ R. This shows that (2.32) holds. Moreover, 
(F2) and (2.32) give

h(0, τ) := lim
|t|→0

h(t, τ) = 1
p− 2 [f(τ)τ − pF (τ)] ≥ 0, ∀ τ ∈ R, (2.34)

which leads to

d
dt

F (t)
|t|p−1t

= 1
|t|p+1 [f(t)t− pF (t)] ≥ 0.

This shows that (2.33) holds. �
By the scaling (2.9), one has

I(ut) = t2

2

∫
|∇u|2dx + t

4

∫ ∫
u2(x)u2(y)
|x− y| dxdy − t−3

∫
F (t3/2u)dx. (2.35)
R3 R3 R3 R3
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It is checked easily that J(u) = d
dtI(u

t)
∣∣∣
t=1

, where the definition of J is given in (2.13). Let

h1(t) := 4t
3(p−2)

2 − 3(p− 2)t2 + 3p− 10, h2(t) := 2t
3(p−2)

2 − 3(p− 2)t + 3p− 8, ∀ t ≥ 0. (2.36)

By simple calculations, one has

h1(1) = h2(1) = 0, h1(t) > 0, h2(t) > 0, ∀ t ∈ [0, 1) ∪ (1,+∞). (2.37)

Inspired by [15,18,32], we prove the following lemma.

Lemma 2.5. Assume that (F1)-(F3) hold. Then

I(u) ≥ I
(
ut
)

+
2
[
1 − t

3(p−2)
2

]
3(p− 2) J(u) + h1(t)

6(p− 2)‖∇u‖2
2

+ h2(t)
12(p− 2)

∫
R3

∫
R3

u2(x)u2(y)
|x− y| dxdy, ∀ u ∈ H1(R3), t > 0 (2.38)

and

I(u) ≥ 2
3(p− 2)J(u) + 3p− 10

6(p− 2)‖∇u‖2
2 + 3p− 8

12(p− 2)

∫
R3

∫
R3

u2(x)u2(y)
|x− y| dxdy,

∀ u ∈ H1(R3).

(2.39)

Proof. By (1.2), (2.13), (2.32), (2.33), (2.35) and (2.36), we have

I(u) − I
(
ut
)

= 1 − t2

2 ‖∇u‖2
2 + 1 − t

4

∫
R3

∫
R3

u2(x)u2(y)
|x− y| dxdy

+
∫
R3

[
t−3F

(
t3/2u

)
− F (u)

]
dx

=
2
[
1 − t

3(p−2)
2

]
3(p− 2) J(u) +

⎧⎨
⎩1 − t2

2 −
2
[
1 − t

3(p−2)
2

]
3(p− 2)

⎫⎬
⎭ ‖∇u‖2

2

+

⎧⎨
⎩1 − t−

2
[
1 − t

3(p−2)
2

]
3(p− 2)

⎫⎬
⎭ 1

4

∫
R3

∫
R3

u2(x)u2(y)
|x− y| dxdy

+
∫
R3

{
t−3F (t3/2u) − F (u) + 1 − t

3(p−2)
2

p− 2 [f(u)u− 2F (u)]
}

dx

≥
2
[
1 − t

3(p−2)
2

]
3(p− 2) J(u) + h1(t)

6(p− 2)‖∇u‖2
2

+ h2(t)
12(p− 2)

∫
R3

∫
R3

u2(x)u2(y)
|x− y| dxdy, ∀ u ∈ H1(R3), t > 0. (2.40)

This shows that (2.38) holds. Letting t → 0 in (2.38), we derive that (2.39) holds. �



12 S. Chen et al. / J. Math. Anal. Appl. 481 (2020) 123447
From Lemma 2.5, we have the following corollary.

Corollary 2.6. Assume that (F1)-(F3) hold. Then

I(u) = max
t>0

I
(
ut
)
, ∀ u ∈ Mc. (2.41)

Lemma 2.7. Assume that (F1)-(F3) hold. Then for any u ∈ H1(R3) \ {0}, there exists a unique tu > 0 such 
that utu ∈ Mc.

Proof. Let u ∈ H1(R3) \ {0} be fixed and define a function ζ(t) := I (ut) on (0, ∞). Clearly, by (2.35) and 
(2.13), we have

ζ ′(t) = 0 ⇔ t‖∇u‖2
2 + 1

4

∫
R3

∫
R3

u2(x)u2(y)
|x− y| dxdy

− 3
2t4

∫
R3

[
f(t3/2u)t3/2u− 2F (t3/2u)

]
dx = 0

⇔ 1
t
J
(
ut
)

= 0 ⇔ ut ∈ Mc. (2.42)

Note that (2.33) leads to

F (t3/2τ) ≤ t
3p
2 F (τ), ∀ t ∈ (0, 1), τ ∈ R. (2.43)

From (2.35) and (2.43), we derive that

I(ut) ≥ t2

2 ‖∇u‖2
2 + t

4

∫
R3

∫
R3

u2(x)u2(y)
|x− y| dxdy − t

3
2 (p−2)

∫
R3

F (u)dx, ∀ t ∈ (0, 1), (2.44)

which, together with 2 < 3
2 (p − 2) < 6 implies that ζ(t) > 0 for t > 0 small. Moreover, by (F1), (F2) and 

(2.35), it is easy to verify that limt→0 ζ(t) = 0 and ζ(t) < 0 for t large. Therefore maxt∈(0,∞) ζ(t) is achieved 
at tu > 0 so that ζ ′(tu) = 0 and utu ∈ Mc.

Next we claim that tu is unique for any u ∈ H1(R3) \ {0}. Otherwise, for any given u ∈ H1(R3) \ {0}, 
there exist positive constants t1 �= t2 such that ut1 , ut2 ∈ Mc, i.e. J (ut1) = J (ut2) = 0, then (2.37) and 
(2.38) lead to

I
(
ut1
)
> I

(
ut2
)

+
2
[
t

3(p−2)
2

1 − t
3(p−2)

2
2

]

3(p− 2)t
3(p−2)

2
1

J
(
ut1
)

= I
(
ut2
)

> I
(
ut1
)

+
2
[
t

3(p−2)
2

2 − t
3(p−2)

2
1

]

3(p− 2)t
3(p−2)

2
2

J
(
ut2
)

= I
(
ut1
)
. (2.45)

This contradiction shows that tu > 0 is unique for any u ∈ H1(R3) \ {0}. �
Combining Corollary 2.6 with Lemma 2.7, we have the following lemma.
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Lemma 2.8. Assume that (F1)-(F3) hold. Then

inf
u∈Mc

I(u) = m(c) = inf
u∈Sc

max
t>0

I
(
ut
)
.

Lemma 2.9. Assume that (F1)-(F3) hold. The function c �→ m(c) is nonincreasing on (0, ∞).

Proof. To prove this lemma, it is enough to verify that for any c1 < c2 and ε > 0 arbitrary,

m(c2) ≤ m(c1) + ε (2.46)

By the definition of m(c1), there exists u ∈ Mc1 such that I(u) ≤ m(c1) + ε/4. Let η ∈ C∞
0 (R3) be such 

that

η(x) =

⎧⎪⎨
⎪⎩

1, |x| ≤ 1,
∈ [0, 1], 1 ≤ |x| < 2,
0, |x| ≥ 2.

For any small δ ∈ (0, 1], let

uδ(x) = η(δx) · u(x). (2.47)

It is easy to check that uδ → u in H1(R3) as δ → 0. Then we have

I(uδ) → I(u) ≤ m(c1) + ε

4 , J(uδ) → J(u) = 0. (2.48)

From Lemma 2.7, for any δ > 0, there exists tδ > 0 such that uδ
tδ ∈ Mc. We claim that {tδ} is bounded. 

In fact, if tδ → ∞ as δ → 0, since uδ → u �= 0 in H1(R3) as δ → 0, by (F2), we have

0 = lim
δ→0

I(utδ
δ )

t2δ
= 1

2‖∇u‖2
2 + lim

δ→0

⎡
⎣ 1

4tδ

∫
R3

∫
R3

u2
δ(x)u2

δ(y)
|x− y| dxdy −

∫
R3

F (t
3
2
δ uδ)
t5δ

dx

⎤
⎦

= −∞,

which is impossible. Then we may assume that up to a subsequence, tδ → t̄ as δ → 0, and so J(uδ
tδ) → J(ut̄). 

This, jointly with J(u) = 0, shows that t̄ = 1. By (2.37) and (2.38), we have

I(utδ
δ ) ≤ I(uδ) −

2(1 − t
3(p−2)

2
δ )

3(p− 2) J(uδ) + h1(tδ)
6(p− 2)‖∇uδ‖2

2

+ h2(tδ)
12(p− 2)

∫
R3

∫
R3

|uδ(x)|2|uδ(y)|2
|x− y| dxdy,

which, together with (2.48), implies that there exists δ0 ∈ (0, 1) small enough such that

I
(
u
tδ0
δ0

)
≤ I(uδ0) + ε

8 ≤ I(u) + ε

4 ≤ m(c1) + ε

2 . (2.49)

Let v ∈ C∞
0 (R3) be such that suppv ⊂ B2Rδ0

\BRδ0
with Rδ0 = 2/δ0. Define

v0 = c2 − ‖uδ0‖2
2

2 v,
‖v‖2
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for which we have ‖v0‖2
2 = c2 − ‖uδ0‖2

2. For λ ∈ (0, 1), we define wλ = uδ0 + vλ0 with ‖vλ0 ‖2 = ‖v0‖2. Noting 
that

dist
{
suppuδ0 , suppvλ0

}
≥ 2Rδ0

λ
−Rδ0 = 2

δ0

(
2
λ
− 1

)
> 0, (2.50)

we have

|wλ(x)|2 = |uδ0(x) + vλ0 (x)|2 = |uδ0(x)|2 + |vλ0 (x)|2, (2.51)

‖wλ‖2
2 = ‖uδ0 + vλ0 ‖2

2 = ‖uδ0‖2
2 + ‖vλ0 ‖2

2 = ‖uδ0‖2
2 + ‖v0‖2

2, (2.52)

‖∇wλ‖2
2 = ‖∇uδ0 + ∇vλ0 ‖2

2 = ‖∇uδ0‖2
2 + ‖∇vλ0 ‖2

2 = ‖∇uδ0‖2
2 + λ2‖∇v0‖2

2, (2.53)∫
R3

F (wλ)dx =
∫
R3

F (uδ0 + vλ0 )dx =
∫
R3

F (uδ0)dx +
∫
R3

F (vλ0 )dx

=
∫
R3

F (uδ0)dx + λ−3
∫
R3

F (λ 3
2 v0)dx

(2.54)

and
∫
R3

∫
R3

[
|wλ(x)|2|wλ(y)|2 − |uδ0(x)|2|uδ0(y)|2 − |vλ0 (x)|2|vλ0 (y)|2

]
|x− y| dxdy

= 2
∫

suppuδ0

∫
suppvλ

0

|uδ0(x)|2|vλ0 (y)|2
|x− y| dxdy

≤ δ0λ

2 − λ

∫
suppuδ0

∫
suppvλ

0

|uδ0(x)|2|vλ0 (y)|2dxdy

≤ λ‖uδ0‖2
2‖vλ0 ‖2

2 = λ‖uδ0‖2
2‖v0‖2

2.

(2.55)

Then (2.53), (2.54) and (2.55) imply that as λ → 0,

‖∇wλ‖2
2 → ‖∇uδ0‖2,

∫
R3

F (wλ)dx →
∫
R3

F (uδ0)dx (2.56)

and ∫
R3

∫
R3

|wλ(x)|2|wλ(y)|2
|x− y| dxdy →

∫
R3

∫
R3

|uδ0(x)|2|uδ0(y)|2
|x− y| dxdy, (2.57)

which lead to

I(wλ) → I(uδ0) and J(wλ) → J(uδ0). (2.58)

By (2.52), we have wλ ∈ Sc2 . From Lemma 2.7, there exists tλ > 0 such that wλ
tλ ∈ Mc2 . Similarly to the 

previous proof, we deduce that {tλ} is bounded. Then we may assume that up to a subsequence, tλ → t̂ as 
λ → 0. Note that ∫ ∫

u2(x)u2(y)
|x− y| dxdy ≤ C1‖u‖4

12/5, ∀ u ∈ H1(R3). (2.59)

R3 R3
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Using (2.56) and (2.59), a standard argument shows that as λ → 0,

∫
R3

∫
R3

|wλ
tλ(x)|2|wλ

tλ(y)|2
|x− y| dxdy →

∫
R3

∫
R3

|uδ0
t̂(x)|2|uδ0

t̂(y)|2
|x− y| dxdy (2.60)

and ∫
R3

F
(
wλ

tλ
)
dx →

∫
R3

F
(
uδ0

t̂
)

dx. (2.61)

From (2.60) and (2.61), there exists λ0 ∈ (0, 1) small enough such I (wλ
tλ) ≤ I

(
uδ0

t̂
)

+ε/2. Thus, it follows 
from (2.41) and (2.49) that

m(c2) ≤ I
(
wλ

tλ
)
≤ I

(
uδ0

t̂
)

+ ε

2
≤ max

t>0
I(uδ0

t) + ε

2 = I(uδ0
tδ0 ) + ε

2
≤ m(c1) + ε.

(2.62)

The proof is completed. �
Lemma 2.10. Assume that (F1)-(F3) hold. Then γ(c) = m(c) for any c > 0.

Proof. From (2.11), for any u ∈ Mc, there exist t1 < 0 small and t2 > 1 large such that ut1 ∈ Ak1 and 
ut2 ∈ Ak2 . Letting

ḡ(τ) = u(1−τ)t1+τt2 , ∀ τ ∈ [0, 1],

we have ḡ ∈ Γc. By (2.41), we have

γ(c) ≤ max
τ∈[0,1]

I(ḡ(τ)) = I(u),

and so γ(c) ≤ infu∈Mc
I(u) = m(c) for any c > 0.

On the other hand, by (2.39), one has

J(u) ≤ 3(p− 2)
2 I(u) − 3p− 10

4 ‖∇u‖2
2 −

3p− 8
8

∫
R3

∫
R3

u2(x)u2(y)
|x− y| dxdy, ∀ u ∈ Sc,

which implies

J(g(1)) ≤ 3(p− 2)
2 I(g(1)) < 0, ∀ g ∈ Γc.

Moreover, it is checked easily that there exists u0 ∈ Bk1 such that J(u0) > 0. Hence, any path in Γc has to 
cross Mc. This shows that

max
τ∈[0,1]

I(g(τ)) ≥ inf
u∈Mc

I(u) = m(c), ∀ g ∈ Γc,

and so γ(c) ≥ m(c) for any c > 0. Therefore, γ(c) = m(c) for any c > 0. �
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Proposition 2.11 ([7, Proposition 4.1]). Let {vn} ⊂ Sc be a bounded (PS) sequence for I restricted to Sc

such that I(vn) → γ(c) > 0. Then there is a sequence {λn} ⊂ R such that, up to a subsequence,

(1) vn ⇀ v̄c in H1(R3) and λn → λ̄c in R;
(2) −Δvn − λnvn +

(
|x|−1 ∗ |vn|2

)
vn − f(vn) → 0 in H−1(R3);

(3) −Δvn − λ̄cvn +
(
|x|−1 ∗ |vn|2

)
vn − f(vn) → 0 in H−1(R3);

(4) −Δv̄c − λ̄cv̄c +
(
|x|−1 ∗ |v̄c|2

)
v̄c − f(v̄c) = 0 in H−1(R3).

Lemma 2.12. Assume that (F1)-(F3) hold and v is a weak solution of (1.1). Then J(v) = 0. Furthermore, 
there exists a constant c0 > 0 independent on λ ∈ R such that if ‖v‖2

2 ≤ c0, then λ < 0.

Proof. Let v be a weak solution of (1.1), the following Pohozaev-type identity holds

1
2‖∇v‖2

2 + 5
4

∫
R3

∫
R3

v2(x)v2(y)
|x− y| dxdy − 3F (v) = 3λ

2 ‖v‖2
2. (2.63)

By multiplying (1.1) by v and integrating, we derive the following identity

‖∇v‖2
2 +

∫
R3

∫
R3

v2(x)v2(y)
|x− y| dxdy −

∫
R3

f(v)vdx = λ‖v‖2
2. (2.64)

By multiplying (2.64) by 3
2 and minus (2.63), we obtain J(v) = 0. Using J(v) = 0 and the Gagliardo-

Nirenberg inequality, we have

‖∇v‖2
2 − C(p)‖∇v‖

3(p−2)
2

2 ‖v‖
6−p
2

2 ≤ ‖∇v‖2
2 −

3
2

∫
R3

[f(v)v − 2F (v)]dx

= −1
4

∫
R3

∫
R3

v2(x)v2(y)
|x− y| dxdy ≤ 0,

which implies

‖∇v‖
10−3p

2
2 ≤ C(p)‖v‖

6−p
2

2 . (2.65)

By multiplying (2.63) by p3 and minus (2.64), we obtain

p− 6
6 ‖∇v‖2

2 + 5p− 12
12

∫
R3

∫
R3

v2(x)v2(y)
|x− y| dxdy +

∫
R3

[f(v)v − pF (v)]dx

= (p− 2)λ
2 ‖v‖2

2.

(2.66)

The Hardy-Littlewood-Sobolev inequality and the Gagliardo-Nirenberg inequality give

∫
R3

∫
R3

v2(x)v2(y)
|x− y| dxdy ≤ C3‖∇v‖2‖v‖3

2. (2.67)

From (2.34), (2.66) and (2.67), we deduce
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λ‖v‖2
2 ≤ p− 6

3(p− 2)‖∇v‖2
2 + C4‖∇v‖2‖v‖3

2,

which, together with Young’s inequality, leads to

λ‖v‖2
2 ≤ 3(p− 6)

2(p− 2)‖∇v‖2
2 + C5‖v‖6

2. (2.68)

Noting that (2.65) implies that for any solution v of (1.1) with small L2-norm, ‖∇v‖2 must be large, it 
follows that the left-hand side of (2.68) is negative when ‖∇v‖2 is sufficiently small. Hence, there exists a 
constant c0 > 0 independent on λ ∈ R such that if a solution v of (1.1) satisfies ‖v‖2

2 ≤ c0, then λ < 0. This 
completes the proof. �
Proof of Theorem 1.1. In view of Lemmas 2.3 and 2.10, for each c ∈ (0, c0], there exists a sequence {vn} ⊂ Sc

such that

I(vn) → m(c) > 0, I|′Sc
(vn) → 0 and J(vn) → 0. (2.69)

By (2.39) and (2.69), we have

m(c) + o(1) = I(vn) − 2
3(p− 2)J(vn) ≥ 3p− 10

6(p− 2)‖∇vn‖2
2, (2.70)

which, together with ‖vn‖2
2 = c, implies {vn} is bounded in H1(R3). Then there exists v ∈ H1(R3) such 

that, passing to a subsequence, vn ⇀ v in H1(R3), vn → v in Ls
loc(R3) for 2 ≤ s < 6 and vn → v a.e. 

in R3. Since m(c) = γ(c) > 0, by Lions’ concentration compactness principle [36, Lemma 1.21] and a 
standard argument, we deduce that {vn} is non-vanishing, and so there exist δ > 0 and {yn} ⊂ R3 such 
that 

∫
B1(yn) |vn|2dx > δ. Let v̄n(x) = vn(x + yn). Then we have ‖v̄n‖ = ‖vn‖ and

I(v̄n) → m(c), J(v̄n) = o(1),
∫

B1(0)

|v̄n|2dx > δ. (2.71)

Therefore, there exists v̄ ∈ H1(R3) \ {0} such that, passing to a subsequence,

⎧⎪⎨
⎪⎩

v̄n ⇀ v̄, in H1(R3);
v̄n → v̄, in Ls

loc(R3), ∀ s ∈ [1, 6);
v̄n → v̄, a.e. on R3.

(2.72)

Let wn = v̄n − v̄. Then (2.72) and the Brezis-Lieb type Lemma yield

‖v̄‖2
2 := c̄ ≤ c, ‖wn‖2

2 := c̄n ≤ c for large n ∈ N (2.73)

and

I(v̄n) = I(v̄) + I(wn) + o(1) and J(v̄n) = J(v̄) + J(wn) + o(1). (2.74)

Let



18 S. Chen et al. / J. Math. Anal. Appl. 481 (2020) 123447
Ψ(u) := I(u) − 2
3(p− 2)J(u)

= 3p− 10
6(p− 2)‖∇u‖2

2 + 3p− 8
12(p− 2)

∫
R3

∫
R3

u2(x)u2(y)
|x− y| dxdy

+ 1
p− 2

∫
R3

[f(u)u− pF (u)] dx, ∀ u ∈ H1(R3).

(2.75)

Then Ψ(u) > 0 for all u ∈ H1(R3) \ {0}. Moreover, it follows from (2.71), (2.74) and (2.75) that

Ψ(wn) = m(c) − Ψ(v̄) + o(1), J(wn) = −J(v̄) + o(1). (2.76)

If there exists a subsequence {wni
} of {wn} such that wni

= 0, from (2.34), (2.75), (2.76), the weak 
semicontinuity of norm and Fatou’s lemma, we then deduce that ‖∇v̄n − ∇v̄‖2 → 0. Next, we prove that 
this still holds for wn �= 0. Let us assume that wn �= 0. We claim that J(v̄) ≤ 0. Otherwise, if J(v̄) > 0, then 
(2.76) implies J(wn) < 0 for large n. In view of Lemma 2.7, there exists tn > 0 such that (wn)tn ∈ Mc̄n . 
Then it follows from (1.2), (2.13), (2.38), (2.75), (2.76), Lemmas 2.9 and 2.10 that

m(c) − Ψ(v̄) + o(1) ≥ Ψ(wn) = I(wn) − 2
3(p− 2)J(wn)

≥ I
(
(wn)tn

)
− t

3(p−2)
2

n

3(p− 2)J(wn)

≥ m(c̄n) − t
3(p−2)

2
n

3(p− 2)J(wn)

≥ m(c) + o(1),

which is impossible due to Ψ(v̄) > 0. This shows that J(v̄) ≤ 0. In view of Lemma 2.7, there exists t̄ > 0
such that v̄t̄ ∈ Mc̄. Then it follows from (2.38), (2.75), the weak semicontinuity of norm, Fatou’s lemma 
and Lemma 2.9 that

m(c) = lim
n→∞

[
I(v̄n) − 2

3(p− 2)J(v̄n)
]

= lim
n→∞

Ψ(v̄n)

≥ Ψ(v̄) = I(v̄) − 2
3(p− 2)J(v̄)

≥ I
(
v̄t̄
)
− t̄

3(p−2)
2

3(p− 2)J(v̄) ≥ m(c̄) ≥ m(c),

which implies ‖∇v̄n−∇v̄‖2 → 0 for wn �= 0. Finally, we prove that ‖v̄n−v̄‖2 → 0. Applying Proposition 2.11, 
there exists λ̄c ∈ R such that

〈I ′(v̄n), v̄n〉 = λ̄c‖v̄n‖2
2 + o(1) and 〈I ′(v̄), v̄〉 = λ̄c‖v̄‖2

2. (2.77)

Since ‖∇v̄n −∇v̄‖2 → 0, a standard argument shows that

〈I ′(v̄n), v̄n〉 = 〈I ′(v̄), v̄〉 + o(1). (2.78)

Moreover, Lemma 2.12 leads to λ̄c < 0 for ‖v̄‖2
2 ≤ c0. Jointly with (2.77) and (2.78), we have ‖v̄n− v̄‖2 → 0. 

Hence, for any c ∈ (0, c0], (1.1) has a couple of solutions (v̄c, ̄λc) ∈ Sc ×R− such that
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I(v̄c) = inf
v∈Mc

I(v) = inf
v∈Sc

max
t>0

I(vt) > 0.

This completes the proof. �
3. Proof of Theorem 1.2

In this section, we give the proof of Theorem 1.2.

Lemma 3.1. Assume that (F4) holds. Then

(i) for any c > 0, σ(c) = infu∈Sc
I(u) is well defined and σ(c) ≤ 0;

(ii) σ(c) is continuous on (0, ∞);
(iii) there exists C1 > 0 such that σ(c) < 0 for any c > C1 if (F5) holds.

Proof. (i) By (F4), for any ε > 0, there exists Cε > 0 such that

|F (t)| ≤ ε|t|3 + Cε|t|q0 , ∀ t ∈ R. (3.1)

By the Gagliardo-Nirenberg inequality, one has

‖u‖ss ≤ C(s)‖∇u‖
3(s−2)

2
2 ‖u‖

6−s
2

2 , ∀ s ∈ (2, 6). (3.2)

In view of [21, (2.11)], we have
∫
R3

|u|3dx ≤
∫
R3

∫
R3

u2(x)u2(y)
|x− y| dxdy + 1

16π ‖∇u‖2
2, ∀ u ∈ H1(R3). (3.3)

Letting ε = 1
4 in (3.1), it follows from (1.2), (3.1), (3.2) and (3.3) that

I(u) ≥ 1
2‖∇u‖2

2 + 1
4

∫
R3

∫
R3

u2(x)u2(y)
|x− y| dxdy −

(
1
4‖u‖

3
3 + C1‖u‖p0

p0

)

≥
(

1
2 − 1

64π

)
‖∇u‖2

2 − C2c
6−q0

4 ‖∇u‖
3(q0−2)

2
2 , ∀ u ∈ Sc, c > 0,

(3.4)

which, together with 0 < 3(q0−2)
2 < 2, shows that I is bounded from below on Sc for any c > 0, that is σ(c)

is well defined. Since ut ∈ Sc for all u ∈ Sc, from (2.35) and (3.1), we deduce that I(ut) → 0 as t → 0, and 
so σ(c) ≤ 0 for any c > 0.

(ii) For any c > 0, let cn > 0 and cn → c. For every n ∈ N, let un ∈ Scn such that I(un) < σ(cn) + 1
n ≤ 1

n . 
Then (3.4) implies that {un} is bounded in H1(R3), moreover, we have

σ(c) ≤ I

(√
c

cn
un

)
= I(un) + o(1) ≤ σ(cn) + o(1). (3.5)

On the other hand, given a minimizing sequence {vn} ⊂ Sc for I, we have

σ(cn) ≤ I

(√
cn
c
vn

)
≤ I(vn) + o(1) = σ(c) + o(1),

which, jointly with (3.5), gives limn→∞ σ(cn) = σ(c).
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(iii) By (F4) and (F5), there exist δ0 > 0 and �0 > 0 such that

|F (t)| ≥ δ0|t|p0 , ∀ |t| ≥ �0. (3.6)

Set

ut(x) := t2u(tx), ∀ u ∈ H1(R3), t > 0. (3.7)

For any c > 0, we choose a function w ∈ C∞
1 (R3, [�0, +∞)) satisfying ‖w‖2

2 = c. Then it follows from (3.6)
and (3.7) that

I(wt) = t3

2 ‖∇w‖2
2 + t3

4

∫
R3

∫
R3

w2(x)w2(y)
|x− y| dxdy − 1

t3

∫
R3

F (t2w)dx

≤ t3

2 ‖∇w‖2
2 + t3

4

∫
R3

∫
R3

w2(x)w2(y)
|x− y| dxdy − δ0t

2p0−3‖w‖p0
p0
, ∀ t > 1,

(3.8)

which, together with 2p0 − 3 > 3, implies that I(wt) → −∞ as t → +∞. Noting that ‖wt‖2
2 = t‖w‖2

2 for 
t > 0, there exists C1 > 0 such that σ(c) < 0 for any c > C1. �

Noting that Lemma 3.1 implies

{c ∈ (0,+∞), σ(c) < 0} �= ∅, (3.9)

we have

c∗ = inf {c ∈ (0,+∞), σ(c) < 0}

is well-defined.

Lemma 3.2. Assume that (F4)-(F6) hold. Then for any c > 0,

σ(tc) ≤ t3σ(c), ∀ t > 1. (3.10)

Proof. Letting {un} ⊂ Sc be such that I(un) → σ(c) for c > c∗, it follows from (3.4) and Lemma 3.1 that 
σ(c) < 0, and {un} is bounded in H1(R3). By (F6), one has

F (t)
t3

is nondecreasing on (−∞, 0) and (0,∞). (3.11)

By (1.2) and (3.11), one has

I(ut) = t3

2 ‖∇u‖2
2 + t3

4

∫
R3

∫
R3

u2(x)u2(y)
|x− y| dxdy − t−3

∫
R3

F (t2u)dx

≤ t3

2 ‖∇u‖2
2 + t3

4

∫
R3

∫
R3

u2(x)u2(y)
|x− y| dxdy − t3

∫
R3

F (u)dx

= t3I(u), ∀ u ∈ S , c > 0, t > 1,

(3.12)
c
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where the definition of ut is given in (3.7). Since ‖(un)t‖2
2 = t‖un‖2

2 = tc for all t > 0, it follows from (3.12)
and Lemma 3.1 (i) that

σ(tc) ≤ I((un)t) ≤ t3I(un) = t3σ(c) + o(1), ∀ t > 1, c > 0

which implies that (3.10) holds for c > 0. �
Lemma 3.3. Assume that (F4)-(F6) hold. Then σ(c) has a minimizer for any c ≥ c∗ and σ(c∗) = 0.

Proof. We first prove that σ(c) < 0 has a minimizer for any c > c∗ by the definition of c∗. Let {un} ⊂ Sc

be such that I(un) → σ(c) for any c > c∗. Then (3.4) implies that {un} is bounded in H1(R3). We claim 
that

δ := lim sup
n→∞

sup
y∈R3

∫
B1(y)

|un|2dx > 0. (3.13)

In fact, if δ = 0, then by Lions’ concentration compactness principle [36, Lemma 1.21], one has un → 0 in 
Ls(R3) for 2 < s < 6, and so (3.1) implies that 

∫
R3 F (un)dx → 0. Then by (1.2) and (2.59), we have

0 > σ(c) = lim
n→∞

I(un) = 1
2 lim

n→∞
‖∇un‖2

2 ≥ 0.

This contradiction shows that δ > 0, and there exists {yn} ⊂ R3 such that
∫

B1(yn)

|un|2dx ≥ δ

2 . (3.14)

Letting ūn(x) = un(x + yn), we have

ūn ∈ Sc, I(ūn) → σ(c). (3.15)

In view of (3.14), we may assume that there exists ū ∈ H1(R3) \ {0} such that, passing to a subsequence,
⎧⎪⎨
⎪⎩

ūn ⇀ ū, in H1(R3);
ūn → ū, in Ls

loc(R3), ∀ s ∈ [1, 6);
ūn → ū, a.e. on R3.

(3.16)

By Lemma 3.2, we have

σ(c) = lim
n→∞

I(ūn) = I(ū) + lim
n→∞

I(ūn − ū)

≥ σ(‖ū‖2
2) + lim

n→∞
σ(‖ūn − ū‖2

2)

= σ(‖ū‖2
2) + σ(c− ‖ū‖2

2).

(3.17)

If ‖ū‖2
2 < c, then (3.17) and Lemma 3.2 imply

σ(c) ≥ σ

(
c

‖ū‖2
2
‖ū‖2

2

)(
‖ū‖2

2
c

)3

+ σ

(
c

c− ‖ū‖2
2
(c− ‖ū‖2

2)
)(

c− ‖ū‖2
2

c

)3

= σ(c)
‖ū‖6

2 +
(
c− ‖ū‖2

2
)3

> σ(c),

(3.18)
c3
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which is impossible. This shows ‖ū‖2
2 = c = ‖un‖2

2, i.e., ū ∈ Sc, and so un → ū in Ls(R3) for 2 ≤ s < 6. 
Thus, it follows from (2.59) and the weak semicontinuity of norm that

σ(c) = lim
n→∞

I(ūn) ≥ I(ū) ≥ σ(c),

which leads to ū ∈ Sc and I(ū) = σ(c) for any c > c∗. Hence, σ(c) has a minimizer for any c > c∗.
We next prove that σ(c∗) is also attained. Let cn = c∗ + 1

n . By Lemma 3.1 (iii), one has σ(cn) < 0 for 
every n ∈ N. In view of the previous proof, there exists {un} ⊂ Scn such that

I(un) = σ(cn) < 0 for every n ∈ N. (3.19)

By the definition of c∗ and Lemma 3.1 (ii), we have I(un) = σ(cn) → σ(c∗) = 0. Then (3.4) implies that 
{un} is bounded in H1(R3). We claim that (3.13) holds. Otherwise, if δ=0, then by Lions’ concentration 
compactness principle [36, Lemma 1.21], one has un → 0 in Ls(R3) for 2 < s < 6. Then we derive easily 
‖∇un‖2 → 0 due to I(un) → 0. Similarly to (3.4), we have

I(un) ≥
(

1
2 − 1

64π

)
‖∇un‖2

2 − C4(c∗)
6−q0

4 ‖∇un‖
3(q0−2)

2
2 ,

which, together with 0 < 3(q0−2)
2 < 2, implies that I(un) ≥ 0 for n ∈ N sufficiently large. This contradicts 

(3.19), and so (3.13) holds. Then there exists {yn} ⊂ R3 such that (3.14) holds. Letting ūn(x) = un(x +yn), 
we have

ūn ∈ Sc∗ , I(ūn) → σ(c∗) = 0, (3.20)

and there exists ū ∈ H1(R3) \ {0} such that, passing to a subsequence, (3.16) holds. Since 0 < ‖ū‖2
2 ≤ c∗, 

we deduce from Lemma 3.1 (ii) that

0 = σ(c∗) = lim
n→∞

I(ūn) = I(ū) + lim
n→∞

I(ūn − ū)

≥ σ(‖ū‖2
2) + lim

n→∞
σ(‖ūn − ū‖2

2)

= σ(‖ū‖2
2) + σ(c∗ − ‖ū‖2

2) = 0,

(3.21)

which leads to I(ū) = σ(‖ū‖2
2) = 0. Let t̄ = c∗

‖ū‖2
2
. Then t̄ ≥ 1 and ‖ūt̄‖2

2 = t̄‖ū‖2
2 = c∗ by the scaling (3.7). 

Jointly with (3.4), we have

0 = σ(c∗) ≤ I(ūt̄) ≤ t̄3I(ū) = 0,

which implies ūt̄ ∈ Sc∗ and I(ūt̄) = σ(c∗) = 0. Hence, σ(c∗) has a minimizer. The proof is now complete. �
Proof of Theorem 1.2. Note that if uc is a critical point of I|Sc

, then there exists λc ∈ R such that I ′(uc) −
λcuc = 0. Hence, Theorem 1.2 follows directly from Lemma 3.3. �
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