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Abstract

In this paper, we are concerned with a doubly nonlinear anisotropic parabolic equation, in which
the diffusion coefficient and the variable exponent depend on the time variable . Under certain condi-
tions, the existence of weak solution is proved by applying the parabolically regularized method. Based
on a partial boundary value condition, the stability of weak solution is also investigated.
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1 Introduction

Since the significant disruption that is being caused by the coronavirus pandemic, we are aware that all
communities must resolutely work together to battle the pandemic amid globalization. A growing number
of mathematical models have been developed by health care systems, academic institutions and others to
help forecast coronavirus spread, deaths, and medical supply needs, including ventilators, hospital beds
and intensive care units, timing of patient surges and more. Mathematically, a model of infectious disease
can be regarded as a special reaction-diffusion process. Motivated by this fact, in this study we consider
a kind of reaction-diffusion equation, namely, a doubly nonlinear parabolic anisotropic equation:

N
0 0B(u)
Uy = ; Oz, (ai(x,t)‘ oz,
where Qr = Q x (0,7), @ C RY is a bounded domain with a C? boundary 99, 0 < a;(x,t) € C1(Qr),

1 < pi(z,t) € CYQr), g'(2,t) € CH(Qr), B'(u) = b(u) > 0 and B(0) = 0. Equation (1) arises from
physics, fluid mechanics, as well as from the epidemic model of diseases in biology and ecology [27].

8.Z'i 8351 ’

pi(z,t)—2 u N o U
o )>+Zgl<x,t>83” (e,1) € Qr, M

Compared with the isotropic-type equations, equation (1) is much closer to a diffusion process such as the
epidemic of coronavirus disease. If

a;(z,t) >0, (z,t) € Q x[0,7] and a;(x,t) =0, (z,t) € 92 x [0,T], i =1,2,---, N, (2)
we conjecture that it inevitably leads to
u(z,t) =0, (z,t) € 002 x [0,7T),

which was partially proved in [25].
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The biological explanation of condition (2) lies in the fact that if u(x) represents the velocity of spreading
progress of an infectious disease such as coronavirus disease, condition (2) implies that the virus (or disease)
can not transmit across 92, when the region remains under lockdown.

A special case of equation (1) is the so-called evolutionary p(z)—Laplacian equation, which takes the
form:

Up = div(|Vu|p(’C’t)Vu)7 (x,t) € Qr,

and has been extensively studied in the past decades [1, 2, 5, 6, 9, 18, 20, 26] etc. Equation (1) can also
be regarded as a generalized version of the polytropic infiltration equation:

wp = div(|Vu™P2Va™), (z,t) € Qr, (3)

where m > 0 and p > 1. For more details and recent results on equation (3), we refer the reader to
[4, 11, 13, 22, 23, 32] and the references therein.
Recently, a number of issues considered the anisotropic equation [7, 8]:

N

0

_ pi—2

Uy = ;:1 o (|, Uug,) + f(2,t,u,Vu), (z,t) € Qr,
with the initial-boundary value conditions

u(z,t) = up(z), = € Q, (4)

u(z,t) =0, (x,t) € 0Q x [0,T).
A more general anisotropic equation [10, 17, 24, 28, 29, 30]:

N
1o}
Ut = Zl 8—% (ai(x”uxi

was studied on the stability and the well-posedness. Here what interests us most is that if we take the
diffusion coefficient a;(x) |zcoo= 0 and consider a partial boundary value condition

pi(x)72uxi) + f(x;tvuvvu)7 ('T7t) € QT’ (5)

u(z,t) =0, (x,t) € ¥, COQ x[0,T), (6)

can the stability of equation (1) be achieved too? From [28, 29, 30], we know that when 3, =%, x (0,7,
where ¥; is a submanifold of 9Q (or 1 = 0), the stability of weak solution of equation (5) can be true. For
equation (1), the diffusion coefficient a;(x,t), the variable exponent p;(z,t) and the convection coefficient
g'(z,t) are all dependent on the time variable ¢. Distinguished from [28, 29, 30], we will show that ¥, is
a submanifold of 9Q x (0,7T) and is generally not a cylinder as X1 x (0,7).

Assume that B(u) is a strictly increasing function. For examples, B(u) can been chosen as u™, e* — 1,
In(1 + ) and

u™ ) if0<u<l1,
B(U) _{ umz, ifu>1

with mj # my. For convenience, we denote

p- = miL{pl(xvt)aPZ(x7t)v' te aprl(xat)va(xvt)}v p— > ]-7
(z,t)€EQT

b+ = ma‘X_{p1<xat)7p2(x7t)a e 7PN—1($7t)7pN($at)}-
(Ivt)eQT

Definition 1 We say that u(z,t) is a weak solution of equation (1), if

pi(z,t)

we @), 5 [ VoG € 2Qn), aiton)| %Y

e LY(Qr), i=1,2,---,N, (7)

K2




and for any function ¢ € C(0,T; Wol’p+ (Q)) there holds

Ox; Ox;

N
i=

// [%g@(m,t) + Z;ai(x,t) ’853;”)
S,

The initial value condition (4) is satisfied in the sense of

/Ou(rﬁt)m/ow(w) \/@ds

and the partial boundary value condition (6) is true in the sense of trace.

pi(z,t)—2
OB(u) 9y 1 it

oz, t)dxdt.

lim dz =0, (9)
=0 Jo

Let us summarize our main results as follows. For convenience, we use ¢ to represent a constant that
may change from line to line throughout the whole paper,

Theorem 2 Suppose that p_ > 2 and

WQH:LQ,--.,N. (10)

Suppose that a;(x,t) satisfies condition (2) and one of the following conditions:

(i). ‘W‘ < cai(z,t), i=1,2,--- ,N. (11)
). 298D g g0 N (12)
ot
Suppose that ug(z) > 0 satisfies
uy € L®(Q), ai(z,0)ug(x) € WHriEO(Q) i=1,2,---  N. (13)

Then there is a nonnegative solution of equation (1) under condition (4).

Theorem 3 Suppose that fori=1,2,--- N, a;(x,t) = a(z,t) satisfies condition (2) and for the large n

there holds
[ (]
Q 1 \Q 2 ¢

/ / (z, )% @D a(x, t)” enE Pi=D-Tdy < ¢, (15)
Q

p;, = maxp;(z,t), ¢;, = maxg;(z,t) and
e e

1
pilz,t) v

dz dt <, (14)

Oa(z, 1)
ox;

pi(z,t)
pi(x,t)—17

where g;(x,t) =

Q1 = {xE(‘?Q:a(x,t) > %}, tel[0,T).

Suppose that u(z,t) and v(z,t) are two weak solutions of equation (1) with the initial values ug(x) and
vo(x) respectively, and with a partial homogeneous boundary value condition

u(x,t) = v(x,t) =0, (m)ezp:{( t) € 00 x (0 Z ) } (16)

Then we have

/ lu(z,t) — v(x t)|dx<c/ luo(z) — vo(x)|dx, a.e. t €[0,T). (17)



It is remarkable that Theorem 3 can be generalized to the case of a;(x,t) # a;j(z,t) as i # j. The proof
can be processed in an analogous manner.

The rest of the paper is organized as follows. Proofs of Theorems 2 and 3 are presented in Sections 2 and
3, respectively. The characteristic function method is introduced in Section 4. We show that this method
can also be applied to study the stability for other degenerate parabolic equations. A brief conclusion is
given in Section 5.

2 Proof of Theorem 2

For simplicity, we assume that B(u) is a C* strictly monotone increasing function. We prove Theorem
2 by starting to consider a parabolically regularized system:

N pi(z,t)—2
m§:5i1<wxx¢>+s>a§§) o )*539 @0, @ e Qn (9
u(z,0) =uo(z) +¢, x € Q, (19)
u(z,t) =€, (z,t) € 00 x (0,T). (20)

Proof of Theorem 2. Since ug(z) > 0 satisfies (13), similar to the evolutionary p—Laplacian equation
[27], by using the monotone convergence method, we can prove that there exists a constant M such that
the solution u. € L*(0,T : W P(*)(Q)) of the initial-boundary value problem (18)-(20) satisfies

tellLoe(@r) < M. (21)
For more results on the existence of weak solutions to the initial-boundary value problem (18)-(20), we
refer to [5, 6].
Denote

/B )ds = B(r).

Multiplying both sides of (18) by B(u.) — B(e) yields

/Bugxt dm—l—Z// (ai(z,t) + ‘655(;6)
:/B<<wn+m>é[mofw@mz )

), Z / / aB “E) [B(u.) — B(e)]dudt,

where Q; = Q x (0,t) for any t € [0,T).
Since
; OB (u.
/ / | gl(x,t)a%lj)[B(ua) ~ B(e)|dudt

T %// %Z’t)[ff(ua) ~ B(e)dudt,

pi(z,t)

dxdt

from (22) we have

pi(x,t)
Z / / ‘8B () dudt
Ox;
pi(z,t) (23)
Sc// (ai(z,t) +e) % dxdt

<ec.



Multiplying both sides of (18) by [B(u.) — B(e)]; and integrating it over Q; gives

/ / t[B(ua) — B(e))sucidadt
=- i_v://t(ai(x’t) +e) ‘31;21:5)
+ i//tgi(x,t)%[l?(ua) — B(e)],dxdt.

p(z,t)—2 P
al‘i

B(ue)iB

oz, (ue)idadt

Note that
0B (u.)|P" 2 0B(u.) 0 Blu,)
89@ 83:1- (9%‘1 =t
2 2
10 75; Blue) pi<x,t>—2d 1 [ls%mBE| 5 pi<w,t>—2d
- 2 I _ 2
20t J, 8 N 2/0 at” §
2B 1Bl L,
:lg dx; Sm( ,,21,) ds — 1/ o s_m( :21) In 8pzds
2 0t 4 /s ot
o 2 )
19 [la=Bl|l -2 1 0 Pt 9B (u.) | Op;
=== = ds—-——|—B 1 c *d
20t J, s s pi(z,t) | Ox; () n‘ Ox; | Ot °
5 2
2 Op; (19 Pl] e
—-— ds.
+pi(a:,t) ot /0 s ¥
Then, we have
OB(u.) """ 9B(u.) 0
i —_— B
//t a;(z,t) ‘ o5, 05, Oz (ug)edxdt
‘65( ue)
pl(T f)
:——// e a,xt—i—s/ d dxdt
’63(%) e 8@( t)
s"r ds LY gy
s 5
|d%(z125) HERDRE op;
// azxt—i—s/ s 1sa—dsddt
1 0B (u) | OB (u) [
Q/QI%(HJ,t) [(az(x t) Jre)' oz, — (a;(z,0) +¢) “om, dx
2
1 | Blue) pie.)-2  Oa;(z,t)
+// O e, 1) + 6] — | 2B L) SN L ICAT
o, Ot ' pi(z,t) | Ox; T;
J[ Bt +d-2 /'aigs)z B0 e
— —la;(z,t) + | ————= S 14
Q¢ ot pi(xat) 0

To derive (26) from (10)-(12), we have used the following facts. From condition (i), i.e.

(24)

(26)

da;(x,t)
ot

IN



ca;(x,t), we get

// /‘ S 6% Oai(x1) g, dt<0// ai(@

From condition (ii), i.e. 241 < 0 we have

pi(z,t)
dxdt < c.

aB<ue>

8B 0B(us)
c'?xl

3B(us)

N
OB(u.)

Q1= {(Lt) €Qr: ‘8:13 <

JRACIE 8aléx t)d dt < 0.

Let
1}7 QQZQt\Ql-

In view of %’;i < 0, we deduce

apl- (o 1
//Q R e
op; 1
</Q1 E[ai(%t) +E]pi(l‘7t)

+/ &[a»(a: t) + €] 1
Q, Ot E pi(x,t)
1

<c+/ &[a»(x t) + €]
- 0, Ot E pi(z, 1)

<c

pi(z;t) aB( )

Lg

0B(ue)

Li

OB(u.)
8.TZ'
OB(uc)
6l‘i
OB(uc)
81'1'
0B(u.)
8(Ei

dsdxdt

ln‘

pi(z,t)

dsdxdt

ln‘

c)

In dsdxdt

piet) ’ dB(u

X

In ) dsdxdt

pi(@t) ’83(11

X4

and

OB (ue) |?

// b4 e] 2 /| B
az T, —_—
t p’b(x7t) 0
83( ) pi(z,t)
<
c//t al T, t ‘ B

dxdt
It follows from p;(x,t) > p_ > 2 that
//t (, t 89&1 )[B( e) — B(e)]idxdt
2
</l [c@ g (o) 251
: 2 | s dB(
J) (// gt (z, t)a;(z, t) " Faem | P d:cdt) (// a;(z,t)

;
+// 8| B (ue)ues |2 dadt

1
§c+§// b(ue)uet|*dadt,
t

where the small constant § satisfies 6b(M) < 1.

pi(z,t)—2 t) 2

dsdzxdt

+ (5B(u€)t|2] dadt

Ue)

pi(@,t) Pit
d:cdt) (27)




From (24)-(27), we can derive

//t(B(us))tugtdmdt = //Q b(ue)|uePdadt < c (28)

%/Oug \/@ds—\—/ \V/b(s)ds, in L*(Qr). (29)

From inequalities (21), (23) and (28), it implies

and

ue — u, weakly star in L>(Qr),
Ue — u, a.e. in Qr,

_)
and there exists an N—dimensional vector ¢ = ({1, - ,(n) satisfying

Clert (0,105 (@)

such that (o) 2
B P 9B
az('r’t)‘aa(;js) %{1}56)4\(% ZnLl(QT)a 1:17277]\7
In order to prove u to be the solution of equation (1), we shall prove that
B(u.) [P 0B
Z// 'a (uc) to OB(e) it = // C - Vdzdt (30)
T 8-771 T
for any ¢ € C3(Qr).
Note that
0B(uc) pi(@t)= aB(ue)
c i(x,t) o | dxdt
// ut<,0+2ax ’ B, Py ——— Vo, | dx

(31)

+Z// {&pait ix,t)B(uEH%;ifﬂB(ug)@(x,t)] dwdt = 0.

Due to a;(z,t) [saxjo,r= 0 and a;(z,t) > 0 for (z,t) € Q x [0,T], in view of ¢(z,t) € C§(Qr), we obtain

maxw>c>0 and
1%

suppp ¥ (2:t)
0B
<ec sup |<)031'1 / by ( ’ (ue)
suppe @i(%,t) J Jon ox;

—0, as e — 0.

pi(m’t)_2 6B(u5) Op
o0x; 8.’1%

U

dxdt
8:132

pi(z,t)
+ 1| dxdt

This further leads to

(ue)
/ QTc wdmdt_hmz / / z, ’ =
. 0B (u.
:&11_13’(132\// [az(x,t)+€] 8551)
. OB(uc)
_sh—%gz//QT Oz
_2%2// [ai(z,t) + €]

P02 9B(u.) dp(ue)

Bxi 8:@ o, it

P07 9B (u.) dp(ue)

dxdt
ox; o0x;

pil@,t)— aB(ug) Op(uy)

————=dxdt
Bxi 8951

P02 0B ue) dp(ue)
8:102- &rz

9B (u.)
ox;

dzxdt.




Since u. — u, we see B(u.) — B(u) and

// ugot+C V)dxdt

, . (32)
dp(x,t) | dg'(x,t
+Z// [ “Pai i( )B(u)+%&;)3(u)@(m,t)] dzdt = 0.
Let 0 < ¢ € C§°(Qr) and ¢ = 1 on suppe;. In view of v € L (Qr) and b;(z, t) ‘ag;(f) P e LY(Qr)
fori=1,2,---, N, we have
0B(us) [0 9B(u.)  |9B(w) [V 9B (v)
/QT ¢az($7t) <’ ox; o0x; _‘ ox; ox; (33)
. (aggff) 8?; )> dxdt > 0.
Choosing ¢ = 9 B(u,) in (31) yields
e 0B (u.) |72 9B (u
/. WB o+ S+ [ )
(34)
- Z )wB( o) | dxdt = 0.
It follows from (33)-(34) that
pi(w,t)—2
/QT B (u.) dxdt—Z// (a;(z, 1) ‘mg(“f) aB(UE)wx B(ue)dzdt
P2 9B(v) (0B(u.) OB(v
—Z//T<ai<x,t>+s>\ & o) (2BLee) 220 i
3B(u5) P02 9B (u.) aB( )
Z//Taza:t ‘ oz, 0z, 0z, ——>dxdt (35)
. OB (u.
- Z [, o s (Fge s g, ) asi
— Z//T 6g(’9ml (ue)pdadt > 0.
Letting € — 0, we have
/ U B( dxdt—z / )G, dadt
) [P 9B (v) (9B(w)  9B(v)
_Z//T “ ‘ &’Cz ox; ( ox; ox; )ddt
OB(
S J[ atwne 250 (36)
i=1 T v

- i// g'(x,t)B(u) (651(:) (u)wmi> dxdt

_Z// 09'@:1) byt > 0.
L, 0x;




Taking ¢ = ¥ B(u) in (32), we get
[ stz =3 [ o223 [ o
DY/
_ EN: / / (2, £)B(u) (agf)zp + B(u)%i) dudt
i=1 T v

N .
9g' (z,t)
_ ;//T oS Bluypdadt > 0.

By combing (36) and (37), we have

i_\/://T (0 (Ci —ai(x,t) ‘65:]5:1)

In particular, taking v = B~!(B(u) — A¢) and A > 0, we find

Ai//w (cz- - (o) o (B0 = A9)

Pdzdt

) dxdt > 0.

pi(,t)—2 3B(U)> <aB(u) 9B(v)

axi 8xZ B amz

pi(z,t)—2 P 830

and so

pi(z,t)—2 9 3@

Ai//Tw (cz-ai(a:,t) (B - 30)

When A goes to zero, we have

i_\[://T¢ <Cz‘—ai(x,t)'ag_x(:‘)

Similarly, when A < 0, we get

i:;//Tlﬁ <C¢ —a;(z,t) '8§x(j‘)

Accordingly, we obtain

ool

Since ¥ = 1 on suppy, we arrive at (30).

> 0.
oz, oz, dxdt >0

pilw,t)=2 OB(u) ) Do

dxdt < 0.
5‘:51- ZX; * -

pi(@,t)=2 OB (u) ) Op

dzdt = 0.

8331' (9331

pi(@,t)=2 OB(u) ) O

— >
oz, (B(u) Acp)) oz, dzdt > 0

— > 0.
oz, (B(u) )\<p)> oz, dzdt > 0

(38)

The initial value condition (4) in the sense of (9) can be derived from (29). We omit the details here.

Consequently, u(z) satisfies equation (1) in the sense of Definition 1. ®

3 Proof of Theorem 3

To discuss the stability of solutions of equation (1), we need to introduce the following technical lemma.

Let p(x) € C*(Q), and denote p* = max p(x) and p~ = max p(z).
€N z€Q



Lemma 4 [12, 15] (I) The space (LP™)(Q), || - o () (WhrE)(Q), || - [w.e) (@)) and Wol’p(m)(ﬂ) are
reflexive Banach spaces.
(II) Let p1(x) and pa(x) be real functions with (x) + m(x) =1 and p1(z) > 1. Then the conjugate

space of LP*®)(Q) is LP2(*)(Q) . And for any u € Lpl(””)(Q) and v € LP2®)(Q), we have

’ / uvdx
Q

(1) If [[ull oy = 1. then fo llulP@da = 1; if Jullpocry > 1, then [l g < Jo lulP@da <

< 2HU||LP1(1)(Q)||U||L"2(””>(Q)'

HUHL”(”’(Q); and if ||“HLP(1>(Q) <1, then ||u||LP(m)(Q) < fQ |u|p(m x < ||uHLp(z)(Q)‘

For any large integer n, we define an odd function S, (s) by

1, S %,
Sn(s) = n2s2el— n97 Ogsg%,
and let s
:/ Sn(s)ds
0

Then

. - . ’ o _

TIL% Sp(s) =sgn(s) and 7lng}) $5,,(s) =0, s € (—o0,+00).

Meanwhile, since a;(z,t) = a(z,t) > 0, for any A > 0 we define

1, it xeQzy,
on(2,t) =< n(a(z,t)— L), ifze Q1,\ Q24
0, if 2 €O\ Qo

where Qy; = {z € Q: a(x,t) > A}
Proof of Theorem 3. Supposed that u(z,t) and v(z,t) are two weak solutions of equation (1). After a
process of limit, we can choose ¢, S, (B(u) — B(v)) as a test function. In view of a;(x,t) = a(x,t), we have

¢ O(u —v)
/0 A on(z,1)Sn(B(u) — B(v))dedt

= [ OB(w) "2 9B(w)  |9B(v)[" "2 8B(v)
+;/O Qa(a:,lt) (’ ox; Oz ‘ o, o
(%5 = 250 ) s1300) = Bl (o dads
[ OB () |[" V72 9B(u)  |9B() | 9B (v)
+;/O Qa(w,t) <’ o oz, _‘ oz, o,
(40)
5u(B(0) = B0) 2 v
N t "
:*Z/O L9 @ OB~ Bw) (a’;ﬁ) - 383;))5;( (w) = B())gn(w,t)dwdt
N
— t e u) — B(v u) — B(v —&pn(x,t) i
S [ 8B~ ) s. 500 - Be) P v

10



Note that the second term in the left hand side of (40) satisfies

>t (|5

(85551 ) 8‘88351 )> S/ ( ( ) - B(U))Qﬁn(x,t)dxdt > 0.

To evaluate the third term on the left hand side of (40), we use

83:,» Bxl

P2 9B(w)  |9B(v)
6l‘i

“@”233@0>

P ¢ 0, if ze€ Qgt,
% = n%d, i xeQy,\ 0z,
’ 0, if e\ Qs
In view of condition ( ), by the straightforward calculations we can deduce that
B(w) [P 9B(u)  |9B(v) [" 7 9B(w)
(r“)gcz ox; ox; 0x;
n(Z, 1
3¢8§j )Sn(B(u) (v»dzd4
N t pi(z,t)—1 i(z,t)—1
0B 0B
o] e (R )
i=1 0 Qlt\QZ t T T
t
00w o (B(u) — B(v))| dudt
al‘i
N t 8B(u) pi(z,t) E
ch/ / a(w,t)‘ dx
i=170 Qlt\ﬂgt axl

e

pi(z,t) qa;
“ dx) ]dt
L
t + pi(z,t) Pit
/ n / a(z,t) dalz,t) dx dt
0 Q1,\Q2, Ox; (42)

pi(z,t) it

dx

0B (u)

t
<c a(x,t
B Z;/o [ /Qlt\mt ( )‘ O

3z
2
8
=
2

¢ 0B (u)
<c a(x,t
a Z_:/O [ /Qlt\QZt ( ) ‘ O

11



It follows from Holder’s inequality and (15) that

N ot
_Z/ /Qgi(x’”(B(“)‘B(“” (853)—85;))5’( (u) = B(0))n (@, t)dadt
:_Z// (z,)( B(v))S,(B(u) — B(v))

.a(x’t)_m( Va(z,t) =0 G (85; u) 85;1 )> on(z, t)dxdt

: i (/o | [o'.0Bw) = Be)S,(B) - B)ata. e da:dt) .

[ ften (1752 |

pi(w,t) P1i
dxdt — 0, asn —0,
where p1; = pi or p; depends on whether

T el )
) dm)

<// ( p(wt i(z,t)
[enem-un Stz o
u(x,t) = v(z,t) =0, (z,t) €%, =1 (x,t) € I x (0 Z 81‘ 40 .

pi(z.1) MEED
63%

(mt

3xz

8332 axz

Recall the partial boundary value condition (16), i

Then we have

lim
n— oo

-3 [ [ o B - Bens. e - Be) T

t N
. ; Oa(x,t)
Shm/n/ B(u) — B(v))S,(B(u) — B(v Yz, t)——"| dxdt
lim. Ql\mfu ()~ B)SH(B) = B[00 75
/ |B(u v)|dXdt
pRY
and
ag (z,t)

o B(v))Sn(B(u) — B(v))pn(x, t)dzdt

Since B ( ) 2 0 is monotone, it follows that

. ¢ O(u —v)
nh_{rgo/o /Qapn(x,t)S’n(B(u)—B(v)) Er dxdt

_ /O t /Q sgn(B(u)—B(v))a(u(?; %) grat
_ /0 t /Q Sgn(u—v)a(ua; %) dedt
:/Q|u(:13,t)—v(m,t)|dx—/9|u0(x)—v0($)|d:v.

12

t
§c//|u—v|dxdt.
0o Jo

(43)

(45)

(46)



By (41)-(46), letting n — oo in (40) yields

/Q|u(:r,t)v(m,t)|da:§/g|uo(:r)vo(x)|d9:+c/0t/ﬂ|uvdxdt, te[0,7).

Using Gronwall’s inequality, we obtain

/ lu(z,t) —v(z,t)| dx < / |uo(x) —vo(x)|dx, t €[0,T).
Q Q

4 Weak Characteristic Method

We can generalize the method described in the preceding section to prove the stability of weak solutions.
Let x(z,t) be a nonnegative C'(Qr) function as

X(l‘,t) > 07 if (xvt) € QT =Qx (OvT)v
and
x(x,t) =0, if (z,t) € Tr =00 x [0, T).
If we denote
Xt = X(xat)v HAS Qv
for t € [0,T), then x; is the weak characteristic function of Q as defined in [29]. Likewise, we can simply

call x(z,t) a weak characteristic function of Qr.
For A > 0, we define

1, if xEDgt,
on(z,t) =< nlx(z,t)— %), if z €D\ Dz,
0, if l’EQ\DLt.
Then
P : 0, if .%‘EDgt,
%: n®eD ity e Dy \ Da,
’ 0, if ©€Q\ Dy,

where Dy, = {z € Q: x(z,t) > A}

Theorem 5 Suppose that there is a weak characteristic function x(x,t) of Qr satisfying,

T
/ " / ai(a 1) ‘c‘bc(w,t)
0 Dy \D2, x;

/ g (@, )T @Dz, 1) T dr < oT), i = 1,2, N, (48)
Q

1
pi(z,t) p;rt

dx dt<e, i=1,2,--- N, (47)

where q;(w,t), pj; and ¢ are the same as given in Theorem 3. Suppose that u(z,t) and v(z,t) are two weak
solutions of equation (1) with the initial values ug(x) and vo(x) respectively, with a partial homogeneous
boundary value condition

o~ i Ox(@t)
u(z,t) = v(z,t) =0, (z,t) € {z €I x (0,T) : ZgZ(z,t)T £0). (49)
Then we have
/ lu(z,t) — v(z, t)|de < c/ |uo(x) —vo(x)|dz, a.e. t €[0,T). (50)
Q Q

13



Proof of Theorem 5. Choose ¢,,S,(B(u) — B(v)) as a test function. Then we have

| [ entetsum - 5) 2 dud

+Z/ /azzct (’ 20 P07 9B (u) ’aB(v)

< 8371 B 6l(‘l)> S;l( ( )_B(U))Son(l'ﬂf)dl'dt
pi(x,t)—2 8B(u) B ’83(1}) pi(z,t)—2 8B(v))

ri@D=2 hp(y)
Gxi

N R e R

(51)
Opn(@:) 1t
axi

N .
= Z/O /Qgi(x,t)(B(u) — B(v)) <a§£i) B 3?; )> S! (B(u) — B(v))pn(a, t)dzdt

- Sn(B(u) — B(v))

N ot
o> / / g (2. 1)(B(u) — B())Sy(B(u) - B(v»%j%m

g (x, t
i Z/ /Q O — B(v))Sn(B(u) — B(v))on(x,t)dzdt.

As discussing in the proof of Theorem 3, we have

> [ foten (|52

P72 9Bu) ’83(@)

pi(e,t)=2 8B(v)>

(u) 8B( N
A > (0.
(% i O 8 Bla) ~ Byt st > 0
In view of condition (47), we can deduce
az &TZ 69@ 8xi aLL'Z‘
8‘»0n(35at)
&ri Sp(B(u) B(v))dajdt‘
B D 1 1\D2 . axl amz a.’L'Z a.ﬁl’z
8<pn(a:,t)
pi(z,t)—1 pi(x,t)—1
<Z / / <’aB<u> .\ ‘aB< ) ) (53)
D 1 f\DQ t 8wz axz

.’M

0z, Sn(B(u) — B(v))

3
®

L

8

\_/
s
| E——

a

~

{

(a=)

4

wn

3

4

o



Similar to the derivation of (43), using Holder’s inequality and (48), we obtain

_Z/O'/Qgi(gg,t)(B(u) — B(v)) (a;;g) B 833;)) S (B(w) — B(o))on (. t)drdt

Nt
==> [ [ @ - Be)s, 5 - Be)
ai(x’t)_ma (gg t)p (L t) (aggg ) — 8§x(v)) @n(x,t)dxdt

(/ / (2, )( — B(v))S),(B(u) — B(U))ai(lr’t)*m}qi(%t) dmdt) o

(A / <’ agi) pi(%t)) dxdt) 7

S

HMZ

pi(z,t) N dB(v)
8xi

Note that the right hand side of (54) goes to 0 as n — 0. Here, py; = p;r or p; depends on whether

pi(z,t) dB(v)
+%——
8:52-

(// (0 (‘ aél)
<//““<’ agi)

In view of (49), we get

pi(z,t)

dzdt | <
pi(z,t)

dxdt | > 1

_;AlF“ﬁ@W—mmaww—mm@%?Ma

or
pi(z,t)

0B(v)
3xi

+|

lim
n—oo

t N
smn/n/ \(B(u) = B(v))Sn(B(u) - B))
D1i\D2, i=

n—roo 0

<c / / (v)] dSdt
31t

Z;

(54)

Similarly, we can deduce that both (45) and (46) hold too. From (51)-(55), we arrive at the desired

result (50). =

We can see that by choosing different appropriate characteristic function of @1, we can obtain the

corresponding stability results under various conditions. For example,

i) If we take x(z,t) = X[r,5(t) vazl aj(x,t), where X[, 5 (t) is the characteristic function of [s, ] C

then v v
ox(z,t) Ak,
3% - X[T»S] (t) H a; (l’, t) Z ak (l’, t) )
j=1 k=1
pi(z,t)
(e, 1) [ N R
= t (z,t :
’ 6371 X[T,S]( )Eaj(m? );ak(.ﬁ,t) )

where ay,, = 8"(’;—“ k=1,2,..,N.
By virtue of Theorem 5, we obtaln

0,7),



Corollary 6 Suppose that

T
/n Pit / a;(z,t)
0 Di\D2,

n n

Suppose that u(z,t) and v(z,t) are two weak solutions of equation (1) with the initial values uo(x) and
vo(x) respectively, with a partial homogeneous boundary value condition

1
pi(x,t) ok

dz dt<ec, i=1,2,---,N.

N
>
ak(x,t)

k=1

N N
u(z,t) = v(z,t) =0, (z,t) € { (2,1) € 92 x (0,T) : [[aja,t) 3 LM 20
P

j=1 i,
Then we have the stability of weak solution in the sense of (17).

ii) If we take x(z,t) = X[rq(t)d*(x), where d(x) = dist(x,02) is the distance function from the
boundary 0f2 and « > 1 is a constant, then

pi(z,t)
(9)((33, t) — aX[T,s] (t)da_l(l‘), ‘ 6X($, t)

o — i(w,t)
or o — o (B () [P0

According to Theorem 5, we can also obtain

Corollary 7 Suppose that

1

T | (a=Drpy ),
/ n v / a;(z,t)dx dt<e, i=1,2,---,N.
0 D1 \D2,

Suppose that u(x,t) and v(x,t) are two weak solutions of equation (1) with the initial values ug(x) and
vo(x) respectively, with a partial homogeneous boundary value condition

N
u(z,t) =v(z,t) =0, (z,t)€ {x € 0N x (0,T): Zgi(x,t)ni + 0} ,

where n. = {n;} is the outer normal vector of Q. Then we have the stability of weak solution in the sense

of (17).

5 Conclusion

In this study, we applied an analytical method to study the stability of weak solution for a doubly
nonlinear anisotropic parabolic equation, where the diffusion coefficient and the variable exponent depend
on the time variable ¢t. Under certain parametric choices, it includes the heat equation, reaction-diffusion
equations, non-Newtonian fluid equation and electrorheological fluid equation and the epidemic model of
diseases as particular cases.

When a;(z,t)|zcq > 0 and B(u) is a strictly monotone increasing function, it excludes the strongly
degenerate hyperbolic-parabolic equation, for which only under the entropy conditions, the uniqueness of
weak solution can be guaranteed [3, 14, 31]. However, only under the condition B’(u) = b(u) > 0 or a;(z,t)
is degenerate in the interior of €2, how to prove the uniqueness of weak solution to equation (1) is still an
interesting and challenging problem. In addition, if there is an external forcing term f(u) > 0 in equation
(1), i.e.

D=2 9B (u)

0B (u)
ox ox

K2

N
U = Z (ai(:c,t)‘ 8];5?) + f(u), (z,t) € Qr, (56)

i=1

N .
) + Zg’(%t)

we conjecture that weak solutions may blow-up in finite time. How to show such a blow-up behavior and
the long time behavior of solutions to equation (56) seems more interesting and helpful from the physical
and biological point of view. We will continue to work on this problem in a subsequent work.
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