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This work focuses on functional differential equations subject to wideband noise 
perturbations. Modeling using a white noise is often an idealization of the actual 
physical process, whereas a wideband noise can be easily realized in applications 
and well approximates a white noise. Using functional derivatives together with 
the combined perturbed test function methods and martingale techniques, this 
paper demonstrates that when a small parameter tends to zero, the underlying 
process converges to a limit that is the solution of a stochastic functional 
differential equation. To illustrate, an integro-differential system with wideband 
noise perturbation is examined as an example. Not only are the results interesting 
from a mathematical point of view, but also they are of utility to a wide range of 
applications.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction and motivation

Time delay and uncertainty due to random fluctuations are unavoidable in a wide range of real-world 
applications such as process control, automotive systems, biomedical sciences, epidemics models, transport, 
communication networks, and population dynamics. When the random disturbances are modeled by white 
noises, the systems are often described by stochastic delay or functional differential equations, for example, 
[11,16,17]. Nevertheless, a white noise model is often only an idealization of the actual physical process. It is 
more appropriate to use a process that can be realized in applications. A wideband noise is such a process, 
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whose bandwidth is “wide” and whose limit becomes the white noise. Using diffusion approximation to 
treat physical random processes has received a great deal of attentions; see [7,14,15,20] and also the more 
analytic approaches in [9,10]. When a delay system is perturbed by a wideband noise, one deals with a class 
of random delay or functional differential equations. Although it is more realistic, systems with wideband 
noise are often difficult to deal with. However, through appropriate limit procedures, we may obtain a 
much simpler limit dynamic system; see earlier work in [3,7,14] and the references therein. When time delay 
and wideband noise are considered simultaneously, one aims to show that under appropriate scaling, the 
underlying system converges to a delay differential equation or stochastic delay differential equations. Using 
these simpler limit systems as a bridge, we can proceed to design feasible procedures to treat the original 
systems.

In this paper, we confirm that the limit systems are stochastic functional differential equations. For a long 
time, there were no bona fide operators associated with stochastic delay equations driven by a Brownian 
motion. In addition, there were no bona fide Itô formulas either, except some convenient way of the use of 
formulas in a symbolic form [16], or a Banach space form of calculus [17]. However, the form of operator 
and the formulas in [17] are very difficult to use in any real applications. Thanks to the recent advances in 
stochastic calculus, a new form of functional Itô formula was obtained recently by Dupire [5], which enables 
us to examine stochastic delay equations from a new angle. In our recent work [22], based on Dupire’s 
functional Itô formula, we examined functional diffusions with two-time scales in which the slow-varying 
process includes path-dependent functionals and the fast-varying process is a rapidly-changing diffusion; one 
of the motivations is gene expression of biochemical reactions occurring in living cells (see a motivational 
example in [23]).

The recent development on stochastic functional differential equations alleviates much of the difficulties 
and provides technical tools. It helps us for our study of the wideband noise systems. In this paper, we 
consider the following functional differential equation with the wideband noise perturbation

ẋε(t) = ϕ(xε(t), xε
t , ξ

ε(t)) + ε−1ψ(xε(t), xε
t , ξ

ε(t)), (1.1)

with a deterministic initial value x(0) ∈ Rn, where ε is a small positive parameter, and ξε(t) is the wideband 
noise given by

ξε(t) = ξ(t/ε2), (1.2)

where ξ(·) is an m-dimensional stationary φ-mixing process. Assume throughout the paper that ξ(·) is a 
bounded, right continuous, and stationary φ-mixing process with mean Eξ(t) = 0. More precise conditions 
will be given in the subsequent sections. In this paper, we denote xε

t := {xε(u ∧ t) : 0 ≤ u ≤ T}, ϕ =
(ϕ1, ϕ2, . . . , ϕn)′ : Rn ×D([0, T ]; Rn) × Rm → Rn, ψ = (ψ1, ψ2, . . . , ψn)′ : Rn ×D([0, T ]; Rn) × Rm → Rn, 
where z′ denotes the transpose of z and D([0, T ]; Rn) denotes the space of càdlàg (right continuous with 
left limits) functions on [0, T ] with values in Rn endowed with the Skorohod topology.

In the above functional differential equation, xt is known as a path-dependent process reflecting the 
past dependence. It is well-known that the path-dependent functional differential equations include many 
important classes of delay systems such as the integro-differential equations motivated by, for example, the 
following Lotka-Volterra integro-differential equation

ẋ(t) = diag(x1(t), . . . , xn(t))
[
A(t) −D(t)x(t) −

t∫
0

κ(t− s)x(s)ds
]

(1.3)

in population dynamics (see [8,21,24]), where diag(x1, . . . , xn) denotes the diagonal matrix with the given 
diagonal entries, A(t) and D(t) are continuous n ×n matrix-valued functions, and κ(·) is an appropriate kernel 
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function with compatible dimensions. As another class of path-dependent functional differential equations, 
we consider the so-called running maximum equation given by

ẋ(t) = ax(t) + b sup
0≤s≤t

x(s),

which is used in the biological models and the financial market formulations widely.
Our main goal in this paper is to examine the asymptotic properties of system (1.1) as ε → 0 and 

establish an approximation theorem for xε(·) ∈ D([0, T ]; Rn), the space of functions that are right continuous 
with left limits endowed with the Skorohod topology (see [13,14] and references therein). We show that 
under suitable conditions, xε(·) converges weakly to a functional diffusion process. To deal with the terms 
involving functional dependence, this paper uses the idea of functional derivative in [1,4,5]. To the best of our 
knowledge, this is the first attempt to study the asymptotic averaging property of the delay or functional 
equations with the wideband noise by using the functional derivative. For previous works on martingale 
methods, weak convergence, and treatment of delay equations, we refer to [14,19,25].

The rest of the paper is arranged as follows. We begin with some notation and preliminary lemmas in the 
next section. In Section 3, we examine functional derivatives and establish a martingale theorem for random 
functional processes. Based on the functional derivatives and the martingale theorem of random functional 
processes, Section 4 establishes a weak convergence result for solution to (1.1) as ε → 0. Section 5 applies 
the established theorem to the integro-differential equation with wideband noise perturbation as a specific 
class. This section also establishes the approximation for the integro-differential Lotka-Volterra system with 
wideband noise perturbation as an example.

2. Preliminaries, notation, and assumptions

Throughout the paper, unless otherwise specified, we use the following notation. Let Rn denote the n-
dimensional Euclidean space with the Euclidean norm | ·|, and B(Rn) is the Borel sets of Rn. For each N > 0, 
let SN = {x : |x| ≤ N} be the ball with radius N centered at the origin. For a vector or matrix A, denote its 
transpose by A′; for a matrix A, denote its trace norm by |A| =

√
Tr(A′A). Denote by Cl(Rn; R) the family 

of real-valued functions defined on Rn whose partial derivatives up to the lth order are continuous, and by 
Cl

0(Rn; R) the family of Cl(Rn; R) functions with compact support. Throughout the paper, K denotes a 
generic positive constant, whose value may change for different usage. Thus, K +K = K and KK = K are 
understood in an appropriate sense. We use ε > 0 to represent a small parameter.

Remark 2.1. In this paper, since the stochastic process xε(·) has deterministic initial data and is driven by 
ξε(·), we are dealing with the so-called exogenous noise. Thus, we denote by Fε

t the σ-algebra generated 
by ξε(s) for 0 ≤ s ≤ t. That is, Fε

t = Fξε

t := σ{ξε(s) : 0 ≤ s ≤ t}, which is the same as σ{ξ(s) : 0 ≤
s ≤ t/ε2} =: Fξ

t/ε2 . In other words, Fε
t = Fξε

t = Fξ
t/ε2 . We denote by Eε

t or Eξε

t , and Eξ
t/ε2 the conditional 

expectations conditioned on Fξε

t and Fξ
t/ε2 , respectively.

Let M denote the set of real-valued progressively measurable functions that are nonzero only on a 
bounded t-interval and

M̄ ε =
{
f ∈ M : sup

t
E|f(t)| < ∞ and f(t) is Fε

t -measurable
}
. (2.1)

Similar to [12,14], let us give the definitions of the p-lim and the infinitesimal operator L̂ε as follows.
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Definition 2.1. Let f, fδ ∈ M̄ ε for each δ > 0. We say f =p− limδ f
δ if and only if

⎧⎨⎩ sup
t,δ

E|fδ(t)| < ∞,

lim
δ→0

E|fδ(t) − f(t)| = 0 for each t.

Similarly, we say p-limε f
ε = 0 if f(·) = 0 almost surely, where fε ∈ M̄ ε for each ε > 0, and ε replaces δ.

Definition 2.2. We say that f(·) ∈ D(L̂ε), the domain of L̂ε, and L̂εf = g if f, g ∈ M̄ ε and

p- lim
δ↓0

(Eε
tf(t + δ) − f(t)

δ
− g(t)

)
= 0.

It follows that L̂ε is a type of infinitesimal operator. Although the process might be non-Markovian, the 
following lemma was proved by Kurtz in [12] (see also [14, p.39]).

Lemma 2.2. If f ∈ D(L̂ε), then

Mε
f (t) = f(t) −

t∫
0

L̂εf(u)du

is a martingale, and

Eε
tf(t + s) − f(t) =

t+s∫
t

Eε
t L̂εf(u)du w.p.1.

In our setup, the noise process in (1.1) is wideband. It is known that a wideband noise is one such that 
it approximates the “white noise”. In fact, φ-mixing process is a large class of such process. We recall the 
definition next.

Definition 2.3. Let Fξst denote the smallest σ-algebra that measures {ξ(u) : t ≤ u ≤ s}. If there is a function 
φ(t) → 0 as t → ∞ such that

sup
A∈Fξ∞t+s ,B∈Fξt0

|P (A|B) − P (A)| ≤ φ(s),

then ξ(·) is said to be φ-mixing with mixing rate φ(·).

In this paper, we assume that ξ(·) is a φ-mixing process with mixing rate φ(·) satisfying (e.g., [2,14])

∞∫
0

φ1/2(t)dt < ∞.

Now let us recall certain properties for φ-mixing processes, which constitute a large class of processes 
having decreasing dependence property. The following lemma is a modified version of [14, Chapter 4, Lemma 
4].
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Lemma 2.3. Let ξ(·) be a φ-mixing process with mixing rate φ(·), and h(·), h1(·), and h2(·) be functions of 
ξ, which are bounded and measurable on Fξ∞t = σ{ξ(τ), t ≤ τ < ∞}. Then there exist κi for i = 1, 2, 3 such 
that

|E(h(ξ(t + s))|Fξt0) − Eh(ξ(t + s))| ≤ κ1φ(s), (2.2)

|E(h1(ξ(u))h2(ξ(v))|Fξt0) − Eh1(ξ(u))h2(ξ(v))| ≤
{

κ2φ(v − u)
κ3φ(u− t)

for t < u < v, (2.3)

where Fξt0 = σ{ξ(s); 0 ≤ s ≤ t}. Hence, the right-hand side of (2.3) is bounded above by

(κ2 ∨ κ3)φ1/2(v − u)φ1/2(u− t).

Proof. The proof of inequality (2.2) is as in [14, Chepter 4, Lemma 4], and (2.3) improves the corresponding 
result of the aforementioned lemma. Noting that hi(·) are bounded,

|E(h1(ξ(u))h2(ξ(v))|Fξt0) − Eh1(ξ(u))h2(ξ(v))|
≤ |E[h1(ξ(u))(E(h2(ξ(v))|Fξu0 ) − Eh2(ξ(v)))|Fξt0 ]|

+|Eh1(ξ(u))(E(h2(ξ(v))|Fξu0 ) − Eh2(ξ(v)))|
≤ 2K1κ1φ(v − u),

where K1 is the bound of h1(·). On the other hand, define g(ξ(u)) = h1(ξ(u))E(h2(ξ(v))|Fξt0). Then g(·) is 
also a function with the h(·)’s properties. Applying the inequality (2.2) yields that there exists a κ3 such 
that

|E(h1(ξ(u))h2(ξ(v))|Fξt0) − Eh1(ξ(u))h2(ξ(v))|
= |E[h1(ξ(u))(E(h2(ξ(v))|Fξu0 ))|Fξt0 ] − E[h1(ξ(u))(E(h2(ξ(v))|Fξu0 ))]|
= |E(g(ξ(u))|Fξt0) − Eg(ξ(u))|
≤ κ3φ(u− t).

The proof is completed by choosing κ2 = 2Kκ1. �
3. Functional derivative

To examine the weak convergence using the martingale averaging method, we need to consider L̂εf for 
f(·) with appropriate properties. Since functionals are considered, it is necessary to consider the derivative 
of the functionals in the form of V ε(t) = V (t, xε(t), xε

t ). To proceed, we need to examine the derivative for 
the functional V (t, x, y) on [0, T ] ×Rn ×D([0, T ]; Rn). Now let us define continuity for functionals first; see 
[1]. We use ‖xt‖∞ := supu∈[0,T ]{|x(t ∧ u)| : 0 ≤ u ≤ T}; see for example, [18, Chapter V].

Definition 3.1 (Joint continuity in (t, x, y)). A continuous functional is a continuous map V : [0, T ] ×Rn ×
D([0, T ]; Rn) → R if, for any (t, x, y) ∈ [0, T ] × Rn × D([0, T ]; Rn) and any Δ > 0, there exists an η > 0
such that for any (t̃, ̃x, ̃y) ∈ [0, T ] ×Rn ×D([0, T ]; Rn) satisfying

d∞((t, x, y), (t̃, x̃, ỹ)) = |t− t̃| + |x− x̃| + ‖y − ỹ‖∞ < η,

we have
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|V (t, x, y) − V (t̃, x̃, ỹ)| < Δ.

The set of continuous functionals is denoted by C0,0,0([0, T ] ×Rn ×D([0, T ]; Rn); R).

Next, we introduce the “local boundedness” for functionals. We call a functional V “boundedness pre-
serving” if it is bounded on each bounded set of paths [1,4]. The precise definition is given below.

Definition 3.2. A functional V : [0, T ] × Rn × D([0, T ]; Rn) → R is said to be boundedness preserving if 
for any compact G ∈ Rn and t0 < T , there exists a KG,t0 > 0, such that for all t ≤ t0, x ∈ G and 
y ∈ D([0, T ]; G), we have |V (t, x, y)| ≤ KG,t0 .

Following [1,4], let us give the definitions of horizontal and vertical derivatives. Denote (ei, i = 1, · · · , n)
the canonical basis in Rn.

Definition 3.3. A non-anticipative functional V : [0, T ] × Rn ×D([0, T ]; Rn) → R is said to be horizontally 
differentiable at (t, x, y) ∈ [0, T ] ×Rn ×D([0, T ]; Rn) if the limit

DV (t, x, y) = lim
δ↓0

V (t + δ, x, y) − V (t, x, y)
δ

exists. In such a case, DV (t, y, x) is called the horizontal derivative of V at (t, x, y).

Definition 3.4. For x(t) ∈ Rn and xt = {x(u ∧ t) : 0 ≤ u ≤ T}, a non-anticipative functional V : [0, T ] ×
Rn ×D([0, T ]; Rn) → R is said to be vertically differentiable at (t, x(t), xt) ∈ [0, T ] × Rn ×D([0, T ]; Rn) if 
the functional map

Rn → R,

e 	→ V (t, x(t) + e, xt + e1[t,T ])

is differentiable at 0. Its gradient at 0 is called the vertical derivative of V at (t, x(t), xt):

∇V (t, x(t), xt) = (∇1V (t, x(t), xt),∇2V (t, x(t), xt), . . . ,∇nV (t, x(t), xt)),

where

∇iV (t, x(t), xt) = lim
h→0

V (t, x(t) + hei, xt + hei1[t,T ]) − V (t, x(t), xt)
h

.

Remark 3.1. In view of the definitions above, although xt may be a continuous function if x(t) is a continuous 
process, it is obvious that xt + e1[t,T ] is right continuous and has the left limit, that it, it is in D([0, T ]; Rn). 
Thus we need to have V be defined on [0, T ] ×Rn ×D([0, T ]; Rn).

Let us define

Vxi
(t, x(t), xt) = lim

h→0

V (t, x(t) + hei, xt) − V (t, x(t), xt)
h

,

∂iV (t, x(t), xt) = lim
h→0

V (t, x(t), xt + hei1[t,T ]) − V (t, x(t), xt)
h

and

Vx(·) = (Vx1(·), Vx2(·), . . . , Vxn
(·)) and ∂V (·) = (∂1V (·), ∂2V (·), . . . , ∂nV (·)).
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In fact, Vx(·) is the common derivative of V with respect to the second variable and ∂V (·) is the functional 
derivative with respect to the third variable. If Vx and ∂V exist, it is clear that one can compute that

∇V (t, x, y) = Vx(t, x, y) + ∂V (t, x, y). (3.1)

Repeating the above procedure leads to the second vertical derivative ∇2V (t, x, y) as the derivative of 
the gradient at 0 (if it exists) of the map

e 	→ ∇V (t, x + e, y + e1[t,T ]).

It is clear that

∇2V (t, x, y) = Vxx(t, x, y) + 2∂Vx(t, x, y) + ∂2V (t, x, y). (3.2)

Furthermore, let us define C1,1,1 functionals.

Definition 3.5 (C1,1,1 functionals). Define C1,1,1([0, T ] ×Rn ×D([0, T ]; Rn); R) as the family of the jointly 
continuous non-anticipative functional V ∈ C0,0,0([0, T ] ×Rn ×D([0, T ]; Rn); R) such that

(i) V admits a horizontal derivative DV (t, x, y) for all (t, x, y) ∈ [0, T ] ×Rn×D([0, T ]; Rn), and DV (t, ·, ·)
is continuous for any t ∈ [0, T );

(ii) both Vx and ∂V are jointly continuous; and
(iii) DV , ∂V and Vx are boundedness preserving.

To obtain the desired weak convergence results, tightness has to be proved first. Therefore one needs to 
verify the following

lim
N0→∞

P
(

sup
t≤T

|xε(t)| ≥ N0

)
= 0 for each T < ∞, (3.3)

where P (A) denotes the probability of A. The verification of (3.3) is usually quite involved, and requires 
complicated calculations. To circumvent the difficulties, we use the truncation technique as follows. For each 
N > 0 sufficiently large satisfying |x(0)| ≤ N , consider

ẋε,N (t) = ϕN (xε,N (t), xε,N
t , ξε(t)) + ε−1ψN (xε,N (t), xε,N

t , ξε(t)), (3.4)

where xε,N
t = {xε,N (t ∧ u) : 0 ≤ u ≤ T}, ϕN (x, y, ξ) = ϕ(x, y, ξ)q(x), ψN (x, y, ξ) = ψ(x, y, ξ)q(x), in which 

q(x) is a nonnegative and smooth function satisfying

q(x) =
{

1, when x ∈ SN ,

0, when x ∈ Rn − SN+1.

From this truncation technique, it can be seen that xε,N (t) = xε(t) up until the first exit time from 
SN = {x : |x| ≤ N}. Then xε,N (t) is said to be an N -truncation of xε(t). For this truncated process and 
for any T < ∞,

lim
N0→∞

P
(

sup
t≤T

|xε,N (t)| ≥ N0

)
= 0. (3.5)

According to (3.5), it is easily seen that for any T < ∞,
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lim
N0→∞

P
(

sup
t≤T

‖xε,N
t ‖∞ ≥ N0

)
= 0. (3.6)

To establish the chain rule of the functional derivative with respect to the functional differential equation, 
let us impose the following assumption on the coefficients.

(A1) ϕ(·, ·, ξ), ψ(·, ·, ξ), ψx(·, ·, ξ), ∂ψ(·, ·, ξ), ψxx(·, ·, ξ), ∂ψx(·, ·, ξ) and ∂2ψ(·, ·, ξ) are boundedness preserv-
ing for any ξ ∈ Rm, and ϕ(·), ψ(·), ψx(·), ∂ψ(·) are jointly continuous.

Working with the N -truncated process, we have the operator L̂ε,N corresponding to L̂ε. To proceed, 
let us establish the following functional derivatives of the solution of the truncated functional differential 
equation (3.4).

Theorem 3.2 (Functional derivative). Let xε,N(t) be the solution of (3.4) satisfying assumption (A1). For 
any V ∈ C1,1,1([0, T ] ×Rn ×D([0, T ]; Rn); R), put V ε,N (t) = V (t, xε,N (t), xε,N

t ). Then

L̂ε,NV
ε,N (t) = DV (t, xε,N (t), xε,N

t ) (3.7)

+ ∇V (t, xε,N (t), xε,N
t )[ϕN (xε,N (t), xε,N

t , ξε(t)) + ε−1ψN (xε,N (t), xε,N
t , ξε(t))],

and as a result, V ε,N (t) is a continuous semimartingale and

Mε,N
V (t) := V

ε,N (t) − V
ε,N (0) −

t∫
0

L̂ε,NV
ε,N (u)du

is a martingale.

Proof. Since V
ε,N (t) = V (t, xε,N (t), xε,N

t ) and ξε(t) is the only driving stochastic process for xε,N (t), we 
can use the conditional expectation Eξε

t with respect to Fξε

t when L̂ε,N is considered. According to the 
definition of L̂ε,N ,

L̂ε,NV
ε,N (t) = p- lim

δ↓0

Eξε

t V
ε,N (t + δ) − V

ε,N (t)
δ

= p- lim
δ↓0

Eξε

t V (t + δ, xε,N (t + δ), xε,N
t+δ) − V (t, xε,N (t), xε,N

t )
δ

.

Define hδ = xε,N (t + δ) − xε,N (t). According to the definition of xε,N
t ,

xε,N
t+δ(·) = xε,N

t (·) + h·−t1[t,t+δ)(·) + hδ1[t+δ,T ](·) =: xε,N
t (·) + h·

δ1[t,T ](·),

where

hu
δ =

⎧⎪⎨⎪⎩
0, for u ∈ [0, t),
hu−t, for u ∈ [t, t + δ),
hδ, for u ∈ [t + δ, T ].

L̂ε,NV
ε,N (t) can therefore be rewritten as

L̂ε,NV
ε,N (t) = p- lim

Eξε

t V (t + δ, xε,N (t) + hδ, x
ε,N
t + hu

δ1[t,T ]) − V (t, xε,N (t), xε,N
t )

.

δ↓0 δ
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Using the definitions of horizontal and vertical derivatives, and applying the first-order Taylor expansion 
yield

V (t + δ, xε,N (t) + hδ, x
ε,N
t + hu

δ1[t,T ]) − V (t, xε,N (t), xε,N
t )

= V (t + δ, xε,N (t) + hδ, x
ε,N
t + hδ1[t,T )) − V (t, xε,N (t), xε,N

t )

+V (t + δ, xε,N (t) + hδ, x
ε,N
t + hu

δ1[t,T ]) − V (t + δ, xε,N (t) + hδ, x
ε,N
t + hδ1[t,T ))

= DV (t, xε,N (t), xε,N
t )δ + ∇V (t, xε,N (t), xε,N

t )hδ + R,

where R is the remainder term which can be expressed as

R = R1(δ∗)δ2 + R2(δ∗)δhδ + h′
δR3(δ∗)hδ + R4(δ∗)(hu

δ − hδ),

with δ∗ ∈ [0, δ] and

R1(δ∗) = DV (t + δ∗, xε,N (t), xε,N
t ) −DV (t, xε,N (t), xε,N

t ),

R2(δ∗) = DV (t, xε,N (t + δ∗), xε,N
t+δ∗) −DV (t, xε,N (t), xε,N

t )

+∇V (t + δ∗, xε,N (t), xε,N
t ) −∇V (t + δ∗, xε,N (t), xε,N

t ),

R3(δ∗) = ∇V (t, xε,N (t + δ∗), xε,N
t+δ∗) −∇V (t, xε,N (t), xε,N

t ),

R4(δ∗) = ∂V (t + δ∗, xε,N (t + δ∗), xε,N
t+δ∗).

According to the definition of C1,1,1, DV , ∂V , and Vy are boundedness preserving. These facts, together 
with the boundedness of xε,N (t) and xε,N

t due to the truncation technique, yield that both R1(δ∗), R2(δ∗)
and R3(δ∗) are bounded, which shows that

|R| ≤ K(δ2 + δ|hδ| + |hδ|2) + K|hu−t − hδ|1[t,t+δ)(u).

Note that

hδ =
t+δ∫
t

ϕN (xε,N (s), xε,N
s , ξε(s)) + ε−1ψN (xε,N (s), xε,N

s , ξε(s))ds.

Assumption (A1) shows that ϕN (xε,N (s), xε,N
s , ξε(s)) +ε−1ψN (xε,N (s), xε,N

s , ξε(s)) is bounded for any given 
ε > 0, which implies that |hδ| ≤ Kδ. This verifies that |R| ≤ Kδ2 + Kδ1[t,t+δ)(u), which implies that 
p- limδ↓0 |R|/δ → 0 as δ → 0. Therefore,

L̂ε,NV
ε,N (t) = DV (t, xε,N (t), xε,N

t ) + ∇V (t, xε,N (t), xε,N
t )p- lim

δ↓0

Eξε

t hδ

δ
. (3.8)

In accordance with the definition of p-lim,

Eξε

t hδ = Eξε

t

t+δ∫
t

ϕN (xε,N (s), xε,N
s , ξε(s)) + ε−1ψN (xε,N (s), xε,N

s , ξε(s))ds,

and ϕN (xε,N (s), xε,N
s , ξε(s)) + ε−1ψN (xε,N (s), xε,N

s , ξε(s)) is bounded from Assumption (A1), so applying 
the Lebesgue Dominated Convergence Theorem,
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p- lim
δ↓0

Eξε

t hδ

δ
= ϕN (xε,N (t), xε,N

t , ξε(t)) + ε−1ψN (xε,N (t), xε,N
t , ξε(t)). (3.9)

Substituting (3.9) into (3.8) gives the desired (3.7). Applying Lemma 2.2 yields that Mε,N
V (t) is a martingale. 

This completes the proof. �
4. Weak convergence and averaged system

To proceed, the following assumptions are needed.

(A2) For any x ∈ Rn and y ∈ D([0, T ]; Rn) as parameters, assume that

Eψ(x, y, ξ(t)) = 0, (4.1a)

Eϕ(x, y, ξ(t)) = ϕ̄(x, y). (4.1b)

Remark 4.1. Lemma 2.3 shows that

|Eh1(u)h2(v) − Eh1(u)Eh2(v)| ≤ κ4φ(v − u)

for u < v, where κ4 is a constant. This, together with Eψi(·, ξ(t)) = Eψj(·, ξ(t)) = 0 in Assumption (A2), 
shows that for each x ∈ Rn and y ∈ D([0, T ]; Rn),

∞∫
0

Eψi(x, y, ξ(t))ψj(x, y, ξ(0))dt ≤ κ4

∞∫
0

φ(t)dt ≤ κ4 max
0≤s<∞

φ1/2(s)
∞∫
0

φ1/2(t)dt < ∞.

Similarly,

∞∫
0

E∇ψ(x, y, ξ(t))ψ(x, y, ξ(0))dt < ∞.

For each x ∈ Rn and y ∈ D([0, T ]; Rn), we can therefore define

1
2S

0
ij(x, y) =

∞∫
0

Eψi(x, y, ξ(t))ψj(x, y, ξ(0))dt, (4.2a)

ψ̄(x, y) =
∞∫
0

E∇ψ(x, y, ξ(t))ψ(x, y, ξ(0))dt (4.2b)

where ψi(·), S0
ij denote the ith component and the ijth entry of ψ(·) and S0(·), respectively. Define

S(x, y) = 1
2[S0(x, y) + (S0(x, y))′],

denote by ρ(x, y) its square root, that is,

S(x, y) = ρ(x, y)ρ′(x, y).
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(A3) The following equation

dx(t) = [ϕ̄(x(t), xt) + ψ̄(x(t), xt)]dt + ρ(x(t), xt)dB(t) (4.3)

has a unique weak solution (uniqueness in the sense of in distribution) on [0, T ] for each continuous 
deterministic initial value x(0), where B(t) is a standard Brownian motion.

Remark 4.2. Nowadays, Assumption (A3) is standard; see [14]. It is a simple way of division of labors. The 
coefficients of SDE (4.3) are concerned with ψ(·) and ϕ(·) of (1.1) and their derivatives (4.1b), (4.2a), and 
(4.2b). For general nonlinear systems, it is difficult to give conditions for coefficients of (1.1) to guarantee 
the existence of unique weak solution to (4.3). When ϕ(·) and ψ(·) have some special forms, for example, 
ϕ(x, y, ξ) = ϕ̂(x, y)ξ and ψ(x, y, ξ) = ψ̂(x, y)ξ, if ξ(t) is a scalar φ-mixing process, then

ϕ̄(x, y) = ϕ̂(x, y)Eξ(t) = 0,

S(x, y) = ψ̂(x, y)ψ̂′(x, y)Σ̃,

ψ̄(x, y) = ∇ψ̂(x, y)ψ̂(x, y)Σ̃,

where Σ̃ = E 
∫∞
0 ξ(u)ξ(0)du. Choose ρ(x, y) = ψ̂(x, y)

√
Σ̃. We can impose conditions on ψ̂(x, y) to ensure 

the weak existence and uniqueness of the equation

dx(t) = ∇ψ̂(x(t), xt)ψ̂(x(t), xt)Σ̃dt + ψ̂(x(t), xt)
√

Σ̃dB(t).

Similar comments apply when ξ appeared additively in the underlying functions such as ϕ(x, y, ξ) = ϕ̂(x, y) +
ξ. However, in general, there are numerous possibilities. It is more convenient to pose a condition as in the 
current form of (A3).

To proceed, for any function v ∈ C2
0 (Rn; R), let us define the operator L from Rn ×D([0, T ]; Rn) to R

such that

L(x, y)v(x) = vx(x)[ϕ̄(x, y) + ψ̄(x, y)] + 1
2Tr[ρ′(x, y)vxx(x)ρ(x, y)]. (4.4)

Let x(t) be the solution of (4.3). Applying the Itô formula to v(x(t)) yields (see [16, Chapter 5])

Mv(t) = v(x(t)) − v(x(0)) −
t∫

0

L(x(s), xs)v(x(s))ds =
t∫

0

vx(x(s))ρ(x(s), xs)dB(s) (4.5)

is a martingale. We say that x(·) solves the martingale problem with operator L(·) if (4.5) holds for any 
v ∈ C2

0 (Rn; R). As was mentioned before, when we work with the N -truncated process, we rewrite the 
operator L(x, y) as LN (x, y). We proceed with the following theorem.

Theorem 4.3. Under assumptions (A1) and (A2), for any N > 0, {xε,N (·)} is tight in D([0, T ]; Rn).

To prove this theorem, we need the following lemma (see [14, Theorem 4, p.48] or [13] for a proof), which 
uses perturbed test function methods.

Lemma 4.4. Let {Xε(·)} be a sequence of Fε
t -measurable processes with paths in D([0, T ]; Rn) satisfying

lim
N →∞

lim supP
{

sup |Xε(t)| ≥ N0

}
= 0 (4.6)
0 ε→0 t≤T
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for each T < ∞. For each f(·) ∈ C3
0 (Rn; R), let there be a sequence {fε(·)} such that fε(·) ∈ D(L̂ε) and 

that {L̂εfε(t); ε > 0, t ≤ T} is uniformly integrable and

lim
ε→0

P
{

sup
t≤T

|fε(t) − f(Xε(t))| ≥ r
}

= 0 for each r > 0. (4.7)

Then Xε(·) is tight in D([0, T ]; Rn).

Proof of Theorem 4.3. To prove the tightness of {xε,N (·)}, we need only verify that the conditions in 
Lemma 4.4 are satisfied. In fact, under the truncation techniques, (4.6) holds. Hence we only need to 
show that for any f(·) ∈ C3

0 (Rn; R), there exists {fε,N (·)} ∈ D(L̂ε,N ) such that {L̂ε,Nfε,N (·)} is uniformly 
integrable and for each r > 0, limε→0 P{supt≤T |fε,N (t) − f(xε,N (t))| ≥ r} = 0, that is, (4.7) holds for the 
truncated process xε,N (t).

Recalling the definition of σ algebras and the corresponding conditional expectations in Remark 2.1, for 
any f(·) ∈ C3

0 (Rn; R), let us define

fε,N
1 (t) := V ε,N

1 (t, xε,N (t), xε,N
t ) = ε−1

T∫
t

fx(xε,N (t))Eξε

t ψN (xε,N (t), xε,N
t , ξε(u))du (4.8)

and fε,N (t) = f(xε,N (t)) + fε,N
1 (t). Making change of variable u/ε2 to u implies that

fε,N
1 (t) = ε

T/ε2∫
t/ε2

fx(xε,N (t))Eξ
t/ε2ψ

N (xε,N (t), xε,N
t , ξ(u))du. (4.9)

Note that fx(·) is bounded since f ∈ C3
0 (Rn; R). By Assumption (A1), for any (x, y) ∈ SN ×D([0, T ]; SN ), 

ψN (x, y, ξ) is bounded for any ξ ∈ Rm. Note that Eψ(x, y, ξ(u)) = 0 for x ∈ Rn and y ∈ D([0, T ]; Rn) in 
(A2) imply that EψN (x, y, ξ(u)) = 0 for any (x, y) ∈ SN ×D([0, T ]; SN ). These, together with Lemma 2.3, 
yield that there exists constant K such that

sup
t≤T

|fε,N
1 (t)| = ε sup

t≤T

∣∣∣ T/ε2∫
t/ε2

fx(xε,N (t))Eξ
t/ε2ψ

N (xε,N (t), xε,N
t , ξ(u))du

∣∣∣

= ε sup
t≤T

∣∣∣ T/ε2∫
t/ε2

fx(xε,N (t))[Eξ
t/ε2ψ

N (xε,N (t), xε,N
t , ξ(u))

−EψN (xε,N (t), xε,N
t , ξ(u))]du

∣∣∣
≤ εK sup

t≤T

[ T/ε2∫
t/ε2

φ
(
u− t

ε2

)
du

]

≤ εK sup
u≥0

φ1/2(u)
∞∫
0

φ1/2(u)du

= O(ε), (4.10)

which implies that limε→0 E[supt≤T |fε,N
1 (t)|] = 0. As a consequence of the Chebyshev inequality, (4.7)

follows for the truncated process xε,N (t).
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Let us prove the uniform integrability of {L̂ε,Nfε,N (·)} and {fε,N (·)} ∈ D(L̂ε,N ). According to definitions 
of fε,N (·) and L̂ε,N , applying Theorem 3.2 gives

L̂ε,Nfε,N (t) = p- lim
δ→0

Eξε

t fε,N (t + δ) − fε,N (t)
δ

= p- lim
δ→0

Eξε

t f(xε,N (t + δ)) − f(xε,N (t))
δ

+ p- lim
δ→0

Eξε

t V ε,N
1 (t + δ, xε,N (t + δ), xε,N

t+δ) − V ε,N
1 (t, xε,N (t), xε,N

t )
δ

= f ′
x(xε,N (t))[ϕN (xε,N (t), xε,N

t , ξε(t)) + ε−1ψN (xε,N (t), xε,N
t , ξε(t))] + L̂ε,Nfε,N

1 (t)

= f ′
x(xε,N (t))[ϕN (xε,N (t), xε,N

t , ξε(t)) + ε−1ψN (xε,N (t), xε,N
t , ξε(t))]

+ DV ε,N
1 (t, xε,N (t), xε,N

t ))

+ ∇V ε,N
1 (t, xε,N (t), xε,N

t )[ϕN (xε,N (t), xε,N
t , ξε(t)) + ε−1ψN (xε,N (t), xε,N

t , ξε(t))].

(4.11)

We have that

DV ε,N
1 (t, xε,N (t), xε,N

t )) = −ε−1f ′
x(xε,N (t))ψN (xε,N (t), xε,N

t , ξε(t)). (4.12)

Now let us calculate the vertical derivative of the functional V ε
1 (t, xε,N (t), xε,N

t ). We have

∇V ε,N
1 (t, xε,N (t), xε,N

t ) = ε

T/ε2∫
t/ε2

∇[fx(xε,N (t))Eξ
t/ε2ψ

N (xε,N (t), xε,N
t , ξ(u))]du

= ε

T/ε2∫
t/ε2

[fx(xε,N (t))Eξ
t/ε2ψ

N (xε,N (t), xε,N
t , ξ(u))]ydu

+ε

T/ε2∫
t/ε2

∂[fx(xε,N (t))Eξ
t/ε2ψ

N (xε,N (t), xε,N
t , ξ(u))]du

=
3∑

i=1
Iε,N1i (t, xε,N (t), xε,N

t ), (4.13)

where

Iε,N11 (t, x, y) = ε

T/ε2∫
t/ε2

fxx(x)Eξ
t/ε2ψ

N (x, y, ξ(u))du,

Iε,N12 (t, x, y) = ε

T/ε2∫
t/ε2

fx(x)Eξ
t/ε2ψ

N
x (x, y, ξ(u))du,

Iε,N13 (t, x, y) = ε

T/ε2∫
2

fx(x)Eξ
t/ε2 [∂ψ

N (x, y, ξ(u))]du.

t/ε
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Note that fxx(x) is bounded since f ∈ C3
0 (Rn; R). The same technique as the one in the estimation of 

fε,N
1 (·) in (4.10) yields

sup
t≤T

|Iε11(t, x, y)| = ε sup
t≤T

∣∣∣ T/ε2∫
t/ε2

[fxx(x)Eξ
t/ε2ψ

N (x, y, ξ(u))]′du
∣∣∣

≤ εK sup
t≤T

[ T/ε2∫
t/ε2

φ
(
u− t

ε2

)
du

]
= O(ε). (4.14)

Note that (A1) also implies that ψN
x (x, y, ξε(t)) and ∂ψN (x, y, ξε(t)) are bounded. These imply that

EψN
x (x, y, ξ(t)) = [EψN (x, y, ξ(t))]x = 0,

and

E[∂ψN (x, y, ξ(t))] = ∂[EψN (x, y, ξ(t))] = 0.

Then similar technique to (4.14) gives

sup
t≤T

|Iε12(t, x, y)| = ε sup
t≤T

∣∣∣ T/ε2∫
t/ε2

fx(x)Eξ
t/ε2ψ

N
x (x, y, ξ(u))du

∣∣∣

= ε sup
t≤T

∣∣∣ T/ε2∫
t/ε2

fx(x)[Eξ
t/ε2ψ

N
x (x, y, ξ(u)) − EψN

x (x, y, ξ(u))]du
∣∣∣

≤ εK sup
t≤T

[ T/ε2∫
t/ε2

φ
(
u− t

ε2

)
du

]
= O(ε), (4.15)

and

sup
t≤T

|Iε13(t, x, y)| = O(ε). (4.16)

Substituting (4.14)–(4.16) into (4.13) yields

∇V ε,N
1 (t, xε,N (t), xε,N

t )[ϕN (xε,N (t), xε,N
t , ξε(t)) + ε−1ψN (xε,N (t), xε,N

t , ξε(t))]

= O(ε) +
T/ε2∫
t/ε2

Eξ
t/ε2 [ψ

N (xε,N (t), xε,N
t , ξ(u))]′dufxx(xε,N (t))ψN (xε,N (t), xε,N

t , ξε(t))

+
T/ε2∫

2

fx(x)Eξ
t/ε2∇ψN (xε,N (t), xε,N

t , ξ(u))duψN (xε,N (t), xε,N
t , ξε(t)), (4.17)
t/ε
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since ϕN (xε,N (t), xε,N
t , ξε(t)) is bounded. Substituting (4.17) and (4.12) into (4.11) yields

L̂ε,Nfε,N (t) = O(ε) + fx(xε,N (t))ϕN (xε,N (t), xε,N
t , ξε(t))

+
T/ε2∫
t/ε2

Eξ
t/ε2 [ψ

N (xε,N (t), xε,N
t , ξ(u))]′dufxx(xε,N (t))ψN (xε,N (t), xε,N

t , ξε(t))

+
T/ε2∫
t/ε2

fx(xε,N (t))Eξ
t/ε2∇ψN (xε,N (t), xε,N

t , ξ(u))duψN (xε,N (t), xε,N
t , ξε(t)).

(4.18)

According to Assumption (A1), ψN (x, y, ξ), ∇ψN (x, y, ξ) are bounded for any (x, y) ∈ SN ×D([0, T ]; SN ). 
The uniform integrability therefore follows. Moreover, fε,N(·) ∈ D(L̂ε,N ). As a consequence of Lemma 4.4, 
{xε,N (·)} is tight in D([0, T ]; Rn). �
Theorem 4.5. If (A1)-(A3) hold, then {xε(·)} is tight in D([0, T ]; Rn), and the limit of any weakly convergent 
subsequence satisfies equation (4.3) with the same initial value as xε(0) = x(0).

In the following, we need to establish the weak convergence and characterize the weak limit. To do this, 
we shall apply the following lemma (see [19,25]).

Lemma 4.6. Let Xε(·) be Rn-valued and defined on [0, T ], with the initial value X(0) being deterministic. 
Let {Xε(·)} be tight on D([0, T ]; Rn). Suppose (A3) holds and L(·) is the corresponding operator defined by 
(4.4). For each f(·) ∈ C3

0 (Rn; R) (or any dense subset of it), each T < ∞, there exists F ε(·) ∈ D(L̂ε) such 
that

p- lim
ε→0

[F ε(·) − f(Xε(·))] = 0, (4.19)

and

p- lim
ε→0

[L̂εF ε(·) − L(·, Xε
· )f(Xε(·))] = 0. (4.20)

Then, Xε(·) ⇒ x(·), where x(·) is the weak solution of the stochastic differential equation (4.3).

Remark 4.7. Similar to the proof of tightness, we use the perturbed test functional method to examine the 
weak convergence. Introducing the perturbed test functionals allows us to eliminate the noise terms ξε(t)
through averaging, and obtain the desired terms in the limit. A distinct feature of this averaging procedure 
is that the fast-changing variable ξε(t) is averaged out. In this procedure, the slow-changing variable xε(t)
and the corresponding functional term xε

t are treated as parameters.

According to the definition of p-lim, to prove (4.19) for xε(t), for any f(·) ∈ C3
0 (Rn; R), we need to look 

for function F ε(·) ∈ D(L̂ε) and verify the following conditions:

⎧⎨⎩ sup
t,ε

E|F ε(t) − f(xε(t))| < ∞,

lim E|F ε(t) − f(xε(t))| = 0 for each t.

ε→0
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Using the truncation technique, for xε,N(t), we need to look for the function F ε,N (·) ∈ D(L̂ε,N ) and verify 
the corresponding conditions ⎧⎨⎩ sup

t,ε
E|F ε,N (t) − f(xε,N (t))| < ∞,

lim
ε→0

E|F ε,N (t) − f(xε,N (t))| = 0 for each t.
(4.21)

Similarly, to prove (4.20) for the above xε,N (t) and f(·), we need to verify the conditions⎧⎨⎩ sup
t,ε

E|L̂ε,NF ε,N (t) − LN (xε,N (t), xε,N
t )f(xε,N (t))| < ∞,

lim
ε→0

E|L̂ε,NF ε,N (t) − LN (xε,N (t), xε,N
t )f(xε,N (t))| = 0 for each t.

(4.22)

Proof of Theorem 4.5. We first prove the assertion of this theorem for xε,N(t). For any f(·) ∈ C3
0 (Rn; R), 

to use the perturbed test functional method, we need to prove (4.21) and (4.22). Let us define

V ε,N
2 (t, x, y) =

T∫
t

T/ε2∫
v/ε2

{[Eξ
t/ε2fxx(x)ψN (x, y, ξ(u))]ψN (x, y, ξε(v))

−E[fxx(x)ψN (x, y, ξ(u))]ψN (x, y, ξε(v))}dudv, (4.23)

V ε,N
3 (t, x, y) =

T∫
t

T/ε2∫
v/ε2

fx(x){Eξ
t/ε2 [∇ψN (x, y, ξ(u))]ψN (x, y, ξε(v))

−E[∇ψN (x, y, ξ(u))]ψN (x, y, ξε(v))}dudv, (4.24)

V ε,N
4 (t, x, y) =

T∫
t

Eξ
t/ε2fx(x)[ϕN (x, y, ξε(u)) − ϕ̄N (x, y)]du, (4.25)

and

fε,N
i (t) = Vi(t, xε,N (t), xε,N

t ) for i = 2, 3, 4.

Define

F ε,N (t) = f(xε,N (t)) +
4∑

i=1
fε,N
i (t).

Making change of variable u/ε2 to u gives

V ε,N
2 (t, x, y) = ε2

T/ε2∫
t/ε2

T/ε2∫
v

{[Eξ
t/ε2fxx(x)ψN (x, y, ξ(u))]′ψN (x, y, ξ(v))

−E[fxx(x)ψN (x, y, ξ(u))]′ψN (x, y, ξ(v))}dudv, (4.26)

V ε,N
3 (t, x, y) = ε2

T/ε2∫
t/ε2

T/ε2∫
v

fx(x){Eξ
t/ε2 [∇ψN (x, y, ξ(u))]ψN (x, y, ξ(v))

−E[∇ψN (x, y, ξ(u))]ψN (x, y, ξ(v))}dudv, (4.27)
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V ε,N
4 (t, x, y) = ε2

T/ε2∫
t/ε2

Eξ
t/ε2fx(x)[φN (x, y, ξ(u)) − φ̄N (x, y)]du. (4.28)

According to Assumption (A1), for any (x, y) ∈ SN ×D([0, T ]; SN ), ψN (x, y, ξ) is bounded for any ξ ∈ Rm. 
Applying Lemma 2.3, together with the property of φ(·) and the boundedness of fxx(·), gives

∣∣∣ T/ε2∫
t/ε2

T/ε2∫
v

{[Eξ
t/ε2ψ

N (x, y, ξ(u))]′ψN (x, y, ξ(v)) − E[ψN (x, y, ξ(u))]′ψN (x, y, ξ(v))}dudv
∣∣∣

≤ K

T/ε2∫
t/ε2

φ1/2
(
v − t

ε2

)
dv

T/ε2∫
v

φ1/2(u− v)du < ∞,

which shows

E sup
t≤T

|V2(t, xε,N (t), xε,N
t )| = O(ε2). (4.29)

Similar techniques to (4.29) yield

E sup
t≤T

|V3(t, xε,N (t), xε,N
t )| = O(ε2) (4.30)

and

E sup
t≤T

|V4(t, xε,N (t), xε,N
t )| = O(ε2). (4.31)

(4.29)–(4.31), together with (4.10) give

p- lim
ε→0

[F ε,N (t) − f(xε,N (t))] = 0. (4.32)

Note that f(·) is bounded. Thus (4.21) is proved. Then let us consider Lε,NF ε,N (t). Similar to (4.11),

L̂ε,NF ε,N (t)

= p- lim
δ↓0

Eξε

t F ε,N (t + δ) − F ε,N (t)
δ

= df(xε,N (t))
dt

+
4∑

i=1
L̂ε,Nfi(t)

= f ′
x(xε,N (t))[ϕN (xε,N (t), xε,N

t , ξε(t)) + ε−1ψN (xε,N (t), xε,N
t , ξε(t))]

+
4∑

i=1
DV ε,N

i (t, xε,N (t), xε,N
t )

+
4∑

i=1
∇V ε,N

i (t, xε,N (t), xε,N
t )[ϕN (xε,N (t), xε,N

t , ξε(t)) + ε−1ψN (xε,N (t), xε,N
t , ξε(t))].

(4.33)

We have that
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DV ε,N
2 (t, x, y) = −

T/ε2∫
t/ε2

fxx(x)Eξ
t/ε2ψ

N (x, y, ξ(u))duψN (x, y, ξε(t))

+
T/ε2∫
t/ε2

[Efxx(x)ψN (x, y, ξ(u))]′ψN (x, y, ξε(t))du,

DV ε,N
3 (t, x, y) = −

T/ε2∫
t/ε2

fx(x)Eξ
t/ε2 [∇ψN (x, y, ξ(u))]duψN (x, y, ξε(t))

+
T/ε2∫
t/ε2

fx(x)E[∇ψN (x, y, ξ(u))]duψN (x, y, ξε(t)),

DV ε,N
4 (t, x, y) = −fx(x)ϕN (x, y, ξε(t)) + fx(x)ϕ̄N (x, y).

One can compute that

∇V N
2 (t, x, y) = ε2

T/ε2∫
t/ε2

T/ε2∫
v

∇{[Eξ
t/ε2fxx(x)ψN (x, y, ξ(u))]′ψN (x, y, ξ(v))

−E[fxx(x)ψN (x, y, ξ(u))]′ψN (x, y, ξ(v))}dudv

= ε2Iε21(t, x, y) + ε2Iε22(t, x, y), (4.34)

where

Iε21(t, x, y) =
T/ε2∫
t/ε2

T/ε2∫
v

{[Eξ
t/ε2fxx(x)ψN (x, y, ξ(u))]′ψN (x, y, ξ(v))

−E[fxx(x)ψN (x, y, ξ(u))]′ψN (x, y, ξ(v))}xdudv

and

Iε22(t, x, y) =
T/ε2∫
t/ε2

T/ε2∫
v

∂{[Eξ
t/ε2fxx(x)ψN (x, y, ξ(u))]′ψN (x, y, ξ(v))

−E[fxx(x)ψN (x, y, ξ(u))]′ψN (x, y, ξ(v))}xdudv.

According to Assumption (A1), ψN(x, y, ξ(u))) is bounded. These, together with Lemma 2.3 and the prop-
erties of φ(·) show that

sup
t≤T

|Iε21(t, x, y)| = sup
t≤T

∣∣∣ T/ε2∫
t/ε2

T/ε2∫
v

{Eξ
t/ε2 [(fxx(x)ψN (x, y, ξ(u)))′ψN (x, y, ξ(v))]x

−E[(fxx(x)ψN (x, y, ξ(u)))′ψN (x, y, ξ(v))]x}dudv
∣∣∣
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= sup
t≤T

T/ε2∫
t/ε2

φ1/2
(
v − t

ε2

)
dv

T/ε2∫
v

φ1/2(u− v)du

< ∞.

Similarly,

sup
t≤T

|Iε22(t, x, y)| < ∞.

These imply

∇V ε,N
2 (t, x, y)[ϕN (x, y, ξε(t)) + ε−1ψN (x, y, ξε(t))] = O(ε).

This, together with DV ε,N
2 (t, x, y), gives that

L̂ε,Nf2(t) = O(ε) +
T/ε2∫
t/ε2

[Efxx(xε,N (t))ψN (xε,N (t), xε,N
t , ξ(u))]′ψN (xε,N (t), xε,N

t , ξε(t))du

−
T/ε2∫
t/ε2

fxx(xε,N (t))Eξ
t/ε2ψ

N (xε,N (t), xε,N
t , ξ(u))duψN (xε,N (t), xε,N

t , ξε(t)).

(4.35)

Let us compute ∇V ε,N
3 (t, x, y).

∇V N
3 (t, x, y) = ε2

T/ε2∫
t/ε2

T/ε2∫
v

∇{fx(x)[Eξ
t/ε2(∇ψN (x, y, ξ(u)))ψN (x, y, ξ(v))

−E(∇ψN (x, y, ξ(u)))ψN (x, y, ξ(v))]}dudv

= ε2

T/ε2∫
t/ε2

T/ε2∫
v

Eξ
t/ε2∇{fx(x)(∇ψN (x, y, ξ(u)))ψN (x, y, ξ(v))}

−E∇{fx(x)(∇ψN (x, y, ξ(u)))ψN (x, y, ξ(v))}dudv.

(4.36)

Define h(2)(x, y; u, v) = ∇{fx(x)(∇ψN (x, y, ξ(u)))ψN (x, y, ξ(v)). Then

h(2)(x, y;u, v) = ∇{fx(x)[ψN
x (x, y, ξ(u)) + ∂ψN (x, y, ξ(u))]ψN (x, y, ξ(v))}

= fxx(x)[ψN
x (x, y, ξ(u)) + ∂ψN (x, y, ξ(u))]ψN (x, y, ξ(v))

+fx(x)[ψN
xx(x, y, ξ(u)) + ∂ψN

x (x, y, ξ(u))]ψN (x, y, ξ(v))

+fx(x)[ψN
x (x, y, ξ(u)) + ∂ψN (x, y, ξ(u))]ψN

x (x, y, ξ(v))

+fx(x)[∂ψN
x (x, y, ξ(u)) + ∂2ψN (x, y, ξ(u))]ψN (x, y, ξ(v))

+fx(x)[ψN
x (x, y, ξ(u)) + ∂ψN (x, y, ξ(u))]∂ψN (x, y, ξ(v)).
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Assumption (A1) shows that for any (x, y) ∈ SN ×D([0, T ]; SN ) and any ξ ∈ Rm, ψN (x, y, ξ), ψN
x (x, y, ξ), 

∂ψN (x, y, ξ), ψN
xx(x, y, ξ), ∂ψN

x (x, y, ξ) and ∂2ψN (x, y, ξ) are bounded. Applying Lemma 2.3 yields

∇V N
3 (t, x, y) = ε2K

T/ε2∫
t/ε2

φ1/2
(
v − t

ε2

)
dv

T/ε2∫
v

φ1/2(u− v)du = O(ε2),

which implies

∇V ε,N
3 (t, x, y)[ϕN (x, y, ξε(t)) + ε−1ψN (x, y, ξε(t))] = O(ε).

This, together with DV ε,N
3 (t, x, y), leads to that

L̂ε,Nf3(t) = O(ε2) +
T/ε2∫
t/ε2

fx(xε,N (t))E[∇ψN (xε,N (t), xε,N
t , ξ(u))]duψN (xε,N (t), xε,N

t , ξε(t)

−
T/ε2∫
t/ε2

fx(xε,N (t))Eξ
t/ε2 [∇ψN (xε,N (t), xε,N

t , ξ(u))]duψN (xε,N (t), xε,N
t , ξε(t)).

(4.37)

Let us compute ∇V ε,N
4 (t, xε,N (t), xε,N

t ). Using the same technique as the above estimate,

∇V ε,N
4 (t, x, y) = ε2

T/ε2∫
t/ε2

∇Eξ
t/ε2fx(x)[ϕN (x, y, ξ(u)) − ϕ̄N (x, y)]du

= ε2

T/ε2∫
t/ε2

fx(x)[Eξ
t/ε2∇ϕN (x, y, ξ(u)) −∇ϕ̄N (x, y)]du

= O(ε2), (4.38)

which, together with DV ε,N
4 (t, x, y) implies that

L̂ε,Nf4(t) = −f ′
x(xε,N (t))[ϕN (xε,N (t), xε,N

t , ξε(t)) − ϕ̄N (xε,N (t), xε,N
t )]

+O(ε2)[ϕN (xε,N (t), xε,N
t , ξε(t)) + ε−1ψN (xε,N (t), xε,N

t , ξε(t))]

= −f ′
x(xε,N (t))[ϕN (xε,N (t), xε,N

t , ξε(t)) − ϕ̄N (xε,N (t), xε,N
t )] + O(ε). (4.39)

(4.12), (4.17), (4.35), (4.37), and (4.39) yield that

L̂ε,NF ε,N (t) = f ′
x(xε,N (t))[ϕN (xε,N (t), xε,N

t , ξε(t)) + ε−1ψN (xε,N (t), xε,N
t , ξε(t))]

+O(ε) − ε−1f ′
x(xε,N (t))ψN (xε,N (t), xε,N

t , ξε(t))

−f ′
x(xε,N (t))ϕN (xε,N (t), xε,N

t , ξε(t)) + f ′
y(xε,N (t))ϕ̄N (xε,N (t), xε,N

t )

+
T/ε2∫

2

[Efxx(xε,N (t))ψN (y, x, ξ(u))]′ψN (xε,N (t), xε,N
t , ξε(t))du
t/ε
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+
T/ε2∫
t/ε2

fx(xε,N (t))E(∇ψN (y, x, ξ(u)))ψN (xε,N (t), xε,N
t , ξε(t))du

= O(ε) + f ′
x(xε,N (t))ϕ̄N (xε,N (t), xε,N

t )

+
T/ε2∫
t/ε2

[Efxx(xε,N (t))ψN (xε,N (t), xε,N
t , ξ(u))]′ψN (xε,N (t), xε,N

t , ξε(t))du

+
T/ε2∫
t/ε2

fx(xε,N (t))E(∇ψN (xε,N (t), xε,N
t , ξ(u)))ψN (xε,N (t), xε,N

t , ξε(t))du.

(4.40)

Let fxxij(x) be the ijth entry of fxx(x) and S0,N
ij (x, y) be the truncation of function of S0

ij(x, y), respectively. 
In view of Remark 4.1, as ε → 0,

T/ε2∫
t/ε2

[Efxx(x)ψN (x, y, ξ(u))]′ψN (x, y, ξε(t))du

→
∞∫
0

[Efxx(x)ψN (x, y, ξ(u))]′ψN (x, y, ξ(0))du = 1
2
∑
i,j

fxxij(x)S0,N
ij (x, y) (4.41)

and

T/ε2∫
t/ε2

fx(x)E(∇ψN (x, y, ξ(u)))ψN (x, y, ξε(t))du

→
∞∫
0

fx(x)E(∇ψN (x, y, ξ(u)))ψN (x, y, ξ(0))du = fx(x)ψ̄N (x, y). (4.42)

These two limits, together with (4.40), yield that

L̂ε,NF ε,N (t) − [f ′
x(xε,N (t))[ϕ̄N (xε,N (t), xε,N

t ) + ψ̄N (xε,N (t), xε,N
t )]

+1
2
∑
i,j

fxxij(xε,N (t))S0,N
ij (xε,N (t), xε,N

t )] → 0 (4.43)

as ε → 0. Applying the generator LN defined by (4.4) with truncation technique to the solution process 
xε,N (t) in the stochastic truncated functional differential equation (3.4) yields

LN (x, y)f(x) = f ′
x(x)[ϕ̄N (x, y) + ψ̄N (x, y)] + 1

2
∑
i,j

fxxij(x)S0,N
ij (x, y),

which implies that

L̂ε,NF ε,N (t) − LN (xε,N (t), xε,N
t )f(xε,N (t)) → 0, (4.44)
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as ε → 0, which implies (4.20). This, together with (4.32) yields xε,N (·) ⇒ xN (·) as ε → 0 by virtue of 
Lemma 4.6, where xN (·) solves the martingale problem with operator LN .

Moving from the truncated processes to that of un-truncated processes, the argument is similar to that 
of [14, p.46]. For any continuous deterministic initial value x(0), let P (·) and PN (·) denote the probabilities 
induced by x(·) and xN (·), respectively, on the Borel sets of D([0, T ]; Rn). By (A3), the martingale problem 
has a unique solution for each x(0), so P (·) is unique. For each T < ∞, the uniqueness of P (·) implies 
that P (·) agrees with PN (·) on all Borel sets of the set of paths in D([0, T ]; SN ) for each t ≤ T . However, 
P{supt≤T |x(t)| ≤ N} → 1 as N → ∞. This together with the weak convergence of xε,N(·) implies that 
xε(·) ⇒ x(·). Moreover, the uniqueness implies that the limit does not depend on the chosen subsequences. 
The proof is thus completed. �
5. Integro-differential equations under wideband noise perturbation

There are many important classes of differential equations that satisfy (1.1). As a special class, this 
section examines the following integro-differential equation with the wideband noise perturbation

ẋε(t) = ζ
(
xε(t),

t∫
0

κ(t− s)xε(s)ds, ξε(t)
)

+ ε−1ς
(
xε(t),

t∫
0

κ(t− s)xε(s)ds, ξε(t)
)

(5.1)

with the deterministic initial data x(0) ∈ Rn, where ζ, ς : Rn × Rn × Rm 	→ Rn. Define yε(t) =
∫ t

0 κ(t −
s)xε(s)ds. It is clear that both ζ(·) and ς(·) are functions. Then Assumption (A1) may be simplified as

(A1’) ζ(·, ·, ·), ς(·, ·, ·), ςx(·, ·, ·), ςy(·, ·, ·) are continuous for any (x, y, ξ) ∈ Rn × Rn × Rm, and ςxx(·, ·, ξ), 
ςxy(·, ·, ξ) and ςyy(·, ·, ξ) are bounded for any ξ ∈ Rm on G ×G, where G ⊂ Rn is a compact set.

Assumptions (A2) and (A3) can also be rewritten as

(A2’) For any x, y ∈ Rn as parameters, assume that

Eς(x, y, ξ(t)) = 0, (5.2a)
Eζ(x, y, ξ(t)) = ζ̄(x, y). (5.2b)

For each x, y ∈ Rn, denote

1
2S

0
ij(x, y) =

∞∫
0

Eςi(x, y, ξ(t))ςj(x, y, ξ(0))dt, (5.3a)

ς̄(x, y) =
∞∫
0

E[ςx(x, y, ξ(t)) + ςy(x, y, ξ(t))]ς(x, y, ξ(0))dt, (5.3b)

S(x, y) = 1
2[S0(x, y) + (S0(x, y))′],

and ρ(x, y) is its square root, that is, S(x, y) = ρ(x, y)ρ′(x, y).

(A3’) The following equation

dx(t) =
[
ζ̄
(
x(t),

t∫
κ(t− s)x(s)ds

)
+ ς̄

(
x(t),

t∫
κ(t− s)x(s)ds

)]
dt
0 0
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+ρ
(
x(t),

t∫
0

κ(t− s)x(s)ds
)
dB(t) (5.4)

has a unique weak solution on [0, T ] for each deterministic initial value x(0), where B(t) is a standard 
Brownian motion.

Applying Theorem 4.5 leads to the following result.

Theorem 5.1. Under Assumptions (A1’)–(A3’), the solution {xε(·)} of (5.1) is tight in D([0, T ]; Rn) and the 
limit of any weakly convergent subsequence satisfies (5.4) with the same initial value x(0).

As an example, let us consider the Lotka-Volterra integro-differential equation (1.3) perturbed by wide-
band noise of the form

ẋε(t) = diag(xε
1(t), . . . , xε

n(t))
[
A(t) −D(t)xε(t) −

t∫
0

κ1(t− s)xε(s)ds
]

+1
ε
Σ
(
xε(t),

t∫
0

κ2(t− s)xε(s)ds
)
ξε(t),

(5.5)

where diag(x1, . . . , xn) denotes the diagonal matrix with the indicated diagonal entries, A(t) and D(t) are 
continuous n ×n matrix-valued functions, κi(·) for i = 1, 2 are appropriate kernel functions with compatible 
dimensions, Σ(x, y) is an n ×n matrix-valued function whose partial derivatives up to the second order with 
respect to x and y are continuous and ξε(t) is the wideband noise as mentioned before. Nevertheless, it can 
be unbounded.

Let us define

S = E

∞∫
0

ξ(u)ξ′(0)du + E

∞∫
0

ξ(0)ξ′(u)du (5.6)

and

Bε(t) = 1
ε

t∫
0

ξε(u)du = ε

t/ε2∫
0

ξ(u)du.

Then we have the following lemma.

Lemma 5.2. Bε(·) converges weakly to a Brownian motion B(·) with covariance St, where S is given by 
(5.6).

Lemma 5.2 is essentially a continuous-time version of Theorem 7.3.3 in [6, pp. 353]; see also Remark 7.3.4 
in [6]. A proof can be carried out similar to the aforementioned theorem with modification to the continuous 
time case. We omit the verbatim argument.

With the above lemma at our hand, using the averaging argument as presented in this paper, we can 
show that xε(·) converges weakly to x(·) such that x(·) satisfies the following differential functional equation
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dx(t) = diag(x1(t), . . . , xn(t))
[
A(t) −D(t)x(t) −

t∫
0

κ1(t− s)x(s)ds
]
dt

+
[
Σx

(
x(t),

t∫
0

κ2(t− s)x(s)ds
)

+ Σy

(
x(t),

t∫
0

κ2(t− s)x(s)ds
)]

×
[
Σ
(
x(t),

t∫
0

κ2(t− s)x(s)ds
)
dt
]
Sdt

+Σ
(
x(t),

t∫
0

κ2(t− s)x(s)ds
)
S1/2dB(t),

(5.7)

where B(·) is a standard n-dimensional Brownian motion and S1/2 is the ‘square root’ matrix satisfying 
S1/2(S1/2)′ = S.

In lieu of the conditions above, we can deal with unbounded noise. In such a case, we may assume 
that Σ(·, ·) is bounded and continuous together with its patrial derivatives with respect to x and y up 
to the second order, and that ξ(·) satisfies for some Δ > 0, E|ξ(t)|2+Δ < ∞ and 

∫∞
0 [φ(u)]Δ/(1+Δ)du <

∞, where instead of the ∞ norm, we use the p = (2 + Δ)/(1 + Δ) norm. Then the result above still 
holds.
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