Journal of Mathematical Analysis and Applications 252, 675-695 (2000)
d0i:10.1006 /jmaa.2000.7094, available online at http: //www.idealibrary.com on Iﬂikl®

A Generalization for Fourier Transforms of a Theorem
due to Marcinkiewicz

Ferenc Weisz'

Department of Numerical Analysis, Edtvés L. University, H-1117 Budapest,
Pazmany P. sétany 1 /D, Hungary
E-mail: weisz@ludens.elte.hu

Submitted by Daniel Waterman

Received December 17, 1998

It is shown that the maximal operator of the Marcinkiewicz means of a tempered
distribution is bounded from H,(R?) to L,(R?) for all p; < p < and, conse-
quently, is of weak type (1,1), where p, < 1. As a consequence we obtain a
generalization for Fourier transforms of a summability result due to Marcinkiewicz
and Zhizhiashvili, more exactly, the Marcinkiewicz means of a function f € L,(R?)
converge a.e. to the function in question. Moreover, we prove that the
Marcinkiewicz means are uniformly bounded on the spaces HP(RZ) and so they
converge in the norm (p, < p < «). Similar results for the Riesz transforms are
also given. © 2000 Academic Press

Key Words: Hardy spaces; p-atom; atomic decomposition; interpolation;
Marcinkiewicz means.

1. INTRODUCTION

The Hardy—-Lorentz space H, (Rz) of tempered distributions are intro-
duced with the L, (RZ) Lorentz norm of the nontangential maximal
function. Of course, H ,(R*) = H, (R?) are the usual Hardy spaces (0 < p
< ).

For multidimensional trigonometric—Fourier series Marcinkiewicz and
Zygmund [7] proved that the Fejér means s!f of a function fe L,(T%)
converge a.e. to f as min(n,...,n,) — o provided that » is in a positive
cone, i.e., provided that 277 < n, /n; < 27 for every k,j = 1,..., d and for
some 7> 0 (n = (n,...,n,) € N9).

! This research was performed while the author was visiting the Humboldt University in
Berlin and supported by the Alexander von Humboldt Foundation.
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Recently the author [13] obtained the same convergence result for the
Cesaro means s,* by proving the weak (L,, L,) inequality
sup pA(s$f > p) < Cliflh  (f€L(T)),

p>0

where ¢§ = lo*, a=(ap,...,a,), and 0 < @, < 1.

- Sup2 T<nk/n <27
k,j= d

.....

Moreover the author [13] verified that s is bounded from H (T") to

LT if py <p <o and 0 < g < %, where p, < 1. In the one-dimen-
51onal case these results for Fourier transforms and Riesz means are
described in Weisz [14].

Marcinkiewicz [8] verified for two-dimensional Fourier series that the
Marcinkiewicz means ¢,*f of a function f € L log L(T?) converge a.e. to
f as n — o where «a = 1. Later Zhizhiashvili [17, 18] extended this result
toall f€ L(T?) and toall 0 < a < <.

In this paper we introduce the Marcinkiewicz means of Fourier trans-
forms and generalize the results above. We will show that the maximal
operator o7 of these Marcinkiewicz means is bounded from H, (Rz) to

1. ,R?) whenever p, <p <%, 0<g<o®, and 0 < a <, Note that
p0 < 1 depends only on «. We 1ntroduce the Riesz transforms f) = R, f
(i = 1,2), the Marcinkiewicz means of the Riesz transforms & *7, and
the corresponding maximal operators & { “”. We obtain that the operator
o7 is also of type (H, (R*,L, (R*) if p,<p <, 0<q <o,
and of weak type (L,(R?), L,(R?)).

A usual density argument implies then that the Marcinkiewicz means
o 7f converge a.e. to f and the Marcinkiewicz means of the Riesz
transforms & ©7f converge a.e. to f) as T — oo, provided that f e
L,(R?). Note that f@® is not necessarily integrable whenever f is.

We will prove also that the operators oY and ¢{”**7 (T € R,) are
uniformly bounded from H, (R*) to H, (R*)if p, <p <=, 0<g <=
From this it follows that ch 7f f and &(’) ©7f - @ in the H, (R
norm as T — .

I thank the referee for reading the paper carefully and for his useful
comments.

2. THE HP(RZ) HARDY SPACES AND RIESZ TRANSFORMS

Let R denote the real numbers, R, the positive real numbers, and A the
two-dimensional Lebesgue measure. We also use the notation |/] for the
Lebesgue measure of the set 1. We write L, instead of the real LP(RZ, Y

space endowed with the norm [|fl, == (fg:lfI” dM)? (0 < p < ).
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The distribution function of a two-dimensional Lebesgue-measurable
function f is defined by

MIfI> p) = AM{(x, ) : [ f(x,9)| > p})  (p=0).

The weak L, space L (0 < p < =) consists of all measurable functions f
for which

£y = sup pA(If] > p)'/” < o0
p>0

while we set L% = L.

The spaces L% are special cases of the more general Lorentz spaces

L, ,. For a measurable function f of the nonincreasing rearrangement is
defined by

f(1) =inf{ p: MIf] > p) < 1}.

The Lorentz space L, , is defined as follows: for 0 < p <%, 0 < g < o,

p.q

dt 1/q
11l ¢ (/ f(e)tare _) ,
while for 0 <p < =

lf1l,» == sup tl/”f(t).

t>0

Let
Lyg= Lp,q(Rza A) = {fillfllpq <
One can then show the equalities
L,,=L,L,.=L} (0 <p <,
(see e.g. Bennett and Sharpley [1] or Bergh and Lofstrom [2]).
We are going to introduce the H, Hardy space. Let f be a tempered

distribution on C*(R?). The Fourier transform of f is denoted by f. In
special case, if f is an integrable function then

N 1
_ —ulx—uy
fleuy = 5= [ f(x.9)e dedy  (t,u €R)
where 1 =v—1.

For a tempered distribution f and ¢ > 0 define the harmonic function
u by

u(x,y,t) = (f*P,)(x,y)
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where = denotes the convolution and

ct

P(x,y) = (t2+x2+y2)3/2 (x,y €R)

is the Poisson kernel. Let T = {(x,y,1):y/x? +y? <1}, a cone whose
vertex is the origin. We denote by I'(x, y) (x, y € R) the translate of T so
that its vertex is (x, y). The nontangential maximal function is defined by

u (x,y) = sup  Ju(x',y, 1)
'y, 0el(x,y)

For 0 < p,q < o the Hardy-Lorentz space H, (R*) = H, , consists of

>4
all tempered distributions f for which u* € L, _, and we set

p,q’

Wfllw, =l g

Note that in the case p = g the usual definition of Hardy spaces H, , = H,
is obtained. Recall that L, € H, .. or, more exactly,

£, . = sup pA(u* > p) < Clifl (fELy). (1)

p>0

Moreover, H, , ~ L, , for 1 <p <, 0 <q < %, where ~ denotes the
equivalence of the norms and spaces (see Fefferman and Stein [5], Stein
[10], and Fefferman et al. [4]).

The following interpolation result concerning Hardy—Lorentz spaces will
be used several times in this paper (see Fefferman et al., Riviere and
Sagher [4, 9], and also Weisz [12]).

THEOREM A. If a sublinear (resp. (linear) operator V is bounded from
H, to L, (resp.to H,) and from L, to L, (p, <1 <p, <) then it is

also bounded from H,,  to L, ,(resp.toH, )ifp, <p <p,and 0 <q < .

_ For a tempered distribution f € H, (0 <p < ) the Riesz transforms
f@:=R,f (i = 1,2) are defined by

oA t N
(f(l)) (t,u) = —Lﬁf(t,u),

FOV (1) = — 1 (1, 1),
(f ) (t,u) mf(ta )

We use the notation f® :=f. As is well known, if f is an integrable
function then the conjugate functions f@ (i = 1,2) do exist almost every-
where, but they are not integrable, in general.
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Fefferman and Stein [5], and Stein [10, 11] verified that if fe H,
(0 < p < =) then the Riesz transforms are also in H, and

[ 70N, < € Ifll, (i =1,2). (2)
Furthermore, if 1/2 < p < = then the following equivalence holds:
f e, ~ F 1, + 70T, +1 71, (3)

3. MARCINKIEWICZ SUMMABILITY OF
TWO-DIMENSIONAL FOURIER TRANSFORMS

The definition of the Fourier transform can be extended to functions
from f€ L, (1 <p <2)in the usual way (see e.g. Butzer and Nessel [3)).
Now suppose that f € L, for some 1 < p < 2. The Dirichlet integral s, , f
and the Riesz transforms of the Dirichlet integral §\') f are introduced by

1 t u A
s f(x,y) = _277-[ tf F(o,w)e™ o+ dy dw (t,u €R,),
- —u
1 . v ~
HU) = _ v+ iyw
Siaf(x,y) 277/;[[7“ L — f(v,w)e dv dw

(t,u €R,),

and

3 1 ! “ W Y Xxvtiyw
Siaf(x,y) = Z_Wf—tf—u —Lﬁf(v,w)e dv dw
(t,u eR,),

respectively. It is easy to see that

2 sintv 2 sinuw

1
St,uf(x7y): Z/RfRf(x_U,y—W)m . \/ﬁ "

dvdw.

For «a,y,T € R, the Marcinkiewicz means of a tempered distribution f
are defined by

a "\
=304
1

" 2a

-1

(%)y Sz,zf(an) dr

fff(X—U,y—W)K;“’V(U,w) dvdw,
R’R
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where
K (v,w)
2 ay .1 T e\ sin g sin
= —_ 7 1—|— — dt
a T T T v w
ay
2@ Tow
T t\? a—1 t y—1
Xfo (1—(?) ) (?) [cos(v —w) — cos (v + w)] dr.

The Riesz transform of the Marcinkiewicz means are introduced by

-1

A
(—) SO F(x,y) dr

. ay T t\"\ "
S () a,y _ 1—-|—

1

= 2—[ ff(i)(x—v,y —w)K#"(v,w) dvdw.
T /R /R

We can extend the definition of the Marcinkiewicz means to tempered
distributions as follows:

of 1= fxKfY  (a,y.TER,).
One can show that o ”f is well defined for all tempered distributions

feH, (0<p <> and for all functions f€ L, (1 <p < =) (cf. Feffer-
man and Stein [5]). The extension of the Riesz transforms is

G e rfi=fOxKpY  (a,y,T€R;i=1,2).
The maximal operators are defined by

o f= sup lofo7fl, G = sup |G S
TER TER,

We write ¢ “7f = o 7f and ¢ 7 = o .
In this paper the constants C depend only on «, y and the constants C,
(resp. C, ,) depend only on p and a,y (resp. p, ¢, and «,y) and may

denote different constants in different contexts.
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4. ESTIMATIONS OF THE MARCINKIEWICZ KERNEL Kp”

It is easy to see from the definition of K" that
| K7 (x,y)| < CT? (4)
and
|7 (x,p)| < Gy (5)
By symmetry we can suppose in the whole paper that 0 <y < x.

LEMMA 1. Suppose that 0 < a <1 and y=2, or 0<a<1=vy, or
a=1<"vy. Then

K (x,y) | < CT*x 'y H(x—y) ©  (0<y<x).

Proof. Since x —y <x +y, it is enough to show that

fOT(l -~ (%)y)al(%)y_lcos fu dt

The left-hand side is equal to

Pl ()] () oosna

A _
f (A7 —x7)* " 'x7 ' cos xdx‘,
0

T-! <C(Tu) * (u>0).

(Tw)™'

= 4oy

where A = Tu. Choose n € N such that 2n7 < A < 2(n + 1)7. Since

A a1 _
f (A7 —x7)“ 'y lcosxdx‘sCA“(7 D

2nr

by Lagrange’s theorem, it is enough to verify that

< CA*OD, (6)

2nm 1 .
f (A" —x")*" "x""!cos xdx
0

We decompose the integral [{35797 as

f(2k+2)77_ (2k+1/2)w+j‘(2k+1)w n j’(2k+3/2)7r+ j‘(2k+2)17
2 ( ( (

km 2k 2k+1/2)m 2k+ D 2k+3/2)m

Let us change the variables x =y + 2kw, x = =y + Qk + D7, x =y +
2k + D, and x = —y + 2k + 2)7 on the intervals [2k#w,(4k + Dm/
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2], [4k + Du/2, 2k + Dw], [2k + D, 4k + 3)w/2], and [(4k +
3w /2,2k + 2)7], respectively. Then we obtain

fOZM(AV —x7)* 'x7" 1 cos xdx = :;; fow/zgk(y) cosydy (7)
where
gu(x) = (A7 = (x + 2km)")" " \(x + 2km)””!
(A7 = (—x + 2k + D))" (—x + 2k + D)
(A" = (x + Qk+ D)m)")" (x4 2k + D)
(A7 = (—x+ 2k + 2)m) ) (—x + 2k +2)m)
It is easy to check that gj(x) < 0, which means that g, is decreasing.

Since g,(m/2) = 0, we conclude that g,(0) > 0. Integrating in (7) we can
establish that

2nm 1 ._
/ (A =x")* "x" ! cos xdx
0

< C(If(A)| +]1:(A)])

where
fi(A4) = kX_l; [(Ay - @km))" =247 = ((2k + H)m)")
+(A7 = ((2k + 1)w)y)“]
and
f(4) = kz:[(A —(@k+)m)")" =2 = (@K + 3))")

+(A7 = ((2k + 2)7r)y)°’].
We are going to verify that

| £i(4)

f(A)] < ca=omb (8)

>

which will show (6).
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The function g,(x) == (A” —x”)* (0 < x < A) is concave, hence f,(A)
< 0 and f,(A4) < 0. We have

n—1

fi(4) = X ay

k=0

(A7 = (2km)")* v

—2( 47— ((2k + %)w)’)%lm—l

+(A7 = ((2k + D)) A

Since the function g(x) = (AY —x")*" ! (0 <x < A) is convex, the ex-
pressions in the square bracket are all positive. Hence f(A4) > 0 and f; is
increasing. Therefore

fH(A) = fi(2nar)
_ 77&7:;0 [(@n)" = @20)")" = 2f(2n)" - 2k + 3))

+((2n)" = 2k +1))°]. (9)
If
h(x) = ((2n)" =x")" (0 <x < 2n)

then we get immediately that /4’ is negative and decreasing. By the
Lagrange theorem there exists 2k < ¢ < 2k + 1 such that

(2n)" = 26))" = (@2n)" = 2k + 1)) = =K (&) = —H (2k)
and
((2n)" = 2k +1)")" = (@2n)" = 2k + 1)) =W (&) = W2k + 1).

Consequently, by (9),

WA S w2y + 2k + 1]
T k=0

>h(2n —1) >h(2n) —h(2n — 1) = —h(2n - 1).

Since

(2n)’ — (2n —1)" =y ' < y(2n)"""  (2n - 1< £<2n), (10)
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we can conclude that

f(A)

T

> —ye(2n)" P> —cA0 e,

Inequality (8) can be shown in the same way for the function f,(A). The
proof of Lemma 1 is complete. |

LEMMA 2. Suppose that 0 < a <1 and y>2, or 0 <a<1=vy, or
a=1<"y. Then

|Kf7(x,y)[ < CT' " (x—y) © (0<y<x).
Proof. Since
cost(x —y) —cost(x +y) =2tysintu

for some x —y <u <x +y, we have

K&Er(x,y) = CT‘lx—lfOT(l - (%)y)a

= Cx’lu’l(A)_m//A (A7 —x7)*"'x7 sin xdx.
0

-1

t\"
(—) tsin tu dt
T

Similar to the proof of Lemma 1, it is enough to verify that

< CAO~ bl (11)

2 _
f "T(AY = x7)* ' x7 sin xdx
0

where 4 = Tu and 2nm < A < 2(n + D

Changing the variables x =y + 2k# and x =y + 2k + D7 on the
intervals [2kw,(2k + Dw] and [2k + D, 2k + 2)7r], respectively, we
obtain

2 _
f "T(AY = x7)* ' x sin xdx
0

n
Qk+1) 2k+2) - .
= Z(f 7T+/( 7T)(A’/—x”)m 'X7 sin xdx
k=0 \"2km Qk+ 1D

n-1
= ¥ [ &(y)sinydr,
k=0"0
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where
gu(x) = (A7 = (x + 2km)")" " \(x + 2km)?
—(A7 = (x + 2k + 1)m)")" (x + 2k + D7)

We can show that g, < 0 and g; < 0. Since

f(A) = T g(m) = L alx)  (xef0.x]).
k=0 k=0

we get that

2(n—1) a— .
f AT = x7) T 7 sin xdx
0

<[f(A)|. (12)

It is easy to see that f' > 0 and so we have
n—1
f(A) = f@nm) = 70 E [((2n) = 2k + 1)) @2k + 1)
k=0

—((2n)" = 2k +2)")" "2k +2)].
If
h(x) = (2n)" =x") 'x” (0 <x < 2n)
then, by an easy computation, /' is positive and increasing. Thus
h(2k +1) —hQk +2) = =KW (&) = —H(2k +2)
(Ck+1< <2k +2).
Consequently, by (10),

4 2 1 ron-2
— > -hWQ2k+2)= —hWdA—H(2n -2
g2 L i @k+2) =z 5[ (2n-2)

%

- %h(Zn —2) +h(2n —2) —h(2n — 1)

"

(2n)" = 2n— 1)) (20 —1)"
> —CAY De=bygy > —Cq- DL (13)
Similarly, we can verify that

-1+1
g,,_lz—CA“” ) ,
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hence

fzm (A” — x7)“"'x7sin xdx| < CA®O~ D+
2(n—Dm

which, together with (12) and (13), shows (11). I
If 7>y ' then Lemma 1 implies

(K (ey)| <Oty N —y) = (x—y) U (14)
If T <y~ ' then we get the same inequality from Lemma 2.

PROPOSITION 1. Suppose that 0 < a < land y>2,or 0 < a <1 =1,
ora=1<vy.Then [|KF Y dAr < C (T €R,).

Proof. It is enough to integrate the kernel function over the set
{(x,¥):0 <y < x}. Let us decompose this set into the union 4 U B U C
U D U E where

(x,y):0<x<2/T,0<y<x},
(x,y):x>2/T,0<y<1/T},
(x,y):x>2/T,1/T <y <x/2},
(x,y):x>2/T,x/2<y<x—-1/T},
E={(x,y):x>2/T,x—1/T <y <x}.

A:
B:
C:
D:

{
{
{
{

Equation (4) implies [, /K%Y dA < C. By (14),
[lkgreapldrsc[ [V -1/m)7" "y axdy < €.
B 2,170

Since x —y >x/2 and x —y >y on the set C, we get from Lemma 1
that

| KoY (x, )| < CT-oxm1me/2yminer2, (15)
Thus

°° 2
f |K&7(x,y)|dA < CT‘“[ fx/ x1e/2ym =2 gy < C
Cc 2/T71/T
y>x/2and y >x —y on D, hence

/DIK;W(x,y)m < CT’”‘f;Tfi;l/Tx’l’“/z(x —y) T dvdy
X

<C.
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Finally, by (5),
s X
[ kg (xopldr<c[ [ xdedy=<cC,
E 2/T?x—1/T

which completes the proof of the proposition. ||

5. THE BOUNDEDNESS OF THE MAXIMAL
MARCINKIEWICZ OPERATOR ON H,

For 0 < p < = a bounded measurable function a is a p-atom if there
exists a square Q C R? such that

@ fpalx,y)x*y"dxdy =0 for all w,v€N with /p* + v? <
[2(1/p — 1], where [2(1/p — 1)] denotes the integer part of 2(1/p — 1),
i) llall. <lQI7"7,
(iii) suppa c Q.

The basic result of the atomic decomposition is stated as follows (see
Latter [6], Wilson [16], and also Weisz [12]).

THEOREM B. A tempered distribution fis in H, (0 < p < 1) if and only if
there exist a sequence (a,, k € N) of p-atoms and a sequence (., k € N) of
real numbers such that

Y wmeay =f (16)
k=0
in the sense of distributions, and
) | g ? < oo,
k=0

Moreover, the equivalence of norms

© 1/p
1flls, ~ inf( Y m,y) ,

k=0

where the infimum is taken over all decompositions of f of the form (16),
holds.

If I is an interval then let 8/ be the interval with the same center as [
and with length 8|I|. For a square Q = I, X I, with |I,| = |I,|let 8Q = 81,
X 81,.
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An operator V' which maps the set of distributions into the collection of
measurable functions will be called p-quasi-local if there exists a constant
C, > 0 such that

[, wa"dr<c,
R2\80

for ever p-atom a where Q is the support of the atom. With the help of
the atomic decomposition the following result was proved by the author
[13].

THEOREM C. Suppose that the operator V' is sublinear and p-quasi-local
for some 0 <p < 1. If Vis bounded from L, to L, fora fixed 1 <p, <
then

Vi, < Cllflla,  (f<€H,).

Now we can formulate our main result.

THEOREM 1. IfO0<a=<landy=2,or0<a<l=vy,ora=1<yvy,
then

log fllpq < Cp Mfllu,, (fEH,,) (17)

forall 2(a + 3)/3(a+ 2) <p <wand 0 < g < . In particular, if f € L,
then

C
Mo’ f>p) < ;Hf”l (p>0). (18)

Proof. By Theorems A and C the proof of Theorem 1 will be complete
if we show that the operator o $” is p-quasi-local for each 2(a + 3)/3(«
+ 2) < p < 1 and is bounded from L, to L..

The boundedness follows from Proposition 1. Let a be an arbitrary
p-atom with support Q =1 X J and 25! <|I| =|J] < 2% (K € Z). We
can suppose that the center of Q is zero. In this case

[—2K-22K-2] 1, c[—2K"1 2K 1],

To prove the quasi-locality of the operator o3 we have to integrate
lo & Yal” over R\ 8Q. It is enough to integrate over the set 4 UB U C U
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D where

A= {(x,y) e R::x [i2k (i + 1)25), y €[ j2%,(j + 1)2%),
4<i<eo,j=0}

= {(x,y) e R7:x g2k, (i + 1)25), y €[ j2%,(j + 1)2%),
4<i<o,1<j<i/2-2}

= {(x,y) e R?:x e[i2K, (i + 1)25), y €[ j25, (j + 1)25),
4<i<wif2-2<j<i-1]

= {(x,y) e R::x e[i2K, (i + 1)2K), y €[ j2%, (j + 1)2%),
4<i<wi-1<j<i}.

First we integrate over A. Obviously,
N o (G 12K
f lo&7a(x,y)| dedy < EflK+ / lo&va(x,y)| dedy. (19)
A i=4"i2
By the definition of the atom,

o 7a(x, )| = 5=

a(t,u)K$"(x —t,y —u) dtdu
J

IA

C,2 2k £L|K¥’V(x —t,y—u)|dtdu

_ X 42K okt
< C,272K/p ./;__'—ZK—] ,/;y_J;K,l |K&"(v,w)|dvdw. (20)

Applying (14) we get

f“zki] fy”Ki] |K&7(v,w)|dvdw

X72K71 y72K71

IA

c/)‘““[”2 (v = Iwh) ™"l dodw

X*2K7]

—-1l-a

IA

[ (v -328

x_zl(—]

(3-25"1" dvdw

< C2K((i —2)2%) T2 =it
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Hence

f|0i Ya(x,y) | dedy < C,22K2" ZKZl 1+ a)p
i=4

which is finite if p > 1/(a + 1).
Next we integrate over B. Similar to (19), we get that

[ o s aCe )l ddy

G+ 12K rG+12K

IA
s

sup | %a(x, y) [ dedy

i—4 j—1 2% 2k T>r,

=27

G+12K rG+12kK

IA
s

D (U up [t ra(x, y) | dedy
i=4 j=1 "i2 j2 T<r;

where r; ; = [2 ~K /(ij)°/%] with & > 0 chosen later. For (B,) we have by
(15) that

jx+2k_1/y+2 K (v,w)|[dodw

x—2K-1
_ x+2K-1 +oK=1 1
core [T P ey e g
y_2K—]

—-1-a/2

< C2Ke(jj)**/ 2K (2K (j25) T = ey

Taking into account (20) we can see that
% i/2-2
(B)<C, X X ()«
i=4 j=1

and this is finite if

2+a)p-2
< —.

- (21)
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It is easy to see that

e -l

t t
><f / a(v,w)e™" " dvdwdt
—t7 -t

-1

T T . max(|vl, wl) \” *
f f a(v,w)e* =1 — | ———— dvdw.
~-r/-r T

Since
la(v,w)| < C(lol + Iwl)lII>~*/?

(see Weisz [13]), we conclude

loval < [* " Ja(u,w)ldvdw < CTONIP/7,
-T7-T

Thus
sup o %a(x, y)| < C(if) > *272K/p 22)
T<HJ
and so
w i/2-2
(B,) < Cp Z Z 22K2—2K(ij)*35p/2
i=4 j=1

which converges if & > 2/3p. This together with (21) implies

2(a +3)

p >

We define (C;) and (C,) in the same way as (B,) and (B,), with the only
difference being that we take the sum Z;;? ,2-2- By Lemma 1,

[ K o) dod

x_zK—l y_zk—l

K—1 K—1 —a
SCT*“'/XJr2 fy+2 v 'w (v —w) " dvdw

x_2K—l y_2K—l

< C2Ka (i) 2 (i2%) N (j25) (i = 2K = cive2 (i - j) 7 °
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and, consequently,

s

o0 -2
(Cl) < Cp Z Z ia6p72p(i _j)_"‘P < Cp ia5p72p7ap+1’

i=4j=i/2-2 i

4

because p < 1/a. Thus 8 < (2 + a)p — 2)/ap. (C,) can be estimated in
the same way as (B,), hence (23) holds.
Now we integrate over D. Observe that

[ o aCx, ) dedy

© i .
< Z Z (i+1)2K (]+1)2K|0_:’ya(x’y)|17 dxdy.
1 =i—

i=47j j2X

By (5),

/HZKJ/HZK llKTa (v, w)|dvdw < C/HzK?lf’v”Kilu_lw_ldudw
y

r—2K-1 oK1 _pk-1

< €22 (i2%) (j2%) = c(ij) !

Hence

fhdmwaM@<CZ Y ()T <C,Ti

i=4 j=i—-1 l=4

and this implies that p > 1/2.

Thus we have proved that o " is p-quasi-local for each 2(a + 3)/3(«
+2) <p < 1. Hence (17) for p = ¢q follows from Theorem C. Applying
Theorem A, we obtain the general case of (17). Let us point out this result
for p=1and g = . If f < L, then (1) implies

lo &7 fll= = sup pA(a £ 7f > p) < Clifllu, . < Clifll

p>0

which shows (18). The proof of the theorem is complete. [

We can state the same for the maximal operator of the Riesz transforms
of the Marcinkiewicz means.

THEOREM 2. Supposethat 0 < a<landy>=2,or 0 <a<1=vy,or
a=1<rv. Fori=1,2, we have

le@erfl,y <C, Mflu,, (f€H,,)
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for every 2(a+3)/3(a+2)<p<w and 0<g <. In particular, if
fe L, then

. C
MaP7f>p) < ;”f“l (p>0).

Proof. Using (2), Theorem 1 for p = g, and the fact that ¢{* *7f =
o &'f we obtain

le@wrtly, =loz il < ¢ /Ol < Cliflu,  (ren,).
Now Theorem 2 follows from Theorem A in the usual way. |

Since the set of those functions f € L, whose Fourier transform has a
compact support is dense in L, (see Wiener [15]), the weak-type inequali-
ties of Theorems 1 and 2 and the usual density argument (see Marcinkiewicz
and Zygmund [7]) imply

COROLLARY 1. Suppose that 0 < a <land y>2,0or 0 <a<1=y,
or a=1<vy. If fEL, then of"f—>f ae. and & *"f - fO ae.
(i=12asT -

Note that @ (i = 1,2) is not necessarily integrable whenever f is. The
first convergence result for Fourier series and for y = 1 is due to Zhizhi-
ashvili [17, 18].

THEOREM 3. Supposethat 0 < a <land y>2,or 0 <a<1=vy,or
a=1<ry. Fori=0,1,2 we have

lef>F la,, < € lfllm,,  (fEH,,)

uniformly in T, whenever 2(a + 3)/3(a +2) <p <®and 0 < g <. In
this case o *7f — f© in the H, , norm as T — .

Proof. Since (o7f)~ = ¢ *7f, we have by Theorems 1 and 2
that

l(oeF) O, < Cliflln,  (feH,,i=0,1,2)
for all 7 > 0. Inequality (3) implies that
o fllu, < ClIflu,  (f€H,,T>0).
Hence, by (2),
|68« |y, < CMfl,  (FEH,T>0,i=1,2)

and the theorem follows by interpolation from Theorem A. |
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It is an open question whether Theorems 1-3 are true for p < 2(a +
3)/3(a + 2).

We can prove similarly to the proof of Lemma 4 in [14] that also in this
case

% h—1 y—
obrortn = L - () ) (5) T e as

where h > 0. From this it follows that o & f < CoL?f whenever a > 1.
This shows that Theorems 1, 2, and 3 hold also for a > 1.

COROLLARY 2. If a,7y > 1 then all inequalities of Theorems 1, 2, and 3
and the convergence results of Corollary 1 hold for every 8/9 < p < % and
0<g<on

Remark. 1If we define the Marcinkiewicz means by

-1
t

oeoraon - (- ()]

where u, v > 0, then the result above can be proved in the same way.

!
(?) sy,t,vlf(x’y) dt’
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