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Abstract

For fair-division or cake-cutting problems with value functions which are normalized pos
measures (i.e., the values are probability measures) maximin-share and minimax-envy ineq
are derived for both continuous and discrete measures. The tools used include classical an
basic convexity results, as well as ad hoc constructions. Examples are given to show that th
minimizing criterion is not Pareto optimal, even if the values are mutually absolutely continuo
the discrete measure case, sufficient conditions are obtained to guarantee the existence of e
partitions.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The subject of this paper is fair-division or cake-cutting inequalities (cf. [5,6,11]),
in particular, the relationship among various notions of optimality such as maximin s
minimax envy, and Dubins–Spanier optimality. A cakeΩ is to be divided amongn players
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whose relative valuesv1, . . . , vn of the various parts of the cake may differ. A partition
the cake inton piecesP1, . . . ,Pn is sought so that the resulting valuesvi(Pj ) make the
minimum perceived share as large as possible, or make the maximum envy as s
possible.

The formal framework is as follows. There aren (countably additive) probability mea
suresv1, . . . , vn on the same measurable space(Ω,F), whereΩ represents the cake andF
is theσ -algebra of subsets ofΩ which represents the collection of feasible pieces. For e
P ∈ F and eachi, vi(P ) represents the value of pieceP to playeri. (Hence, in this setting
the feasible pieces always include the whole cake, and are closed under compleme
countable unions; and the value functions are additive.)

Throughout this paper,Πn will denote the collection ofF -measurablen partitions ofΩ ,
that is,

Πn =
{
(P1, . . . ,Pn): Pi ∈F for all i, Pi ∩ Pj = ∅ if i �= j, and

n⋃
i=1

Pi = Ω

}
,

and a typical elementP ∈ Πn is the partitionP = (P1, . . . ,Pn) representing allocation o
Pi to playeri for all i = 1, . . . , n.

This paper is organized as follows: Section 2 contains definitions and examples
value matrix, maximin optimality and fair partitions, as well as the main compactnes
convexity theorem for value matrices due to Dubins and Spanier [6]; Section 3 co
the analogous convexity/compactness result for envy matrices, a proof that even
mutually absolutely continuous case, a Dubins–Spanier optimal partition need not be
free, and several results guaranteeing the existence ofquantifiablysuper-fair envy-free an
super-envy-free partitions; and Section 4 contains minimax-envy inequalities for g
measures (including measures with atoms) whose bounds are functions of the ma
atom size.

2. Fair and Dubins–Spanier-optimal partitions

Denote byM(n× n) the set of real-valuedn× n matrices.

Definition 2.1.Thevalue matrixMV(P) of a partitionP is the matrix whose entries are th
values of the pieces of the partition to the respective players, that is,MV :Πn → M(n× n)

is given by

MV(P) = MV
(
(P1, . . . ,Pn)

)= (
vi(Pj )

)n
i,j=1,

and theset ofF -feasible value matricesMV is given by

MV = {
MV(P): P ∈ Πn

}⊂ M(n× n).
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Example 2.2.Let (Ω,F) = ([0,1],Borels), n = 2, v1 = uniform distribution on[0,1],
andv2 = probability measure on[0,1] with distribution functionF2(x) = x2, 0� x � 1.
Then forP1 = ([0,1/2), [1/2,1]) andP2 = ([0, (√5− 1)/2), [(√5− 1)/2,1]),

MV(P1) =
( 1

2
1
2

1
4

3
4

)
and MV(P2) =

( √
5−1
2

3−√
5

2
3−√

5
2

√
5−1
2

)
,

and an easy calculation shows that

MV =
{(

x 1− x

1− y y

)
: 0 � x � 1, (1− x)2 � y � 1− x2

}
.

Example 2.3.Let (Ω,F)= ([0,1],Borels), n = 2, v1 = v2 = δ(1/2), the Dirac point mas
at {1/2}, and letP1,P2 be as in Example 2.2. Then

MV(P1) =
(

0 1
0 1

)
, MV(P2) =

(
1 0
1 0

)
,

and

MV =
{(

x 1− x

x 1− x

)
: x = 0 orx = 1

}
.

The next result, a consequence of Lyapounov’s convexity theorem due to D
and Spanier, is one of the main tools in measure-theoretic fair-division problems,
recorded here for ease of reference. (Recall that a measurev is atomlessif for everyP ∈ F
with v(P ) > 0, there exists a setA ∈ F , A ⊂ P with 0< v(A) < v(P ); for Borel measures
on the real line, this is equivalent tov({x}) = 0 for everyx ∈ R.)

Proposition 2.4[6]. Fix n � 1 andv1, . . . , vn probability measures on(Ω,F). Then

(i) MV is compact(as a subset of realn× n matrices); and
(ii) if eachvi is atomless, thenMV is convex.

Remarks. Note that the measures in Example 2.2 are atomless, and hence that the
feasible value matricesMV is convex. In Example 2.3, on the other hand,v1 andv2 are
purely atomic, andMV is far from convex. It is also easy to check thatMV may be convex
even if {vi} are atomic; for example, by takingn = 2 andv1 = v2 defined byv1({x}) = x

for x = 2−n, n = 1,2, . . . , andv1(x) = 0 otherwise, in which case

MV =
{(

x 1− x

x 1− x

)
: 0 � x � 1

}
.

Definition 2.5.A partitionP = (P1, . . . ,Pn) is fair if vi(Pi) � 1/n for all i; is equitableif
vi(Pi) = vj (Pj ) for all i, j ; is maximin optimalif min1�i�n vi(Pi) � min1�i�n vi(P̂i) for
all P̂ = (P̂1, . . . , P̂n) ∈ Πn; and isDubins–Spanier optimal(DS optimal) if(v〈1〉(P〈1〉), . . . ,
v〈n〉(P〈n〉)) � (v〈1〉(P̂〈1〉), . . . , v〈n〉(P̂〈n〉)) for all P̂ = (P̂1, . . . , P̂n) ∈ Πn, wherev〈i〉(P〈i〉)
are the increasing order statistics of the{vi(Pi)} (i.e., v〈1〉(P〈1〉) � v〈2〉(P〈2〉) � · · · �
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v〈n〉(P〈n〉)), and “�” is the real lexicographic order. In other words,P is DS optimal if
the smallest share min1�i�n vi(Pi) is as large as possible among all possible partitio
and among all partitions attaining that maximin, the second smallest share is as la
possible, and so forth.

Remarks. As shown in [6], it follows from Proposition 2.4(i) that maximin-optimal a
DS-optimal partitions always exist; and from Proposition 2.4(ii) that if the{vi} are atom-
less, that fair equitable partitions always exist, and that every DS-optimal partition i
Without the assumption of atomless measures, DS-optimal partitions may not be fai
easily seen in Example 2.3.

3. Envy-minimizing partitions

A recent alternative to the objective of maximizing one’s own sharevi(Pi), is the objec-
tive of minimizing one’s envy of other’s sharesvi(Pj ) − vi(Pi) (cf. [3–5,14]). Clearly the
two objectives are related, but as the next example points out, players trying to min
envy would sometimes reject a given partition in favor of one which givesevery player a
much smaller share. In this example, the players would reject an equitable partition w
allocates each player very nearly 50% of his own value of the cake (but with an acc
nying miniscule amount of envy) in favor of an envy-free partition which allots each p
a piece he feels is worth exactly 1% of the total value. In particular, the example show
the envy-minimizing objective is not Pareto optimal.

Example 3.1.Let (Ω,F) = ([0,100],Borels), n = 100, let vi be uniform on[i − 1,
i + 1) for i = 1, . . . ,99, and let v100 be uniform on [99,100] ∪ [0,1). Let P =
(P1,P2, . . . ,P100) be given byPi = [i + 0.0001, i + 1.0001), i = 1, . . . ,98, P99 =
[99.0001,100]∪ [0,0.0001), andP100= [0.0001,1.0001); and letP̂ = (P̂1, P̂2, . . . , P̂100)

be P̂i =⋃99
k=0[k + (i − 1)/100, k + i/100), i = 1, . . . ,100. It is easily checked that, fo

eachi, vi(Pi) = 0.49995 and the envy of playeri (see Definition 3.2 below) is 0.00005
for eachi. On the other hand, with partition̂P, each player receives a piece worth exac
vi(P̂i) = 0.01, but no player values any other piece more than his own. Thus players
ing to minimize envy would chooseP2 overP1 and reduce their shares uniformly by nea
a factor of 50.

In the above example, however, it is easy to see that there is a partition (namelyPi =
[i − 1, i) for all i) which is simultaneously envy-free, DS optimal, equitable and fair,
which assigns each player a share he values exactly 50% of the cake. It is the pur
this section to record several basic properties of envy, to investigate the interrelati
among these various notions of optimality, and to derive several general inequalit
upper bounds on envy.

Definition 3.2.Theenvy of a partitionP to playeri, ei(P), isei(P) = max1�j �=i�n vi(Pj )−
vi(Pi); the maximum envy ofP, emax(P), is emax(P) = max1�i�n ei(P); the envy matrix
of P, ME(P) is the element inM(n× n) with (i, j)th entryei,j = vi(Pj )− vi(Pi); and the
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set ofF -feasible envy matricesME is the subset ofM(n × n) given byME = {ME(P):
P ∈ Πn}.

(Note that the definition of envy here is the negative of that in [14]; here positive
reflects valuing another’s piece more than one’s own, and the objective is to min
envy.)

Example 3.3.(i) For the problem in Example 2.2,

ME(P1) =
(

0 0
−1

2 0

)
, ME(P2) =

(
0 2− √

5
2− √

5 0

)
,

and

ME =
{(

0 1− 2x
1− 2y 0

)
: 0 � x � 1, (1− x)2 � y � 1− x2

}
.

(ii) For the problem in Example 2.3,

ME(P1) =
(

0 1
−1 0

)
, ME(P2) =

(
0 −1
1 0

)
,

and

ME =
{(

0 1− 2x
2x − 1 0

)
: x = 0 or 1

}
.

Lemma 3.4. (i) dim(MV) = dim(ME); (ii) the function fromMV → ME defined by
MV(P) �→ ME(P) is one-to-one, onto, and affine.

Proof. Conclusion (i) is a direct consequence of (ii). To see (ii), note that{vi(Pj )}ni,j=1
clearly determines{vi(Pj ) − vi(Pi)}ni,j=1; conversely, the sum of the envy entries in
ith row,

n∑
j=1

(
vi(Pj ) − vi(Pi)

)=
n∑

j=1

vi(Pj )− nvi(Pi) = 1− nvi(Pi),

so

vi(Pj )= vi(Pj )− vi(Pi) + vi(Pi)

= vi(Pj )− vi(Pi) + n−1

(
1−

n∑
j=1

(
vi(Pj )− vi(Pi)

))
. ✷

The next theorem is a direct analog of the main compactness–convexity result fo
matrices given in Proposition 2.4.

Theorem 3.5.Fix n � 1, andv1, v2, . . . , vn probability measures on(Ω,F). Then

(i) ME is compact; and
(ii) if eachvi is atomless, thenME is convex.
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Proof. Conclusion (i) follows from Lemma 3.4 and Proposition 2.4, sinceME is a con-
tinuous image of the compact setMV, and (ii) follows similarly since in the atomles
measure case,ME is the image of the convex setMV under an affine transformation.✷

Note that in Example 3.3,ME is convex in case (i), and not convex in (ii); in both ca
it is compact.

Definition 3.6. A partition P
∗ ∈ Πn is envy-freeif emax(P

∗) � 0; is minimax envy
optimal if emax(P

∗) = min{emax(P): P ∈ Πn}; and is DS minimax envy optimalif it
attains the minimum, lexicographically, of the set of feasible ordered envy ve
{(e〈1〉(P), . . . , e〈n〉(P)): P ∈ Πn} (cf. Definition 3.2).

Example 3.7.The partitionP2 in Example 2.2 is the unique (up to sets of measure z
DS-minimax-envy-optimal partition and is also envy-free (see Example 3.3(i));everypar-
tition in Example 2.3 is DS minimax envy optimal with maximum possible envy+1 for
one of the players, and no partition is envy-free.

Theorem 3.8.Fix n � 1, andv1, . . . , vn probability measures on(Ω,F). Then

(i) Minimax-envy-optimal and DS-minimax-envy-optimal partitions always exist;
(ii) If a partition is envy-free, then it is fair;
(iii) If {vi}n1 are atomless, then envy-free partitions always exist;
(iv) If {vi}n1 are atomless and linearly independent, then super-envy-free parti

(emax< 0) always exist.

Proof. Conclusion (i) follows easily from Theorem 3.5(i) since the mappingME →
[−1,1] given byME(P) �→ emax(P) ( �→ (e〈1〉(P), . . . , e〈n〉(P)), respectively) is continu
ous, so its minimum is attained; (ii) is trivial sincevi(Pj ) − vi(Pi) � 0 for all i, j implies
that vi(Pi) � 1/n for all i; (iii) follows by Theorem 3.5(ii) by considering then parti-
tionsP

1 = (Ω,∅, . . . ,∅), P
2 = (∅,Ω,∅, . . . ,∅), . . . , P

n = (∅, . . . ,∅,Ω), and noting tha∑n
j=1ME(P

j ) is the zero matrix; and (iv) is the main result in [3].✷
Contrary to a claim in [15], the next example shows that even for three mutuall

solutely continuous measuresv1, v2, v3, a DS-optimal partition need not be envy-fre
(Recall that in Example 3.1,P was strictly better value-wise for each player than the en
free partitionP̂, butP was not DS optimal.)

Example 3.9.Let (Ω,F) = ([0,3],Borels), n = 3, and (lettingI (a, b) denote the indica
tor functionI (a, b)(x)= 1 if a < x < b, and= 0 otherwise) letv1, v2, v3 be the continuou
distributions with density functionsf1, f2, f3, respectively, given by

f1 = 0.4I (0,1)+ 0.1I (1,2)+ 0.5I (2,3),

f2 = 0.3I (0,1)+ 0.4I (1,2)+ 0.3I (2,3),

f3 = 0.3I (0,1)+ 0.3I (1,2)+ 0.4I (2,3).



352 M. Dall’Aglio, T.P. Hill / J. Math. Anal. Appl. 281 (2003) 346–361

the

ion
ess

tu-
imin-

le
s

h

near

ding

0

Then, as will be proved in the next theorem, the partitionP = (P1,P2,P3) = ([0,1), [1,2),
[2,3]) yields the uniquely maximin-optimal vector(v1(P1), v2(P2), v3(P3)) = (0.4,0.4,
0.4), but P is not envy-free. Thus every envy-free partition is strictly suboptimal in
maximin criterion, and hence also strictly suboptimal in the DS criterion.

Theorem 3.10.(i) If n = 2 andv1, v2 are atomless, then every maximin-optimal partit
is envy-free; and (ii) for eachn � 3, there exist mutually absolutely continuous atoml
measuresv1, . . . , vn such that no maximin-optimal partition is envy-free.

Proof. To see (i), note that
( 1 0

1 0

)
and

( 0 1
0 1

)
are inMV (takingP1 = (Ω,∅), P2 = (∅,Ω)),

so by Proposition 2.4,
( 1/2 1/2

1/2 1/2

) ∈ MV, and thus every maximin-optimal partitionP sat-
isfies v1(P) � 1/2, v2(P) � 1/2. By additivity, this implies thatv1(P1) � v1(P2) and
v2(P2) � v2(P1), and hence thatP is envy-free.

To see (ii), note that [6, last remark on p. 17] for anyn, when the measures are mu
ally absolutely continuous the DS-optimal solution is equitable. Therefore, all max
optimal solutions are DS optimal and equitable.

Forn = 3, consider the measuresv1, v2, andv3 of Example 3.9. The set of all possib
partitions of[0,3] can be described as follows: the interval[0,1) is divided into three part
with player 1 (respectively, player 2) receiving a piece of lengthp1 (respectively,p2) and
player 3 getting the rest, i.e., 1−p1 −p2. Similarly, [1,2) is split into three parts of lengt
q1, q2, and 1− q1 − q2, respectively, and[2,3] is partitioned asr1, r2, and 1− r1 − r2.

Every equitable partition is obtained as a solution of the following system of li
equations and inequalities:



0.4p1 + 0.1q1 + 0.5r1 = α,

0.3p2 + 0.4q2 + 0.3r2 = α,

0.3(1− p1 − p2)+ 0.3(1− q1 − q2) + 0.4(1− r1 − r2) = α,

p1,p2, q1, q2, r1, r2 � 0,
p1 + p2 � 1,
q1 + q2 � 1,
r1 + r2 � 1,

and the largest value ofα is sought that keeps this system admissible. The correspon
solutions for thepi ’s, qi ’s, andri ’s describe all possible maximin-optimal solutions.

Solving the first equation forp1 in terms ofα, q1, andr1, and the second forq2 in terms
of α, p2, andr2, and substituting these expressions in the third equation yields

0.3p2 + 0.9q1 + 0.1r1 + 0.7r2 = 4− 10α. (3.1)

If α > 0.4, Eq. (3.1) has no solution with nonnegative variables.
If, instead,α = 0.4, (3.1) admits only the solution

p2 = q1 = r1 = r2 = 0. (3.2)

(Thus, the segment[2,3] is given in its entirety to player 3, who reaches his “quota” of.4
and has no interest in the other parts of the cake.)
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Hence, sinceα = 0.4, p1 + p2 = 1 andq1 + q2 = 1. This fact and (3.2) imply tha
p1 = q2 = 1, which shows thatP = ([0,1), [1,2), [2,3]) is, up to sets of Lebesgue measu
zero, the only minimax-optimal (and DS-optimal) solution. But

ME(P) =
( 0 −0.3 0.1

−0.1 0 −0.1
−0.1 −0.1 0

)
,

which shows that this partition is not envy-free. This completes the casen = 3 (and estab
lishes the claim in Example 3.9).

For n > 3, let (Ω,F) = ([0, n], Borels) and fixε with 0 < ε < 1. Consider the con
tinuous distributionsv1, . . . , vn with density functionsf1, . . . , fn, respectively, that hav
constant values in each interval[i − 1, i), i = 1, . . . , n, with values shown in the following
table:

[0,1) [1,2) [2,3) [3,4) [4,5) . . . [n− 1, n]
f1 0.4(1− ε) 0.1(1− ε) 0.5(1− ε) ε/(n− 3) ε/(n− 3) . . . ε/(n − 3)
f2 0.3(1− ε) 0.4(1− ε) 0.3(1− ε) ε/(n− 3) ε/(n− 3) . . . ε/(n − 3)
f3 0.3(1− ε) 0.3(1− ε) 0.4(1− ε) ε/(n− 3) ε/(n− 3) . . . ε/(n − 3)
f4 ε/(n− 1) ε/(n− 1) ε/(n − 1) 1− ε ε/(n− 1) . . . ε/(n − 1)
f5 ε/(n− 1) ε/(n− 1) ε/(n − 1) ε/(n− 1) 1− ε . . . ε/(n − 1)
...

...
...

...
...

...
. . .

...

fn ε/(n− 1) ε/(n− 1) ε/(n − 1) ε/(n− 1) ε/(n− 1) . . . 1− ε

As in then = 3 case, the distributions are mutually absolutely continuous and all mini
optimal solutions are DS optimal and equitable.

Denote bypi,j (i, j = 1, . . . , n) the length of the part of[i − 1, i) assigned to playerj
with the usual constraintspi,j � 0 and

∑n
j=1pi,j = 1 for all i. The partition, defined by

pi,i = 1 for all i, has 0.4(1− ε) as its lowest value, so the minimax-optimal value can
be smaller than this value.

Consider now the first three players only. Since the minimax value is at least 0.4(1− ε)

and since
∫ n

3 fi dvi = ε, i = 1,2,3, each of the players 1,2,3 must receive somethin
worth at least 0.4 − 1.4ε from the interval[0,3), so the following system of inequalitie
must be satisfied by any minimax-optimal solution:

0.4p1,1 + 0.1p2,1 + 0.5p3,1 � β +O(ε), (3.3a)

0.3p1,2 + 0.4p2,2 + 0.3p3,2 � β +O(ε), (3.3b)

0.3p1,3 + 0.3p2,3 + 0.4p3,3 � β +O(ε), (3.3c)

β � 0.4+O(ε). (3.3d)

A simple consequence of the normalizing constraints for thepi,j is that

pi,3 � 1− pi,1 − pi,2, i = 1,2,3. (3.4)

This, with (3.3c), implies that

0.3(1− p1,1 − p1,2)+ 0.3(1− p2,1 − p2,2)+ 0.4(1−p3,1 − p3,2) � β +O(ε).
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Rearranging (3.3a)–(3.3c) yields

p1,1 � 5

2
β − 1

4
p2,1 − 5

4
p3,1 +O(ε), (3.5a)

p2,2 � 5

2
β − 3

4
p1,2 − 3

4
p3,2 +O(ε), (3.5b)

0.3p1,1 + 0.3p1,2 + 0.3p2,1 + 0.3p2,2 + 0.4p3,1 + 0.4p3,2 � 1− β +O(ε), (3.5c)

β � 0.4+O(ε). (3.5d)

Substituting (3.5a) and (3.5b) into (3.5c) yields

0.3p1,2 + 0.9p2,1 + 0.1p3,1 + 0.7p3,2 � 4− 10β +O(ε), (3.6a)

β � 0.4+O(ε). (3.6b)

These imply that

0.3p1,2 + 0.9p2,1 + 0.1p3,1 + 0.7p3,2 � 4− 10β +O(ε) = O(ε). (3.7)

Since all variables in (3.7) are nonnegative, they all satisfy

p1,2 = O(ε), p2,1 = O(ε), p3,1 = O(ε), p3,2 = O(ε). (3.8)

From (3.5a) and (3.5d), and the fact thatp2,1 andp3,1 areO(ε), it follows thatp1,1 =
1+O(ε), and hence that

p1,3 = O(ε). (3.9)

Similarly, (3.5b), (3.5d), and (3.8) imply thatp2,2 = 1+O(ε), so

p2,3 = O(ε). (3.10)

Finally, (3.5c), (3.5d), (3.9), and (3.10) imply that

p3,3 = 1+O(ε). (3.11)

Thus, player 1’s evaluation of his own share in any minimax-optimal solution is

v1(P1) = 0.4p1,1 + 0.1p2,1 + 0.5p3,1 +O(ε) = 0.4+O(ε).

Player 1’s evaluation of player 3’s share, on the other hand, is

v1(P3) = 0.4p1,3 + 0.1p2,3 + 0.5p3,3 +O(ε) = 0.5+O(ε),

where the last equality follows from (3.11). Therefore,

e1,3 = v1(P3)− v1(P1) → 0.1 asε ↘ 0,

so asymptotically, in every maximin-optimal partition, player 1 envies player 3’s sha
an amount arbitrarily close to 0.1. ✷

The final theorem in this section gives sharp bounds for fairness of envy-free par
and minimax envy, in the case where the measures are atomless and have known up
lower bounds, respectively.
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For measuresv1, . . . , vn, the function
∨n

i=1 vi :F → [0,1], called the maximum o
{v1, . . . , vn}, is the smallest set function which dominates each of the{vi}; ∧n

i=1 vi is
the analogous minimum. It is easy to check that both

∨n
vi and

∧n
vi are also countabl

additive measures on(Ω,F), and lettingv∗, v∗ denote the total masses of
∨n vi ,

∧n vi ,
respectively, thatn � v∗ � 1 � v∗, with equality if and only ifv1 = v2 = · · · = vn. (When
{vi} are absolutely continuous with densities{fi}, v∗ is simply the total area under th
outer envelope max1�i�n fi of {fi}, andv∗ is the area under min1�i�n fi .) In fair-division
problems,v∗ represents the cooperative value ofΩ , that is the total value to the coalitio
of all players if each piece is given to the player who values it most, and these valu
added together. Similarly,v∗ represents the “worst-case” allocation if the values are ad
(cf. [8,10]).

Example 3.11.For the measures in Example 2.2,v∗ = 5/4 andv∗ = 3/4; in Example 2.3,
v∗ = 1 = v∗.

Theorem 3.12.Fix n � 1 andv1, . . . , vn atomless probability measures on(Ω,F). Then
there exist partitionsP(1),P(2),P(3),P(4) in Πn such that

(i) P
(1) is envy-free andvi(P

(1)
i ) = (n− v∗ + 1)−1 for all i;

(ii) P
(2) is envy-free andvi(P

(2)
i ) = (n+ v∗ − 1)−1 for all i;

(iii) emax(P
(3)) � min

{
0, n−v∗−1

n−v∗+1

}; and

(iv) emax(P
(4)) � min

{
0, n+v∗−3

n+v∗−1

}
,

and these bounds are best possible.

Recall thatv∗ = 1 if and only if v∗ = 1 if and only if v1 = · · · = vn, so the bounds
(n− v∗ + 1)−1 and(n+ v∗ − 1)−1 in (i) and (ii) are strictly bigger than 1/n whenever the
{vi} are not identical. Thus, in that case, (i) and (ii) guarantee the existence of env
super-fair partitions, with super-fairness quantifiably greater than 1/n. Similarly, for v∗
sufficiently large, orv∗ sufficiently small (v∗ > n− 1, v∗ < 3− n), (iii) and (iv) guarantee
the existence of super-envy-free partitions with envy quantifiably strictly negative (c
and [3] for nonquantifiable super-fair and for super-envy-free partitions, respectively

Proof of Theorem 3.12. Let µ =∑n
i=1 vi . Everyvi is absolutely continuous with respe

to µ, so, by the Radon–Nikodym theorem, there exists a functionfi , called the density
function ofvi , such thatvi(A) = ∫

A
fi dµ for all A ∈F .

To prove (i), letP∗ = (P ∗
1 , . . . ,P

∗
n ) be the partition ofΩ which assigns each element

Ω to the player whose density is highest in that point. In case of ties, the point is allo
to the player identified by the lowest number. More formally, let

P ∗
1 =

{
x ∈ Ω : f1(x) = max

m
fm(x)

}
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,

and

P ∗
k =

{
x ∈ Ω : fk(x) = max

m
fm(x)

}∖ k−1⋃
i=1

P ∗
i , k = 2, . . . , n.

Let MV(P
∗) = (vi(P

∗
j ))

n
i,j=1 be the value matrix associated with the partitionP

∗. Then

n∑
i=1

vi
(
P ∗
i

)=
n∑

i=1

∫
P ∗
i

fi dµ =
n∑

i=1

∫
P ∗
i

max
m

fm dµ =
∫
Ω

max
m

fm dµ = v∗ (3.12)

and

vi
(
P ∗
i

)=
∫
P ∗
i

fi dµ =
∫
P ∗
i

max
m

fm dµ �
∫
P ∗
i

fj dµ = vj
(
P ∗
i

)

for all i, j = 1, . . . , n. (3.13)

Now, for eachk = 1, . . . , n, consider the partitionPk = (P k
1 , . . . ,P

k
n ) which assigns the

whole setΩ to playerk, i.e.,

Pk
j =

{
Ω if j = k,

∅ otherwise.
(3.14)

Clearly, the value matrixMV(P
k) satisfies

vi
(
Pk
j

)=
{

1 if j = k,

0 otherwise,
for all i = 1, . . . , n.

Since thevi are atomless, Proposition 2.4(ii) implies thatMV is convex. Therefore, fo
any choice ofβ1, . . . , βn,βn+1 with βi � 0 for all i = 1, . . . , n+ 1 and

∑n+1
i=1 βi = 1, there

exists a partitionP(1) = (P
(1)
1 , . . . ,P

(1)
n ) such that

MV(P
(1)) =

n∑
k=1

βkMV(P
k)+ βn+1MV(P

∗).

Define the coefficients{βi} as follows (cf. [12,13]):

βk = 1− vk(P
∗
k )

n− v∗ + 1
, k = 1, . . . , n, and βn+1 = 1

n − v∗ + 1
.

The{βi} are all nonnegative sincev∗ � n, and satisfy
∑

i βi = 1 by (3.12). The element
of MV(P

(1)) satisfy

vi
(
P

(1)
j

)=
n∑

k=1

βkvi
(
Pk
j

)+ βn+1vi
(
P ∗
j

)= βj + βn+1vi
(
P ∗
j

)

= 1− vj (P
∗
j ) + vi(P

∗
j )

n − v∗ + 1
� 1

n − v∗ + 1
= vi

(
P

(1)
i

)
. (3.15)

The inequality in (3.15) follows by (3.13), with the roles ofi andj reversed. Therefore
P
(1) is envy-free and allots the value(n − v∗ + 1)−1 to each player.
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The proof of (ii) also requires the following inversion principle (cf. [10, Propo
tion 2.3]):

MV ∈ MV ⇒ (1−MV)/(n− 1) ∈MV, (3.16)

where1 is then× n matrix whose elements are all 1’s.
This time, the partitionP∗, which assigns each point to the player with the lowest d

sity, is

P∗1 =
{
x ∈ Ω : f1(x) = min

m
fm(x)

}
and

P∗k =
{
x ∈ Ω : fk(x) = min

m
fm(x)

}∖ k−1⋃
i=1

P∗i , k = 2, . . . , n.

It is easy to see that
n∑

i=1

vi(P∗i ) = v∗ (3.17a)

and

vi(P∗i ) � vj (P∗i ) for all i, j = 1, . . . , n. (3.17b)

By (3.16),(1−MV(P∗))/(n− 1) ∈MV and, therefore, by Proposition 2.4(ii), there exi
a partitionP

(2) = (P
(2)
1 , . . . ,P

(2)
n ) whose value matrix satisfies

MV(P
(2)) =

n∑
k=1

β̂kMV(P
k)+ β̂n+1

1−MV(P∗)
n− 1

,

where coefficientŝβi are given by

β̂k = vk(P∗k)
n + v∗ − 1

, k = 1, . . . , n, and β̂n+1 = n − 1

n+ v∗ − 1
.

It is easy to check that̂βi � 0, and, by (3.17a),
∑n+1

i=1 β̂i = 1.
From (3.17b) it follows that

vi
(
P

(2)
j

)=
n∑

k=1

β̂kvi
(
Pk
j

)+ β̂n+1
1− vi(P∗j )

n− 1
= β̂j + β̂n+1

1− vi(P∗j )
n − 1

= vj (P∗j )+ 1− vi(P∗j )
n+ v∗ − 1

� 1

n + v∗ − 1
= vi

(
P

(2)
i

)
, (3.18)

soP
(2) is envy-free and allots the value(n+ v∗ − 1)−1 to each player.

Statements (iii) and (iv) are a direct consequence of (i) and (ii), respectively. In pa
lar, to prove (iii), again consider the partitionP(1). It was shown in (i) that this partition i
envy-free, soemax(P

(1)) � 0. Also, by (3.15),vi(P
(1)
i ) = (n − v∗ + 1)−1 and

vi
(
P

(1)
j

)
� 1− vi

(
P

(1)
i

)= n − v∗
∗ for all j �= i.
n− v + 1
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Therefore

vi
(
P

(1)
j

)− vi
(
P

(1)
i

)
� n− v∗ − 1

n− v∗ + 1
for all j �= i,

which completes the proof of (iii).
Similarly, to obtain (iv), note thatemax(P

(2)) � 0 and, by (3.18),

vi
(
P

(2)
j

)
� 1− vi

(
P

(2)
i

)= n+ v∗ − 2

n+ v∗ − 1
for all j �= i,

so

vi
(
P

(2)
j

)− vi
(
P

(2)
i

)
� n+ v∗ − 3

n+ v∗ − 1
for all j �= i. ✷

Example 3.13.For the measures in Example 2.2, Theorem 3.12(i) guarantees the exi
of an envy-free partition with equitable share(2− v∗ +1)−1 = 4/7∼= 0.57 for each player
whereas for these particular measures even more is possible (namely(

√
5− 1)/2 ∼= 0.61,

see Example 2.2). Similarly, Theorem 3.12(iii) guarantees the existence of a supe
free partition with maximum envy� (2 − v∗ − 1)/(2 − v∗ + 1) = −1/7, whereas eve
smaller maximum envy 2− √

5 is possible (cf. Example 3.3).

4. Minimax-envy inequalities for measures with atoms

For atomless measures, fair and envy-free partitions always exist (cf. Theorem 3.
a consequence of the convexity of the value and envy matrix ranges, respectively (P
tion 2.4, Theorem 3.5). For measures with atoms, however, in general the sets ofF -feasible
value matrices and envy matrices are not convex, and neither fair nor envy-free pa
exist (cf. Examples 2.3 and 3.3(ii)). It is the purpose of this section to establish b
on the nonconvexity, and upper bounds on envy based on the mass of the larges
analogous to the bounds found in [7] for value matrices. The underlying intuition is si
that if the atoms are all very small, then the envy-matrix range must be nearly conve
hence nearly envy-free partitions must exist.

For α ∈ (0,1), let P(α) denote the set of value functions with no atom mass gre
thanα. That is,

P(α) = {
v: v is a probability measure on(Ω,F )

with v(A) � α for all v-atomsA ∈F
}
.

The next theorem gives an upper bound on how far from convex the set of feasibl
matrices can be as a function of the maximum atom size and the number of measure
co(S) denotes the convex hull of the setS.

Theorem 4.1.Fix n � 1 andα ∈ (0,1), and letvi ∈ P(α), i = 1, . . . , n. Then for every
C = (cj )

n
i,j=1 ∈ co(ME) there existsP ∈ Πn with∣∣ei,j (P)− ci,j

∣∣� α(2n)3/2 for all i, j = 1, . . . , n.
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Proof. Fix C = (ci,j )
n
i,j=1 ∈ co(ME). By Lemma 3.4, there existsD = (di,j )

n
i,j=1 ∈

co(MV) such that

ci,j = di,j − di,i for all i, j = 1, . . . , n. (4.1)

Sincev1, . . . , vn ∈ P(α), by a theorem of Allaart [2, Theorem 2.11(i)], the Hausdo
euclidean distance betweenMV and its convex hull is no more than

√
2αn3/2, so there

existsM = (mi,j )
n
i,j=1 ∈ MV with

[
n∑

i,j=1

(mi,j − di,j )
2

]1/2

�
√

2αn3/2. (4.2)

SinceM ∈ MV, there exists a partitionP = (P1, . . . ,Pn) ∈ Πn with

vi(Pj ) = mi,j for all i, j = 1, . . . , n. (4.3)

Since max{|a1|, . . . , |am|} � (
∑m

k=1 a
2
k )

1/2, (4.2) and (4.3) imply that∣∣vi(Pj )− di,j
∣∣� √

2αn3/2 for i, j = 1, . . . , n. (4.4)

By definition of envy,ei,j (P) = vi(Pj )− vi(Pi), so (4.1) implies that∣∣ei,j (P)− ci,j
∣∣= ∣∣vi(Pj )− vi(Pi)− (di,j − di,i)

∣∣
�
∣∣vi(Pj )− di,j

∣∣+ ∣∣vi(Pi)− di,i
∣∣� 2

√
2αn3/2 = α(2n)3/2,

where the last inequality follows by (4.4).✷
Allaart has also found the sharp bound for the Hausdorff distance between thepartition

rangeand its convex hull [1, Theorem 2.5] in terms ofα, which has direct application t
maximin-share but not to minimax-envy inequalities. The next result is an example
application of Theorem 4.1 to establish the existence of envy-free partitions in som
division problems with atoms. Recall thatv∗ andv∗ are the total masses of the small
measure dominating, and the largest measure dominated by, respectively, all the m
v1, . . . , vn (cf. Example 3.11).

Theorem 4.2.Fix n � 1 and α ∈ (0,1), and letvi ∈ P(α) for all i = 1, . . . , n. Then if
either

(i) α <
(−n+v∗+1

n−v∗+1

)
(2n)−3/2 or

(ii) α <
(−n−v∗+3

n+v∗−1

)
(2n)−3/2,

then there exists a super-envy-free partitionP ∈ Πn.

Proof. To see (i), assume without loss of generality, that(−n+ v∗ + 1) > 0, for otherwise
the conclusion is trivial. EnlargingΩ if necessary (e.g., replacingA byA×[0,1] for every
v-atomA in F ), it may be assumed without loss of generality that there exists aσ -algebra
F̂ ⊃F , and atomless measuresu1, . . . , un on (Ω, F̂ ) such that
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u∗ = v∗ and ui(P ) = vi(P ) for all P ∈F . (4.5)

Letting

M̂E =
{(

ui(P̂j )
)n
i,j=1: P̂1, . . . , P̂n ∈ F̂ ,

⋃
P̂i = Ω, P̂i ∩ P̂j = ∅ if i �= j

}
,

it follows by the definition of{ui} andF̂ that

M̂E = co(ME). (4.6)

By (4.5) and Theorem 3.12(iii), there exists a partitionP̂ = (P̂1, . . . , P̂n) with P̂i ∈ F̂
for all i, and satisfying

ui(P̂j )− ui(P̂i ) � n − u∗ − 1

n − u∗ + 1
for all i = 1, . . . , n, i �= j. (4.7)

By (4.6),(ui(P̂j ))
n
i,j=1 ∈ co(ME), so by Theorem 4.1 there exists a partitionP ∈ Πn with

∣∣ei,j (P)− (
ui(P̂j )− ui(P̂i )

)∣∣� α(2n)3/2 <

(−n+ v∗ + 1

n − v∗ + 1

)
(2n)−3/2(2n)3/2

= −n+ v∗ + 1

n− v∗ + 1
, i �= j,

so by (4.7) and the fact thatu∗ = v∗,

ei,j (P) <
−n+ v∗ + 1

n − v∗ + 1
+ ui(P̂j )− ui(P̂i ) � 0,

soemax(P) < 0 andP is super-envy-free, which proves (i). The argument for (ii) is sim
using Theorem 3.12(iv). ✷
Example 4.3.Suppose thatv1 andv2 are probability measures withv∗ = 5/4. If no atom
in v1 or v2 has mass greater than

(−2+v∗+1
2−v∗+1

)
(4)−3/2 = 1/56, then there is a super-envy-fr

partition. (Compare with Example 3.13, wherev1 andv2 areatomlesswith the same oute
measurev∗ = 5/4.)

The next proposition, which is recorded here for ease of reference, gives the shar
anteed maximin share as a function of maximum atom size and number of measures
be used here to establish upper bounds on maximum envy also as a function of ato
and number of measures.

Definition 4.4.Vn : [0,1] → [0,1] is the unique nonincreasing function satisfyingVn(x) =
1− k(n − 1)x for all x ∈ [(k + 1)k−1((k + 1)n− 1)−1, (kn − 1)−1], k = 1,2, . . . .

Proposition 4.5 [9]. Fix n � 1 and let v1, . . . , vn ∈ P(α). Then there exists a partitio
P = (P1, . . . ,Pn) ∈ Πn satisfying

vi(Pi) � Vn(α) for all i = 1, . . . , n,

and this bound is attained.
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Theorem 4.6.Fix n � 1 andα ∈ (0,1) and letv1, . . . , vn ∈ P(α). Then there exist parti
tionsP

(1),P(2) in Πn satisfying

(i) emax(P
(1)) � α(2n)3/2; and

(ii) emax(P
(2)) � 1− 2Vn(α).

Proof. Letu1, . . . , un, F̂ , andM̂E be as in the proof of Theorem 4.2. Theorem 3.8(iii) i
plies the existence of an envy-free partitionP̂ for u1, . . . , un, and via correspondence (4.6
this implies that there is an elementC = (ci,j )

n
i,j=1 ∈ co(ME) with ci,j � 0 for all

i, j = 1, . . . , n. Conclusion (i) then follows immediately from Theorem 4.1.
To see (ii), letP = (P1, . . . ,Pn) ∈ Πn be as in Proposition 4.5. By additivity of th

measures{vi}, vi(Pj ) � 1 − vi(Pi) for all j �= i, so vi(Pj ) − vi(Pi) � 1 − 2vi(Pi) �
1− 2Vn(α). ✷
Example 4.7.Let α = 0.01, that is, no participant values any crumb more than one
dredth of the total value of the cake. If there are two players, the bound in Theorem 4
0.08 and checking thatV2(0.01)= 50/101, the bound in (ii) is 1/101, which is sharper. I
there are three players, then the bound in (i) is(0.01)63/2 ∼= 0.1470, and that in (ii) (check
ing thatV3(0.01)= 33/101) is 35/101, which in this case is substantially weaker than
bound given by (i).
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