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Abstract

For fair-division or cake-cutting problems with value functions which are normalized positive
measures (i.e., the values are probability measures) maximin-share and minimax-envy inequalities
are derived for both continuous and discrete measures. The tools used include classical and recent
basic convexity results, as well as ad hoc constructions. Examples are given to show that the envy-
minimizing criterion is not Pareto optimal, even if the values are mutually absolutely continuous. In
the discrete measure case, sufficient conditions are obtained to guarantee the existence of envy-free
partitions.
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1. Introduction

The subject of this paper is fair-division or cake-cutting inequalities (cf. [5,6,11]), and
in particular, the relationship among various notions of optimality such as maximin share,
minimax envy, and Dubins—Spanier optimality. A caRes to be divided among players
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whose relative values, . .., v, of the various parts of the cake may differ. A partition of
the cake inta: piecesPs, ..., P, is sought so that the resulting valuggP;) make the
minimum perceived share as large as possible, or make the maximum envy as small as
possible.

The formal framework is as follows. There arécountably additive) probability mea-
suresvs, ..., v, on the same measurable spéce F), wheres2 represents the cake arkd
is theo -algebra of subsets @2 which represents the collection of feasible pieces. For each
P € F and eachi, v; (P) represents the value of pie®eto player:. (Hence, in this setting,
the feasible pieces always include the whole cake, and are closed under complements and
countable unions; and the value functions are additive.)

Throughoutthis papef], will denote the collection afF-measurable partitions ofs2,
that is,

n
an{(Pl,...,Pn): P eFforalli, PinP;=@if i # ], andUP,-:.Q ,
i=1

and a typical elemerit € IT, is the partitionP = (P1, ..., P,) representing allocation of
P; to playeri foralli =1,...,n.

This paper is organized as follows: Section 2 contains definitions and examples of the
value matrix, maximin optimality and fair partitions, as well as the main compactness and
convexity theorem for value matrices due to Dubins and Spanier [6]; Section 3 contains
the analogous convexity/compactness result for envy matrices, a proof that even in the
mutually absolutely continuous case, a Dubins—Spanier optimal partition need not be envy-
free, and several results guaranteeing the existengeaoftifiablysuper-fair envy-free and
super-envy-free partitions; and Section 4 contains minimax-envy inequalities for general
measures (including measures with atoms) whose bounds are functions of the maximum
atom size.

2. Fair and Dubins—Spanier-optimal partitions
Denote byM (n x n) the set of real-valued x n matrices.

Definition 2.1. Thevalue matrixMy (P) of a partitionP is the matrix whose entries are the
values of the pieces of the partition to the respective players, thektis/T, — M (n x n)
is given by

My (@) = My((PL. ..., P)) = (vi(P)); 1,

and theset of F-feasible value matrices1y is given by

My = {My@P): Pe IT,} C M(n x n).
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Example 2.2.Let (2, F) = ([0, 1], Borels, n = 2, v1 = uniform distribution on[0, 1],
andv; = probability measure of0, 1] with distribution functionF,(x) = x2,0<x < 1.
Then forP1 = ([0, 1/2), [1/2, 1]) andP, = ([0, (v5 — 1)/2), [(v/5— 1)/2, 1)),

11 Vv6-1 3-5
MV(P1>=(i §> and Mv(]P’2)=<3_2[5 ng_l)’
4 3 = Tz

and an easy calculation shows that

Mv={< * 1_x>10<x<1, (1—x)2<y<1—x2}.
1-y vy

Example 2.3.Let (2, F) = ([0, 1], Borelg, n = 2, v1 = v2 = §(1/2), the Dirac point mass
at{1/2}, and letP;, P, be as in Example 2.2. Then

wae=(g 7). mea=(] g),

Mv={<x 1_x>:x=00rx=1}.
x 1—x

The next result, a consequence of Lyapounov’s convexity theorem due to Dubins
and Spanier, is one of the main tools in measure-theoretic fair-division problems, and is
recorded here for ease of reference. (Recall that a meassiedomlessf for every P € F
with v(P) > 0, there existsaset € 7, A C P with0 < v(A) < v(P); for Borel measures
on the real line, this is equivalent ig{x}) = O for everyx € R.)

and

Proposition 2.4[6]. Fix n > 1 andvs, ..., v, probability measures o2, F). Then

(i) My is compacias a subset of real x n matrice3; and
(ii) if eachv; is atomless, themty is convex.

Remarks. Note that the measures in Example 2.2 are atomless, and hence that the set of
feasible value matrices1y is convex. In Example 2.3, on the other handandv; are

purely atomic, and\y is far from convex. Itis also easy to check thiat, may be convex

even if{v;} are atomic; for example, by taking= 2 andv; = vo defined byv1({x}) = x
forx=2",n=1,2,..., andvi(x) = 0 otherwise, in which case

MV={<X 1_x>: ogxgl}.
x 1—x

Definition 2.5. A partitionP = (P4, ..., P,) isfair if v; (P;) > 1/n for all i; is equitableif
v (P;) =v;(P;) foralli, j;is maximin optimalf minyg;<, v (P;) = minyg; <, vi (P;) for
allP=(Py,..., P,) € IT,; and isDubins—Spanier optimgDS optimal) if (v;3) (P1)). . ..,
Vi) (Py)) > vy (Py), -+, vy (Piay)) forall P= (Py,..., P, € I, Wherev<,->(P(,»>)
are the increasing order statistics of the(P;)} (i.e., vy (Py) < v (P2) < --- <
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vy (Py)), and =" is the real lexicographic order. In other word3,is DS optimal if

the smallest share mig; ¢, v; (P;) is as large as possible among all possible partitions,
and among all partitions attaining that maximin, the second smallest share is as large as
possible, and so forth.

Remarks. As shown in [6], it follows from Proposition 2.4(i) that maximin-optimal and
DS-optimal partitions always exist; and from Proposition 2.4(ii) that if {hé are atom-

less, that fair equitable partitions always exist, and that every DS-optimal partition is fair.
Without the assumption of atomless measures, DS-optimal partitions may not be fair, as is
easily seen in Example 2.3.

3. Envy-minimizing partitions

A recent alternative to the objective of maximizing one’s own shafg;), is the objec-
tive of minimizing one’s envy of other’s shares(P;) — v; (P;) (cf. [3-5,14]). Clearly the
two objectives are related, but as the next example points out, players trying to minimize
envy would sometimes reject a given partition in favor of one which giwesy player a
much smaller shardn this example, the players would reject an equitable partition which
allocates each player very nearly 50% of his own value of the cake (but with an accompa-
nying miniscule amount of envy) in favor of an envy-free partition which allots each player
a piece he feels is worth exactly 1% of the total value. In particular, the example shows that
the envy-minimizing objective is not Pareto optimal.

Example 3.1.Let (£2, F) = ([0, 100], Borels, n = 100, letv; be uniform on[i — 1,

i+1 fori=1,...,99, and letvigo be uniform on[99,100 U [0,1). Let P =

(P1, P2, ..., P1gpo) be given by P, = [i + 0.0001: + 1.0001), i=1,. ., 98, Pgg =
[99.0001 100] U [0, 0.0001), and P1go= [0.0001, 1.0001); and letP = (1, Pz, ..., P1oo)

be P; = Uk olk + (i —1)/100 k +i/100,i =1,...,100. It is easily checked that, for
eachi, v; (P;) = 0.49995 and the envy of player(see Definition 3.2 below) is.00005

for eachi. On the other hand, with partitidfﬁ, each player receives a piece worth exactly

vi (P;) = 0.01, but no player values any other piece more than his own. Thus players seek-
ing to minimize envy would choog®, overP; and reduce their shares uniformly by nearly

a factor of 50.

In the above example, however, it is easy to see that there is a partition (n8mely
[i —1,i) for all i) which is simultaneously envy-free, DS optimal, equitable and fair, and
which assigns each player a share he values exactly 50% of the cake. It is the purpose of
this section to record several basic properties of envy, to investigate the interrelationship
among these various notions of optimality, and to derive several general inequalities for
upper bounds on envy.

Definition 3.2. Theenvy of a partitiori? to playeri, ¢; (P), ise; (P) = maxig j£i<n Vi (Pj) —
v; (P;); the maximum envy oP, emax(P), is emax(P) = maxi¢i<x e; (P); the envy matrix
of P, Me(P) is the element iM (n x n) with (i, j)th entrye; ; = v; (P;) — v; (P;); and the
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set of F-feasible envy matrices1g is the subset oM (n x n) given by Mg = {Mg(P):
Pell,}.

(Note that the definition of envy here is the negative of that in [14]; here positive envy
reflects valuing another’s piece more than one’s own, and the objective is to minimize
envy.)

Example 3.3.(i) For the problem in Example 2.2,

0 0 0 2—\/§>
Mg(P1) = , Mg(Pp) = ,

and

_ 0 1-2x). N2 _ .2
ME_{(l—Zy 0 >.O<x<1, 1l-—x)<y«<1 x}.

(i) For the problem in Example 2.3,

vern=( 0 §). mera=(§ ).

0 1-2x\.
ME:{(ZX—]. 0 >.x_00r1}.

Lemma 3.4.(i)) dim(My) = dim(Mg); (ii) the function fromMy — Mg defined by
My (P) = Mg(P) is one-to-one, onto, and affine.

and

Proof. Conclusion (i) is a direct consequence of (ii). To see (ii), note {h,e(tPj)}ﬁj:l
clearly determinegv; (P;) — Ui(Pi)}?,j:l? conversely, the sum of the envy entries in the
ith row,
n n
D (i) —vi(P)) =D vi(P) —nvi(P) = L—nvi(P),
j=1 j=1
so

vi (Pj) =v; (Pj) —vi(P) +vi(P)

=Ui(Pj)—vi(Pi)+nl(l—Z(vi(Pj)—vi(Pi))) O

j=1

The next theorem is a direct analog of the main compactness—convexity result for value
matrices given in Proposition 2.4.

Theorem 3.5.Fix n > 1, andv1, v, ..., v, probability measures of$2, 7). Then

(i) Mg is compactand
(ii) if eachwv; is atomless, theMg is convex.
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Proof. Conclusion (i) follows from Lemma 3.4 and Proposition 2.4, sifnde is a con-
tinuous image of the compact satly, and (ii) follows similarly since in the atomless
measure caséylg is the image of the convex sattyy under an affine transformationo

Note that in Example 3.3V is convex in case (i), and not convex in (ii); in both cases
it is compact.

Definition 3.6. A partition P* € 1, is envy-freeif emax(P*) < 0; is minimax envy
optimal if emax(P*) = min{emax(P): P € I1,}; and isDS minimax envy optimaf it
attains the minimum, lexicographically, of the set of feasible ordered envy vectors
{ey(P), ..., eyP)): P e IT,} (cf. Definition 3.2).

Example 3.7.The partitionP; in Example 2.2 is the unique (up to sets of measure zero)
DS-minimax-envy-optimal partition and is also envy-free (see Example 3.8(@)yypar-
tition in Example 2.3 is DS minimax envy optimal with maximum possible eyfor

one of the players, and no partition is envy-free.

Theorem 3.8.Fix n > 1, andvy, ..., v, probability measures o2, 7). Then

(i) Minimax-envy-optimal and DS-minimax-envy-optimal partitions always;exist
(i) If a partition is envy-free, then it is fair
(iii) If {v;}] are atomless, then envy-free partitions always exist
(iv) If {v;}] are atomless and linearly independent, then super-envy-free partitions
(emax < 0) always exist.

Proof. Conclusion (i) follows easily from Theorem 3.5(i) since the mappivty —
[—1,1] given by ME(P) = emax(P) (= (eqy(P), ..., e (P)), respectively) is continu-
ous, so its minimum is attained; (ii) is trivial sineg(P;) — v; (P;) < 0 for all i, j implies
that v; (P;) > 1/n for all i; (iii) follows by Theorem 3.5(ii) by considering the parti-
tionsPl = (22,0,....0), P2 =@, 2,0,....9), ..., P" = (@, ...,%, £2), and noting that
> -1 Mg (P/) is the zero matrix; and (iv) is the main result in [3]0

Contrary to a claim in [15], the next example shows that even for three mutually ab-
solutely continuous measures, vz, v3, a DS-optimal partition need not be envy-free.
(Recall that in Example 3.T; was strictly better value-wise for each player than the envy-
free partitionP, butP was not DS optimal.)

Example 3.9.Let (£2, F) = ([0, 3], Borely, n = 3, and (letting! (a, b) denote the indica-
tor function/ (a, b)(x) = 1if a < x < b, and= 0 otherwise) lety, v2, v3 be the continuous
distributions with density functiong, f>, f3, respectively, given by

f1=041(0,1)+0.11(1,2) +0.51(2, 3),

f2=0.31(0,1)+0.41(1,2) +0.31(2, 3),

f3=0.31(0,1)+0.31(1,2) +0.41(2, 3).
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Then, as will be proved in the next theorem, the partifiea (P1, P2, P3) = ([0, 1), [1, 2),

[2, 3]) yields the uniquely maximin-optimal vectgo1(P1), v2(P2), v3(P3)) = (0.4,0.4,
0.4), but P is not envy-free. Thus every envy-free partition is strictly suboptimal in the
maximin criterion, and hence also strictly suboptimal in the DS criterion.

Theorem 3.10.(i) If n = 2 and vy, vy are atomless, then every maximin-optimal partition
is envy-freeand (ii) for eachn > 3, there exist mutually absolutely continuous atomless
measure®s, .. ., v, such that no maximin-optimal patrtition is envy-free.

Proof. To see (i), note that ) and(J 1) are inMy (takingPy = (2. %), P2 = (4. 2)),

so by Proposition 24(1;2 52) € My, and thus every maximin-optimal partitidhsat-
isfies v1(P) > 1/2, vo(P) > 1/2. By additivity, this implies thatw;(P1) > v1(P2) and
v2(P2) > v2(P1), and hence thdt is envy-free.

To see (ii), note that [6, last remark on p. 17] for anywhen the measures are mutu-
ally absolutely continuous the DS-optimal solution is equitable. Therefore, all maximin-
optimal solutions are DS optimal and equitable.

Forn = 3, consider the measures, vz, andvz of Example 3.9. The set of all possible
partitions of{0, 3] can be described as follows: the interf@l1) is divided into three parts
with player 1 (respectively, player 2) receiving a piece of lengtlfrespectivelyp») and
player 3 getting the rest, i.e.-1p1 — p2. Similarly, [1, 2) is split into three parts of length
q1, g2, and 1— g1 — g2, respectively, an?, 3] is partitioned as1, r2, and 1— ry — ro.

Every equitable partition is obtained as a solution of the following system of linear
equations and inequalities:

0.4p1+0.1g1 +0.5r1 =@,

0.3p2+0.492+0.3r2 =«,
0.3(1—p1—p2)+03(1—gq1—¢2) + 041 —r1 — rp) =«,
P1, P2,4q1,92,71,72 20,

p1+p2<1,

qg1+q2<1,

ri+r2 <1,

and the largest value of is sought that keeps this system admissible. The corresponding
solutions for thep;’s, ¢;'s, andr;’s describe all possible maximin-optimal solutions.

Solving the first equation fop1 in terms ofw, ¢1, andry, and the second fap, in terms
of «, p2, andry, and substituting these expressions in the third equation yields

0.3p2+0.991+0.1r1 + 0.7 =4 — 100. (3.1)
If « > 0.4, Eq. (3.1) has no solution with nonnegative variables.
If, instead,« = 0.4, (3.1) admits only the solution
p2=q1=r1=rz2=0. (3.2

(Thus, the segmeri2, 3] is given in its entirety to player 3, who reaches his “quota” @f 0
and has no interest in the other parts of the cake.)
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Hence, sincex = 0.4, p1 + p2 =1 andgi + g2 = 1. This fact and (3.2) imply that
p1= g2 = 1, which shows thdP = ([0, 1), [1, 2), [2, 3]) is, up to sets of Lebesgue measure
zero, the only minimax-optimal (and DS-optimal) solution. But

0 -03 01
MEeP) = (—O.l 0 —0.1) ,
-01 -01 O

which shows that this partition is not envy-free. This completes thericasd (and estab-
lishes the claim in Example 3.9).

Forn > 3, let (2, F) = ([0, n], Borels) and fixe with 0 < ¢ < 1. Consider the con-
tinuous distributionsi, . . ., v, with density functionsf, ..., f,, respectively, that have
constant values in each interyal-1,i),i =1, ..., n, with values shown in the following
table:

[0,1) 1,2 [2,3) [3,4) [4,5) [n—1,n]
f1 0.4(1—¢) 0.1(1—¢) 0.5(1—¢) g/(n—23) g/(n—3) g/(n—23)
fo 0.3(1—¢) 0.4(1—¢) 0.3(1—¢) eg/(n—3) eg/(n—3) eg/(n—3)
f3 0.3(1—¢) 0.3(1—¢) 0.4(1—¢) g/(n—23) g/(n—3) e/(n—23)
fa e/(n—1) e/(n—1) g/(n—1) l—=¢ g/(n—1) g/(n—1)
f5 e/(n—1) e/(n—1) e/(n—1) e/(n—1) 1-¢ g/(n—1)
fn s/kn—l) 8/&”—1) a/&n—l) a/&n—l) a/&n—l) 1—.8

As in then = 3 case, the distributions are mutually absolutely continuous and all minimax-
optimal solutions are DS optimal and equitable.

Denote byp; ; (i, j =1,...,n) the length of the part dfi — 1, i) assigned to playef
with the usual constraints; ; > 0 andZ’}zl pi,j =1 for all i. The partition, defined by
pi.i =1 foralli, has 04(1— ¢) as its lowest value, so the minimax-optimal value cannot
be smaller than this value.

Consider now the first three players only. Since the minimax value is at |2#%t-O¢)
and since[é’ fidvi = ¢,i =1,2, 3, each of the players, 2,3 must receive something
worth at least & — 1.4¢ from the interval[0, 3), so the following system of inequalities
must be satisfied by any minimax-optimal solution:

0.4p11+0.1p21+0.5p31> B+ O(e), (3.33)
0.3p1.2+0.4p22+0.3p32> B+ 0(s), (3.3b)
0.3p13+0.3p23+0.4p33> B+ O(e), (3.3¢)
B =04+ 00(). (3.3d)

A simple consequence of the normalizing constraints foiheis that
pl,3<1_p1,l_pl,21 izls 27 3. (34)
This, with (3.3c), implies that
0.3(1—p11—p12) +03(A— p21— p22) +0.4(1— p31—p32) =B+ O(s).
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Rearranging (3.3a)—(3.3c) yields

P11 2 gﬁ - %PZ,l - ?1]73,1 + O(e), (3.5a)

p22> 2,3 - %Pl,z - gp&z + 0(e), (3.5b)

0.3p1,1+0.3p12+0.3p21+0.3p22+0.4p31+0.4p32<1— B+ O(e), (3.5C)

B =04+ 0(). (3.5d)
Substituting (3.5a) and (3.5b) into (3.5¢) yields

0.3p1.2+0.9p21+0.1p31+0.7p32 < 4— 108+ O(e), (3.6a)

B =04+ 0(e). (3.6b)
These imply that

0.3p1,2+09p21+0.1p31+0.7p32<4—108+ O(e) = O(e). (3.7)
Since all variables in (3.7) are nonnegative, they all satisfy

p12=0(e), p21=0(e), p31=0(e), p32=0(e). (3.8)

From (3.5a) and (3.5d), and the fact that; and p3 1 are O(¢), it follows that p11 =
1+ O(e), and hence that

p13= 0(e). (3.9)
Similarly, (3.5b), (3.5d), and (3.8) imply thab > =1+ O(¢), S0

p23= O(e). (3.10)
Finally, (3.5¢), (3.5d), (3.9), and (3.10) imply that
p33=1+ 0(e). (3.12)

Thus, player 1's evaluation of his own share in any minimax-optimal solution is
v1(P1) =0.4p11+0.1p21+05p31+ O(e) =0.44 O (e).
Player 1's evaluation of player 3's share, on the other hand, is
v1(P3) =0.4p13+0.1p23+0.5p33+ O(e) =0.5+ O(¢),
where the last equality follows from (3.11). Therefore,
e13=v1(P3) —v1(P1) = 0.1 ase \| 0,
so asymptotically, in every maximin-optimal partition, player 1 envies player 3's share by
an amount arbitrarily close taD. O

The final theorem in this section gives sharp bounds for fairness of envy-free partitions
and minimax envy, in the case where the measures are atomless and have known upper and
lower bounds, respectively.
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For measuress, ..., v,, the function\/;_; v; : F — [0, 1], called the maximum of
{vi,..., v}, is the smallest set function which dominates each of{ihg A’ ;v; is
the analogous minimum. It is easy to check that Bgthv; and /\" v; are also countably
additive measures of12, F), and lettingv*, v, denote the total masses of" v;, A" v;,
respectively, that > v* > 1 > v,, with equality if and only ifvy = vo =--- = v,. (When
{v;} are absolutely continuous with densitigg}, v* is simply the total area under the
outer envelope max; <, fi of { i}, andv, is the area under mig; ¢, f;.) In fair-division
problemsp* represents the cooperative valuesdf that is the total value to the coalition
of all players if each piece is given to the player who values it most, and these values are
added together. Similarly, represents the “worst-case” allocation if the values are added
(cf. [8,10]).

Example 3.11.For the measures in Example 2.2,= 5/4 andv, = 3/4; in Example 2.3,
v =1=v,.

Theorem 3.12.Fix n > 1 andwvs, ..., v, atomless probability measures 62, 7). Then
there exist partition®®, P@ PO P@ in [7, such that

(i) PD is envy-free anab,»(Pl.(l)) = —v*+ 1) Lforall i
(i) PP is envy-free and;,»(Pl.(z)) =m+v.— D Lforall i;
(iii) emax(P®) < min{0, 2==1}: and

(iv) emax(P™) < min{0, Zix:i},

and these bounds are best possible.

Recall thatv* = 1 if and only if v, =1 if and only if vy = --- = v,, so the bounds
(n —v*+ 1~ tand(n + v, — 1)~ in (i) and (ii) are strictly bigger than/k whenever the
{v;} are not identical. Thus, in that case, (i) and (ii) guarantee the existence of envy-free
super-fair partitions, with super-fairness quantifiably greater thyan $imilarly, for v*
sufficiently large, ow, sufficiently small ¢* > n — 1, v, < 3 —n), (iii) and (iv) guarantee
the existence of super-envy-free partitions with envy quantifiably strictly negative (cf. [6]
and [3] for nonquantifiable super-fair and for super-envy-free partitions, respectively).

Proof of Theorem 3.12. Let u = Y _7_; v;. Everyv; is absolutely continuous with respect
to u, so, by the Radon—Nikodym theorem, there exists a funcfjprcalled the density
function ofv;, such thaw; (A) = [, fidu forall A € F.

To prove (i), letP* = (P;, ..., P;) be the partition of2 which assigns each element of
2 to the player whose density is highest in that point. In case of ties, the point is allocated
to the player identified by the lowest number. More formally, let

Pp=]re 2 00 =maxfu(o)
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and
k=1
P = [x €2 filx) = maxfm(x)} \ Uprr k=2....n
m
i=1

Let My (B*) = (v (PE)! ;4

Z/f,du Z/maxfmdu /@?xfmduzu* (3.12)

be the value matrix associated with the partitin Then

11

i= l

and
v,-(P{"):/fidu /maxfmdu>/f,du_v (PY)
foralli, j =1,..., . (3.13)
Now, for eachk = 1,...,n, consider the partitio®* = (PF, ..., PX) which assigns the
whole sets2 to playerk, i.e.,
k_ [ $2 if j=k,
b= {Q otherwise (3.14)

Clearly, the value matridsy (IP") satisfies

k 1 ifj= -
(P]) {0 otherW|se foralli=1,...,n

Since they; are atomless, Proposition 2.4(ii) implies thiety is convex. Therefore for
any choice of1, ..., By, Bura With g; > Oforalli =1,...,n+ 1 andy /"1 B = 1, there
exists a part|t|orP(1) (P(l) ., PV such that

My(PY) = Zﬁka(lP”‘) + Bup1 My ().

k=1
Define the coefficient§s;} as follows (cf. [12,13]):
1-— Uk(P]f) 1
=—* k=1,...,n, and =—.
Br PR n Bn+1 pa——

The{g;} are all nonnegative sinag’ < n, and satisfy) _; ; = 1 by (3.12). The elements
of My (PD) satisfy

P(l) Z IBkvt + Bn+1vi ( ) Bj + Bn+1vi ( )

1—v;(P})+vi(P}) 1
= I I < = (PY). (3.15)
n—v*+1 n—v*+1 !
The inequality in (3.15) follows by (3.13), with the rolesioénd j reversed. Therefore,
P is envy-free and allots the valye — v* + 1)~ to each player.
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The proof of (ii) also requires the following inversion principle (cf. [10, Proposi-
tion 2.3]):

MyeMy = A—My)/(n—1) My, (3.16)
wherel is then x n matrix whose elements are all 1's.

This time, the partitior®,, which assigns each point to the player with the lowest den-
sity, is
Pa=|xe2: i) =minfu(]
and

P = [x €2 fily) =rrl1ﬂinfm(x)} \kUlP*,», k=2.....n
i=1

Itis easy to see that

D vi(Pu) =vs (3.17a)
and
Vi (Pyi) < vj(Py) foralli,j=1,...,n. (3.17b)
By (3.16),(1 — My (P,))/(n — 1) € My and, therefore, by Proposition 2.4(ii), there exists
a partitionP® = (P(Z) ..., P\?y whose value matrix satisfies
MV(]P*)
M 2y — A
V(PP = ZﬂkaGP’ )+ B —
k=1
where coefficients; are given by
A vk (Pix) A n—1
=——— k=1,...,n, and =\
P n+ve—1 " Prt1 n+uve—1

Itis easy to check thal; > 0, and, by (3.17a)y 7} A = 1.
From (3.17b) it follows that

1—vi(Ps;) 4 A 1—vi(Pyj)
P(Z) Zﬂkv, +,3n+ %1*] zﬂj"'lgn-i-llfl*]
v,(P*,)+1—v,-(P*;) 1 &)
n+v,—1 n+ve—1 = ulF"): (348

soP@ s envy-free and allots the vale + v, — 1)~ to each player.

Statements (iii) and (iv) are a direct consequence of (i) and (ii), respectively. In particu-
lar, to prove (iii), again consider the partiti®?® . It was shown in (i) that this partition is
envy-free, s@maxP?) < 0. Also, by (3.15);4),-(Pl.(1)) =mn—-vs+1)"1tand

&) &) n— v
vi(Pj )gl—v,-(Pl. )=

pa—— forall j #1i.
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Therefore
(pDy _ . (py o TV
v’(Pj )_U’(Pi )gn—v*+1
which completes the proof of (iii).
Similarly, to obtain (iv), note thamax(P®) < 0 and, by (3.18),

forall j # i,

(p@ p@y_NFtve—2 .
vl(Pj )gl—UI(Pi )—m forall_]?él,
SO
@ @y _ h+ve—3 ..
U,’(Pj )—U[(Pi )gm fora”_]#l. O

Example 3.13For the measures in Example 2.2, Theorem 3.12(i) guarantees the existence
of an envy-free partition with equitable shag— v* + 1)1 = 4/7 = 0.57 for each player,
whereas for these particular measures even more is possible (nafiely 1)/2 = 0.61,

see Example 2.2). Similarly, Theorem 3.12(iii) guarantees the existence of a super-envy-
free partition with maximum envg (2 — v* — 1)/(2 — v* + 1) = —1/7, whereas even
smaller maximum envy 2 /5 is possible (cf. Example 3.3).

4. Minimax-envy inequalities for measures with atoms

For atomless measures, fair and envy-free partitions always exist (cf. Theorem 3.12), as
a consequence of the convexity of the value and envy matrix ranges, respectively (Proposi-
tion 2.4, Theorem 3.5). For measures with atoms, however, in general the gefsadible
value matrices and envy matrices are not convex, and neither fair nor envy-free partitions
exist (cf. Examples 2.3 and 3.3(ii)). It is the purpose of this section to establish bounds
on the nonconvexity, and upper bounds on envy based on the mass of the largest atom,
analogous to the bounds found in [7] for value matrices. The underlying intuition is simply
that if the atoms are all very small, then the envy-matrix range must be nearly convex, and
hence nearly envy-free partitions must exist.

Fora € (0,1), let P(«) denote the set of value functions with no atom mass greater
thana. That is,

P(a) = {v: v is a probability measure o2, )
with v(A) < « for all v-atomsA € F}.

The next theorem gives an upper bound on how far from convex the set of feasible envy
matrices can be as a function of the maximum atom size and the number of measures. Here
co(S) denotes the convex hull of the skt

Theorem 4.1.Fix n > 1 anda € (0, 1), and letv; € P(«), i =1,...,n. Then for every
C= (cj)ﬁ,.:1 € co(ME) there exist® e I1,, with

lei (@) —cij| <a@n)®? foralli,j=1,...,n.
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Proof. Fix C = (c,»,j)?,,.:1 € co(MEg). By Lemma 3.4, there exist® = (di,j)ﬁl.zl €
co(My) suchthat '
Ci,j Zdi,j—di,i for all i,j:l,...,n. (4.1)

Sincevs, ..., v, € P(a), by a theorem of Allaart [2, Theorem 2.11(i)], the Hausdorff
euclidean distance betweewy and its convex hull is no more thar2an®/?2, so there
existsM = (m[,j):l.j:l € My with

n 1/2
|: Z (m; j — di,./)2:| < 2an®/?. 4.2)

i,j=1
SinceM € My, there exists a partitioR = (P, ..., P,) € IT, with
v,'(Pj)zm,-,j for all i,j=1,...,l’l. (43)
Since malail, ..., lam|} < (Chqad)¥?, (4.2) and (4.3) imply that

lvi(P)) —d; ;| <~2an®? fori,j=1,...,n. (4.4)
By definition of envye; ; (P) = v; (P;) — v;(P;), so (4.1) implies that
lei j(B) —ci.j| = [vi(P)) —vi(P) — (dij — di)|
<|vi(Py) — dij| + |vi(Py) — dii| < 2v2an3? = a(2n)%?,

where the last inequality follows by (4.4) 0

Allaart has also found the sharp bound for the Hausdorff distance betwepartii®n
rangeand its convex hull [1, Theorem 2.5] in terms®fwhich has direct application to
maximin-share but not to minimax-envy inequalities. The next result is an example of an
application of Theorem 4.1 to establish the existence of envy-free partitions in some fair-
division problems with atoms. Recall that and v, are the total masses of the smallest
measure dominating, and the largest measure dominated by, respectively, all the measures
v1, ..., v, (cf. Example 3.11).

Theorem 4.2.Fix n > 1 anda € (0,1), and letv; € P(a) forall i =1,...,n. Then if
either

() o < ()20~ 2 or

(i) o < (S22 @n) %2,

then there exists a super-envy-free partitiba I7,,.

Proof. To see (i), assume without loss of generality, that + v* + 1) > 0, for otherwise
the conclusionis trivial. Enlarging if necessary (e.g., replacingby A x [0, 1] for every
v-atomA in F), it may be assumed without loss of generality that there existakgebra
F > F,and atomless measures ..., u, on(s2, ﬁ) such that
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w*=v* and u;(P)=vi(P) forall PeF. (4.5)
Letting
Mg = {(ui(ﬁ,))ﬁj:l: Pi...PieF | P =2, BinP=0ifi# j},
it follows by the definition of(u;} andF that
ME = co(ME). (4.6)
By (4.5) and Theorem 3.12(iii), there exists a partit®e: (71, ..., P,) with P, € F

for all i, and satisfying

A A n—u*—1
Mi(Pj) —u;i(P) < m
By (4.6), (ui(ﬁj));szl € co(ME), so by Theorem 4.1 there exists a partitiba 17, with

foralli=1,...,n, i #]. 4.7)

lei.j (B — (i (B)) — i (B)| < e@)¥/2 < (LM>(2n>‘3/2(2n)3/2

n—v*+1
-n+v*+1
BEETET R
so by (4.7) and the fact that = v*,
—n+v*+1 N ~
e j(P) < m +ui (Pj) —ui(F;) <0,

Soemax(P) < 0 andP is super-envy-free, which proves (i). The argument for (ii) is similar,
using Theorem 3.12(iv). O

Example 4.3.Suppose that; andv; are probability measures withi = 5/4. If no atom
in v1 or v has mass greater théﬁfj’T*ll) (4)~%/2 =1/56, then there is a super-envy-free
partition. (Compare with Example 3.13, whereandv, areatomlesswith the same outer

measure™ =5/4.)

The next proposition, which is recorded here for ease of reference, gives the sharp guar-
anteed maximin share as a function of maximum atom size and humber of measures; it will
be used here to establish upper bounds on maximum envy also as a function of atom size
and number of measures.

Definition 4.4.V,, : [0, 1] — [0, 1] is the unique nonincreasing function satisfyigx) =
1—k(n—Dxforallx e [(k+ Dk X ((k+Dn—1)"L, kn -1, k=1,2,....

Proposition 4.5[9]. Fix n > 1 and letvs, ..., v, € P(«). Then there exists a partition
P=(Py,..., Py) € I, satisfying
vi(P)>V,(a) foralli=1,...,n,

and this bound is attained.
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Theorem 4.6.Fix n > 1 anda € (0,1) and letvy, ..., v, € P(a). Then there exist parti-
tionsPM, P in [T, satisfying

() emax(P(l)) < 05(2”)3/2§ and
(i) emax(P?@) <12V, ().

Proof. Letus, ..., u,, F, and Mg be as in the proof of Theorem 4.2. Theorem 3.8((iii) im-
plies the existence of an envy-free partit[%for ui, ..., u,, and via correspondence (4.6),
this implies that there is an elemeat = (C[,j)lr-l’j:l € co(MEg) with ¢; ; < 0 for all
i,j=1,...,n.Conclusion (i) then follows immediately from Theorem 4.1.

To see (i), letP = (Py,..., P,) € IT, be as in Proposition 4.5. By additivity of the
measureqv;}, v;(P;) < 1— v (P) for all j #1i, sov;(P;) — vi(P) <1—2v(P) <
1-2V,(@). O

Example 4.7.Let « = 0.01, that is, no participant values any crumb more than one hun-
dredth of the total value of the cake. If there are two players, the bound in Theorem 4.6(i) is
0.08 and checking that»(0.01) = 50/101, the bound in (ii) is 2101, which is sharper. If
there are three players, then the bound in ({Pi®1)6%/2 = 0.1470, and that in (i) (check-

ing thatV3(0.01) = 33/101) is 35101, which in this case is substantially weaker than the
bound given by (i).
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