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Abstract

We show that Baldwin’s characterization of the set of periods of continuous self mapswe$tae
can be expressed in terms of a finite number of linear orderings.
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1. Introduction

In an interesting paper [4], which extends Sharkoiskieorem to the-star, Baldwin
has shown that the set of periods of a continuous map from-star into itself can be
expressed as a union of “tails” of a finite set of partial orderings of the natural numbers. On
the other hand, in [1] it was shown that for the class of continuous maps of the 3-star into
itself which leave the branching point fixed, the set of periods can be expressed as “tails”
of threelinear orderings (one of which was Sharkovikbrdering and the other two were
called red and green orderings). In [2] it was noted that these three orderings can be thought
of as certain orderings associated to the fractiofisdnd 3. This suggests that this is
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in fact the general situation. To be more precise, this suggests that the set of periods of a
continuous map from am-star into itself can be expressed as the union of “tails” of linear
orderings associated to all fractions in the interi@all) with denominator smaller than or
equal ton, defined in certain subsets of the natural numbers. This result was meant to be
proved in the first part of the paper [3] by Alseda and Moreno. However, despite of the
fact that the strategy used in proving that result was correct, the orderings associated to
fractions considered in [3] were not well defined (they were not antisymmetric). The aim
of this paper is to give a correct definition of the orderings associated to fractions whilst
proving the correct version of Alseda and Moreno’s result [3, Theorem 3.1]. This gives
a constructive proof of Theorem 1.6 of [4] which, in particular, proves Conjecture 13.4
of [1].

As it was already noted in [3], the fact that it is possible to characterize the sets of peri-
ods of continuous self maps of thestar in terms of linear orderings associated to fractions
suggests that the sets of periods of such maps may arise in some way from “rotation inter-
vals” (see [2] where an example of such a situation was given). However, this relation is
still far from being understood.

The paper is organized as follows. In Section 2 we give the basic definitions and prelim-
inary results. In particular, we recall Baldwin’s theorem on the set of periods of star maps.
In Section 3 we discuss a general approach to the problem of constructing finitely many
linear orderings such that any “tail” of a Baldwin ordering can be expressed as a finite
union of “tails” of those linear orderings. As we shall see this approach is not completely
satisfactory and in Section 4 we will adopt a constructive strategy. This section, for clarity,
is divided into four subsections. In the first two we define and study the orderings associ-
ated to fractions in the coprime and non-coprime cases, respectively. In the third subsection
of Section 4 we state and prove the main results of the paper. The last subsection is devoted
to the study of the structure of the orderings associated to fractions and to giving a finite
algorithm for their construction. As an application, an example of one of these orderings is
given.

2. Basic definitionsand preliminary results

We define am-star as the subspace of the complex numbers consisting anaall
such that” € [0, 1]. Then-star will be denoted b¥,, and the class of all continuous maps
from X, to itself will be denoted byY),. Each map from¥), will be called ann-star map.
The class of alk-star mapsf such thatf (0) = 0 will be denoted byx;?. We note that the
1-star and the 2-star are homeomorphic to a closed interval of the real line. Thus, in what
follows, when talking abouX,, or &}, we shall always assume that> 2.

As usual, if f € X, we shall writef* to denotef o fo---o f (k times). A pointx € X,,
such thatf*(x) = x but f/(x) #x for j =1,2, ...,k — 1 will be called aperiodic point
of f of periodk. The set of periods of all periodic points of a mag &), will be denoted
by Pex f). As is always the case when we consider sets of periods, thé sEhatural
numbers does not contain 0.

In the next subsection we summarize the characterization of the set of periods for maps
from X,,.
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2.1. Baldwin’s theorem on the set of periods of maps fiAgm

Baldwin’s characterization of the set of periods fostar maps is given in terms of
Baldwin’s partial orderings (see [4]). To define them we first recall the Sharkits/eki
dering .=, which is defined o™N U {2°°} as follows:

3¢>55> 7> - >2-35>2-54>2-7Tg> - >4-3
aw>4-54>4 - Tg> > a>2 - 3g>2" 54>2" Tg> -+~
a>2% > o> 2> - > 166> 86> 4> 24> 1.

Now we define theBaldwin partial orderings,> for all positive integers > 2. We
denote byN; the set{r,r + 1,1+ 2,14+ 3,...} U {1,¢-2°°} and byNy the set{mt: m € N}
U {1,z -2°}. Then the ordering> (we will also use the symbql> in the natural way)
is defined inN; as follows. Fork, m € N; we write m ,> k if one of the following cases
holds:

() k=1ork=m,
(i) k,meNy\{1}andm/ts>k/t,
(i) keNyandm ¢ Ny,
(iv) k,m ¢ Ny andk =im + jt with i, j e N,

where in case (ii) we use the following arithmetic rule for the symbat: ¢ - 2°° /1 = 2°°,
We note that thanks to the inclusion of the symbao2°°, each subset of N; has a least
upper boundn with respect to the ordering> and if m # ¢ - 2°° thenm € A. We also
note that the ordering> onNy =N U {2 - 2*°} coincides with Sharkovsks ordering on
N U {2°°} (by identifying the symbol 22°° with 2°°).

Let .> be an ordering on some sit. A non-empty setS ¢ N, NN will be called
a tail of the ordering,> if for eachm € S we have{k € N: m,>k} C S. Clearly, the
union of tails of an ordering> is also a tail of,> . There exists a particular type of tails
of orderings that plays a special role in this theory. It is the set of all elements which are
smaller than or equal to a given elementNgf. Givenm € N, we will denote bysS, (m)
the set{k € N: m,>k}, which is clearly a tail of,>. With this notation we have that
S C N, NN is a tail of the ordering,> if and only if for eachm € § it follows that
Si(m) C S.

Remark 2.1. Assume that,> is a linear ordering oi¥, such that each subsatof N, has

a least upper bouna with respect to the,> ordering and ifm € N thenm € A. Then,

S is a tail of ,> if and only if there existsn € N, such thatS = S, (m). The “if part” of
this statement is obvious. To prove the “only if part” takeequal to the least upper bound
of § and observe thaf, (m) C S C S,(m).

The following result is due to Baldwin [4] and characterizes the set of perioasstdr
maps.
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Theorem 2.1. Let f € X,. ThenPex f) is a finite union of tails of the orderings> with
2 <t < n. Conversely, given a set which can be expressed as a finite union of tails of the
orderings, > with 2 < <n, there exists a may € X such thatPer f) = A.

As it has been said in the introduction, the aim of this paper is to prove that the set of
periods of am-star map (which, as the preceding theorem shows, is a finite union of tails
of the orderings,> with 2 < ¢ < n) can be obtained as the union of tails of the linear
orderings associated to all fractions in the inter¢@ll) with denominator smaller than
or equal ton, defined in certain subsets of the natural numbers. In fact we will prove that
any tail of the,> ordering can be expressed as a union of tails of the linear orderings
associated to the fractions of the fosgty with s € {1, 2, ...,7 — 1}.

3. General approach

As we mentioned, we want to find- 1 linear orderings such that any tail of the ordering
= can be expressed as the union of tails of those orderings. In this section we prove the
existence of such orderings in a general framework. However, as we shall see, this approach
has the serious drawback that it does not give us any information on the obtained linear
orderings from the point of view of the dynamics. The following result is the key tool of
this paper.

Proposition 3.1. Let ,>> be an ordering on a sek,, let {N1, N2, ... N/~1} be a cover
of N, and, for eachs € {1,2, ..., — 1}, let ,,> be an ordering orN,, such thatN; C
N,, ¢ N, and

(a) if m e N, ke N, andm >k thenk e N, andm , >k,
(b) it m eN$, k e N, andm,, =k thenm > k.

Then any tail of,, > is also a tail of ,>. Conversely, iA C N, is a tail of ,> then there
existsR C {1,2,...,t — 1} such thatd = | J,.x Ay, for some tailA of , >.

Proof. Let A C N,, be a tail of,, >, letm € A and letk € N be such that: ,> k. From
(a) it follows thatm ,, > k and, hencek € A. Consequentlyd is also a tail of,>.

Now assume thatt C N, is a tail of ,>. For eachs € {1,2,...,t — 1} we defineA;
as the set of alk € NN N, such that there is; € A N N{ with mg ,>k. From (a) it
follows thatk € N, andmy ., > k. Consequentlyd; C N,,. Also, observe that ifin € A
thenm € A NN§ for somes andm ,,>m. Hencem € Ay, and soA C Ug;ll Ag. Assume
now thatk € Ay. Sincemy isin A, andA is a tail of ,>, we getk € A. Therefore

t—1
A= UAS - U As,
s=1

SER

whereR={se{1,2,...,t —1}: A; #0}.
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To complete the proof we have to show tht is a tail of ,,> for eachs € R. Let
k € Ay andu e NNN,, be such thak, >u. We havemy ., > k., 2 u. Thus, from (b) it
follows thatmy > u, which impliesu € A;. O

Now we will use the above proposition to prove the existence of thel linear or-
derings we are looking for. Since> is linear on the sely, it is enough to define those
linear orderings on the s&; \ N; and then attaci¥; with the ordering,> at the end of
each of them. Let us look closer g restricted toN; \ N;. This ordering is defined by
the condition (iv) from the preceding section (o= m). Assume thak — m is divisible
by ¢t. If m,>k thenk =im + jt with i, j € N, som < k. On the other hand, if» < k
thenk =m + jt forsomej € N, som,> k. Thus, fors=1,2,...,t — 1, the ordering >
restricted to the set

Ny ={meN,\N;/: m=s (modt)} = {s + jt: j €N}

is linear.
Hence, our aim is to find linear orderings> on some setdl,; C N, =N, \ N} such
thatN,, D N =Ny and the assumptions of Proposition 3.1 are satisfied.

Lemma 3.1. Let ,> be an ordering on a sd¥, and let{N, N2, ... N1} be a cover
of N, such that,> restricted to eachN; is a linear ordering. Then there exist linear
orderings,, > defined on

N,, :={k € N,: m,>k for somem € N} D N; (1)

such that anda) and (b) of Proposition3.1are satisfied.

Proof. Any ordering > defined onN,, will be identified (accordingly to the usual defi-
nition of an ordering) with the set

Csx = {(m,k) eN,, xN,,: m*>k}

With this notation and in view of (1), conditions (a) and (b) of Proposition 3.1 can be
restated as follows:

(A) {(m,k)eC: meN,}CC,,
(B) {(m,k) €Cy,: meN}} CC,.

When we say that some ordering satisfies (A) or (B), we mean that it does so when it
replaces,, > in these conditions.

Denote by, > the ordering,> restricted taN,,. Clearly, , > satisfies (A) and (B).
Moreover, any ordering oN,, containingCe, also satisfies (A).

Now we consider the family; of all orderings (non-necessarily linear) definedMn
which containCg, and satisfy (B), ordered by inclusion. Observe tifatis non-empty
since g, > is an element ofF;. Moreover, the union of an ascending sequence of elements
of ¥ is also an element aof. Hence, by the Zorn’s Lemma, there is a maximal (with
respect to the inclusion) elemegt> of F;. Now we have to prove that > is linear. To
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do it we assume that there existv € N, which are not comparable by> and we will
arrive to a contradiction.

We enlarge the ordering > to a new ordering.> in N, by adding toC,, the pairs
(m, k) (thatis, we add the relatioms .. > k) such thain , > u andv, > k. Itis easy to see
that ,.> is still an ordering and contairs,, .

Since the ordering, > is maximal, the ordering.> cannot satisfy (B). That is, there
existm € N§ andk € N, such thatn ., >u andv,, >k but notm ,>k. Thus, since, >
satisfies (B), we cannot hawve, >k, so we cannot have , > v. By reversing the roles of
u andv we getm’ € N{ such thatn’,, > v, but notm’,, > u. However, the ordering, >
is linear, so eithem ,,.>m', > v orm’,,>m. 2 u. In both cases we get a contradiction.
This completes the proof.O0

In our concrete situatiolN, isN; \ NY, NS is {s + j#: j e N} and,> is ;>. Thus,
N,, = {k e N, \N): s + jt,>k for somej € N}.

If s+ jt # k thenthe condition+ j¢ ;> k is equivalenttdk =i (s+ jt)+ 't withi, j € N,
that is tok = is + j”t with i, j” e N and j” > i. If we renameN,, asNj  then we can
write

Ny y={s+tyU{is+1j:i, jeN,j>i}.

We rename alsg, > as,, ,> . We can now exteng > from N} | to N} UN} by attaching
Ny with the ordering, > at the end. Then as a consequence of Proposition 3.1, Lemma 3.1
and Remark 2.1 we get the following theorem.

Theorem 3.1. Givent > 2 there exist linear orderings, ;> onN; (UN) (s =1,2,...,
t — 1) such that any seA C N; is a tail of ;> if and only if there exists a non-empty subset
Rof{1,2,....t -1} and tailsA; of ,, > for s € R such thatd = ;. As.

This theorem, together with Theorem 2.1, asserts that it is possible to state the charac-
terization of the set of periods afstar maps in terms of finitely many linear orderings.
This proves Conjecture 13.4 of [1].

It may seem that Theorem 3.1 solves our problem completely. However, observe that
Lemma 3.1 does not give us any information on the orderings related to the dynam-
ics. Consequently, it cannot serve as the base for the investigations of a possible deeper
nature of those orderings. It is like like trying to develop number theory by considdring
not with the natural ordering, but with a random one.

Thus, while using Proposition 3.1, we will apply a more constructive approach. We will
define the linear orderings we are looking for, by the order of capturing of denominators
of fractions in the interval0, 1) as we move from some rational number of the fgryiy
to the left (the left will suffice because moving fropiq to the right gives the same result
as moving fromg — p)/q to the left). The formal definition of these orderings is given in
the next section.
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4. Orderingsassociated to fractions

When defining the linear ordering associated to a fractigg and proving the main
results of the paper, we will consider separately the case whamdg are coprime and
the case whep andg have common factors, since the ideas involved are of completely
different nature. We will consider these two cases in next two subsections. In Section 4.3
we will state an prove the main results of the paper and, finally, in Section 4.4 we will
describe how to compute these orderings and we will give an example of the algorithm.

4.1. Coprime case

Fix p, ¢ € Nwith p < g andp andg coprime. We define therdering associated to the
fraction p/q onN,, , = N,, which we denote by, ,> (as usual, the symbgJ ,> will be
also used in the natural way), as follows. For eachN we will denote the largest integer
I such that/n < p/q by, ,(n) (thatis,!, ,(n) = [np/q] — 1), where[-] denotes the
ceiling function. Assume that, m e N, ,. Then we writen , ,> k if one of the following
cases holds:

() k=1ork=m,

(i) k,meN;\{1}andm/q s> k/q,

(iif) k €Ny andm ¢ N,

(iv) k,m ¢ Ny andl, g (m)/m <1, 4(k)/k,

(V) k,m ¢ Ny, 1p g(m)/m =1p q(k)/k andm > k

(where in (i) we use the arithmetic rude- 2> /g = 2*°). Clearly, , ,> is a well-defined
linear ordering. Moreover, observe that conditions (i)—(iii) above coincide with conditions
(i)—(iii) of the definition of the ordering, > . Thus, wherk Ny, the conditiorvn , ;> k
is equivalent tan ,> k. Note also that, by means of the inclusion of the sympop*°,
each subsed of N, , has a least upper boundwith respect to the, ,> ordering, and if
m#q - 2% thenm =max, > A.

Next, we will show that the orderings,> satisfy statements (a) and (b) of Proposi-
tion 3.1 with ,>, N,, ,,> andN,, replaced by, >, Ny, ,,> andN, ,, respectively.

Vp

Furthermore, we repladg; by the setN,” defined as follows:
N;”={m e Ny \N;: mp=1(modq)} UN.

Although in this cas&N, , = N,, we will distinguish between these two sets in order to
have the same statements as in the other case.

Proposition 4.1. Let p and g be coprime positive integers such that< ¢. Then the
following statements hoid

(@) ifmeN,,, keNy,andm >k thenk e N, , andm , o>k,
(b) if meN,”, keN,, andm , ,>k thenm ,>k.
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To prove Proposition 4.1 we will introduce more notation and prove two easy techni-
cal lemmas. Lep, ¢ € N be such that & p < g and letk € N. Then there is a unique
Yp.qk) €{1,2,...,4q} such thaty, ,(k) = kp (modg). Note that ifk = m (modg) then
Vp.g(k) = yp q(m).

Lemma 4.1. Let p,g € N be such thaD < p < ¢ and letk,m € N. Thenl, ,(m)/m <
lp.q(k)/ kis equivalentton/y, (m) < k/yp.q(k).

Proof. Sincekp — y, 4 (k) is divisible byg and

kp —yp.qk) < k_P < kp —yp.qk) i1
q q q

we see that, , (k) = (kp — yp 4(k))/q. Therefore], ,(m)/m <1, ,(k)/k is equivalent
to (mp — yp.q(m))/m < (kp — yp 4 (k))/k, which in turn is equivalent te/y, ,(m) <
k/ypqk). O

)

Lemmad4.2.Letp,q e Nbesuchthad < p < g andletm, k e Nbesuchthat =im+ jg
for somei, j e N. Thenm/yp ,(m) <k/yp 4 k).

Proof. Clearly,yp 4 (k) = ypq(im) <iyp,q(m). Thus,

myp ¢ (k) <imyp q(m) < kypq(m). U

Proof of Proposition 4.1. If k € N thenm 4>k is equivalentton , ;> k. Hence, (a) and
(b) follow in this case. In the rest of the proof we will assume thdtN; andm # k.

To prove (a) note that from the definition of the orderijg it follows thatm ¢ N; and
k=im+ jq withi, j € N. Hence, we get: , ,>k from Lemmas 4.2 and 4.1.

Now we prove (b). As abovey ¢ N/, and hencenp = 1(modg). Theny,, 4(m) = 1.
Moreover, the numbéip —mpy, , (k) is divisible byg and hencé& —my,, , (k) is also di-
visible byg. Sincem , ;> k, by Lemma 4.1, we have either> my,, ,(k) ork =my, 4(k)
and k < m. However, ifk = my, ,(k) thenk > m, so we must havé > my, ,(k).
Then j = (k —my, 4(k))/q is a natural number ank =y, ,(k)m + jq. This implies
mg=zk. O

4.2. Non-coprime case

We are going to define the ordering associated to the fragpgng, wherep andqg are
coprime positive integers such that< ¢ andn > 1 is an integer. To this end we set

Nupang :=n- (Ng \ {1})U{1} and Ny :=n- (N, \ {1}) U {1}.

That is,m € Ny ng \ {1} if and only if m/n € N, \ {1} andm € N,,7” \ {1} if and only if
m/n € Ng"\{1}. Moreover € N,, \{1}ifand only ifm/n € Ny \ {1}. SinceN,” C N 4,
we have als®V,;” C Ny g -

Now, we define theordering associated to the fractiomp/ng, denoted by, s>,

as follows. For eaclt,m € Ny, ,, we write m ,, o, >k if and only if eitherk =1 or
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1¢ {k,m}andm/n , 4> k/n. Clearly, ,, .4 > is a well-defined linear ordering, each sub-
setA of N, 4 has a least upper boumd with respect to,,, ., >, and if m # nq - 2°°
thenm = max, . > A. Moreover, one can see that,, ,,>k is equivalent tom ,, >k

whenevek e N,fq. In what follows we will also use the symbg), ,,> in the natural way.
The analogue of Proposition 4.1 is now:

Proposition 4.2. Let p andg be coprime positive integers such thak ¢ and letn > 1
be an integer. Then, the following statements hold

(@) if m € Nyp ng, k € Nyg @andm o> k thenk e N,y g @andm ,p g >k,
(b) if m e Ny, k € Nyp g @andm pp g >k thenm > k.

Proof. As in the proof of Proposition 4.1, the proposition followstit N, .. So, in the
rest of the proof we will assume that¢ Ny andm # k. In both cases this implies that
m € Nyp ng \ N, Henceymn is a multiple ofn andm /n € Nj 4 \ Ny = Ng \ Ny

Under the assumptions of (a) it follows that=im + jng with i, j € N and hencé is
amultiple ofn. Thus,k/n € Ny \N; andk € Ny, 4. On the other hand,/n =im/n+ jq
which impliesm /n ;> k/n. Consequently, in view of Proposition 4.1(a)/n p.q>k/n,
which gives usn ,, 4 > k. This completes the proof of (a).

Now we prove (b). In this case we hakg¢n € Ny \ N andm/n € N,”. On the other
hand, sincen ,,, ., > k, we haven/n , 4> k/n. Thus,m/n ;> k/n by Proposition 4.1(b).
This is equivalent to the existenceiofj € N suchthak/n =im/n+ jq,sok =im+ jngq,
and hencen ,, > k. This completes the proof of (b).O

4.3. Main results

The following theorem is the main result of the paper. It relates the ordefjngs
with the Baldwin’s partial orderingg> . It is the analogue of Theorem 3.1 for the order-
iNgs pg=.

Theorem4.1. Letg > 2andletp € {1,2,..., g — 1}. Any tail of the ordering, ,> is also
atail of ,>. Conversely, for each tail of the ordering, > there existr, e N, ;N (AU

{g-2°)forp=1.2....q—1suchthatd =J7_1 5, , ().

Proof. Since foreachp € {1,2,...,g —1} every subsef of N, , has a least upper bound
m with respect to the ordering ,>, and ifm # g - 2°° thenm € A, by Remark 2.1 it
follows that each tail of, , > is of the formS,, , (m) for somem € N, ,. Now, the theorem
follows from Propositions 3.1, 4.1 and 4.2 (together with the fact that 1 belongs to each tail
of each ordering considered), provided that we show that thé\gétp =1,2,...,9 — 1,
coverNy.

To prove this property, note first that, C N;l. Now, considerm € N, \ N. If m and
g are coprime, there ip € {1,2,..., ¢ — 1} such thainp = 1(modg) and therm € N,".

If the greatest common divisar of m andgq is larger than 1 then similarlyy/n € N;‘/n

for somep’ € {1,2,...,q/n — 1}, and thenm € N’ for p = p'n. This completes the
proof. O
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The following corollary to Theorem 4.1 characterizes the possible sets of periods of
maps from¥,, in terms of the orderings , > . It generalizes to the-star the main theorem
of [1].

Corollary 4.1. Let f € X,. Then there existxlf eNy; forr=23,...,n and ! =
1,2,...,t — 1 such thatPer /) = |U;_, U;’l S1.:(a)). Conversely, givem; € N;; for

t=23,...,nandl =12, ...,t — 1, there exists a maf € &, such thatPer f) =
Ur—2 Uﬁ;%Sl,t(Olf)-

Proof. By Theorem 2.1 we know that Ref) = [ J/_, A; where each; is a tail of the
ordering ;> . Therefore, in view of the second statement of Theorem 4.1, for each
{2,3,...,n}andl € {1,2,...,r — 1} there existy] e N;; N (A; U {r-2°°}) such thatd, =

U;;i S.:(er}). This proves the first statement. Now we prove the second one. Since each
S1.:(e)) is atail of ; ;> , in view of Theorem 4.1, it follows that it is a tail of> . Therefore,

for eachr € {2, 3, ..., n}, U?jsl,t(“f) is a tail of ;> because the union of tails of an
ordering is a tail of the same ordering. Then the corollary follows from Theorem 231.

4.4. Computation of the orderings, >

This subsection is devoted to the study of the structure of the ordegipgsin order to
give a simple algorithm to construct them. As an application we will produce an example
of an ordering, ;> .

As we mentioned before, the orderings> have two parts. The second part consists of
allelements olN; ordered as in the orderings>, and this part can be derived immediately
from the Sharkovsks ordering. The first part consists of all element\of, \ N;, and
these elements are larger than the elemerﬁgom the ordering,_,> . Therefore, we only
need to compute the orderings,> onN,, , \ Ny;. Moreover, we only need to compute
them in the casép, q) = 1. Therefore, in the rest of this subsection we assume pghat
andgq are coprime positive integers such thak g. SetNg =N\ g -NDO N, ; \ N;. We
extend the ordering ,> to N; according to the rules (iv) and (v) of the definition of the
ordering , ;> in the coprime case. To display the ordering> on N, we will compute
the sequence

N1pg>N2pg>N3pg> -, (2)

givenby , ;> onNg.

The following lemma will allow us to produce recursively the sequence (2)k a3
we denote by, , (k) andc, 4 (k) the quotient and the remainderiotlivided byy,, ,(k)q,
respectively. Thatiss = b, ,(k)yp,q(k)g + cp 4 (k) whereb, , (k) > 0 and O< cp, 4 (k) <
Vp.qgK)q.

Lemma4.3. Let p, g € N be such thab < p < ¢ with p andg coprime and lek, m € N.
If eitherd, (k) < bp q(m) Or by 4 (k) =b) 4(m) andc, 4 (k) p.g> cp.q(m) thenk , ;> m.
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Proof. From the definition ob,, , (k) andc, 4 (k) it follows that

m_ k _ cpg(m)  cpqk)
Vp,q(m) Vp,q(k) Vp,q(m) )’p,q(k) ’
Hence, by Lemma 4.1, if the right-hand side of (3) is positive thgg > m.
If by.q(k) < by 4(m)theng (b, ,(m)—b, 4(k)) = g. The lemmafollows in this case be-
cause botle, ,(m)/yp,q(m) andc, 4 (k)/vp.q4 (k) are strictly between 0 angland, hence,
the right-hand side of (3) is positive. 3, , (k) = b, ,(m) and

3)

q(bp.q(m) —bp q(k)) +

Cp,q(k) - Cp,q(m)
Vp,q(cp,q(k)) J/p,q(cp,q(m))’

then, sincey, 4 (cp.q(k)) = yp (k) andy, 4(cp q(m)) = yp 4(m), the right-hand side of
(3) is also positive.

In the remaining case we hawg , (k) = by (m), cp,g(k)/Vp,q(cp.q(k)) = cpq(m)/
Yp.q(Cp,g(m)) and ¢, q4(k) > cpq(m). Hence, sincey,  (cpqk)) = ypq(k) and
Yp.q(Cp,g (M) = vp 4(m), it follows thaty, , (k) > v, ,(m). From (3) we gek/y, 4 (k) =
m/yp,q(m), and thusk > m. Hencek , ,>m because, in view of Lemma 44y, , (k) =
m/yp,q(m)is equivalenttd, ,(m)/m =1, ,(k)/k. O

Sincek =i (modgq) implies y, 4 (k) = y, 4(i), for eachk N; the number, 4 (k)
belongs to the set

B={i+jgie{l,2,....g—1}andj €{0,1,...,y,4@() — 1}}.

Since{y,,(): 0<i <q}=1{12,...,q9 — 1}, the cardinality of3 is g(¢ —1)/2. On
the other handy, ,(n; + qyp,q(n:)) = vpq(n;). Consequentlyh, ,(n; + qyp (i) =
bpqmi) +1andc, ;(ni +qypq®ni)) =cpqn;). Therefore, from Lemma 4.3 it follows
that

(|) Ritjq(q—1)/2 ="ni + jqvpqn;) foreachi e {1,2,...,q(¢g —1)/2} andj e NU {0},
(i) {n1,n2,..., Ngg—1)/2} = B.

Thus, to construct the sequence (2), it is enough to order the elements offfreceetrding
to , 4= (using the definition of, ,>) and then use (i) to construct the whole sequence.

Remark 4.1. From the above algorithm one can easily see that the ordering is just
the Sharkovskis ordering, and the orderingz> is the green ordering considered in [1]
to study the set of periods of maps frotif. Moreover,z 3> (restricted toNz 3 \ {4}) is
the red ordering defined in [1].

As an example we compute the ordering> by using the above algorithm.

Example 4.1. Here we construct the orderings> on N2s = Ns. The sequence
n125>n225> -+ 25> n4(g—1)/2, Of the leading elements Bl is

225>105>425>725>1225>925>625>325>1725>14
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and the corresponding sequerteey 5(-) is
20, 10, 15, 20, 20, 15, 10, 5, 20, 15.
Hence, the ordering s> onNg is

225>105>425>725>1225>925>625>325>1725> 145> 22
25> 1155> 192 5> 275> 322 5> 245> 1625>825>3725>2925> - --
25>2+1-2025>1+41i-1025>4+i-1525>7+4i-2025>12+i-20
25>9+1-1525>6+1i-1025>3+i-525>17+i-20
25>14+i-1525> ---
and the 5> ordering onNy 5 is

725>1225>925>625>1725> 145> 225 5> 115> 197 5> 272 5> 32
25>2455>1625>825>3725>2925> -+ 25>5-325>5-525>5-7
25> --25>5-3-225>5.5-225>5-7-225> ---25>5-3-425>5-5-4
25>5-7-425> - 25> ---25>5-3:2"25>5.5-2"25>5.7-2"p5> ---
25>5:2%95> -+ 25>5:2"25> -+ 25>5-1625>5-825>5-425>5-2
25>5-175>1.
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