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Abstract

We show that Baldwin’s characterization of the set of periods of continuous self maps of then-star
can be expressed in terms of a finite number of linear orderings.
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1. Introduction

In an interesting paper [4], which extends Sharkovskiı̆’s theorem to then-star, Baldwin
has shown that the set of periods of a continuous map from ann-star into itself can be
expressed as a union of “tails” of a finite set of partial orderings of the natural numbe
the other hand, in [1] it was shown that for the class of continuous maps of the 3-sta
itself which leave the branching point fixed, the set of periods can be expressed as
of threelinear orderings (one of which was Sharkovskiı̆’s ordering and the other two wer
called red and green orderings). In [2] it was noted that these three orderings can be
of as certain orderings associated to the fractions 1/2 and 1/3. This suggests that this
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in fact the general situation. To be more precise, this suggests that the set of perio
continuous map from ann-star into itself can be expressed as the union of “tails” of lin
orderings associated to all fractions in the interval(0,1) with denominator smaller than o
equal ton, defined in certain subsets of the natural numbers. This result was mean
proved in the first part of the paper [3] by Alsedà and Moreno. However, despite o
fact that the strategy used in proving that result was correct, the orderings associ
fractions considered in [3] were not well defined (they were not antisymmetric). The
of this paper is to give a correct definition of the orderings associated to fractions
proving the correct version of Alsedà and Moreno’s result [3, Theorem 3.1]. This
a constructive proof of Theorem 1.6 of [4] which, in particular, proves Conjecture
of [1].

As it was already noted in [3], the fact that it is possible to characterize the sets o
ods of continuous self maps of then-star in terms of linear orderings associated to fracti
suggests that the sets of periods of such maps may arise in some way from “rotatio
vals” (see [2] where an example of such a situation was given). However, this rela
still far from being understood.

The paper is organized as follows. In Section 2 we give the basic definitions and p
inary results. In particular, we recall Baldwin’s theorem on the set of periods of star m
In Section 3 we discuss a general approach to the problem of constructing finitely
linear orderings such that any “tail” of a Baldwin ordering can be expressed as a
union of “tails” of those linear orderings. As we shall see this approach is not comp
satisfactory and in Section 4 we will adopt a constructive strategy. This section, for c
is divided into four subsections. In the first two we define and study the orderings a
ated to fractions in the coprime and non-coprime cases, respectively. In the third sub
of Section 4 we state and prove the main results of the paper. The last subsection is
to the study of the structure of the orderings associated to fractions and to giving a
algorithm for their construction. As an application, an example of one of these orderi
given.

2. Basic definitions and preliminary results

We define ann-star as the subspace of the complex numbers consisting on allz ∈ C

such thatzn ∈ [0,1]. Then-star will be denoted byXn and the class of all continuous ma
from Xn to itself will be denoted byXn. Each map fromXn will be called ann-star map.
The class of alln-star mapsf such thatf (0)= 0 will be denoted byX ◦

n . We note that the
1-star and the 2-star are homeomorphic to a closed interval of the real line. Thus, i
follows, when talking aboutXn orXn we shall always assume thatn� 2.

As usual, iff ∈Xn we shall writef k to denotef ◦f ◦ · · · ◦f (k times). A pointx ∈ Xn

such thatf k(x)= x but f j (x) �= x for j = 1,2, . . . , k − 1 will be called aperiodic point
of f of periodk. The set of periods of all periodic points of a mapf ∈ Xn will be denoted
by Per(f ). As is always the case when we consider sets of periods, the setN of natural
numbers does not contain 0.

In the next subsection we summarize the characterization of the set of periods fo
fromXn.
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2.1. Baldwin’s theorem on the set of periods of maps fromXn

Baldwin’s characterization of the set of periods forn-star maps is given in terms o
Baldwin’s partial orderings (see [4]). To define them we first recall the Sharkovskiı̆’s or-
dering Sh�, which is defined onN ∪ {2∞} as follows:

3Sh>5Sh>7Sh> · · · Sh>2 · 3Sh>2 · 5Sh>2 · 7Sh> · · · Sh>4 · 3

Sh>4 · 5Sh>4 · 7Sh> · · · Sh> · · · Sh>2n · 3Sh>2n · 5Sh>2n · 7Sh> · · ·
Sh>2∞

Sh> · · · Sh>2n Sh> · · · Sh>16Sh>8Sh>4Sh>2Sh>1.

Now we define theBaldwin partial orderingst� for all positive integerst � 2. We
denote byNt the set{t, t + 1, t + 2, t + 3, . . .} ∪ {1, t · 2∞} and byN∨

t the set{mt : m ∈ N}
∪ {1, t · 2∞}. Then the orderingt� (we will also use the symbolt> in the natural way)
is defined inNt as follows. Fork,m ∈ Nt we writemt�k if one of the following cases
holds:

(i) k = 1 or k =m,
(ii) k,m ∈ N∨

t \ {1} andm/t Sh>k/t ,
(iii) k ∈ N∨

t andm /∈ N∨
t ,

(iv) k,m /∈ N∨
t andk = im+ j t with i, j ∈ N,

where in case (ii) we use the following arithmetic rule for the symbolt ·2∞: t ·2∞/t = 2∞.
We note that thanks to the inclusion of the symbolt · 2∞, each subsetA of Nt has a leas
upper boundm with respect to the orderingt� and if m �= t · 2∞ thenm ∈ A. We also
note that the ordering2� on N2 = N ∪ {2 · 2∞} coincides with Sharkovskiı̆’s ordering on
N ∪ {2∞} (by identifying the symbol 2· 2∞ with 2∞).

Let �� be an ordering on some setN�. A non-empty setS ⊂ N� ∩ N will be called
a tail of the ordering �� if for eachm ∈ S we have{k ∈ N: m��k} ⊂ S. Clearly, the
union of tails of an ordering�� is also a tail of�� . There exists a particular type of ta
of orderings that plays a special role in this theory. It is the set of all elements whic
smaller than or equal to a given element ofN�: Givenm ∈ N� we will denote byS�(m)
the set{k ∈ N: m��k}, which is clearly a tail of�� . With this notation we have tha
S ⊂ N� ∩ N is a tail of the ordering�� if and only if for eachm ∈ S it follows that
S�(m)⊂ S.

Remark 2.1. Assume that�� is a linear ordering onN� such that each subsetA of N� has
a least upper boundm with respect to the�� ordering and ifm ∈ N thenm ∈ A. Then,
S is a tail of �� if and only if there existsm ∈ N� such thatS = S�(m). The “if part” of
this statement is obvious. To prove the “only if part” takem equal to the least upper boun
of S and observe thatS�(m)⊂ S ⊂ S�(m).

The following result is due to Baldwin [4] and characterizes the set of periods ofn-star
maps.
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Theorem 2.1. Let f ∈ Xn. ThenPer(f ) is a finite union of tails of the orderingst� with
2 � t � n. Conversely, given a setA which can be expressed as a finite union of tails of
orderings t� with 2� t � n, there exists a mapf ∈ X ◦

n such thatPer(f )=A.

As it has been said in the introduction, the aim of this paper is to prove that the
periods of ann-star map (which, as the preceding theorem shows, is a finite union o
of the orderingst� with 2 � t � n) can be obtained as the union of tails of the lin
orderings associated to all fractions in the interval(0,1) with denominator smaller tha
or equal ton, defined in certain subsets of the natural numbers. In fact we will prove
any tail of the t� ordering can be expressed as a union of tails of the linear orde
associated to the fractions of the forms/t with s ∈ {1,2, . . . , t − 1}.

3. General approach

As we mentioned, we want to findt−1 linear orderings such that any tail of the order
t� can be expressed as the union of tails of those orderings. In this section we pro
existence of such orderings in a general framework. However, as we shall see, this ap
has the serious drawback that it does not give us any information on the obtained
orderings from the point of view of the dynamics. The following result is the key too
this paper.

Proposition 3.1. Let �� be an ordering on a setN�, let {N1
�,N

2
�, . . . ,N

t−1
� } be a cover

of N� and, for eachs ∈ {1,2, . . . , t − 1}, let �s� be an ordering onN�s such thatNs
� ⊂

N�s ⊂ N� and

(a) if m ∈ N�s , k ∈ N� andm��k thenk ∈ N�s andm�s�k,
(b) if m ∈ Ns

�, k ∈ N�s andm�s�k thenm�� k.

Then any tail of�s� is also a tail of �� . Conversely, ifA⊂ N� is a tail of �� then there
existsR ⊂ {1,2, . . . , t − 1} such thatA= ⋃

s∈R As , for some tailAs of �s� .

Proof. Let A⊂ N�s be a tail of �s� , let m ∈ A and letk ∈ N be such thatm��k. From
(a) it follows thatm�s� k and, hence,k ∈A. Consequently,A is also a tail of�� .

Now assume thatA ⊂ N� is a tail of �� . For eachs ∈ {1,2, . . . , t − 1} we defineAs

as the set of allk ∈ N ∩ N� such that there ismk ∈ A ∩ Ns
� with mk ��k. From (a) it

follows thatk ∈ N�s andmk �s� k. Consequently,As ⊂ N�s . Also, observe that ifm ∈ A

thenm ∈A ∩ Ns
� for somes andm�s�m. Hence,m ∈ As , and soA⊂ ⋃t−1

s=1As . Assume
now thatk ∈As . Sincemk is in A, andA is a tail of �� , we getk ∈A. Therefore

A=
t−1⋃

s=1

As =
⋃

s∈R
As,

whereR = {s ∈ {1,2, . . . , t − 1}: As �= ∅}.
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To complete the proof we have to show thatAs is a tail of �s� for eachs ∈ R. Let
k ∈ As andu ∈ N ∩ N�s be such thatk �s�u. We havemk �s�k �s�u. Thus, from (b) it
follows thatmk ��u, which impliesu ∈As . ✷

Now we will use the above proposition to prove the existence of thet − 1 linear or-
derings we are looking for. Sincet� is linear on the setN∨

t , it is enough to define thos
linear orderings on the setNt \ N∨

t and then attachN∨
t with the orderingt� at the end of

each of them. Let us look closer att� restricted toNt \ N∨
t . This ordering is defined b

the condition (iv) from the preceding section (ork = m). Assume thatk − m is divisible
by t . If mt>k thenk = im + j t with i, j ∈ N, som < k. On the other hand, ifm < k

thenk =m+ j t for somej ∈ N, somt>k. Thus, fors = 1,2, . . . , t − 1, the orderingt�
restricted to the set

N
s
t = {

m ∈ Nt \ N
∨
t : m≡ s (modt)

} = {s + j t : j ∈ N}
is linear.

Hence, our aim is to find linear orderings�s� on some setsN�s ⊂ N� = Nt \ N∨
t such

thatN�s ⊃ Ns
� = Ns

t and the assumptions of Proposition 3.1 are satisfied.

Lemma 3.1. Let �� be an ordering on a setN� and let {N1
�,N

2
�, . . . ,N

t−1
� } be a cover

of N� such that �� restricted to eachNs
� is a linear ordering. Then there exist linea

orderings�s� defined on

N�s := {
k ∈ N�: m��k for somem ∈ N

s
�

} ⊃ N
s
� (1)

such that and(a)and (b) of Proposition3.1are satisfied.

Proof. Any ordering�� defined onN�s will be identified (accordingly to the usual de
nition of an ordering) with the set

C� = {
(m, k) ∈ N�s × N�s : m��k

}
.

With this notation and in view of (1), conditions (a) and (b) of Proposition 3.1 ca
restated as follows:

(A) {(m, k) ∈ C�: m ∈ N�s } ⊂ C�s ,
(B) {(m, k) ∈ C�s : m ∈ Ns

�} ⊂ C�.

When we say that some ordering satisfies (A) or (B), we mean that it does so w
replaces�s� in these conditions.

Denote by�s� the ordering�� restricted toN�s . Clearly, �s� satisfies (A) and (B)
Moreover, any ordering onN�s containingC�s also satisfies (A).

Now we consider the familyFs of all orderings (non-necessarily linear) defined onN�s

which containC�s and satisfy (B), ordered by inclusion. Observe thatFs is non-empty
since�s� is an element ofFs . Moreover, the union of an ascending sequence of elem
of Fs is also an element ofFs . Hence, by the Zorn’s Lemma, there is a maximal (w
respect to the inclusion) element�s� of Fs . Now we have to prove that�s� is linear. To
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do it we assume that there existu,v ∈ N�s which are not comparable by�s� and we will
arrive to a contradiction.

We enlarge the ordering�s� to a new ordering�us � in N�s by adding toC�s the pairs
(m, k) (that is, we add the relationsm�us

�k) such thatm�s�u andv �s� k. It is easy to see
that �us � is still an ordering and containsC�s .

Since the ordering�s� is maximal, the ordering�us � cannot satisfy (B). That is, ther
existm ∈ Ns

� andk ∈ N�s such thatm�s�u andv �s�k but notm��k. Thus, since�s�
satisfies (B), we cannot havem�s�k, so we cannot havem�s� v. By reversing the roles o
u andv we getm′ ∈ N

s
� such thatm′

�s�v, but notm′
�s�u. However, the ordering�s�

is linear, so eitherm�s�m′
�s�v or m′

�s�m�s�u. In both cases we get a contradictio
This completes the proof.✷

In our concrete situationN� is Nt \ N∨
t , Ns

� is {s + j t : j ∈ N} and �� is t� . Thus,

N�s = {
k ∈ Nt \ N

∨
t : s + j t t�k for somej ∈ N

}
.

If s+j t �= k then the conditions+j t t�k is equivalent tok = i(s+j t)+j ′t with i, j ′ ∈ N,
that is tok = is + j ′′t with i, j ′′ ∈ N andj ′′ > i. If we renameN�s asN

�
t,s then we can

write

N
�
t,s = {s + t} ∪ {

is + tj : i, j ∈ N, j > i
}
.

We rename also�s� as �t,s� . We can now extend�t,s� fromN�
t,s to N�

t,s∪N∨
t by attaching

N∨
t with the orderingt� at the end. Then as a consequence of Proposition 3.1, Lemm

and Remark 2.1 we get the following theorem.

Theorem 3.1. Givent � 2 there exist linear orderings�t,s� on N�
t,s ∪ N∨

t (s = 1,2, . . . ,
t −1) such that any setA⊂ Nt is a tail of t� if and only if there exists a non-empty sub
R of {1,2, . . . , t − 1} and tailsAs of �t,s� for s ∈ R such thatA= ⋃

s∈R As .

This theorem, together with Theorem 2.1, asserts that it is possible to state the c
terization of the set of periods ofn-star maps in terms of finitely many linear orderin
This proves Conjecture 13.4 of [1].

It may seem that Theorem 3.1 solves our problem completely. However, observ
Lemma 3.1 does not give us any information on the orderings�t,s� related to the dynam
ics. Consequently, it cannot serve as the base for the investigations of a possible
nature of those orderings. It is like like trying to develop number theory by consideriN

not with the natural ordering, but with a random one.
Thus, while using Proposition 3.1, we will apply a more constructive approach. We

define the linear orderings we are looking for, by the order of capturing of denomin
of fractions in the interval(0,1) as we move from some rational number of the formp/q
to the left (the left will suffice because moving fromp/q to the right gives the same resu
as moving from(q − p)/q to the left). The formal definition of these orderings is given
the next section.
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4. Orderings associated to fractions

When defining the linear ordering associated to a fractionp/q and proving the main
results of the paper, we will consider separately the case whenp andq are coprime and
the case whenp andq have common factors, since the ideas involved are of compl
different nature. We will consider these two cases in next two subsections. In Secti
we will state an prove the main results of the paper and, finally, in Section 4.4 we
describe how to compute these orderings and we will give an example of the algorit

4.1. Coprime case

Fix p,q ∈ N with p < q andp andq coprime. We define theordering associated to th
fractionp/q onNp,q = Nq , which we denote byp,q� (as usual, the symbolp,q> will be
also used in the natural way), as follows. For eachn ∈ N we will denote the largest intege
l such thatl/n < p/q by lp,q(n) (that is, lp,q(n) = �np/q� − 1), where�·� denotes the
ceiling function. Assume thatk,m ∈ Np,q . Then we writemp,q�k if one of the following
cases holds:

(i) k = 1 or k =m,
(ii) k,m ∈ N∨

q \ {1} andm/q Sh>k/q ,
(iii) k ∈ N∨

q andm /∈ N∨
q ,

(iv) k,m /∈ N
∨
q andlp,q(m)/m< lp,q(k)/k,

(v) k,m /∈ N∨
q , lp,q(m)/m= lp,q(k)/k andm> k

(where in (ii) we use the arithmetic ruleq · 2∞/q = 2∞). Clearly, p,q� is a well-defined
linear ordering. Moreover, observe that conditions (i)–(iii) above coincide with condi
(i)–(iii) of the definition of the orderingq� . Thus, whenk ∈ N∨

q , the conditionmp,q�k

is equivalent tomq� k. Note also that, by means of the inclusion of the symbolq · 2∞,
each subsetA of Np,q has a least upper boundm with respect to thep,q� ordering, and if
m �= q · 2∞ thenm= max

p,q� A.
Next, we will show that the orderingsp,q� satisfy statements (a) and (b) of Propo

tion 3.1 with �� , N�, �s� andN�s replaced byq� , Nq , p,q� andNp,q , respectively.
Furthermore, we replaceNs

� by the setN∨p
q defined as follows:

N
∨p
q = {

m ∈ Nq \ N
∨
q : mp ≡ 1 (modq)

} ∪ N
∨
q .

Although in this caseNp,q = Nq , we will distinguish between these two sets in orde
have the same statements as in the other case.

Proposition 4.1. Let p and q be coprime positive integers such thatp < q . Then the
following statements hold:

(a) if m ∈ Np,q , k ∈ Nq andmq�k thenk ∈ Np,q andmp,q�k,
(b) if m ∈ N

∨p
q , k ∈ Np,q andmp,q�k thenmq�k.
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cal lemmas. Letp,q ∈ N be such that 0< p < q and letk ∈ N. Then there is a uniqu
γp,q(k) ∈ {1,2, . . . , q} such thatγp,q(k) ≡ kp (modq). Note that ifk ≡ m (modq) then
γp,q(k)= γp,q(m).

Lemma 4.1. Let p,q ∈ N be such that0< p < q and letk,m ∈ N. Thenlp,q(m)/m <

lp,q(k)/k is equivalent tom/γp,q(m) < k/γp,q(k).

Proof. Sincekp− γp,q(k) is divisible byq and

kp− γp,q(k)

q
<
kp

q
� kp− γp,q(k)

q
+ 1,

we see thatlp,q(k) = (kp − γp,q(k))/q . Therefore,lp,q(m)/m < lp,q(k)/k is equivalent
to (mp − γp,q(m))/m < (kp − γp,q(k))/k, which in turn is equivalent tom/γp,q(m) <
k/γp,q(k). ✷
Lemma 4.2. Letp,q ∈ N be such that0<p < q and letm,k ∈ N be such thatk = im+jq

for somei, j ∈ N. Thenm/γp,q(m) < k/γp,q(k).

Proof. Clearly,γp,q(k)= γp,q(im)� iγp,q(m). Thus,

mγp,q(k)� imγp,q(m) < kγp,q(m). ✷
Proof of Proposition 4.1. If k ∈ N

∨
q thenmq�k is equivalent tomp,q�k. Hence, (a) and

(b) follow in this case. In the rest of the proof we will assume thatk /∈ N∨
q andm �= k.

To prove (a) note that from the definition of the orderingq� it follows thatm /∈ N∨
q and

k = im+ jq with i, j ∈ N. Hence, we getmp,q�k from Lemmas 4.2 and 4.1.
Now we prove (b). As above,m /∈ N

∨
q , and hencemp ≡ 1(modq). Thenγp,q(m) = 1.

Moreover, the numberkp−mpγp,q(k) is divisible byq and hencek−mγp,q(k) is also di-
visible byq . Sincemp,q�k, by Lemma 4.1, we have eitherk >mγp,q(k) or k =mγp,q(k)

and k < m. However, if k = mγp,q(k) then k � m, so we must havek > mγp,q(k).
Then j = (k − mγp,q(k))/q is a natural number andk = γp,q(k)m + jq . This implies
mq� k. ✷
4.2. Non-coprime case

We are going to define the ordering associated to the fractionnp/nq , wherep andq are
coprime positive integers such thatp < q andn > 1 is an integer. To this end we set

Nnp,nq := n · (Nq \ {1}) ∪ {1} and N
∨np
nq := n · (N∨p

q \ {1}) ∪ {1}.
That is,m ∈ Nnp,nq \ {1} if and only if m/n ∈ Nq \ {1} andm ∈ N

∨np
nq \ {1} if and only if

m/n ∈ N
∨p
q \{1}. Moreover,m ∈ N∨

nq \{1} if and only ifm/n ∈ N∨
q \{1}. SinceN

∨p
q ⊂ Np,q ,

we have alsoN∨np
nq ⊂ Nnp,nq .

Now, we define theordering associated to the fractionnp/nq , denoted bynp,nq� ,
as follows. For eachk,m ∈ Nnp,nq we write mnp,nq�k if and only if eitherk = 1 or
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1 /∈ {k,m} andm/np,q>k/n. Clearly, np,nq� is a well-defined linear ordering, each su
setA of Nnp,nq has a least upper boundm with respect tonp,nq� , and ifm �= nq · 2∞
thenm = maxnp,nq� A. Moreover, one can see thatmnp,nq�k is equivalent tomnq�k

wheneverk ∈ N∨
nq . In what follows we will also use the symbolnp,nq> in the natural way

The analogue of Proposition 4.1 is now:

Proposition 4.2. Let p andq be coprime positive integers such thatp < q and letn > 1
be an integer. Then, the following statements hold:

(a) if m ∈ Nnp,nq , k ∈ Nnq andmnq�k thenk ∈ Nnp,nq andmnp,nq�k,
(b) if m ∈ N

∨np
nq , k ∈ Nnp,nq andmnp,nq�k thenmnq�k.

Proof. As in the proof of Proposition 4.1, the proposition follows ifk ∈ N∨
nq . So, in the

rest of the proof we will assume thatk /∈ N∨
nq andm �= k. In both cases this implies th

m ∈ Nnp,nq \ N∨
nq . Hence,m is a multiple ofn andm/n ∈ Np,q \ N∨

q = Nq \ N∨
q .

Under the assumptions of (a) it follows thatk = im+ jnq with i, j ∈ N and hencek is
a multiple ofn. Thus,k/n ∈ Nq \N

∨
q andk ∈ Nnp,nq . On the other hand,k/n= im/n+ jq

which impliesm/nq>k/n. Consequently, in view of Proposition 4.1(a),m/np,q�k/n,
which gives usmnp,nq�k. This completes the proof of (a).

Now we prove (b). In this case we havek/n ∈ Nq \ N∨
q andm/n ∈ N

∨p
q . On the other

hand, sincemnp,nq>k, we havem/np,q>k/n. Thus,m/nq>k/n by Proposition 4.1(b)
This is equivalent to the existence ofi, j ∈ N such thatk/n= im/n+jq , sok = im+jnq ,
and hencemnq>k. This completes the proof of (b).✷
4.3. Main results

The following theorem is the main result of the paper. It relates the orderingsp,q�
with the Baldwin’s partial orderingst� . It is the analogue of Theorem 3.1 for the ord
ings p,q� .

Theorem 4.1. Letq � 2 and letp ∈ {1,2, . . . , q−1}. Any tail of the orderingp,q� is also
a tail of q� . Conversely, for each tailA of the orderingq� there existαp ∈ Np,q ∩ (A∪
{q · 2∞}) for p = 1,2, . . . , q − 1 such thatA= ⋃q−1

p=1Sp,q (αp).

Proof. Since for eachp ∈ {1,2, . . . , q−1} every subsetA of Np,q has a least upper boun
m with respect to the orderingp,q� , and if m �= q · 2∞ thenm ∈ A, by Remark 2.1 it
follows that each tail ofp,q� is of the formSp,q(m) for somem ∈ Np,q . Now, the theorem
follows from Propositions 3.1, 4.1 and 4.2 (together with the fact that 1 belongs to ea
of each ordering considered), provided that we show that the setsN

∨p
q , p = 1,2, . . . , q − 1,

coverNq .
To prove this property, note first thatN∨

q ⊂ N∨1
q . Now, considerm ∈ Nq \ N∨

q . If m and
q are coprime, there isp ∈ {1,2, . . . , q − 1} such thatmp ≡ 1(modq) and thenm ∈ N

∨p
q .

If the greatest common divisorn of m andq is larger than 1 then similarly,m/n ∈ N
∨p′
q/n

for somep′ ∈ {1,2, . . . , q/n − 1}, and thenm ∈ N
∨p
q for p = p′n. This completes the

proof. ✷
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The following corollary to Theorem 4.1 characterizes the possible sets of perio
maps fromXn in terms of the orderingsp,q� . It generalizes to then-star the main theorem
of [1].

Corollary 4.1. Let f ∈ Xn. Then there existαtl ∈ Nl,t for t = 2,3, . . . , n and l =
1,2, . . . , t − 1 such thatPer(f ) = ⋃n

t=2
⋃t−1

l=1 Sl,t (α
t
l ). Conversely, givenαtl ∈ Nl,t for

t = 2,3, . . . , n and l = 1,2, . . . , t − 1, there exists a mapf ∈ Xn such thatPer(f ) =⋃n
t=2

⋃t−1
l=1 Sl,t (α

t
l ).

Proof. By Theorem 2.1 we know that Per(f ) = ⋃n
t=2At where eachAt is a tail of the

ordering t� . Therefore, in view of the second statement of Theorem 4.1, for eact ∈
{2,3, . . . , n} andl ∈ {1,2, . . . , t − 1} there existαtl ∈ Nl,t ∩ (At ∪ {t · 2∞}) such thatAt =⋃t−1

l=1 Sl,t (α
t
l ). This proves the first statement. Now we prove the second one. Since

Sl,t (α
t
l ) is a tail of l,t� , in view of Theorem 4.1, it follows that it is a tail oft� . Therefore,

for eacht ∈ {2,3, . . . , n}, ⋃t−1
l=1 Sl,t (α

t
l ) is a tail of t� because the union of tails of a

ordering is a tail of the same ordering. Then the corollary follows from Theorem 2.1.✷
4.4. Computation of the orderingsp,q�

This subsection is devoted to the study of the structure of the orderingsp,q� in order to
give a simple algorithm to construct them. As an application we will produce an exa
of an orderingp,q� .

As we mentioned before, the orderingsp,q� have two parts. The second part consist
all elements ofN∨

q ordered as in the orderingsq� , and this part can be derived immediate
from the Sharkovskiı̆’s ordering. The first part consists of all elements ofNp,q \ N∨

q , and
these elements are larger than the elements ofN∨

q in the orderingp,q� . Therefore, we only
need to compute the orderingsp,q� on Np,q \ N∨

q . Moreover, we only need to compu
them in the case(p, q) = 1. Therefore, in the rest of this subsection we assume thp
andq are coprime positive integers such thatp < q . SetN�

q = N \ q · N ⊃ Np,q \ N∨
q . We

extend the orderingp,q� to N�
q according to the rules (iv) and (v) of the definition of t

orderingp,q� in the coprime case. To display the orderingp,q� onN
�
q , we will compute

the sequence

n1 p,q>n2 p,q>n3 p,q> · · · , (2)

given by p,q� on N�
q .

The following lemma will allow us to produce recursively the sequence (2). Fork ∈ N�
q

we denote bybp,q(k) andcp,q(k) the quotient and the remainder ofk divided byγp,q(k)q ,
respectively. That is,k = bp,q(k)γp,q(k)q + cp,q(k) wherebp,q(k)� 0 and 0< cp,q(k) <

γp,q(k)q .

Lemma 4.3. Letp,q ∈ N be such that0<p < q with p andq coprime and letk,m ∈ N.
If eitherbp,q(k) < bp,q(m) or bp,q(k)= bp,q(m) andcp,q(k) p,q>cp,q(m) thenk p,q>m.
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Proof. From the definition ofbp,q(k) andcp,q(k) it follows that

m

γp,q(m)
− k

γp,q(k)
= q

(
bp,q(m)− bp,q(k)

) + cp,q(m)

γp,q(m)
− cp,q(k)

γp,q(k)
. (3)

Hence, by Lemma 4.1, if the right-hand side of (3) is positive thenk p,q>m.
If bp,q(k) < bp,q(m) thenq(bp,q(m)−bp,q(k))� q . The lemma follows in this case b

cause bothcp,q(m)/γp,q(m) andcp,q(k)/γp,q(k) are strictly between 0 andq and, hence
the right-hand side of (3) is positive. Ifbp,q(k)= bp,q(m) and

cp,q(k)

γp,q(cp,q(k))
<

cp,q(m)

γp,q(cp,q(m))
,

then, sinceγp,q(cp,q(k)) = γp,q(k) andγp,q(cp,q(m)) = γp,q(m), the right-hand side o
(3) is also positive.

In the remaining case we havebp,q(k) = bp,q(m), cp,q(k)/γp,q(cp,q(k)) = cp,q(m)/

γp,q(cp,q(m)) and cp,q(k) > cp,q(m). Hence, sinceγp,q(cp,q(k)) = γp,q(k) and
γp,q(cp,q(m))= γp,q(m), it follows thatγp,q(k) > γp,q(m). From (3) we getk/γp,q(k)=
m/γp,q(m), and thusk >m. Hence,k p,q>m because, in view of Lemma 4.1,k/γp,q(k)=
m/γp,q(m) is equivalent tolp,q(m)/m= lp,q(k)/k. ✷

Sincek ≡ i (mod q) implies γp,q(k) = γp,q(i), for eachk ∈ N�
q the numbercp,q(k)

belongs to the set

B = {
i + jq: i ∈ {1,2, . . . , q − 1} andj ∈ {0,1, . . . , γp,q(i)− 1}}.

Since {γp,q(i): 0 < i < q} = {1,2, . . . , q − 1}, the cardinality ofB is q(q − 1)/2. On
the other hand,γp,q(ni + qγp,q(ni)) = γp,q(ni). Consequently,bp,q(ni + qγp,q(ni)) =
bp,q(ni)+ 1 andcp,q(ni + qγp,q(ni)) = cp,q(ni). Therefore, from Lemma 4.3 it follow
that

(i) ni+jq(q−1)/2 = ni + jqγp,q(ni) for eachi ∈ {1,2, . . . , q(q − 1)/2} andj ∈ N ∪ {0},
(ii) {n1, n2, . . . , nq(q−1)/2} = B.

Thus, to construct the sequence (2), it is enough to order the elements of the setB according
to p,q� (using the definition ofp,q� ) and then use (i) to construct the whole sequenc

Remark 4.1. From the above algorithm one can easily see that the ordering1,2� is just
the Sharkovskiı̆’s ordering, and the ordering1,3� is the green ordering considered in [
to study the set of periods of maps fromX ◦

3 . Moreover,2,3� (restricted toN2,3 \ {4}) is
the red ordering defined in [1].

As an example we compute the ordering2,5� by using the above algorithm.

Example 4.1. Here we construct the ordering2,5� on N2,5 = N5. The sequenc
n1 2,5>n2 2,5> · · · 2,5>nq(q−1)/2, of the leading elements ofN

�
5 is

22,5>12,5>42,5>72,5>122,5>92,5>62,5>32,5>172,5>14
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and the corresponding sequence5 · γ2,5(·) is

20, 10, 15, 20, 20, 15, 10, 5, 20, 15.

Hence, the ordering2,5� on N
�
5 is

22,5>12,5>42,5>72,5>122,5>92,5>62,5>32,5>172,5>142,5>22

2,5>112,5>192,5>272,5>322,5>242,5>162,5>82,5>372,5>292,5> · · ·
2,5>2+ i · 202,5>1+ i · 102,5>4+ i · 152,5>7+ i · 202,5>12+ i · 20

2,5>9+ i · 152,5>6+ i · 102,5>3+ i · 52,5>17+ i · 20

2,5>14+ i · 152,5> · · ·
and the2,5� ordering onN2,5 is

72,5>122,5>92,5>62,5>172,5>142,5>222,5>112,5>192,5>272,5>32

2,5>242,5>162,5>82,5>372,5>292,5> · · · 2,5>5 · 32,5>5 · 52,5>5 · 7

2,5> · · · 2,5>5 · 3 · 22,5>5 · 5 · 22,5>5 · 7 · 22,5> · · · 2,5>5 · 3 · 42,5>5 · 5 · 4

2,5>5 · 7 · 42,5> · · · 2,5> · · · 2,5>5 · 3 · 2n 2,5>5 · 5 · 2n 2,5>5 · 7 · 2n 2,5> · · ·
2,5>5 · 2∞

2,5> · · · 2,5>5 · 2n 2,5> · · · 2,5>5 · 162,5>5 · 82,5>5 · 42,5>5 · 2

2,5>5 · 12,5>1.
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