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Abstract
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existence and the uniqueness of the solutions to the Cauchy problem and on the regularization prop-
erties (hypercontractivity and ultracontractivity) of the equation usind thé€uclidean logarithmic
Sobolev inequality. A large deviation result baseda Hamilton—Jacobi equation and also related to
the LP-Euclidean logarithmic Sobolémequality is then stated.
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0. Introduction

A semi-group(P;), >0 is said to bénypercontractivevith contraction function — ¢ (¢)
if and only if ¢ is increasing and if for any admissibjg

1P fllgey < CONSfllgo VE=0
for some continuous functian— C(¢). It is ultracontractiveif for someq > 1,

1Pt flloo SCOIfllg Vi>0.

It is the purpose of Gross’ and Varopoulos’ theorems [23,32] to prove such properties for
diffusion processes. This question introduces in a very natural way the logarithmic Sobolev
inequality

/ f2log(f?)du < C* / IVfI?du VfeHYR" st / fPdp=1,

for some positive constarit*, whereu is a measure ofR” which is invariant under the
action of (P;);>0. In the case of the semi-group associated with the heat equation,
is the Lebesgue measure and the aboveguaéty is the Euclidean logarithmic Sobolev
inequality withC* = 2. This inequality can be reformulated in a form which is optimal
under scalings [33] as

/ F2log(f2)dx < = |og[i / |Vf|2dx} VieWR2RY st fllz=1.
2 mne

Here we consider the semi-group generated by the nonlinear diffusion equation
U = Ap(ul/(l’—l))

with A,w = div(|Vw|?~2Vw) for somep > 1 and prove that the associated semi-group
is hyper- and ultra-contractive. The inequalityislingeneralizes theuglidean logarithmic
Sobolev inequality is theptimal L?-Euclidean logarithmic Sobolev inequality

/f” log(f”)dx < %Iog[ﬁp/Wﬂpdx} VieWEP@®") st fll, =1,

which has been introduced ret¢yn[18] and then extended in [22] (also see [14]). This
inequality holds for some positive and optimal constdpt (see Theorem 4 below for
more details). Thentropywhich corresponds to the left-hand side of the inequality, plays a
crucial role for the existence and the unigueness of a global solution to the Cauchy problem.

This paper is organized as follows. In Section 1, we state our main results and in-
troduce the optimal.?-Euclidean logarithmic Sobolev inequality. The existence and the
uniqueness of a global solution is established in Section 2. Section 3 is devoted to hyper-
contractivity and Section 4 to connections with large deviations and the Hamilton—Jacobi
equation

1
v+ —[V]” =0,
p

for which the optimal.”-Euclidean logarithmic Sobolevéguality also plays an important
role. Note that this equation and its regularity properties have been the subject of an earlier
study of the third author [22].
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1. Main results

Consider a global solution to the Cauchy problem

{u, = A, VP (x,1) e R" x RT, 1)

u(1=0)= f,

for some nonnegative initial datd. Note thatA ,u™ = div(|[Vu™|P~2Vu™) is homoge-
neous of degree one if and onlyrf = 1/(p — 1) (we shall take advantage of this fact in
the proof of Theorem 1). If one considers the equatioa: A,u™, the casen # 1/(p —1)

has interesting scaling properties relate@tgliardo—Nirenberg inequalities. The optimal
LP-Euclidean logarithmic Sobolev inequal@yppears then as a limit case [17-19] of these
inequalities whem — 1/(p — 1).

By llull», p # 0, we denote the quantity/ |u|” dx)Y? and unless it is explicitly spec-
ified, integrals are taken ov&". We also writep™ = p/(p — 1) for the Hélder conjugate
exponent ofp, if p € (1, +00).

Our first result is a global existence and uniqueness result. See the beginning of Sec-
tion 2 for some comments on the literature and on our strategy of proof.

Theorem 1. Let p > 1 and assume thaf is a nonnegative function in1(R") such that

Ix|?" f and f log f belong toL1(R"). Then there exists a unique weak nonnegative solu-

. T 1,

tionu € C(R, LY(R™)) of (1) with initial data f, such thau/? e LL (R}, W;o7 (R™)).
Here byweak solutiorof (1) we simply mean a solution in the sense of the distributions.

Thea priori estimate on thentropy term/ u logu dx plays a crucial role in the proof.

Concerning regularity, our main result is the followingpercontractivityproperty.

Theorem 2. Leta, S € [1, +oo] with 8 > «. Under the same assumptions as in Theotem
if moreoverf € L*(R"), any solution of(1) with initial data f satisfies the estimate

_np-a
Hu(’t)Hﬁ g “f”OlA(na P, IB)t b op vt >0

with
n p-a %
A(nspsasﬁ)z(cl(ﬁ_a))p “ CZ:
14 1p_1
pa(p—1rt B-17F p7
Ci=nLlel " — | Cr= e .
prtt (@—1)7a oo —F+l

See Theorem 4 below for a definition 6f,. Note that forp = 2, with £, = 2/(srne),
one recovers the classical estimates of the bgaation (see, for instance, [3,23,28,32]).
A similar result holds for, 8 € (0, 1] with 8 < « and at a formal level fop < « < 0; see
Theorems 10 and 11 in Section 3. As a special case of Theorem 2, we obtdiraaon-
tractivity result in the limit case correspondingdc= 1 andg = cc.
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Corollary 3. Consider a solutiom with a nonnegative initial datg e L1(R") satisfying
the same assumptions as in Theotewith @ = 1. Then for any > 0,

Ci\"'P
Hu(ur)||oo<||f||1<71) .

The main tool in our approach is the following optimaP-Euclidean logarithmic
Sobolev inequality.

Theorem 4[18,22].Let p € (1, +00). Then for anyw € W17 (R") with [1w|?dx =1we
have

/|w|Plog|w|de< %Iog Ep/lepdx} )

with

czﬁ(p_l)p_ln—p/z' rm/2+y 7"
AN | Fa(p—D/p+1]

Inequality(2) is optimal and it is an equality if
n/p* -1/ N
w(x) = nn/z g P F(n/p* + 1) pe—(l/or)lx—/\_’ll7 Vx € R"
p I'n/2+1)

foranyp > 1,0 > 0andx € R". For p € (1, n) the equality holds only ifv takes the
above form.

For our purpose, itis more convenientto use this inequality in a nonhomogeneous form,
which is based on the fact that

Vuwl? \Y
inf[ﬁlog(i)JrM” wu,”}znlog<” wllp)+ﬁ.
u>0Lp "\ pu lwilp llwllp p

Corollary 5[17]. For anyw € W17 (R"), w £ 0, for anyu > 0,

p/|w|plog< vl )dx+ﬁlog(%>/|w|”dx<u/|Vw|pdx.
lwll D nl,

Inequality (2) has been established in [18] fot I < n in view of the description of the
intermediate asymptotics of (1) iR" (see [17], and [30] for the asymptotic behaviour in
the bounded case). It has been linked to optiregllarization properties of the Hamilton—
Jacobi equation

1
v,+;|Vv|1/”=O 3

and extended to any € (1, +00) in [22]. Also see [21] for a previous work on hypercon-
tractivity and properties of the Hamilton—Jacobi equation in gase2, and [3,7,13-15,
29] for connections with optimal mass transpaevrhich have been recdn investigated.
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For earlier results concerning the stiard logarithmic Sobolev inequality & 2), one
should refer to [23] (in the form of Corollary 5), to [33] for the form which is invariant
under scalings (Theorem #,= 2) and to [10] for the expression of all optimal functions.

In casep = 1, inequality (2) was stated in [27] and the expression of the optimal functions
has been established in [4].

2. Proof of Theorem 1

Existence and unigqueness of solutions to quasilinear parabolic equations have been ex-
tensively studied. However, as far as we know, the available results deal only with bounded
domains. A standard reference when themedsxternal potential is the paper by Alt and
Luckhaus [2]. See [11,12,30,31] for more receggults and further references. Very re-
cently, Agueh in [1] adapted the strategy of steepest descent of the entropy with respect
to a convex cost functional of Jordan et al. [24] to quasilinear parabolic equations. Their
approach relies on mass transportation techniques and is certainly the right one from an
abstract point of view. It covers Eq. (1) in the case of a bounded domain. Here we choose
to give a more direct proof for the existence and the uniqueness, which strongly relies on
a priori estimates for thentropy [ u logu dx (this denomination makes sense both from
probabilistic and physical points of view). As atareliminary remark, let us note that be-
cause of the homogeneity of the equation, we can use the notion of weak solution defined
in Section 1 although the iial data is essentially i.1(R"), so that we do not need to
introduce any renormalization procedure.

Since (1) is 1-homogeneous, in the sense thatis a solution corresponding to the
initial datawf for any u > 0 whenevew is a solution corresponding to an initial dafa
there is no restriction to assume thiay dx = 1. It is also straightforward to check that
is a solution of (1) if and only ib is a solution of

ve = App/ P 4 Ve (gv),  (x,1) e R* x RY,
v, T=0) =1,
providedu andv are related by the transformation

(4)

v(E 1), E=——, 1(t)=logR(1), R(t) = (1+ pn¥/P

R(1)" R’
(see [17,19] for more details and consequences for large time asymptotics). Let
n/p*
_ (P L@2+D P
ve®) =7 <a) Fa/p+ 0 oA\ 7

with o = (p*)2. For any nonnegative constant uvs iS @ nonnegative solution of the
stationary equation

AP LV (gv) =0
such thatf ve dx = . We may rewrite (4) as

i”%[v(\w2?—\%”%)], (1) € RY X BY,

u(x,t)=

v Voo Voo

v, t=0)=1.
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The next step consists in regularizing the problem. First we replace the initiaf data
10 = Ny xeo * Min(fo + e0voo, €5 70o0), €0 € (0, 1),

where x., = 07" x (-/¢0) is a regularizing functiony is a C* with compact support
function, with values in0, 1], such thaty(x) =1 if |x| <1l andx(x) =0 if |x| > 2.
The normalization constam¥,, is chosen such that /¢ dx = 1. We can also replace the
equation forw by a regularized one

o) oo 2-1 Vi voo —2Veveo
:Ur:vé[v([(l_g)‘vifi:z:c | (l+n)2|v5v | 17 ! L el LR I
b(\7=0) = f%,

for some positive regularizing parameterand . Note thatvs, is still a stationary so-
lution. To emphasize the dependence in theous regularization parameters, we shall
denote this solution by:’,. The standard theory [26] applies since this is a quasilinear
parabolic equation of the form

vy = Vg - [a(é, v, ng)],

for which the right-hand side is locally (i) uniformly elliptic. To be precise, one should
first solve the problem on a bounded domain (itdsv strictly elliptic), say a large centered
ball Bg of radiusR, with Dirichlet boundary conditions = v., 0n 9B (the initial data
also has to be modified accordingly), and therRet> +oc.

The solution is smooth and the maximum principle applies. The functi@Ngoluoo

and(eoNgo)—luOo are, respectively, lower and upper stationary solutions,

20 o ®) <0, (1, 8) < v () V(E,7) €R" xRT, (5)

~
Ngo & 80N€o

uniformly with respect t&, n > 0 so that we may let — 0 and keep the above estimate.
Note that a similar uniform im andn (but local ing) estimate holds fo(v:?))~ 1|ng nl.
Details are left to the reader.

Now we may build an entropy estimate as follows:

—/ Iog( >d§
vae, Veveo P VEUE,OO 2
:_/[ vi,ooo_ ioo M 0([(1_8) iy

vs,O
2y
. )i| :
Voo

(which by the way proves thaf’, converges ta,, ast — +00). Because of (5), such an
estimate passes to the limit in integral formesas- 0,

Jon(Z)o
L CSEN IR
0

€0

2j| p/2—-1 Vf vjoo
vs,O

S‘ngoo

Voo

Voo

‘V’;‘Uoo P
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Vo [P~2 ypeo P2V 0

veo

Vs

Voo

veo

X <
wherev® := v is now a solution of

090, = Ve [peo(| Yeu? P2 YerD | Vetoe |p-2 Vet
USO(.’ T = O) = fgo,

)dg dr, (6)

Voo

satisfying (5) and such thaﬁgo)_1|ng80| is locally bounded irf (however this estimate
is certainly not true uniformly with respect t@).

We may now go back to the original variabkesndx. Letu0 be the solution of Eq. (1)
with initial data /0 and considelic = (1/R()")v(x/R(t),log R(t)). Since

/ulog(i>dx:/ulogudx—i—(p—1)(R(t))_p*/|x|p*udx+cr(t)/udx

Uco
for someC? functiono, it is sufficient to study the first term of the right-hand side to pass
to the limit aseg — 0 in the entropy inequality, i.e.,
d 1
— / u®logu®®dx = ——/ |p*V(u8°)l/p|p dx.
dt p—1

A crucial remark is the following lemma, which has been stated in [5] (also see [6]) for
p =2 and in [20] in the other cases. For completeness, we give a proof of it.

Lemma 6 [20]. On the spacdu € LY(R"): ul/? ¢ wbP(R")}, the functionalF[u] :=
[ 1Vu®|? dx is convex forany > 1, « € [1/p, 1].
Proof. For any two given nonnegativ@&' with compact support functions, u>, let

W =tus+ A —0ur=ur+1tv withv=ur —u1, f@)=F[u'].

It is readily checked thaf (¢) is finite for anyr € [0, 1] and twice differentiable. For sim-
plicity, we shall writeu instead ofu’ in the computations. Define

X =au® " 1vu,

Y = auo‘_z[(a — DvVu + qu],

Z=u(a — 1)14“73[(01 — 22V + ZMUVU].
Then

f' = pf X174 (P =2 - VP + IXIP(1Y 1P+ X - Z) ] dx

2
= pot4/ |X|”_4u4‘)‘_6%[(a — 1) ((@ —1p—1)A?
+2p(a — DAB + (p — 1)B?]dx,

whereA = vVu andB = uVv. The quantitya — 1)((« — 1) p — 1) A%+ 2p(a — 1) AB +
(p — 1) B2 is nonnegative for anyt, B € R” if and only if 0> [p(a — D12 — (p — 1) x
(@—=D((@e-—Dp-D=(@p-D@-1). O
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In the case of Eq. (1), the entropy production term is therefore convex. Thus the entropy
inequality (6) passes to the limit as— 0. By the Dunford—Pettis criteriom?° converges
to some functiom weakly in L1(R" x Rloc) Moreover, because of the divergence form of
the right-hand side of the equation, we have

d
—/u%dx:o
dt

so that/ u dx is also conserved. Since

(p — DV =D = p, Y-y, Lp,
we obtain

IVt P oy < p*lly PO VP,

by Holder's inequality (this even makes sensefar (1, 2) since the Holder exponents are
p andp*) There is no difficulty to check that(-, 0) = f and that®° strongly converges
tou in L (R" x RY). It remains to make sure thatis a solution of (1). Sinc& (u®0)/»
weakly converges t&u/? in LOO(Rloc, L (®R™), if p > 2, V(u®)/P~D weakly con-

verges tovVu/(?=1 in Loo(Rloc, e L(®m)). This is enough to give a sense tg,u and
prove that: satisfies (1) in the distribution sense. The adaptations to be made (i, 2)
are left to the reader. This concludes the proof of existence.

Remark 7. The entropy decays exponentially since

d 1
/u Og(/ o )dx:—ﬁ/m*Vul/plpdx

and Corollary 5 applied with = u¥/?, u = nL,/(pe) gives

d u (px)Ptle u
2 | ulog dx < - ¢ [ 1og dx
dt Judx nlp, Judx

For a more precise description of the asymptotic behaviour, see [17,19].

It is remarkable that the entropy, or to be precise,riiative entropyturns out to be
the right tool for uniqueness as well. Consider two solutisngnduy of (1). A simple
computation shows that

d | d
dt " og(uz) *
:/(1+Iog<ﬂ))(u1)tdx—/(E)(uz),dx
uz uz

o Vui  Vua[|Vur P2 Vu,
(1) 1>/ Vur _ Vug || Vua|" "V
(r—-21 ui " "

uil ui
It is then straightforward to check that two solutions with same initial dateave to be
equal since

Vuo

P—ZV
_}d
u

uz
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4”f” Jua(, ) — uz(-,t)Hié/ul( t)log(”l( t)) /flog( )

by the Csiszar-Kullback inequality [16,25].

Remark 8. The computation we have used above for proving the uniqueness is exactly the
same as for the existence proof, with= 1 anduy = u. This is why the detailed justifi-

cation of the computation has been omitted. All terms make sense at least in the integrated
in ¢ sense. In the stationary case, similar computations have been used extensively, see [8]
for an example in case = 2.

3. Proof of Theorem 2
As a preliminary result, let us note that the quanfity? logu dx makes sense.

Lemma 9. Let ¢, Q be such thatl < g < Q and assume that € L' N L2(R") is a
nonnegative function such thit|? u € L1(R"). Thenu? logu belongs toL1(R").

Proof. On the one hand, léf = exp(—|x|?"(@=9)/(@=D) Then

/uqlogudxzfuqlog( )dx+/|x|p* 0149 dx.

The first term of the right-hand side is bounded from below by Jensen’s inequality

q q
/uqlog( )dx—E/uqlog<u )dx 1/uqulog(fu dx)
U q U1 q [U%dx

and the second term, which is nonnegative, makes sense because of Holder’s inequality

(=]
* 0— * 0-1
/|x|" o1yl ax < (/ Ix|? udx) (/ de>

On the other hand (see [9,18])
1 2d
/u’”Ogudxé uqulog(fu x>’
0—gq Juidx

as can be checked using Holder’s interpolatiotj:of - between|u ||, and||u| o for some
r € [¢, Q) and deriving with respect toatr =¢q. O

-

q—

-1

IO

Take a nonnegative functiane L7 (R") with u? logu in LY(R™). It is straightforward
that

d
— uquzfuq logudx. 7
dq

Consider now a solution of (1). For a givery € [1, +00),

—/ :_(i(q 1),]1)1 WI=P|Vul? dx. 8)
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Assume thay; depends om and letF (1) = [u(-,t)|l4«). Let’ =d/dt. A combination of
(7) and (8) gives

F/ / q q 2 -1 1
F_d /u_mg ut dx_w_/uq—pwuwx .
F  q2|) Fa Fa q'(p—DP-LFa

Since [ u?=P|Vu|? dx = (p/q)? [ |Vu?/P|P dx, Corollary 5 applied withw = u4/?,
__ (g=Dp”
T
gives for anyr > 0,

t
’ p—2,/
pJ q q-1
0
and
K, = @@—71)1”71
e pPt

Now let us minimizeA(¢). The optimal functionr — ¢(¢) solves the ODE
q"q=2q",
which means that

1) =
q(1) at+b

for somea, b € R. ThusA is given by
t

_.n aklp
A(t) = p/alog((as+b)P1(as+b—l)>ds
0

and an identification ofp = «, ¢(t) = B allows to compute:r = (e« — 8)/(ef) andb =
1/«. Note thats = —¢’g 2 < 0. Letp(u) = (p — Dulogu — (1—u) log(1—u) — pu. Then

t

A@) = _, /[Iog(—aICp) —¢'(as+b)]ds
p

0
BB ke cnf () (2
=0 ap '°g< of t)+p[¢(/3> *"(a)]

This ends the proof of Theorem 20

With a minor adaptation of the above proof, one can state a result similar to the one of
Theorem 2 in the case 8 € (0, 1] with 8 < o and at a formal level in the cage< o <0
(in both cases; > 0). Since the sign of’ is changed, the inequality is reversed, compared
to Theorem 2: such results are not hypercontractivity properties any more. In the second
case, the existence of a solution is not covered by Theorem 1 and is, as far as we know,
an open question. Wit (u) = (p — Dulogu + (u — 1)log(u — 1) — pu, one gets the
following result.
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Theorem 10. Lete, 8 € (0, 1] with 8 < «. Under the same assumptions as in Theotem
any solutionu of (1) with initial data f such thatf¢ belongs toL'(R") satisfies the
estimate

na=p
luC.O] g = 1 flaA, poa. pree V>0
with
np-a oL
A(ns psas ﬁ)z(cl(a_ﬁ))p f Czps
14 1p 1

_ o pap=prt _A-pT pF
Cl—l’lﬁpe 1 CZ— 1— 1— 1 .
prtt l-a)a ga 5t

Here(Cz has the same expression as in Theogamd one can write

nfa I
A(nspsasﬁ)z(c:”ﬁ_al)p ap Czpv 02: 3 (9)

in order to have a general expression which is valid for both results.

At a formal level (existence of a global solution is not known), it is even possible to state
a result for negative exponenisand 8. Note indeed that in such a case, the boundedness
of fug dx is incompatible with the requiremeng € L1(R"). The following result is ob-
tained by adapting the proof of Theorem 2 to the ¢a@e = (p — Du log(—u) — (1 —u) x
log(1— u) — pu.

Theorem 11. Leta, 8 < O with 8 < . AnyC? global solutionx of (1) with initial data f
such thatf* belongs taL1(R") satisfies the estimate

na=p
luC. 05 =1 flaA@, p.a, pyer e Vi >0,

whereA(n, p, a, 8), C1 andC» are given by(9).

4. Largedeviationsand Hamilton—-Jacobi equations

Consider a solution of

2- *
vy + %|VU|P = ﬁpﬁ*lgp Apv, (x,1)eR" x RT, (10)
U('7t=0):g'

The following lemma shows what is the relation of (10) and (1).

Lemma 12. Lete > 0. Thenw is a C2 solution of (10)if and only if

1

pr1
p—1

1, .
u=e »" Wwithi =
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is a C2 positive solution of
u; =£pAp(u1/(p_1)) (11)

with initial data f = e~/ s,

In the limit cases =0,

x—yp*
t

is a solution known as the Hopf-Lax solution of the Hamilton—Jacobi equation (3),

P ol - . t
Q;g(x) :=v(x,0)=inf 1g(y)+ —
yeR? p

1
v+ —|Vv|P =0.
p

Let P/ f(x) := u(x,t) wheneveru is a solution of (1) with initial dataf. Because of
the convergence of the solutions of (10) to the solutions of (3), by Lemma 12 we get the
following result.

Theorem 13. With the above notations and assumptions, for @Ayunctiong,
Org(x) = |im0[—)\gl’* log( P, (e78/*¢" )] v > 0.
E—>
In other words, this essentially means that the famﬂf,,,)bo satisfies darge devia-

tion principleof orders”” and rate functionx — -|7* /(p*t?"~1).
This provides a new proof of the main result of [22].

Corollary 14. Leta = p¥/»=D /(p — 1). For anye, 8 with 0 < o < 8, we may write

na—p
1278l < l|ef |la B(n, poat, B)t7 % ¥ >0
with

+i n

_ np—a o @ "B \p

B(n, p,a, B) = ((B—a)r""'C)? @ ( ,,_1#) :
Proof. We may first rewrite Theorem 10 as

el =12’

y=3$ 1y ﬂ_%+1

{ NEAZN T )7 }
1-8F o )

where we replaced, g and: by 8, y and z, respectively. Take now = ¢—/C"),
T =¢Pt, 8§ = reP"a andy = AeP" B, and raise the above expression to the powt .
Taking the limite — 0 we obtain,
noa—p
le ™ llp < e o Bn, p.a, )7 @ ¥t >0,
The result then holds by takirg= —Q” (¢) and by using the inequality 07 (— Q7 (g))
<8 O
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Remark 15. If instead of Theorem 10, we use Theorem 11, we obtain a direct but formal
proof of Corollary 14. The proof is similar to one of Corollary 14. According to Theo-
rem 10,

né-y

p_1 n

Ci\r iy (1-8)F (=8) 7Ty E

Ir sz (2) 7 o -0 SRS S D
1=y 7 ()7 ot

where we replaced, g ands by y, 8 and t, respectively. Take nowf = ¢~%/0")
Tt =¢Pt,y = —reP o ands = —re?” B and raise the above expression to the powes?” .
The result then holds by taking the lingit> 0.

~

5. Conclusion

As a conclusion, let us summarize the main results. The three following identities have
been established:

(i) Foranyw e WP(R") with [ |w|”dx =1

/|w|P|og|w|dx< %Iog[ﬁp/|Vw|dej|.
p

(if) With the notationP;” for the semigroup associated to (1), i®.= A, @Y *~1),

n B—a
|P7 flls <1 laAGr poo py e

(iii) With the notation@? for the semigroup associated to (3), i®.;+ |Vv|?/p =0,

1ﬂ o
1278l < [|e% | B(n, p. o, B)t 7' .

The first identity is the optimal.”-Euclidean logarithmic Sobolev inequality (2); see [18,
22]. The equivalence (R (iii) has been established in [22]. In this paper, what we have
seen is that (i} (ii) and that (ii)= (iii). Going back to the proof of Theorem 2, it is not
difficult to check that (ii)= (i), so that the constants in (ii) are optimal.
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