Available online at www.sciencedirect.com

Fournal of

SC'E"CE@D'RE°T° MATHEMATICAL
A ANALYSIS AND
ELSEVIER J. Math. Anal. Appl. 312 (2005) 195204 APPLICATIONS

www.elsevier.com/locate/jmaa

Normal families and value distribution in connection
with composite functions

E.F. Clifford*

Department of Mathematical Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
Received 18 January 2005
Available online 13 April 2005
Submitted by J.H. Shapiro

Abstract

We prove a value distribution result which has several interesting corollaries.d Bt leta € C
and letf be a transcendental entire function with order less th@n Then for every nonconstant
entire functiong, we have that f o g)®) — o has infinitely many zeros. This result also holds when
k = 1, for every transcendental entire functigriWe also prove the following result for normal fam-
ilies. Letk € N, let f be a transcendental entire function withf) < 1/k, and letag, ..., a;_1,a
be analytic functions in a domai2. Then the family of analytic functions such that

k—1
FodP @+ a;@(f o)) #a().
j=0

in £2, is a normal family.
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1. Introduction

In [1], Hinchliffe proves the following result which provides a criterion for normal fam-
ilies in connection with composite functions.

Theorem 1.1 (Hinchliffe [1]). Let f be a transcendental meromorphic function in the
plane, and let2 be a domain inC. If C*\ f(C) =4, {oo} or {«, B}, wherea and 8 are
two distinct values ifC* = C U {oco}, then the family

G ={g: gisanalyticing2, f og has no fixpoints in2}

is a normal family ins2.

We note that this criterion is thayf o g)(z) # z in £2, or that(f 0 g)© (z) — a(z) has no
zeros ing2, wherea(z) = z, for g € G. Theorem 1.1 then motivates the idea of a criterion
for normal families in connection with composite functions involvifo g)® (z) # 0
for k € N. This idea is reinforced by the following theorem and corollary by Langley and
Zheng, where n.e. is used as an abbreviatiofifearly everywhere that is, to denote the
phrasé‘outside a set of finite measure.”

Theorem 1.2 (Langley and Zheng [2])Letk € N. Suppose thaf andg are transcendental
entire functions of finite order. Suppose also that

N1 (fee)®P)=0(T ) (ne). (1)
Then

T(r, f)# oY%y asr— oo.

Corollary 1.3. Let k € N. Suppose thay is a transcendental entire function such that
o(f) < 1/k. Suppose that is an entire function of finite order such that

(fod®(2)#0

onC. Theng is a polynomial.

We note that the examplg(z) = ¢* shows that Corollary 1.3 cannot be strengthened to
p(f) <1/k.

And so, given a transcendental functigrwith po(f) < 1/k for somek € N, the Bloch
Principle (see [3]), Theorem 1.1 and Corollary 1.3 motivate the question whether the fam-
ily G of analytic functionsg in a domains2, such that(f o g)® (z) # 0 in £2, or more
generally,(f o )®(z) # Q(z) for some analytic functiorQ, is a normal family. This is
true, and is a special case of the following result.

Theorem 1.4. Letk € N. Let f be a transcendental entire function withi /) < 1/k. Let
ao, ..., ax—1,a be analytic functions in a domai2. Then
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k—1
G= {g: gisanalyticing2, (fog)® )+ aj)(f o) () #a(z)in 2
j=0

is a normal family ins2.

In the proof of Theorem 1.4, we use the following theorem, which is an interesting value
distribution result in its own right.

Theorem 1.5. Letk € N. Let f be a transcendental entire function witli f) < 1/2. Letg
and Q be polynomials, witly nonconstant. Then
(fop)® -0

has infinitely many zeros.

We note that in Theorem 1.5, we must have that) < 1/2, since we apply a theo-
rem of cosrp type. However, ifQ = 0, we can prove Theorem 1.5 fpK f) < 1, for the
extended case whegeis a nonconstant entire function. We state the result as follows.

Theorem 1.6. Let f be a transcendental entire function with{ /) < 1. Let g be a non-
constant entire function. Theff o g)’ has infinitely many zeros.

From Theorems 1.5 and 1.6, we prove the following corollary which strengthens Corol-
lary 1.3 and which is used in the proof of Theorem 1.4.

Corollary 1.7. Let k € N. Suppose thay is a transcendental entire function such that
o(f) < 1/k. Suppose that is an entire function of finite order such that

(fo) W) #0
onC. Theng is constant.

Finally, we note that Theorems 1.5 and 1.6 have the following corollaries.

Corollary 1.8. Letk be an integerk > 2. Let f be a transcendental entire function with
o(f) < 1/k. Leta € C. Then for every nonconstant entire functign

(fog)¥ —a
has infinitely many zeros.

Again, although thé = 1 case is omitted in Corollary 1.8, we can provehe 1 case
wheng is a transcendental entire function. We state the result as follows.

Corollary 1.9. Let f be a transcendental entire function with /) < 1. Leta € C. Then
for every transcendental entire functign

(fog) —«a

has infinitely many zeros.
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Since the proof of Theorem 1.4 depends on Theorems 1.5, 1.6 and Corollary 1.7, we
prove these results in Sections 2, 3 and 4, respectively. We then prove Theorem 1.4 in
Section 5. Finally, we prove Corollaries 1.8 and 1.9 in Section 6.

2. Proof of Theorem 1.5

The following lemma is a version of Taylor’s theorem and is easily proved by induction.

Lemma 2.1. If f is an entire function and e C, then fork € N we have

(z
f@=f@+Gi—a)f()+: +Wf(k ()
[0 g
+ Wf (1) dr.

a

We also need the following lemma. We include the proof here for completeness.

Lemma2.2. Letk € N. Let P; and P, be polynomials of degree andn respectively, with
m € NU {0} andn € N. Then we can choose a straight lilefrom O to oo such that

ok
1—'/(Z ) Pl(t)eP2<’)dt

D! Lclz|Fm,

asz — oo along I, for some positive constant

Proof. The behaviour ofP; is dominated by the leading tertp . Settingr = re'?, we
have that|en!" | = ¢(@CoSnO)+BsiNON™ for somew, B € R, not both 0. Then choose
such thatx cogné) + Bsin(nd) = —d < 0, and letI” be the straight line = re'?, for
0 < r < oo. Then forz on I' between 0 and we have thate?2?)| = ¢=dr"+0¢"™ _, 0 as
r — oo, for fixed# as above. Thug2®)| < ¢o for some positive constang, and sinceP;
has degree:, we have that for on I" between 0 and, | P1(¢)| < c1|¢|™ for some positive
constanty, ast — oo. The result follows. O

Finally, we need a theorem of cop type, as follows. We refer the reader to [4] for
further reading.

Theorem 2.3 [4]. Let f be a nonconstant entire function with{ /) = p < 1/2. Forr > 0,
defineA(r) and B(r) as follows

A(r)=inf{log| £ (2)|: Iz] =7}, B(r) =sup{log| £ (2)|: Iz] =r}.
If p <a <1/2,then
logdengr: A(r) > (costa)B(r)} >1—p/a,
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where ifE is a subset of1, +oc0) the lower logarithmic density of is defined by

logdensE) = IL@L@f(/X(t) dt/t)/logr,

1

wherey () is the characteristic function of .
We now prove Theorem 1.5.

Proof of Theorem 1.5. We use a proof by contradiction. Suppose thab g)® — Q has
m zeros inC, for somem € N U {0}. Then we can write

(fo g)(k)(Z) — Q@)= Pl(z)ePz(z)

for some polynomialsP; and P, of degreem andn respectively, withm as above and
n € N. Then, by Lemma 2.1, we have for= 0 that

kf

(fog)@=(fog)0)+z(fog) O+ -+ (fog)® (0

(k—1)!
Lo k-1
+ (Z(k_—”l),(fog)k(t)dr
) !
Lo k=1
= Ok-1(2) + %(Q(t) + Pi(t)eP2 D) dr
0

whereQy_1 is a polynomial of degree at mast— 1. Then

z (Z _ [)k_l

[(fo8)@)| < |Qk-1(2)| + RTEET
0

O@t)dt

z—)k

— = pin)eP?® gy,

)

For the remainder of this proof, we usgto denote positive constants.

Since Qy_1 is a polynomial of degree at mokt— 1, and sinceQ is a polynomial of
degree; say,q > 0, we have thatQ:_1(z)| < c1lz|¥~1 asz — oo and that Q (1) | < ca|t|4
ast — oo on any straight ling” between 0 and. Then, as — oo, we have that integrating
along any straight lind™ between 0 and gives

Z
calz[Ft
2 1),/ (117) i < calz]+

Lo k=1
‘ =0 ] <

(k—1)!

since|z —f] < |z].
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In particular, by Lemma 2.2, we can choose a straight line pattom 0 to co such
that

k
—t
’f o )1)' P11’ di| < calelH

asz — oo alongI". Then we have that f o g)(2)| < cs|z|¥2™, which gives

log|(f 0 &)(2)| < celog]z] (3)

asz — oo alongr.
Sincep = p(f) < 1/2, we can apply Theorem 2.3 tb. For r > 0, defineA(r) and
B(r) as in Theorem 2.3. Then for < o« < 1/2 we have

logdengr: A(r) > (costa)B(r)} > 1—p/a. (4)

Next, sinceg is a polynomial and is nonconstant, we have tlgdt)| > c7|z| asz — oo,
then by (3), we have that

log|(f(g(2))| =log|(f 0 )(2)| < c6l0g|z| < cglog|g(2)] (5)
asz — oo alongI". Now chooser large such thaR € {r: A(r) > (cosra)B(r)}. Choose
w such thatw| = R andw = g(z) for somez on I". Then by (5), we have that

(costa)B(R) < A(R) < log| f(w)| < cglogR.

This is a contradiction sincg is a transcendental function, which implies thatR)/
logR —»> +o0 askR —oco. O

3. Proof of Theorem 1.6
We need the following lemma.

Lemma 3.1. If f is a transcendental entire function with( f) < 1, then f/ has infinitely
many zeros.

Proof of Theorem 1.6. Sinceg is a honconstant entire function, we have by Picard’s the-
orem thatg omits at most one value ii. Sincef is a transcendental entire function with
o(f) <1, we have by Lemma 3.1 thdt has infinitely many zeros. Then singeomits at
most one of these zeros, we have tliatg(z)) has infinitely many zeros. Therefore, since
(fog) (@)= f'(g(2).2'(z), we have that f o g)’ has infinitely many zeros. O

4. Proof of Corollary 1.7
By Corollary 1.3, we have that is a polynomial. However, by Theorem 1.6 foe= 1

and by Theorem 1.5 fdr > 2, if g is a nonconstant polynomial théyi o g)*) has infinitely
many zeros. Thereforgis constant.
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5. Proof of Theorem 1.4
First we need the following result, which is a version of Hurwitz' theorem (see [3]).

Lemmab.1. Let (f,) be a sequence of analytic functions on a donfainwhich converge
spherically uniformly on compact subsets to a functfohet(s,) be a sequence of analytic
functions tending t® on some dis®B(«, §) = {z: |z — | < §} C £2, for somes > 0. If
f#£0and f(a) =0, then for largen, we havef, (z) = s, (z) for somez neara.

Next, we note that Lemma 5.1 has the following corollary, which we will use in the
proof of Theorem 1.4. We provide a proof for completeness.

Corollary 5.2. Letk € N. Let$2 be the open unit disB(0, 1). Leta be an analytic function
on 2. Let(f,) be a sequence of analytic functions@nsuch thatf, (z) # a(z) on £2. Let
(z») be a sequence of points tending:toe §2, and let(p,) be a positive sequence tending
to 0. Supposg is an entire function such that

lim p% fu(zn + on2) = 8(2)
n— oo

locally uniformly onC. Then eitheg =00nC, or g(z) Z00onC.

Proof. Suppose there existse C such thatg(«) = 0. If g =0, then we are done. Other-
wise, we note that, + p,z € §2 for n large, and thato* f,) is a sequence of analytic func-
tions which converge tg locally uniformly onC. We note also that sinceis analytic, and
therefore bounded neag, and since{plj) is a sequence tending to 0, th@l’,fa(zn + 0n2))

is a sequence of functions tending to 0O, folarge, onB(«, §), for somes > 0. Then by
Lemma 5.1, we obtaipf £, (z, + puz) = pXa(z, + pnz) for n large, for some neara.
Since (pjj) is a positive sequence, we therefore have that, + p.z) = a(z, + Pn2),
which is a contradiction sincg, + p,z € £2 for n large. O

We need the following lemma, which is called thalcman lemmésee [5]).

Theorem 5.3. A family G of analytic functions in the open unit dig(0, 1) is not normal
at the origin, if and only if there exist a sequence of functigns G, a sequence of points
zy — 0, a positive sequengg, — 0 and a nonconstant entire functignon C such that

nli—>moo &n(zn + pnz) =8(2)
locally uniformly onC, with respect to the spherical metric, such that the spherical deriv-
ative ofg is boundedg®(z) < g%(0) = 1.

Finally, we need the following lemma which is an immediate consequence of the de-
finition of the order of a meromorphic function, using the Ahlfors—Shimizu form of the
Nevanlinna characteristic.

Lemmab5.4. Let f be a meromorphic function with bounded spherical derivative. Then the
order of f is at most.
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We now prove Theorem 1.4.

Proof of Theorem 1.4. Since normality is a local property, we can assume, without loss
of generality, thak? is a disc andi, .. ., ax—1, a are bounded of. Using a linear change
of variablesi(z) = g(a + Bz), and the fact thatf o h)V) (z) = B/ (f o g)V) (a + Bz), for
a suitable choice of, 8 € C, we may assume tha? is B(0, 1). Suppose thag is not
normal on$2. ThenG must be not normal at least one pointsh and without loss of
generality we can suppose thats not normal at 0.

Sinceg is a family of analytic functions, we can apply Lemma 5.3. Then there exist
points(z,) tending to 0, a sequencg,) in G, a positive sequenag;,) tending to 0 and a
nonconstant entire functiopsuch that

hu(2) = gn(zn + pn2) = g(2) (6)

locally uniformly onC, with respect to the spherical metric, wigfi(z) < 1. Then since
g has bounded spherical derivative, we have by Lemma 5.4gtlimt function of finite
order.

Next, sincef is an entire function, we have that

(f ohn)(@) = (f 0 8)(2),

locally uniformly onC. Then by the Weierstrass theorem (see [3]),farN,

(f o)V @) = pil (f 0 80P @n + pn2) > (f 09V (2), (7)
locally uniformly onC. However, since eact), € G, we have that for, + p,z € £2,

k-1
Fu@) = (f 02 @+ pn2) + Y aj@n+ pa2)(f 0 80)" (2n + pu2)
j=0
#a(zy + pn2).

Then we have that
onFn(2) = ph(f 0 g0)® (zn + pn2)

k=1

o . ‘
+D o0 ajGa+ ea2)pn(f 0 g @n + pa2) # phalzn + pu2)-
=0

Next, sincep,'f_j —0forj=0,...,k—1, and since the; are assumed bounded ¢h
we have by (7) that

lim i F()=(f 0 9)® ()

locally uniformly onC. However, we can writd), (z) = G,,(z, + pnz) WhereG,, (z) # a(z)
on £2, and so we have by Corollary 5.2, that eitligo g)®) (z) = 0 onC, or (f o g)® (2) #
OonC.

Casel. (fog)®(z)=00nC.
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Then integrating this equation— 1 times, we have thatf o g)’'(z) = Py_2(z), where
Py_» is a polynomial of degree at mast- 2. SinceP_» has at most — 2 zeros, counting
multiplicities, (f o g)'(z) = f'(g(z)).g’(z) has also. Howevelf is a transcendental entire
function andp(f) < 1, and so by Lemma 3.1, we have thdthas infinitely many zeros
on C. Then sinceg is a honconstant entire function, we must have ghamits infinitely
many zeros off’ on C, which is a contradiction by Picard’s theorem.

Case2. (fog)®(z) £00nC.

Suppose first thdt = 1. Then by Theorem 1.6, we have tligito g)’ has infinitely many
zeros ornC and so we have a contradiction.

Suppose second thiat> 2. Then sincef is a transcendental entire function wihf) <
1/k andg is a nonconstant entire function of finite order, we have by Corollary 1.7 that
(f o 2)® has at least one zero (. Therefore we have a contradiction.

Thereforeg is a normal family.

6. Proof of Corollaries1.8 and 1.9

Proof of Corollary 1.8. Suppose thatf o g)®) — « has finitely many zeros.

Suppose first that is a function of finite order. I§ is a polynomial, then we have a con-
tradiction by Theorem 1.5. |f is a transcendental function, then sin¢é-, 1/((f o g)® —

«)) = O(logr) = o(T (r, g)) and sincel (r, f) = o(r1/*), then we have a contradiction by
Theorem 1.2.

Suppose second thgtis a function of infinite order. Then, by Lemma 5.4, we have
that ¢ has unbounded spherical derivative, that is, we can choose a sequence of points
(o) tending tooo, such thatg?(«,) — oco asn — oo. Then the family of functions
{gn(z) = g(a, + 2): n € N} is not a normal family on the open unit dig0, 1). Then
by Theorem 1.4 we have a contradictiora

Proof of Corollary 1.9. Suppose thatf o g)’ —« has finitely many zeros. ff is a function
of finite order, then by the argument in Corollary 1.8, we have ghata polynomial. This
is a contradiction sincg is a transcendental function. fis a function of infinite order,
then by the argument in Corollary 1.8, we have a contradiction by Theorem 11.4.

Acknowledgments

This research has been done as part of a PhD thesis at the University of Nottingham. The author gratefully ac-
knowledges the advice and support of Prof. J.K. Langley. Also, the author thanks the referee(s), whose comments
improved this paper.

References

[1] J.D. Hinchliffe, Normality and fixpoints of analytic functions, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003)
1335-1339.



204 E.F. Clifford / J. Math. Anal. Appl. 312 (2005) 195-204

[2] J.K. Langley, J.H. Zheng, On the fixpoints, multipliers and value distribution of certain classes of meromor-
phic functions, Ann. Acad. Sci. Fenn. Math. 23 (1998) 133-150.

[3] J.L. Schiff, Normal Families. Universitext, Springer-Verlag, New York, 1993.

[4] P.D. Barry, Some theorems related to the gpgheorem, Proc. London Math. Soc. (3) 21 (1970) 334-360.

[5] L. Zalcman, Normal families: new perspectives, Bull. Amer. Math. Soc. (N.S.) 35 (1998) 215-230.



