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Abstract

We prove a value distribution result which has several interesting corollaries. Letk ∈ N, let α ∈ C

and letf be a transcendental entire function with order less than 1/2. Then for every nonconsta
entire functiong, we have that(f ◦ g)(k) − α has infinitely many zeros. This result also holds wh
k = 1, for every transcendental entire functiong. We also prove the following result for normal fam
ilies. Let k ∈ N, let f be a transcendental entire function withρ(f ) < 1/k, and leta0, . . . , ak−1, a

be analytic functions in a domainΩ. Then the family of analytic functionsg such that

(f ◦ g)(k)(z) +
k−1∑
j=0

aj (z)(f ◦ g)(j)(z) �= a(z),

in Ω, is a normal family.
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1. Introduction

In [1], Hinchliffe proves the following result which provides a criterion for normal fa
ilies in connection with composite functions.

Theorem 1.1 (Hinchliffe [1]). Let f be a transcendental meromorphic function in t
plane, and letΩ be a domain inC. If C

∗ \ f (C) = ∅, {∞} or {α,β}, whereα andβ are
two distinct values inC∗ = C ∪ {∞}, then the family

G = {g: g is analytic inΩ, f ◦ g has no fixpoints inΩ}
is a normal family inΩ .

We note that this criterion is that(f ◦g)(z) �= z in Ω , or that(f ◦g)(0)(z)−a(z) has no
zeros inΩ , wherea(z) ≡ z, for g ∈ G. Theorem 1.1 then motivates the idea of a criter
for normal families in connection with composite functions involving(f ◦ g)(k)(z) �= 0
for k ∈ N. This idea is reinforced by the following theorem and corollary by Langley
Zheng, where n.e. is used as an abbreviation for“nearly everywhere,”that is, to denote th
phrase“outside a set of finite measure.”

Theorem 1.2 (Langley and Zheng [2]). Letk ∈ N. Suppose thatf andg are transcendenta
entire functions of finite order. Suppose also that

N̄
(
r,1/(f ◦ g)(k)

) = O
(
T (r, g)

)
(n.e.). (1)

Then

T (r, f ) �= o(r1/k) asr → ∞.

Corollary 1.3. Let k ∈ N. Suppose thatf is a transcendental entire function such th
ρ(f ) < 1/k. Suppose thatg is an entire function of finite order such that

(f ◦ g)(k)(z) �= 0

on C. Theng is a polynomial.

We note that the examplef (z) = ez shows that Corollary 1.3 cannot be strengthene
ρ(f ) � 1/k.

And so, given a transcendental functionf with ρ(f ) < 1/k for somek ∈ N, the Bloch
Principle (see [3]), Theorem 1.1 and Corollary 1.3 motivate the question whether the
ily G of analytic functionsg in a domainΩ , such that(f ◦ g)(k)(z) �= 0 in Ω , or more
generally,(f ◦ g)(k)(z) �= Q(z) for some analytic functionQ, is a normal family. This is
true, and is a special case of the following result.

Theorem 1.4. Let k ∈ N. Let f be a transcendental entire function withρ(f ) < 1/k. Let
a0, . . . , ak−1, a be analytic functions in a domainΩ . Then
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G =
{

g: g is analytic inΩ, (f ◦ g)(k)(z) +
k−1∑
j=0

aj (z)(f ◦ g)(j)(z) �= a(z) in Ω

}

is a normal family inΩ .

In the proof of Theorem 1.4, we use the following theorem, which is an interesting
distribution result in its own right.

Theorem 1.5. Letk ∈ N. Letf be a transcendental entire function withρ(f ) < 1/2. Letg
andQ be polynomials, withg nonconstant. Then

(f ◦ g)(k) − Q

has infinitely many zeros.

We note that in Theorem 1.5, we must have thatρ(f ) < 1/2, since we apply a theo
rem of cosπρ type. However, ifQ ≡ 0, we can prove Theorem 1.5 forρ(f ) < 1, for the
extended case whereg is a nonconstant entire function. We state the result as follows

Theorem 1.6. Let f be a transcendental entire function withρ(f ) < 1. Let g be a non-
constant entire function. Then(f ◦ g)′ has infinitely many zeros.

From Theorems 1.5 and 1.6, we prove the following corollary which strengthens C
lary 1.3 and which is used in the proof of Theorem 1.4.

Corollary 1.7. Let k ∈ N. Suppose thatf is a transcendental entire function such th
ρ(f ) < 1/k. Suppose thatg is an entire function of finite order such that

(f ◦ g)(k)(z) �= 0

on C. Theng is constant.

Finally, we note that Theorems 1.5 and 1.6 have the following corollaries.

Corollary 1.8. Let k be an integer,k � 2. Let f be a transcendental entire function wi
ρ(f ) < 1/k. Letα ∈ C. Then for every nonconstant entire functiong,

(f ◦ g)(k) − α

has infinitely many zeros.

Again, although thek = 1 case is omitted in Corollary 1.8, we can prove thek = 1 case
wheng is a transcendental entire function. We state the result as follows.

Corollary 1.9. Let f be a transcendental entire function withρ(f ) < 1. Letα ∈ C. Then
for every transcendental entire functiong,

(f ◦ g)′ − α

has infinitely many zeros.
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Since the proof of Theorem 1.4 depends on Theorems 1.5, 1.6 and Corollary 1
prove these results in Sections 2, 3 and 4, respectively. We then prove Theorem
Section 5. Finally, we prove Corollaries 1.8 and 1.9 in Section 6.

2. Proof of Theorem 1.5

The following lemma is a version of Taylor’s theorem and is easily proved by induc

Lemma 2.1. If f is an entire function anda ∈ C, then fork ∈ N we have

f (z) = f (a) + (z − a)f ′(a) + · · · + (z − a)k−1

(k − 1)! f (k−1)(a)

+
z∫

a

(z − t)k−1

(k − 1)! f (k)(t) dt.

We also need the following lemma. We include the proof here for completeness.

Lemma 2.2. Letk ∈ N. LetP1 andP2 be polynomials of degreem andn respectively, with
m ∈ N ∪ {0} andn ∈ N. Then we can choose a straight lineΓ from 0 to ∞ such that

I =
∣∣∣∣∣

z∫
0

(z − t)k−1

(k − 1)! P1(t)e
P2(t) dt

∣∣∣∣∣ � c|z|k+m,

asz → ∞ alongΓ , for some positive constantc.

Proof. The behaviour ofP2 is dominated by the leading termbnt
n. Settingt = reiθ , we

have that|ebntn | = e(α cos(nθ)+β sin(nθ))rn
for someα, β ∈ R, not both 0. Then chooseθ

such thatα cos(nθ) + β sin(nθ) = −d < 0, and letΓ be the straight linez = reiθ , for
0� r < ∞. Then fort onΓ between 0 andz we have that|eP2(t)| = e−drn+O(rn−1) → 0 as
r → ∞, for fixedθ as above. Thus|eP2(t)| � c0 for some positive constantc0, and sinceP1
has degreem, we have that fort onΓ between 0 andz, |P1(t)| � c1|t |m for some positive
constantc1, ast → ∞. The result follows. �

Finally, we need a theorem of cosπρ type, as follows. We refer the reader to [4] f
further reading.

Theorem 2.3 [4]. Letf be a nonconstant entire function withρ(f ) = ρ < 1/2. For r > 0,
defineA(r) andB(r) as follows

A(r) = inf
{
log

∣∣f (z)
∣∣: |z| = r

}
, B(r) = sup

{
log

∣∣f (z)
∣∣: |z| = r

}
.

If ρ < α < 1/2, then

log dens
{
r: A(r) > (cosπα)B(r)

}
� 1− ρ/α,
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where ifE is a subset of(1,+∞) the lower logarithmic density ofE is defined by

log dens(E) = lim inf
r→∞

( r∫
1

χ(t) dt/t

)/
logr,

whereχ(t) is the characteristic function ofE.

We now prove Theorem 1.5.

Proof of Theorem 1.5. We use a proof by contradiction. Suppose that(f ◦ g)(k) − Q has
m zeros inC, for somem ∈ N ∪ {0}. Then we can write

(f ◦ g)(k)(z) − Q(z) = P1(z)e
P2(z)

for some polynomialsP1 andP2 of degreem andn respectively, withm as above and
n ∈ N. Then, by Lemma 2.1, we have fora = 0 that

(f ◦ g)(z) = (f ◦ g)(0) + z(f ◦ g)′(0) + · · · + zk−1

(k − 1)! (f ◦ g)(k−1)(0)

+
z∫

0

(z − t)k−1

(k − 1)! (f ◦ g)k(t) dt

= Qk−1(z) +
z∫

0

(z − t)k−1

(k − 1)!
(
Q(t) + P1(t)e

P2(t)
)
dt,

whereQk−1 is a polynomial of degree at mostk − 1. Then

∣∣(f ◦ g)(z)
∣∣ �

∣∣Qk−1(z)
∣∣ +

∣∣∣∣∣
z∫

0

(z − t)k−1

(k − 1)! Q(t) dt

∣∣∣∣∣
+

∣∣∣∣∣
z∫

0

(z − t)k−1

(k − 1)! P1(t)e
P2(t) dt

∣∣∣∣∣. (2)

For the remainder of this proof, we usecj to denote positive constants.
SinceQk−1 is a polynomial of degree at mostk − 1, and sinceQ is a polynomial of

degreeq say,q � 0, we have that|Qk−1(z)| � c1|z|k−1 asz → ∞ and that|Q(t)| � c2|t |q
ast → ∞ on any straight lineΓ between 0 andz. Then, ast → ∞, we have that integratin
along any straight lineΓ between 0 andz gives∣∣∣∣∣

z∫
0

(z − t)k−1

(k − 1)! Q(t) dt

∣∣∣∣∣ � c2|z|k−1

(k − 1)!
z∫

0

O
(|t |q)

dt � c3|z|k+q

since|z − t | � |z|.
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In particular, by Lemma 2.2, we can choose a straight line pathΓ from 0 to ∞ such
that ∣∣∣∣∣

z∫
0

(z − t)k−1

(k − 1)! P1(t)e
P2(t) dt

∣∣∣∣∣ � c4|z|k+m

asz → ∞ alongΓ . Then we have that|(f ◦ g)(z)| � c5|z|k+q+m, which gives

log
∣∣(f ◦ g)(z)

∣∣ � c6 log|z| (3)

asz → ∞ alongΓ .
Sinceρ = ρ(f ) < 1/2, we can apply Theorem 2.3 tof . For r > 0, defineA(r) and

B(r) as in Theorem 2.3. Then forρ < α < 1/2 we have

log dens
{
r: A(r) > (cosπα)B(r)

}
� 1− ρ/α. (4)

Next, sinceg is a polynomial and is nonconstant, we have that|g(z)| � c7|z| asz → ∞,
then by (3), we have that

log
∣∣(f (g(z)

)∣∣ = log
∣∣(f ◦ g)(z)

∣∣ � c6 log|z| � c8 log
∣∣g(z)

∣∣ (5)

asz → ∞ alongΓ . Now chooseR large such thatR ∈ {r: A(r) > (cosπα)B(r)}. Choose
w such that|w| = R andw = g(z) for somez onΓ . Then by (5), we have that

(cosπα)B(R) < A(R) � log
∣∣f (w)

∣∣ � c8 logR.

This is a contradiction sincef is a transcendental function, which implies thatB(R)/

logR → +∞ asR → ∞. �

3. Proof of Theorem 1.6

We need the following lemma.

Lemma 3.1. If f is a transcendental entire function withρ(f ) < 1, thenf ′ has infinitely
many zeros.

Proof of Theorem 1.6. Sinceg is a nonconstant entire function, we have by Picard’s
orem thatg omits at most one value inC. Sincef is a transcendental entire function wi
ρ(f ) < 1, we have by Lemma 3.1 thatf ′ has infinitely many zeros. Then sinceg omits at
most one of these zeros, we have thatf ′(g(z)) has infinitely many zeros. Therefore, sin
(f ◦ g)′(z) = f ′(g(z)).g′(z), we have that(f ◦ g)′ has infinitely many zeros.�

4. Proof of Corollary 1.7

By Corollary 1.3, we have thatg is a polynomial. However, by Theorem 1.6 fork = 1
and by Theorem 1.5 fork � 2, if g is a nonconstant polynomial then(f ◦g)(k) has infinitely
many zeros. Thereforeg is constant.
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5. Proof of Theorem 1.4

First we need the following result, which is a version of Hurwitz’ theorem (see [3]

Lemma 5.1. Let (fn) be a sequence of analytic functions on a domainΩ , which converge
spherically uniformly on compact subsets to a functionf . Let(sn) be a sequence of analyt
functions tending to0 on some discB(α, δ) = {z: |z − α| < δ} ⊆ Ω , for someδ > 0. If
f �≡ 0 andf (α) = 0, then for largen, we havefn(z) = sn(z) for somez nearα.

Next, we note that Lemma 5.1 has the following corollary, which we will use in
proof of Theorem 1.4. We provide a proof for completeness.

Corollary 5.2. Letk ∈ N. LetΩ be the open unit discB(0,1). Leta be an analytic function
onΩ . Let(fn) be a sequence of analytic functions onΩ , such thatfn(z) �= a(z) onΩ . Let
(zn) be a sequence of points tending toz0 ∈ Ω , and let(ρn) be a positive sequence tendi
to 0. Supposeg is an entire function such that

lim
n→∞ρk

nfn(zn + ρnz) = g(z)

locally uniformly onC. Then eitherg ≡ 0 on C, or g(z) �= 0 on C.

Proof. Suppose there existsα ∈ C such thatg(α) = 0. If g ≡ 0, then we are done. Othe
wise, we note thatzn +ρnz ∈ Ω for n large, and that(ρk

nfn) is a sequence of analytic fun
tions which converge tog locally uniformly onC. We note also that sincea is analytic, and
therefore bounded nearz0, and since(ρk

n) is a sequence tending to 0, then(ρk
na(zn +ρnz))

is a sequence of functions tending to 0, forn large, onB(α, δ), for someδ > 0. Then by
Lemma 5.1, we obtainρk

nfn(zn + ρnz) = ρk
na(zn + ρnz) for n large, for somez nearα.

Since(ρk
n) is a positive sequence, we therefore have thatfn(zn + ρnz) = a(zn + ρnz),

which is a contradiction sincezn + ρnz ∈ Ω for n large. �
We need the following lemma, which is called theZalcman lemma(see [5]).

Theorem 5.3. A familyG of analytic functions in the open unit discB(0,1) is not normal
at the origin, if and only if there exist a sequence of functionsgn ∈ G, a sequence of point
zn → 0, a positive sequenceρn → 0 and a nonconstant entire functiong on C such that

lim
n→∞gn(zn + ρnz) = g(z)

locally uniformly onC, with respect to the spherical metric, such that the spherical de
ative ofg is bounded,g
(z) � g
(0) = 1.

Finally, we need the following lemma which is an immediate consequence of th
finition of the order of a meromorphic function, using the Ahlfors–Shimizu form of
Nevanlinna characteristic.

Lemma 5.4. Letf be a meromorphic function with bounded spherical derivative. The
order off is at most2.
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We now prove Theorem 1.4.

Proof of Theorem 1.4. Since normality is a local property, we can assume, without
of generality, thatΩ is a disc anda0, . . . , ak−1, a are bounded onΩ . Using a linear chang
of variablesh(z) = g(α + βz), and the fact that(f ◦ h)(j)(z) = βj (f ◦ g)(j)(α + βz), for
a suitable choice ofα,β ∈ C, we may assume thatΩ is B(0,1). Suppose thatG is not
normal onΩ . ThenG must be not normal at least one point inΩ , and without loss o
generality we can suppose thatG is not normal at 0.

SinceG is a family of analytic functions, we can apply Lemma 5.3. Then there e
points(zn) tending to 0, a sequence(gn) in G, a positive sequence(ρn) tending to 0 and a
nonconstant entire functiong such that

hn(z) = gn(zn + ρnz) → g(z) (6)

locally uniformly onC, with respect to the spherical metric, withg
(z) � 1. Then since
g has bounded spherical derivative, we have by Lemma 5.4 thatg is a function of finite
order.

Next, sincef is an entire function, we have that

(f ◦ hn)(z) → (f ◦ g)(z),

locally uniformly onC. Then by the Weierstrass theorem (see [3]), forj ∈ N,

(f ◦ hn)
(j)(z) = ρ

j
n(f ◦ gn)

(j)(zn + ρnz) → (f ◦ g)(j)(z), (7)

locally uniformly onC. However, since eachgn ∈ G, we have that forzn + ρnz ∈ Ω ,

Fn(z) = (f ◦ gn)
(k)(zn + ρnz) +

k−1∑
j=0

aj (zn + ρnz)(f ◦ gn)
(j)(zn + ρnz)

�= a(zn + ρnz).

Then we have that

ρk
nFn(z) = ρk

n(f ◦ gn)
(k)(zn + ρnz)

+
k−1∑
j=0

ρ
k−j
n aj (zn + ρnz)ρ

j
n(f ◦ gn)

(j)(zn + ρnz) �= ρk
na(zn + ρnz).

Next, sinceρk−j
n → 0 for j = 0, . . . , k − 1, and since theaj are assumed bounded onΩ ,

we have by (7) that

lim
n→∞ρk

nFn(z) = (f ◦ g)(k)(z)

locally uniformly onC. However, we can writeFn(z) = Gn(zn +ρnz) whereGn(z) �= a(z)

onΩ , and so we have by Corollary 5.2, that either(f ◦g)(k)(z) ≡ 0 onC, or (f ◦g)(k)(z) �=
0 onC.

Case 1. (f ◦ g)(k)(z) ≡ 0 onC.



E.F. Clifford / J. Math. Anal. Appl. 312 (2005) 195–204 203

re
s

that

n-

y

ve
f points

,

fully ac-
mments

003)
Then integrating this equationk − 1 times, we have that(f ◦ g)′(z) = Pk−2(z), where
Pk−2 is a polynomial of degree at mostk −2. SincePk−2 has at mostk −2 zeros, counting
multiplicities, (f ◦ g)′(z) = f ′(g(z)).g′(z) has also. However,f is a transcendental enti
function andρ(f ) < 1, and so by Lemma 3.1, we have thatf ′ has infinitely many zero
on C. Then sinceg is a nonconstant entire function, we must have thatg omits infinitely
many zeros off ′ on C, which is a contradiction by Picard’s theorem.

Case 2. (f ◦ g)(k)(z) �= 0 onC.
Suppose first thatk = 1. Then by Theorem 1.6, we have that(f ◦g)′ has infinitely many

zeros onC and so we have a contradiction.
Suppose second thatk � 2. Then sincef is a transcendental entire function withρ(f ) <

1/k andg is a nonconstant entire function of finite order, we have by Corollary 1.7
(f ◦ g)(k) has at least one zero inC. Therefore we have a contradiction.

ThereforeG is a normal family.

6. Proof of Corollaries 1.8 and 1.9

Proof of Corollary 1.8. Suppose that(f ◦ g)(k) − α has finitely many zeros.
Suppose first thatg is a function of finite order. Ifg is a polynomial, then we have a co

tradiction by Theorem 1.5. Ifg is a transcendental function, then sinceN(r,1/((f ◦g)(k) −
α)) = O(logr) = o(T (r, g)) and sinceT (r, f ) = o(r1/k), then we have a contradiction b
Theorem 1.2.

Suppose second thatg is a function of infinite order. Then, by Lemma 5.4, we ha
that g has unbounded spherical derivative, that is, we can choose a sequence o
(αn) tending to∞, such thatg
(αn) → ∞ as n → ∞. Then the family of functions
{gn(z) = g(αn + z): n ∈ N} is not a normal family on the open unit discB(0,1). Then
by Theorem 1.4 we have a contradiction.�
Proof of Corollary 1.9. Suppose that(f ◦g)′ −α has finitely many zeros. Ifg is a function
of finite order, then by the argument in Corollary 1.8, we have thatg is a polynomial. This
is a contradiction sinceg is a transcendental function. Ifg is a function of infinite order
then by the argument in Corollary 1.8, we have a contradiction by Theorem 1.4.�
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