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Abstract

In this paper we compare the solution of a general stochastic integrodifferential equation of the Ito
type, with the solutions of a sequence of appropriate equations of the same type, whose coefficients
are Taylor series of the coefficients of the original equation. The approximate solutions are defined
on a partition of the time-interval. The rate of the closeness between the original and approximate
solutions is measured in the sense of the Lp-norm, so that it decreases if the degrees of these Taylor
series increase, analogously to real analysis. The convergence with probability one is also proved.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and preliminary results

In many natural and life sciences, engineering and economics too, there are physical
phenomena depending on a Gaussian white noise excitation, and, because of that, gov-
erned by certain probability laws and evolving in time. Because a Gaussian white noise
is an abstraction, not a real process, mathematically described as a formal derivative of a
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0022-247X/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2005.06.092
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Brownian motion process, the behavior of such phenomena are mathematically modeled
by stochastic processes which are solutions of stochastic differential or, in more compli-
cated case, stochastic integrodifferential equations of the Ito type [4,7]. Certainly, the class
of explicitly solvable stochastic equations is very small, and, from the theoretical point
of view and much more from various applications, it is important to find an analytic or
numerical approximate solution of such an equation. The researcher’s interest is focused
on exploring the bifurcational behavior and stability, for example, of the solution of the
initial equation, by comparing it with the corresponding approximate one, as well as on
conditions under which these solutions are close in some sense. One type of an analytic
approximation, based on the Taylor expansion, and because of that suitable for numerical
approximations, will be the object of the present paper.

Further, we suppose that all random variables and stochastic processes considered here
are defined on a complete probability space (Ω,F ,P). Likewise, we usually restrict our-
selves on the time interval [0,1] instead of [t0, T ].

In this paper we study a very general stochastic integrodifferential equation of the Ito
type,

dxt =
[
a1(t, xt ) +

t∫
0

a2(t, s, xs) ds +
t∫

0

a3(t, s, xs) dws

]
dt

+
[
b1(t, xt ) +

t∫
0

b2(t, s, xs) ds +
t∫

0

b3(t, s, xs) dws

]
dwt , t ∈ [0,1],

x(0) = x0 a.s., (1)

introduced and studied earlier in detail in paper [4] by Berger and Mizel. Here w = (wt ,

t ∈ R) is an Rd -valued normalized Brownian motion defined on a complete probability
space (Ω,F ,P ), with a natural filtration {Ft , t � 0} of non-decreasing sub-σ -algebras of
F (Ft = σ {xs,0 � s � t}), x0 is an Rk-random variable independent of w, the coefficients
of this equation are real functions

a1 : [0,1] × Rk → Rk, b1 : [0,1] × Rk → Rk × Rd,

a2 :J × Rk → Rk, b2 :J × Rk → Rk × Rd,

a3 :J × Rk → Rk × Rd, b3 :J × Rk → Rk × Rk × Rd,

where J = {(t, s): 0 � s � t � 1}, which are Borel measurable on their domains, and
x = (xt , t ∈ [0,1]) is an Rk-valued unknown stochastic process. The process x is a solution
of Eq. (1) if it is adapted to {Ft , t � 0}, all Lebesgue and Ito integrals in the integral form
of Eq. (1) are well defined and Eq. (1) holds a.s. for each t ∈ [0,1]. The basic existence
and uniqueness theorem, proved in paper [4] and based on the classical theory of stochastic
differential equations (see [5,12,13,15], for example), requires that the functions ai, bi, i =
1,2,3, satisfy the global Lipschitz condition and the usual linear growth condition on the
last argument, i.e., there exists a constant L > 0, so that, for all (t, s) ∈ J , x, y ∈ Rk ,∣∣a2(t, s, x) − a2(t, s, y)

∣∣ < L|x − y|, ∣∣a2(t, s, x)
∣∣ � L

(
1 + |x|), (2)
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and similarly for the other functions (| · | are appropriate Euclidean matrix norms). If
E|x0|2 < ∞, then there exists a unique a.s. continuous solution x = (xt , t ∈ [0,1]) of
Eq. (1), satisfying E{supt∈[0,1] |xt |2} < ∞. Moreover, following the procedures in [10,13],
it can be proved that if E|x0|p < ∞ for any number p > 0, then E{supt∈[0,1] |xt |p} < ∞.

The main purpose of the present paper is to compare in the Lp-norm, p � 2, and with
probability one, the solution of Eq. (1) with the solutions of a sequence of appropriate
equations of the same type, whose coefficients are Taylor expansions of the coefficients
of Eq. (1). The basis of such approximation is that the approximate solutions are de-
fined on an arbitrary partition Γ : 0 = t0 < t1 < · · · < tn = 1 of the time interval [0,1],
where δn = max0�k�n−1(tk+1 − tk). In fact, the basic ideas of the present paper go back
to papers [1,2] by Atalla, and earlier to [9] by Kanagawa under some more restrictive
conditions. In papers [1,9], the solution of the stochastic differential equation of the Ito
type dxt = a(t, xt ) dt + b(t, xt ) dwt , x0 = η, t ∈ [0,1] was approximated by the solutions
xn, n ∈ N , of the equations dxn

t = a(tk, x
n
tk
) dt + b(tk, x

n
tk
) dwt , xn

0 = η, t ∈ [tk, tk+1),
0 � k � n − 1, by successively connecting the solutions (xn

t , t ∈ [tk, tk+1]) at the points
tk of the partition Γ . It was shown that the rate of such approximation, in the sense of
the Lp-norm, p � 2, was O(δ

p/2
n ) when n → ∞ and δn → 0. This result has earlier been

obtained in [5] for p = 2 and generalized in paper [6] by Ilić and Janković to a stochastic
integrodifferential equation, more general than Eq. (1).

In paper [2] Atalla improved his own result by using the sequence of stochastic differen-
tial equations determined on a partition Γ , whose drift and diffusion coefficients were Tay-
lor approximations of a(t, x) and b(t, x) up to the first derivatives in argument x, i.e., by
linear stochastic differential equations of the Ito type dxn

t = [a(tk, x
n
tk
) + a′

x(tk, x
n
tk
)(xn

t −
xn
tk
)]dt + [b(tk, x

n
tk
)+ b′

x(tk, x
n
tk
)(xn

t − xn
tk
)]dwt , xn

0 = η, t ∈ [tk, tk+1), 0 � k � n − 1. The
rate of this approximation, in the sense of the Lp-norm, was O(δ

p
n ) when n → ∞ and

δn → 0.
By applying the previously considered concept, in paper [8] by Janković and Ilić the

solution of the equation dxt = a(t, xt ) dt + b(t, xt ) dwt , x0 = η, t ∈ [0,1] is approximated
on a partition Γ by the solutions of the equations whose drift and diffusion coefficients
are Taylor series of the functions a(t, x) and b(t, x) with respect to the argument x, up
to arbitrary fixed derivatives m1 and m2, respectively. The rate of such approximation, in
the sense of the Lp-norm, is found as O(δ

(m+1)p/2
n ) when n → ∞ and δn → 0, where

m = min{m1,m2}.
Having in mind that it is almost impossible to solve explicitly Eq. (1), and that Taylor

series, as polynomials, could be a very useful tool to approximate its solution analytically
or numerically (see [10,11], for example), the main results of the present paper are de-
voted to a construction of its approximate solution by applying partially the reasons from
paper [8].

2. Main results

Let

0 = tn0 < tn1 < · · · < tnqn
= 1, δn = max

(
tnk+1 − tnk

)
(3)
0�k�qn−1
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be an arbitrary partition of the interval [0,1]. Together with Eq. (1) in its equivalent integral
form

xt = x0 +
t∫

0

[
a1(s, xs) +

s∫
0

a2(s, u, xu) du +
s∫

0

a3(s, u, xu) dwu

]
ds

+
t∫

0

[
b1(s, xs) +

s∫
0

b2(s, u, xu) du +
s∫

0

b3(s, u, xu) dwu

]
dws, t ∈ [0,1],

(4)

we consider the sequence of the equations, defined on the partition (3),

xn
t = xn

tnk
+

t∫
tnk

[
A1k

(
s, xn

s

) +
s∫

tnk

A2k

(
s, u, xn

u

)
du +

s∫
tnk

A3k

(
s, u, xn

u

)
dwu

]
ds

+
t∫

tnk

[
B1k

(
s, xn

s

) +
s∫

tnk

B2k

(
s, u, xn

u

)
du +

s∫
tnk

B3k

(
s, u, xn

u

)
dwu

]
dws,

t ∈ [
tnk , tnk+1

]
, 0 � k � qn − 1, xn

tn0
= η, (5)

where

A1k

(
s, xn

s

) =
m1∑
i=0

a
(i)
1x (s, xn

tnk
)

i!
(
xn
s − xn

tnk

)i
,

Ajk

(
s, u, xn

u

) =
mj∑
i=0

a
(i)
jx (s, u, xn

tnk
)

i!
(
xn
u − xn

tnk

)i
, j = 1,2,

B1k

(
s, xn

s

) =
m1∑
i=0

b
(i)
1x (s, xn

tnk
)

i!
(
xn
s − xn

tnk

)i
,

Bjk

(
s, u, xn

u

) =
nj∑
i=0

b
(i)
jx (s, u, xn

tnk
)

i!
(
xn
u − xn

tnk

)i
, j = 1,2,

and a
(i)
jx , b

(i)
jx are the ith derivatives of the functions aj , bj , with respect to x.

The approximate solution xn = (xn
t , t ∈ [0,1]) is constructed as an a.s. continuous

process, by successively connecting the processes (xn
t , t ∈ [tnk , tnk+1]) at the points tnk ,

1 � k � qn − 1, of the partition (3).
Let us introduce the following assumptions:

(A1) The functions aj and bj , j = 1,2,3, have Taylor approximations in the argument x,
up to the mj th and nj th derivatives, respectively;
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(A2) The functions a
(mj +1)

jx (·) and b
(nj +1)

jx (·) are uniformly bounded, i.e., there exist pos-

itive constants Lj and L̄j , such that

sup
[0,1]×Rk

∣∣a(m1+1)
1x (t, x)

∣∣ � L1, sup
J×Rk

∣∣a(mj +1)

jx (t, s, x)
∣∣ � Lj , j = 2,3,

sup
[0,1]×Rk

∣∣b(n1+1)
1x (t, x)

∣∣ � L̄1, sup
J×Rk

∣∣b(nj +1)

jx (t, s, x)
∣∣ � L̄j , j = 2,3;

(A3) Without special emphasizing of the conditions for the coefficients of Eqs. (4) and (5),
we suppose that there exist unique, a.s. continuous solutions x and xn of these equa-
tions respectively satisfying E{sup[0,1] |xt |p} < ∞ and E{sup[0,1] |xn

t |(M+1)2p} �
Q < ∞, where M = max{mj ,nj , j = 1,2,3} and Q > 0 is a constant independent
on n and δn. Likewise, all Lebesgue and Ito integrals employed further are also well
defined.

In the proofs of the next assertions, we apply many times, without special empha-
sizing, the elementary inequality (

∑m
i=1 qi)

s � ms−1 ∑m
i=1 qs

i , qi > 0, s ∈ N , the usual
Ito stochastic integral isometry, Hölder inequality to Lebesgue integrals and Burkholder–
Davis–Gundy inequality to Ito integrals [5,10,13,15]: For any l > 0, there exists a constant
cl > 0, such that

E

{
sup

s∈[t0,t]

∣∣∣∣∣
s∫

t0

fu dwu

∣∣∣∣∣
l}

� clE

( t∫
t0

|fu|2 du

)l/2

for any measurable Ft -adapted process (ft , t ∈ [0, T ]), satisfying
∫ T

t0
|ft |2 dt < ∞ a.s.

Clearly, the last inequality can be also used if the left-hand side is minorized by omitting
the supremum.

In order to prove the closeness, in the sense of the Lp-norm, between the solutions x

and xn of Eqs. (4) and (5), respectively, we must first prove the following assertion:

Proposition 1. Let xn be the solution of Eq. (5), the conditions (2) and the assumptions
(A1), (A2) and (A3) be satisfied. Then, for 1 � r � (M + 1)p,

E
∣∣xn

t − xn
tnk

∣∣r � Dr δ
r/2
n , t ∈ [

tnk , tnk+1

]
, 0 � k � qn − 1,

where Dr is a generic constant independent of n and δn.

Proof. By applying the previously cited elementary inequality to Eq. (5), and after that
Hölder and Burkholder–Davis–Gundy inequalities to Lebesgue and Ito integrals, respec-
tively, we obtain, for all t ∈ [tnk , tnk+1], 0 � k � qn − 1,

E
∣∣xn

t − xn
tnk

∣∣r
� 2r−1

{
E

∣∣∣∣∣
t∫

tn

[
A1k

(
s, xn

s

) +
s∫

tn

A2k

(
s, u, xn

u

)
du +

s∫
tn

A3k

(
s, u, xn

u

)
dwu

]
ds

∣∣∣∣∣
r

k k k
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+ E

∣∣∣∣∣
t∫

tnk

[
B1k

(
s, xn

s

) +
s∫

tnk

B2k

(
s, u, xn

u

)
du +

s∫
tnk

B3k

(
s, u, xn

u

)
dwu

]
dws

∣∣∣∣∣
r}

� 2r−1

{(
t − tnk

)r−1
t∫

tnk

E

∣∣∣∣∣A1k

(
s, xn

s

) + · · · +
s∫

tnk

A3k

(
s, u, xn

u

)
dwu

∣∣∣∣∣
r

ds

+ cr

(
t − tnk

)r/2−1
t∫

tnk

E

∣∣∣∣∣B1k

(
s, xn

s

) + · · · +
s∫

tnk

B3k

(
s, u, xn

u

)
dwu

∣∣∣∣∣
r

ds

}

≡ 2r−1[(t − tnk
)r−1

J1(t) + cr

(
t − tnk

)r/2−1
J2(t)

]
, (6)

where J1(t) and J2(t) are the corresponding integrals, which must be estimated.
First,

J1(t) � 3r−1

t∫
tnk

[
E

∣∣a1
(
s, xn

s

) − [
a1

(
s, xn

s

) − A1k

(
s, xn

s

)]∣∣r

+ (
s − tnk

)r−1
s∫

tnk

E
∣∣a2

(
s, u, xn

u

) − [
a2

(
s, u, xn

u

) − A2k

(
s, u, xn

u

)]∣∣r du

+ cr

(
s − tnk

)r/2−1
s∫

tnk

E
∣∣a3

(
s, u, xn

u

)

− [
a3

(
s, u, xn

u

) − A3k

(
s, u, xn

u

)]∣∣r du

]
ds.

By using the assumptions (A1) and (A2), we find that, for any θ ∈ (0,1),

E
∣∣a1

(
s, xn

s

) − A1k

(
s, xn

s

)∣∣r
� E

{ |a(m1+1)
1x (s, xn

tnk
+ θ(xn

s − xn
tnk

))|r
[(m1 + 1)!]r

∣∣xn
s − xn

tnk

∣∣(m1+1)r

}

� L1

(m1 + 1)!E
∣∣xn

s − xn
tnk

∣∣(m1+1)r
, (7)

and analogously for a2 and a3. Further, we apply the linear growth condition (2), after that
the previous estimations (7) and the assumption (A3) from which it follows that E|xn

s |r �
1 + Q = S for every 1 � r � (M + 1)p and s ∈ [0,1]. Thus, we get

J1(t) � 6r−1
{ t∫

tn

[
Lr

(
1 + E

∣∣xn
s

∣∣r) + Lr
1

[(m1 + 1)!]r E
∣∣xn

s − xn
tnk

∣∣(m1+1)r
]

ds
k
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+
t∫

tnk

(
s − tnk

)r−1
s∫

tnk

[
Lr

(
1 + E

∣∣xn
u

∣∣r)

+ Lr
2

[(m2 + 1)!]r E
∣∣xn

u − xn
tnk

∣∣(m2+1)r
]

duds

+ cr

t∫
tnk

(
s − tnk

)r/2−1
s∫

tnk

[
Lr

(
1 + E

∣∣xn
u

∣∣r)

+ Lr
3

[(m3 + 1)!]r E
∣∣xn

u − xn
tnk

∣∣(m2+1)r
]

duds

}

� 6r−1
{[

Lr(1 + S) + Lr
12(m1+1)rS

[(m1 + 1)!]r
](

t − tnk
)

+
[
Lr(1 + S) + Lr

2 2(m2+1)rS

[(m2 + 1)!]r
]
(t − tnk )r+1

r + 1

+ cr

[
Lr(1 + S) + Lr

3 2(m3+1)rS

[(m3 + 1)!]r
]
(t − tnk )r/2+1

r/2 + 1

}
.

Because 0 � t − tnk � 1, it follows that

J1(t) � C1
(
t − tnk

)
, (8)

where C1 is a generic constant independent of n and δn.
Analogously, by repeating completely the previous procedure, we find that

J2(t) � C2
(
t − tnk

)
, (9)

where C2 is also a generic constant independent of n and δn. The estimations (8) and (9)
together with (6) imply that

E
∣∣xn

t − xn
tnk

∣∣r � 2r−1[C1
(
t − tnk

)r + C2
(
t − tnk

)r/2] � Dr

(
t − tnk

)r/2 � Drδ
r/2
n ,

where Dr is a constant. Thus, the proof is completed. �
The following assertion enables us to estimate the closeness between the solutions x

and xn, in the pth moment sense, uniformly on the time interval [0,1].

Proposition 2. Let x and xn be the solutions of Eqs. (4) and (5), respectively, the conditions
(2) and the assumptions (A1), (A2) and (A3) be satisfied. Then, for p � 2,

sup
t∈[0,1]

E
∣∣xt − xn

t

∣∣p � Hδ
(m+1)p/2
n , (10)

where m = min{mj ,nj , j = 1,2,3} and H is a generic constant independent of n and δn.

Proof. Let p > 2 and t ∈ [tnk , tnk+1]. By subtracting Eqs. (4) and (5) and after that by
applying the Ito formula [12,13,15] to the function f (x) = |x|p , we obtain
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∣∣xt − xn
t

∣∣p = ∣∣xtnk
− xn

tnk

∣∣p
+ p

t∫
tnk

[
a1(s, xs) − A1k

(
s, xn

s

) +
s∫

tnk

[
a2(s, u, xu) − A2k

(
s, u, xn

u

)]
du

+
s∫

tnk

[
a3(s, u, xu) − A3k

(
s, u, xn

u

)]
dwu

]∣∣xs − xn
s

∣∣p−1
ds

+ p(p − 1)

2

t∫
tnk

[
b1(s, xs) − B1k

(
s, xn

s

)

+
s∫

tnk

[
b2(s, u, xu) − B2k

(
s, u, xn

u

)]
du

+
s∫

tnk

[
b3(s, u, xu) − B3k

(
s, u, xn

u

)]
dwu

]2∣∣xs − xn
s

∣∣p−2
ds

+ p

t∫
tnk

[
b1(s, xs) − B1k

(
s, xn

s

) +
s∫

tnk

[
b2(s, u, xu) − B2k

(
s, u, xn

u

)]
du

+
s∫

tnk

[
b3(s, u, xu) − B3k

(
s, u, xn

u

)]
dwu

]∣∣xs − xn
s

∣∣p−1
dws.

Let us denote that Δt = E|xt −xn
t |p . Having in mind that the expectation of the Ito integral

is equal to zero, it follows that

E
∣∣xt − xn

t

∣∣p � E
∣∣xtnk

− xn
tnk

∣∣p + pE

t∫
tnk

[∣∣a1(s, xs) − A1k

(
s, xn

s

)∣∣

+
∣∣∣∣∣

s∫
tnk

[
a2(s, u, xu) − A2k

(
s, u, xn

u

)]
du

∣∣∣∣∣

+
∣∣∣∣∣

s∫
tnk

[
a3(s, u, xu) − A3k

(
s, u, xn

u

)]
dwu

∣∣∣∣∣
] ∣∣xs − xn

s

∣∣p−1
ds

+ 3p(p − 1)

2
E

t∫
tn

[∣∣b1(s, xs) − B1k

(
s, xn

s

)∣∣2
k
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+
∣∣∣∣∣

s∫
tnk

[
b2(s, u, xu) − B2k

(
s, u, xn

u

)]
du

∣∣∣∣∣
2

+
∣∣∣∣∣

s∫
tnk

[
b3(s, u, xu) − B3k

(
s, u, xn

u

)]
dwu

∣∣∣∣∣
2]∣∣xs − xn

s

∣∣p−2
ds

≡ Δtk + p

3∑
j=1

Ij (t) + 3p(p − 1)

2

6∑
j=4

Ij (t), (11)

where Ij (t), j = 1, . . . ,6, are the corresponding integrals. To estimate I1(t), we use the
Lipschitz condition (2) and the assumptions (A1) and (A2), so that we obtain

I1(t) = E

t∫
tnk

∣∣a1(s, xs) − A1k

(
s, xn

s

)∣∣∣∣xs − xn
s

∣∣p−1
ds

� E

t∫
tnk

[∣∣a1(s, xs) − a1
(
s, xn

s

)∣∣ + ∣∣a1
(
s, xn

s

) − A1k

(
s, xn

s

)∣∣]∣∣xs − xn
s

∣∣p−1
ds

� L

t∫
tnk

Δs ds + L1

(m1 + 1)!
t∫

tk

E
∣∣xn

s − xn
tnk

∣∣m1+1∣∣xs − xn
s

∣∣p−1
ds.

If we apply Hölder inequality for μ = p, ν = p/(p − 1), 1/μ + 1/ν = 1, after that Young
inequality (for every a, b > 0 and μ > 1, 1/μ+1/ν = 1, it follows that ab � aμ/μ+bν/ν)
and Proposition 1, we find that

I1(t) � L

t∫
tnk

Δs ds + L1

(m1 + 1)!
t∫

tnk

(
E

∣∣xn
s − xn

tnk

∣∣(m1+1)p)1/p
(Δs)

(p−1)/p ds

�
[
L + L1 (p − 1)

(m1 + 1)!p
] t∫

tnk

Δs ds + L1 D(m1+1)p

(m1 + 1)!p δ
(m1+1)p/2
n

(
t − tnk

)

≡ α1

t∫
tk

Δs ds + β1 δ
(m1+1)p/2
n

(
t − tnk

)
, (12)

where α1 and β1 are generic constants independent of n and δn.
To estimate I2(t), we apply the previous procedure and the integration by parts to double

integrals. Hence, we deduce that

I2(t) = E

t∫
tn

∣∣∣∣∣
s∫

tn

[
a2(s, xs) − A2k

(
s, xn

s

)]
du

∣∣∣∣∣
∣∣xs − xn

s

∣∣p−1
ds
k k
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�
t∫

tnk

(
E

∣∣∣∣∣
s∫

tnk

[
a2(s, u, xu) − A2k

(
s, u, xn

u

)]
du

∣∣∣∣∣
p)1/p

(Δs)
(p−1)/p ds

� p − 1

p

t∫
tnk

Δs ds

+ 1

p

t∫
tnk

(
s − tnk

)p−1
s∫

tk

E
∣∣a2(s, u, xu) − A2k

(
s, u, xn

u

)∣∣p duds

� p − 1

p

t∫
tkk n

Δs ds

+ 2p−1

p

t∫
tnk

(
s − tnk

)p−1
s∫

tnk

[
Lp Δu + L

p

2 D(m2+1)p

[(m2 + 1)!]p δ
(m2+1)p/2
n

]
duds

�
[

2p−1 Lp

p

(t − tnk )p

p
+ p − 1

p

] t∫
tnk

Δs ds

+ 2p−1 L
p

2 D(m2+1)p

p[(m2 + 1)!]p
(t − tnk )p+1

p + 1
δ
(m2+1)p/2
n

� α2

t∫
tnk

Δs ds + β2 δ
(m2+1)p/2
n

(
t − tnk

)
. (13)

Similarly,

I3(t) = E

t∫
tnk

∣∣∣∣∣
s∫

tnk

[
a3(s, xs) − A3k

(
s, xn

s

)]
dwu

∣∣∣∣∣∣∣xs − xn
s

∣∣p−1
ds

� p − 1

p

t∫
tnk

Δs ds

+ cp

p

t∫
tnk

(
s − tnk

)p/2−1
s∫

tnk

E
∣∣a3(s, u, xu) − A3k

(
s, u, xn

u

)∣∣p duds

�
[

2p−1 cp Lp

p

(t − tnk )p/2

p/2
+ p − 1

p

] t∫
tn

Δs ds
k
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+ 2p−1 cp L
p

3 D(m3+1)p

p [(m3 + 1)!]p
(t − tnk )p/2+1

p/2 + 1
δ
(m3+1)p/2
n

� α3

t∫
tnk

Δs ds + β3 δ
(m3+1)p/2
n

(
t − tnk

)
. (14)

By repeating the previous procedures and by using Hölder inequality for μ = p/2, ν =
p/(p − 2), we easily come to the estimations of the remaining integrals in (11). Thus,

I4(t) = E

t∫
tnk

∣∣b1(s, xs) − B1k

(
s, xn

s

)∣∣2∣∣xs − xn
s

∣∣p−2
ds

� 2L2

t∫
tnk

Δs ds + 2E

t∫
tnk

∣∣b1
(
s, xn

s

) − B1k

(
s, xn

s

)∣∣2 ∣∣xs − xn
s

∣∣p−2
ds

�
[

2L2 + 2(p − 2)

p

] t∫
tnk

Δs ds + 4L̄2
1 D(n1+1)p

[(n1 + 1)!]2 p
δ
(n1+1)p/2
n

(
t − tnk

)

≡ α4

t∫
tnk

Δs ds + β4 δ
(n1+1)p/2
n

(
t − tnk

)
, (15)

I5(t) = E

t∫
tnk

∣∣∣∣∣
s∫

tnk

[
b2(s, xs) − B3k

(
s, xn

s

)]
du

∣∣∣∣∣
2∣∣xs − xn

s

∣∣p−2
ds

�
[

2p Lp

p

(t − tnk )p

p
+ p − 2

p

] t∫
tnk

Δs ds

+ 2p L̄
p

2 D(n2+1)p

p [(n2 + 1)!]p
(t − tnk )p+1

p + 1
δ
(n2+1)p/2
n

� α5

t∫
tnk

Δs ds + β5 δ
(n2+1)p/2
n

(
t − tnk

)
, (16)

I6(t) = E

t∫
tnk

∣∣∣∣∣
s∫

tnk

[
b3(s, xs) − B3k

(
s, xn

s

)]
dwu

∣∣∣∣∣
2∣∣xs − xn

s

∣∣p−2
ds

�
[

2p cp Lp

p

(t − tnk )p/2

p/2
+ p − 2

p

] t∫
tn

Δs ds
k
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+ 2p cp L̄
p

3 D(n3+1)p

p [(n3 + 1)!]p
(t − tnk )p/2+1

p/2 + 1
δ
(n3+1)p/2
n

� α6

t∫
tnk

Δs ds + β6 δ
(n3+1)p/2
n

(
t − tnk

)
, (17)

where αj ,βj are generic constants independent of n and δn.
By taking (12)–(17) to (11), we come to the following relation:

Δt � Δtnk
+ α

t∫
tnk

Δs ds + β δ
(m+1)p/2
n

(
t − tnk

)
, t ∈ [

tnk , tnk+1

]
, (18)

where m = min{mj ,nj , j = 1,2,3} and α and β are some constants, generic by αi and
βi and independent of n and δn. An application of the well-known Gronwall–Bellman
inequality [3] leads to the estimation

Δt �
[
Δtnk

+ βδ
(m+1)p/2
n

(
t − tnk

)]
eα(t−tnk ), t ∈ [

tnk , tnk+1

]
, 0 � k � qn − 1. (19)

By taking t = tnk+1 and by applying the iterative procedure earlier used in [2,6,8], we con-
clude that

Δtnk
� β eα δ

(m+1)p/2
n , 0 � k � qn − 1.

Hence, from (19) it follows that there exists a constant H > 0, so that supt∈[0,1] Δt �
H δ

(m+1)p/2
n . Thus, this part of the proof is completed.

For p = 2, we have

Δt � 7

[
Δtnk

+ E

∣∣∣∣∣
t∫

tnk

[
a1(s, xs) − A1k

(
s, xn

s

)]
ds

∣∣∣∣∣
2

+ E

∣∣∣∣∣
t∫

tnk

s∫
tnk

[
a2(s, u, xu) − A2k

(
s, u, xn

u

)]
duds

∣∣∣∣∣
2

+ · · · + E

∣∣∣∣∣
t∫

tnk

s∫
tnk

[
b3(s, u, xu) − B3k

(
s, u, xn

u

)]
dwu dws

∣∣∣∣∣
2]

.

By applying the usual Ito integral isometry and Proposition 1, we easily deduce that the
relation (18) holds for p = 2, which completes the proof of this assertion. �

Finally, on the basis of Proposition 2 we can expect that the sequence of the approximate
solutions {xn,n ∈ N} converges to the solution x as n → ∞ and δn → 0, in the sense of
the Lp-norm. This conclusion immediately follows from the next theorem, in which the
rate of the closeness between x and xn is also given.
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Theorem 1. Let the conditions of Proposition 2 be satisfied. Then, for p � 2,

E
{

sup
t∈[0,1]

∣∣xt − xn
t

∣∣p}
� K δ

(m+1)p/2
n , (20)

where K is a generic constant independent of n and δn.

Proof. Let us denote that

A1
(
s, xn

s

) = A1k

(
s, xn

s

)
, s ∈ [

tnk , tnk+1

]
,

A2
(
s, u, xn

u

) = A2k

(
s, u, xn

u

)
, u ∈ [

tnk , tnk+1

]
and similarly for A3,B1,B2,B3. Then,

xn
t = x0 +

t∫
0

[
A1

(
s, xn

s

) +
s∫

0

A2
(
s, u, xn

u

)
du +

s∫
0

A3
(
s, u, xn

u

)
dwu

]
ds

+
t∫

0

[
B1

(
s, xn

s

) +
s∫

0

B2
(
s, u, xn

u

)
du +

s∫
0

B3
(
s, u, xn

u

)
dwu

]
dws,

t ∈ [0,1]. (21)

From (4) and (21) we find that

E sup
t∈[0,1]

∣∣xt − xn
t

∣∣p

� 2p−1

{
E sup

t∈[0,1]

∣∣∣∣∣
t∫

0

[
a1(s, xs) − A1

(
s, xn

s

) +
s∫

0

[
a2(s, u, xu) − A2

(
s, u, xn

u

)]
du

+
s∫

0

[
a3(s, u, xu) − A3

(
s, u, xn

u

)]
dwu

]
ds

∣∣∣∣∣
p

+ E sup
t∈[0,1]

∣∣∣∣∣
t∫

0

[
b1(s, xs) − B1

(
s, xn

s

) +
s∫

0

[
b2(s, u, xu) − B2

(
s, u, xn

u

)]
du

+
s∫

0

[
b3(s, u, xu) − B3

(
s, u, xn

u

)]
dwu

]
dws

∣∣∣∣∣
p}

� 2p−1

{
E

∣∣∣∣∣
1∫

0

[
a1(s, xs) − · · · +

s∫
0

[
a3(s, u, xu) − A3

(
s, u, xn

u

)]
dwu

]
ds

∣∣∣∣∣
p

+ cp

1∫
0

E

∣∣∣∣∣b1(s, xs) − · · · +
s∫

0

[
b3(s, u, xu) − B3

(
s, u, xn

u

)]
dwu

∣∣∣∣∣
p

ds

}

≡ 2p−1(S1 + cpS2), (22)
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where S1 and S2 are the corresponding integrals. Let us estimate S1:

S1 � 6p−1

1∫
0

[
E

∣∣a1(s, xs) − a1
(
s, xn

s

)∣∣p + E
∣∣a1

(
s, xn

s

) − A1
(
s, xn

s

)∣∣p

+ E

∣∣∣∣∣
s∫

0

[
a2(s, u, xu) − a2

(
s, u, xn

u

)]
du

∣∣∣∣∣
p

+ E

∣∣∣∣∣
s∫

0

[
a2

(
s, u, xn

u

) − A2
(
s, u, xn

u

)]
du

∣∣∣∣∣
p

+ E

∣∣∣∣∣
s∫

0

[
as(s, u, xu) − a2

(
s, u, xn

u

)]
dwu

∣∣∣∣∣
p

+ E

∣∣∣∣∣
s∫

0

[
a3

(
s, u, xn

u

) − A3
(
s, u, xn

u

)]
dwu

∣∣∣∣∣
p]

ds. (23)

Because m1 � m, from (7) and Proposition 1 we find that, for s ∈ [tnk , tnk+1],

E
∣∣a1

(
s, xn

s

) − A1
(
s, xn

s

)∣∣p �
L

p

1

[(m1 + 1)!]p E
∣∣xn

s − xn
tk

∣∣(m1+1)p � h1δ
(m+1)p/2
n ,

where h1 is a constant. Then,

1∫
0

E
∣∣a1

(
s, xn

s

) − A1
(
s, xn

s

)∣∣p ds � h1δ
(m+1)p/2
n ,

and analogously for the fourth and sixth integrals in (23). Finally, by repeating the preced-
ing procedures and stochastic integral isometry, without special emphasizing any step, we
come to the following estimation:

S1 � 6p−1

{
Lp

1∫
0

[
E

∣∣xs − xn
s

∣∣p + sp−1

s∫
0

E
∣∣xu − xn

u

∣∣p du

+ cpsp/2−1

s∫
0

E
∣∣xu − xn

u

∣∣p du

]
ds + hδ

(m+1)p/2
n

}
,

where h is a constant. Now, from Proposition 2 it follows that

E
∣∣xs − xn

s

∣∣p � sup
s∈[0,1]

E
∣∣xs − xn

s

∣∣p � H δ
(m+1)p/2
n ,

so that we finally have

S1 � K1δ
(m+1)p/2
n ,
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where K1 is a constant independent on n and δn. Since S2 can be estimated by the same
way, the proof of this theorem follows from (22). �

Therefore, xn Lp−→ x when n → ∞ and δn → 0, uniformly on [0,1], and the rate of
this convergence is given by (20). Likewise, from Theorem 1 it follows that the rate of
the closeness, in the sense of the Lp-norm, between the solutions x and xn decreases if
the degrees of Taylor approximations of the functions ai, bi increase, which is similar to
Taylor approximation in real analysis.

Moreover, by using Theorem 1, one can easily prove the following important result, the
convergence with probability one of the sequence of the approximate solutions {xn,n ∈ N}
to the solution x of Eq. (4).

Theorem 2. Let the conditions of Theorem 1 be satisfied and
∑∞

n=1 δnξ
−2
n < ∞ for any

sequence of positive numbers ξn ↓ 0, n → ∞. Then the sequence {xn,n ∈ N} of the ap-
proximate solutions converges with probability one to the solution x of Eq. (4) as n → ∞,
uniformly on [0,1].

Proof. By using Chebyshev inequality and Theorem 1, we get

∞∑
n=1

P
{

sup
t∈[0,1]

∣∣xt − xn
t

∣∣p/2 � ξn

}
�

∞∑
n=1

E sup
t∈[0,1]

∣∣xt − xn
t

∣∣pξ−2
n

� K

∞∑
n=1

δ
(m+1)p/2
n ξ−2

n < ∞,

so that Borel–Cantelli lemma enables us to conclude that P {supt∈[0,1] |xt − xn
t | �

ξ
2/p
n infinitely often} = 0, i.e., supt∈[0,1] |xt − xn

t | < ξ
2/p
n with probability one for all

large n, and, therefore, {xn,n ∈ N} converges to x with probability one, uniformly on
[0,1]. �

In particular, if the partition points are uniformly disposed, i.e., δn = 1/n, it is enough
to take, for example, ξn = n−1/3 for p = 2 and m � 1, or ξn = n−η , 0 < η < (p/2 − 1)/2,
for p > 2 and m � 0.

Let us note some remarks:
First, note that for aj = bj ≡ 0, j = 2,3, the present paper contains the results from

paper [1] for m1 = n1 = 0, the results from paper [2] for m1 = n1 = 1, and the ones from
paper [8] for any m1 and n1.

Likewise, note that because it is almost impossible to solve explicitly Eq. (4), it would
be convenient to find its numerical solution based on stochastic numerical analysis, by
applying the described analytic method in the construction of various time discrete ap-
proximations of Ito processes, and combining it with the Ito–Taylor expansion described,
above all, by Kloeden and Platen [10,11]. We also mention here paper [16] by C. Tudor
and M. Tudor, in which a general one-step numerical approximate scheme is considered
for multidimensional Ito–Volterra stochastic equations, and which is an extension of an
analogous approximation given by G.I. Milstein [14] for Ito equations. The comparison
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of the main result (Theorem 3.1) from paper [16] and, for p = 2, of Theorem 1 from the
present paper, shows that both approximations have mean square errors of the same or-
der. Specially, it is shown in [16] that Euler, Milstein and Platen–Wagner schemes, which
are based on Taylor expansions of zero, first and second degrees, respectively, have or-
der 1/2,1,3/2, respectively, which is exactly the case with the analytic approximations
described in the present paper obtained by applying Taylor expansions of zero, first and
second degrees, respectively. These facts indicate that numerical approximations based on
Taylor expansions of higher degrees could be improved by combining them with analytic
approximations presented in this paper. However, it requires additional investigations and
could be the object of forthcoming studies.
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