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Abstract

We study asymptotics of fiber integrals depending on a large parameter. When the critical fiber is
singular, full-asymptotic expansions are established in two different cases: local extremum and iso-
lated real principal type singularities. The main coefficients are computed and invariantly expressed.
In the most singular cases, it is shown that the leading term of the expansion is related to invariant
measures on the spherical blow-up of the singularity. The results can be applied to certain degenerate
oscillatory integrals which occur in spectral analysis and quantum mechanics.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction and statement of the main result

In [3] J. Brüning and R. Seeley have studied asymptotic expansions of integrals:

H(z) =
∞∫

0

σ(xz, x) dx, z → ∞, (1)
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where σ(x, ξ) is a singular symbol. The result of [3] is quite remarkable, in particular
because it can be directly applied to spectral analysis. Many asymptotic questions can be
reduced to the study of the previous problem but it is also interesting to consider a gener-
alization

I (z) =
∫
X

g
(
zf (x), x

)
dx, z → ∞, (2)

where g : R × X → R, f :X → R are smooth and X is a smooth differentiable manifold
equipped with the C∞ strictly positive density dx.

General assumptions. Throughout this work, we will assume that |f | is strictly positive
outside of a compact set and that the Fourier transform ĝ w.r.t. t exists with ∂k

t ĝ(t, x) ∈
L1(R × X), ∀k. For this reason g will be called a symbol.

This assumption on g is strong but can be weakened, see, e.g., [6]. Mainly, this condition
will be used to reach integrals with compact supports. As z → ∞, the asymptotic behavior
of I (z) is related to the critical fiber:

S = f −1({0}) = {
x ∈ X: f (x) = 0

}
. (3)

This can easily be viewed with the Fourier inversion formula:

I (z) =
∫
X

∫
R

eiztf (x)ĝ(t, x) dt dx, z → ∞, (4)

where ĝ(t, x) is the normalized Fourier transform of g w.r.t. t :

ĝ(t, x) = 1

2π

∫
R

e−iτ t g(τ, x) dτ. (5)

In Eq. (4), the stationary points w.r.t. t are precisely given by S, i.e., I (z) is asymptotically
supported by S. Since f is smooth S is closed and according to the general assumptions
above we obtain:

(H0) The fiber S is compact. (6)

The next elementary result provides a comfortable formulation of the problem.

Lemma 1. If ∂k
t ĝ ∈ L1(R × X), ∀k ∈ N, modulo terms O(z−∞), asymptotics of Eq. (2)

are not changed by assuming that ĝ is compactly supported near S.

Proof. With S compact we choose a cut-off function Θ ∈ C∞
0 (X) such that Ψ = 1 near

S and 0 � Ψ � 1. We shall estimate the error integral:

E(z) =
∫ ∫

eiztf (x)ĝ(t, x)
(
1 − Ψ (x)

)
dt dx, z → ∞. (7)
X R
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With L = −(i/zf (x))∂t , we have Lkeiztf (x) = eiztf (x), ∀k ∈ N. By integration by parts and
since |f (x)| � C on supp(1 − Ψ ), we obtain∣∣E(z)

∣∣ � (Cz)−k
∥∥∂k

t ĝ(t, x)
∥∥

L1(R×X)
= O

(
z−k

)
, ∀k ∈ N. (8)

This gives the desired result, with our hypothesis on g. �
Lemma 1 allows to consider only integrals with compact support w.r.t. x which sim-

plifies all questions of convergence. Notice that we can weaken the condition on g to
∂k
t ĝ ∈ L1(R×X), ∀k � k0, with an error O(z−k0). We are mainly interested in the situation

where S has an isolated singularity. If x0 ∈ S is such a critical point, let Θ ∈ C∞
0 (X) be

a cut-off microlocally supported near x0. We split-up our integral as I (z) = Ir(z) + Is(z),
where:

Ir(z) =
∫
X

g
(
zf (x), x

)
(1 − Θ)(x)dx, (9)

Is(z) =
∫
X

g
(
zf (x)t, x

)
Θ(x)dx. (10)

The regular part Ir can be treated by the generalized stationary phase method, with non-
degenerate normal Hessian, which we recall below. Since Is is a local object and the main
contributions below concern invariant objects, there is no loss of generality to assume that
supp(Θ) is an open of Rn, n = dim(X). For x0 ∈ S a singularity of finite order we can
write the germ of f as

f (x) = fk(x) +O
(∥∥(x − x0)

∥∥k+1)
, (11)

where fk �= 0 is homogeneous of degree k � 2 w.r.t. (x − x0). The first elementary result
concerns extremum attached to such homogeneous germs:

Theorem 2. If f has a local extremum x0 on S whose jet is given by Eq. (11) (a fortiori k

is even), we obtain a full-asymptotic expansion:

Is(z) ∼
∑
j∈N

cj z
− j

k . (12)

If dim(X) = n, the leading term is given by

Is(z) = z− n
k
〈
t

n−k
k

e , g(t, x0)
〉1
k

∫

Sn−1

∣∣fk(θ)
∣∣− n

k dθ +O
(
z− n+1

k
)
, (13)

with te = max(t,0) if x0 is a minimum and max(−t,0) for a maximum.

The reader can observe that Theorem 2 includes the case of a non-integrable singularity
on S for k > n. Accordingly, always for k > n, the contribution of the critical point is
bigger than the regular contribution (see below). The case of non-extremum degenerate
critical points is more difficult. Since this problem can be very complicated in general
position we impose:
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(H1) S has a unique critical point x0. Moreover, fk defined in Eq. (11) is non-degenerate
in the sense that

∇fk �= 0 on C(fk) = S
n−1 ∩ {fk = 0}. (14)

Observe that this condition is very close to Hörmander’s real principal type condition
for distributions. We define the integrated density of fk on S

n−1 as

LVol(w) =
∫

{fk(θ)=w}
|dL|(θ), dL(θ) ∧ dfk(θ) = dθ, (15)

where |dL| is the (n − 2)-dimensional Liouville measure induced by fk on S
n−1, i.e., the

Riemannian density induced by fk on the standard density of S
n−1. Note that (H1) insures

that LVol(w) is well defined and smooth near the origin.

Theorem 3. Under the previous assumptions and if x0 satisfies (H1), the singular part of
our integral admits a full asymptotic expansion:

Is(z) ∼
∞∑

j=0

cj z
− j

k +
∞∑

j=0

dj z
−j log(z). (16)

(a) If k > n (non-integrable singularity), the leading term is:

Is(z) = C0z
− n

k +O
(
z− n+1

k log(z)
)
, (17)

where the distributional coefficient C0 is given by

1

k

(〈
t

n
k
−1

+ , g(t, x0)
〉 ∫
{fk�0}

∣∣fk(θ)
∣∣− n

k dθ + 〈
t

n
k
−1

− , g(t, x0)
〉 ∫
{fk�0}

∣∣fk(θ)
∣∣− n

k dθ

)
.

(b) If n = kp, p ∈ N
∗, the leading term is logarithmic:

Is(z) = z−p log(z)

(
dp−1

dwp−1
Lvol(0)

)
1

k

∫
R

|t |p−1g(t, x0) dt +O
(
z−p

)
. (18)

(c) If n > k and n/k /∈ N (integrable singularity) we obtain the same result as in (a) but
with the modified distributions:

〈
t

n
k
−1

+ , g(t, x0)
〉〈 d̃n

d̃wn
w

n− n
k+ ,Lvol

〉
+ 〈

t
n
k
−1

− , g(t, x0)
〉〈 d̃n

d̃wn
w

n− n
k− ,Lvol

〉
,

where the derivatives w.r.t. w are normalized distributional derivatives.

The meaning of normalized derivative is that one choose the normalization:〈
d̃n

d̃wn
w

n− n
k± , f (w)

〉
:= 〈

w
− n

k± , f (w)
〉
, (19)

for all f ∈ C∞
0 with f = 0 in a neighborhood of the origin. The distributional bracket

involving Lvol is detailed in the proof. Results (c) and (b) for p � 2 are not intuitive and
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are certainly difficult to be reached without geometry. In particular, for applications to
oscillatory integrals (see below) one has to work in the dual since both Fourier transforms
w.r.t. t in (c) and (b) are distributional. In (c), the nth derivative is arbitrary and the result is
the same for any normalized derivative of order greater than E(n/k). Results (a) and (b) for
p = 1 are interesting for spectral analysis since these contributions are bigger than Ir (z) =
O(z−1). As in Theorem 2, non-integrable singularities have a dominant contribution and
the leading term of I (z) is always an invariant.

Finally, to treat the regular part Ir , we recall the classical result:

Proposition 1. Under the previous assumptions and if S is a regular surface, I (z) admits
a full asymptotic expansion in powers of z−1 with

I (z) = 1

z

∫
x∈S

∫
R

g(t, x) dt dS(x) +O
(
z−2), (20)

where dS is the invariant surface measure of S. The same result holds for the integral
Ir (z) with insertion of the cut-off in the integral.

This result is a direct consequence of [6, Lemma 7.7.3, vol. 1]. Here dS is the Liou-
ville measure of classical mechanics or Gelfand–Leray measure in theory of singularities.
The oscillatory representation of delta-Dirac distributions, by mean of Schwartz kernels,
provides a natural definition of this object.

Application to oscillatory integrals

A typical application of Theorems 2 and 3 can be the asymptotic expansion of distribu-
tional traces of quantum propagators. Hence, it is interesting to remark that our results can
be extended to asymptotic integrals

Ĩ (z) =
∫
X

G
(
z, zf (x), x

)
dx, z → +∞,

if G admits an asymptotic expansion with a priori estimates, i.e.:

G(z, t, x) =
∑
j�l

z−αj gj (t, x) + Rl(z, t, x),

∀k ∈ N
∗:

∥∥Rk(z, t, x)
∥∥

L1(R×X)
= O

(
z−(αk+ε)

)
, ε > 0,

where (αj )j is a strictly increasing sequence. Similarly, we can consider expansions in
term of z−αj log(z)m. This graduation w.r.t. z allows to apply our results but, to simplify,
in this work we just consider the case of an integral of a symbol g(t, x). We can treat
degenerate oscillatory integrals

O(z) =
∫

eiztf (x)a(t, x, z) dt dx, z → +∞, (21)
R×X
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providing that f satisfies the conditions of Theorems 2 or 3. An important application in
quantum mechanics is the case X = T ∗

R
n where, after some technical modifications, the

localized (distributional) trace of h-pseudors

Truh(Ah − E) := Tr
∫
R

û(t)e
i
h
t (Ah−E) dt, û ∈ C∞

0 (R), E ∈ R,

can be written as a locally finite sum of oscillatory integrals:∫
R×T ∗Rn

e
i
h
(S(t,y,η)−〈y,η〉−tE)b(h, t, y, η) dt dy dη, (22)

where b(h,•) ∼ ∑
h−kbk satisfies a priori estimates as above and S is the local generating

function of the group of diffeomorphism of the principal symbol of Ah. Here z = h−1

is the parameter and, after a discussion based on classical mechanics, Eq. (22) can be
reformulated as in Eq. (21) where S is the energy surface of level E. For more details, we
refer to [2,4,5].

2. Proof of the main results

To simplify notations we identify x0 with the origin by mean of local coordinates. If X

is Riemannian this can always be achieved by mean of the exponential expx0
and a cut-off

χ on Tx0X with supp(χ) ⊂ B(0, r0/2) where r0 is the injectivity radius at x0.

2.1. Local minimum

By the extremum condition, x0 is isolated on S and S ∩ supp(Θ) = {x0} for supp(Θ)

small enough. We use polar coordinates, by Taylor we have

f (rθ) = rk
(
fk(θ) + R(r, θ)

)
, R(0, θ) = 0. (23)

If supp(Θ) ⊂ B(0, r0) is chosen small enough we have

fk(θ) + R(r, θ) �= 0, ∀θ ∈ S
n−1, ∀r ∈ [0, r0[.

Hence, with the homogeneous coordinates v = (u, θ) where

u(r, θ) = r
(
fk(θ) + R(r, θ)

)1/k
, (24)

we can express our integral as

Is(z) =
∫

R+

G
(
zuk,u

)
du. (25)

The new symbol G is obtained by pullback and integration:

G(t,u) =
∫

Sn−1

v∗(g(t, rθ)Θ(rθ)rn−1
∣∣J (v)

∣∣)dθ. (26)

The next lemma (see [5] for a proof) gives the existence of the expansion.
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Lemma 4. For a in C∞
0 (R × R+), the following asymptotic expansion holds:∫

R+

a
(
zuk,u

)
du ∼ 1

k

∑
j�0

z− j+1
k

1

j !
〈
τ

j+1−k
k+ ⊗ δ

(j)

0 , a
〉
, z → ∞. (27)

This expansion holds also for a pullback by −uk if we replace τα+ by τα−. This allows
to treat the case of a local maximum in Theorem 2. Also for an application to oscillatory
integrals we obtain a nice formulation via the Fourier transform of the distributions τα±,
which avoids any “regularization.”

We apply Lemma 4 to Eq. (25) to prove the existence of the asymptotic expansion and
it remains to express invariantly the leading term. With the polar coordinates G vanishes
up to the order n − 1. Consequently, we have

Is(z) = z− n
k

k

1

(n − 1)!
〈
t

n−k
k+ ⊗ δn−1

0 ,G
〉 +O

(
z− n+1

k
)
.

Starting form Eq. (26) and since |Jv|(0, θ) = |fk(θ)|− 1
k , by elementary manipulations on

delta-Dirac distributions, we obtain that:

Is(z) = z− n
k
〈
t

n−k
k+ , g(t,0)

〉1
k

∫

Sn−1

∣∣fk(θ)
∣∣− n

k dθ +O
(
z− n+1

k
)
. (28)

Finally, for a local maximum we replace the distributions t
n−k
k+ by t

n−k
k− .

2.1.1. On the integral on the sphere
The integrals on S

n−1 of Eq. (28) can be reformulated. We have

I (fk) =
∫

R+×Sn−1

e−rkfk(θ)rn−1 dr dθ =
∞∫

0

e−uk

un−1 du

∫

Sn−1

∣∣fk(θ)
∣∣−n/k

dθ.

Hence our integral is given by

1

k

∫

Sn−1

∣∣fk(θ)
∣∣−n/k

dθ = I (fk)

Γ (n/k)
. (29)

I (fk) can be computed as a product of gamma or hypergeometric factors.

2.2. Case of non-extremum critical points

To perform a blow-up of the singularity we use polar coordinates and the next lemma
gives a resolution of the singularity w.r.t. C(fk).

Lemma 5. In a micro-local neighborhood of the origin there exists local coordinates y, on
the blow-up of the critical point, such that

f (x) � ±yk
1 , respectively in directions where fk(θ) > 0 and fk(θ) > 0,

f (x) � yk
1y2, locally near C(fk).
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Proof. By Taylor, there exists R continuous in r = 0 such that

f (x) � f (rθ) = rk
(
fk(θ) + R(r, θ)

)
. (30)

If θ0 /∈ C(fk) and θ is close to θ0, we simply choose:

(y2, . . . , yn)(r, θ) = (θ1, . . . , θn−1),

y1(r, θ) = r
∣∣fk(θ) + R(r, θ)

∣∣1/k
.

In these coordinates the phase becomes yk
1 if fk(θ0) is positive (respectively −yk

1 for a
negative value) and the Jacobian satisfies |Jy|(0, θ) = |fk(θ)|1/k �= 0 locally. Now, let
θ0 ∈ C(fk). Up to a permutation, we can suppose that ∂θ1fk(θ0) �= 0. We accordingly
choose the new local coordinates:

(y1, y3, . . . , yn)(r, θ) = (r, θ2, . . . , θn−1),

y2(r, θ) = fk(θ) + R(r, θ).

Since we have |Jy|(0, θ0) = |∂θ1fk(θ0)| �= 0, lemma follows. �
To use Lemma 5 we introduce an adapted partition of unity on S

n−1. We pick cut-off
functions Ψj ∈ C∞

0 (Sn−1), 0 � Ψj � 1,
∑

Ψj = 1 in a tubular neighborhood of C(fk),
with supports chosen so that normal forms of Lemma 5 exist, for r < r0, in a conic neigh-
borhood of supp(Ψj ). By compactness this set of functions can be chosen finite and we
obtain a partition of unity on S

n−1 by adding Ψ0 = 1 −∑
Ψj to our family. The support of

Ψ0 is not connected and we define Ψ +
0 , with fk(θ) > 0 on supp(Ψ +

0 ). Similarly, we define
Ψ −

0 where fk < 0, so that Ψ0 = Ψ +
0 + Ψ −

0 . We accordingly split up Is(z) to obtain

I±
s (z) =

∫

R×R+×S2n−1

Ψ ±
0 (θ)g

(
zf (rθ), rθ

)
Θ(rθ)rn−1 dr dθ

=
∫

R+

G±
0

( ± zyk
1 , y1

)
dy1,

respectively for the directions where fk(θ) > 0 and fk(θ) < 0, also

I
0,j
s (z) =

∫

R×R+×Sn−1

Ψj (θ)g
(
zf (rθ), rθ

)
Θ(rθ)rn−1 dr dθ

=
∫

R+×R

Gj

(
zyk

1y2, y1, y2
)
dy1 dy2,

for the set C(fk). The new symbols are respectively given by

G±
0 (t, y1) =

∫
y∗(Ψ ±

0 (θ)g(t, rθ)Θ(rθ)rn−1|Jy|)dy2 . . . dyn, (31)

Gj(t, y1, y2) =
∫

y∗(Ψj (θ)g(t, rθ)Θ(rθ)rn−1|Jy|)dy3 . . . dyn. (32)
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Hence, the singular part of our integral can be written as a finite sum:

Is(z) = I−
s (z) + I+

s (z) +
∑
j

I
0,j
s (z). (33)

Note that I−
s (z) and I+

s (z) can be treated as previously.

Remark 6. Since y1(r, θ) = r , our new symbols satisfy Gj(t, y1, y2) = O(yn−1
1 ), near

y1 = 0. Since the asymptotic expansion involves delta-Dirac distributions w.r.t y1,
cf. Lemma 7 below, the dimension will cause a shift in the expansion.

For a ∈ C∞
0 (R × R+ × R), we define the family of elementary fiber integrals:

In,k(z) =
∞∫

0

(∫
R

a
(
zyk

1y2, y1, y2
)
dy2

)
yn−1

1 dy1. (34)

Lemma 7. There exists a sequence of distributions (Dj,p) such that

In,k(z) ∼
∑

p=0,1

∑
j∈N, j�n

Dj,p(a)z− j
k log(z)p, as z → ∞, (35)

where the logarithms only occur when (j/k) is an integer. As concerns the leading term, if
(n/k) /∈ N

∗ we obtain

In,k(z) = z− n
k d(a) +O

(
z− n+1

k log(z)
)
, (36)

with

d(a) = Cn,k

∞∫
0

∞∫
0

t
n
k
−1y

n− n
k

2

(
∂n
y2

a(t,0, y2) + ∂n
y2

a(−t,0,−y2)
)
dy2 dt.

But when n/k = p ∈ N
∗, we have

In,k(z) = 1

k
z− n

k log(z)

∫
R

|t |p−1∂
p−1
y2 a(t,0,0) dt +O

(
z− n

k
)
.

Remark 8. The remainder of Eq. (36) can be optimized to O(z− n+1
k ) when (n + 1)/k is

not an integer, as shows the proof below.

Proof. By a standard density argument we can assume that the amplitude is of the form
a(s, y1, y2) = f (s)b(y1, y2). The Melin transforms of f are:

M±(ξ) =
∞∫

sξ−1f (±s) ds. (37)
0
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We split-up In,k as I+ and I− by separating integrations y2 > 0 and y2 < 0. Via Melin’s
inversion formula, we accordingly obtain

I+(z) = 1

2iπ

∫
γ

M+(ξ)z−ξ

∫

R
2+

(
y1y

k
2

)−ξ
b(y1, y2)y

n−1
1 dy1 dy2 dξ, (38)

where γ = c + iR and 0 < c < k−1. Similarly we have

I−(z) = 1

2iπ

∫
γ

M−(ξ)z−ξ

∫

R
2+

(
y1y

k
2

)−ξ
b(y1,−y2)y

n−1
1 dy1 dy2 dξ. (39)

Lemma 9. The family of distributions ξ �→ (y1y
k
2)−ξ on C∞

0 (R2+) initially defined in the
domain �(ξ) < k−1 is meromorphic on C with poles: ξj,k = j/k, j ∈ N

∗. These poles are
of order 2 when ξj,k ∈ N

∗ and of order 1 otherwise.

Proof. We form the Bernstein–Sato polynomial bk attached to our problem:

T
(
y2y

k
1

)1−ξ := ∂

∂y2

∂k

∂yk
1

(
y2y

k
1

)1−ξ = bk(ξ)
(
ty2y

k
1

)−ξ
,

bk(ξ) = (1 − ξ)

k∏
j=1

(j − kξ).

If �(ξ) < k−1, (k + 1)-integrations by parts yield∫

R
2+

(
y1y

k
2

)−ξ
f (y1, y2) dy1 dy2 = (−1)k+1

bk(ξ)

∫

R
2+

(
y1y

k
2

)1−ξ
(Tf )(y1, y2) dy1 dy2.

Now the integral in the r.h.s. is analytic in �(ξ) < 1 + k−1. After m iterations the poles,
with their orders, can be read off the rational functions:

Rm(ξ) =
m∏

p=1

1

bk(ξ − p)
. (40)

This gives the result since m can be chosen arbitrary large. �
Accordingly, the following functions are meromorphic on C:

g±(ξ) =
∫

R
2+

(
y1y

k
2

)−ξ
b(y1,±y2) dy1 dy2. (41)

A classical result, see, e.g., [1], is that M±(c + ix) ∈ S(Rx) when c /∈ −N. If we shift the
path of integration γ to the right in our integral representation, Cauchy’s residue method
provides the asymptotic expansion. In fact for any d > c, outside of the poles, we have∫

z−ξM+(ξ)g+(ξ) dξ −
∫

z−ξM+(ξ)g+(ξ) dξ =
∑

c<ξj,k<d

res
(
z−ξM+g

)
(ξj,k).
c+iR d+iR
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Since d is not a pole, the last integral can be estimated via∣∣∣∣
∫

d+iR

z−ξM+(ξ)g+(ξ) dξ

∣∣∣∣ � C(f,b)z−d = O
(
z−d

)
, (42)

where, for each d , the constant C involves the L1-norm of a finite number derivatives of b.
This will indeed lead to an asymptotic expansion with precise remainders. Applying this
method to I+(z) and I−(z), we obtain

I (z) ∼
∑

p=0,1

∑
j∈N∗

Cj,pz− j
k log(z)p. (43)

Moreover, by Lemma 9, these logarithms only occur when j/k is integer.
For our problem, we can commute the polynomial weight via

T
(
(y1y2)

1−ξ yn−1
1

) = b(ξ)
(
y2y

k
1

)−ξ
yn−1

1 , (44)

b(ξ) = (1 − ξ)

k∏
j=1

(j − kξ + n − 1). (45)

By iteration, we obtain that the poles are the rational numbers:

ξp,j,k,n = p + j + n − 1

k
, j ∈ [1, . . . , k], p ∈ N.

By elementary considerations, all residuum are zero before:

ξ0 = n

k
. (46)

To compute the first effective residue, we must distinguish out the case where ξ0 is an
integer or not. The optimal number of iterations to reach ξ0 is E(n/k) + 1 but, by ana-
lytic continuation, any integer bigger than this one is acceptable. A fortiori we can use n

iterations and our starting point will be

z−ξM+(ξ)(−1)n(k+1)Bn(ξ)

∫

R
2+

(
yk

1y2
)n−ξ

yn−1
1 T nb(y1, y2) dy1 dy2, (47)

Bn(ξ) =
n−1∏
l=0

1

b(ξ − l)
. (48)

2.2.1. Case of ξ0 simple pole
In this case our residue is simply given by

Cz− n
k M+

(
n

k

) ∫

R
2+

(
yk

1y2
)n− n

k yn−1
1 T nb(y1, y2) dy1 dy2,

C = lim
ξ→ n

(−1)n(k+1)

(
ξ − n

k

)
Bn(ξ).
k
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In particular, we can compute the integral w.r.t. y1 via

∞∫
0

ykn−1
1 ∂kn

y1

(
∂n
y2

b(y1, y2)
)
dy1 = (−1)kn(kn − 1)!∂n

y2
b(0, y2).

A similar result holds for I− and we obtain

I+(z) = z− n
k Cn,kM+

(
n

k

) ∞∫
0

y
n− n

k

2

(
∂n
y2

b
)
(0, y2) dy2 + R1(z), (49)

I−(z) = z− n
k Cn,kM−

(
n

k

) ∞∫
0

y
n− n

k

2

(
∂n
y2

b
)
(0,−y2) dy2 + R2(z). (50)

Here Cn,k is the canonical constant:

Cn,k = 1

k

n∏
j=1

−1

j − n
k

. (51)

Also, according to the analysis above, each remainder is of order O(z− n+1
k ) if (n+1)/k /∈ N

and O(z− n+1
k log(z)) otherwise.

2.2.2. Case of ξ0 double pole
If h is meromorphic with a pole of order 2 in ξ0 we have

res(h)(ξ0) = 1

2
lim

ξ→ξ0

∂

∂ξ
(ξ − ξ0)

2h(ξ).

Applying this principle to our residue, we obtain, via Leibnitz’s rule, that

I+(z) = B log(z)z− n
k +O

(
z−n/k

)
. (52)

We can compute the distribution B as before and we find:

B = −1

2
Dn,kM+

(
n

k

) ∞∫
0

y
n− n

k

2

(
∂n
y2

b
)
(0, y2) dy2,

Dn,k = (−1)n(k+1) lim
ξ→ n

k

(
ξ − n

k

)2

Bn(ξ).

Since p = n/k is an integer, by integration by parts we obtain

∞∫
0

y
n−p

2

(
∂n
y2

b
)
(0, y2) dy2 = (−1)n−p+1(n − p)!∂p−1

y2 b(0,0). (53)
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With a similar identity for I−, we obtain the result by gathering all the constants and
summation. Finally, since all our coefficients are given by

〈
T j , f ⊗ b

〉 = 〈
T

j

1 , f
〉〈
T

j

2 , b
〉
, T

j

1,2 ∈ D′(R),

by linearity and continuity, the results hold for a symbol a(t, y1, y2). �
Taking Remark 6 into account, to avoid unnecessary calculations we define:

G±
0 (t, y1) = yn−1

1 G̃±
0 (t, y1), (54)

Gj(t, y1, y2) = yn−1
1 G̃j (t, y1, y2). (55)

2.2.3. Directions where fk(θ) �= 0
By Lemma 4, the first non-zero coefficient, obtained for l = n − 1, is

z− n
k

k

1

(n − 1)!
〈
t

n−k
k+ ⊗ δ

(n−1)
0 ,G+

0 (t, y1)
〉 = z− n

k

k

∫
R

t
n−k
k+ G̃+

0 (t,0) dt.

By construction, we have

G̃+
0 (t,0) =

∫

Sn−1

g(t,0)Ψ +
0 (θ)

∣∣fk(θ)
∣∣−n/k

dθ.

A similar computation gives the contribution of supp(Ψ −
0 ), and we obtain

I+
s (z) = z− n

k
〈
t

n−k
k+ , g(t,0)

〉1
k

∫

Sn−1

Ψ +
0 (θ)

∣∣fk(θ)
∣∣− n

k dθ +O
(
z− n+1

k
)
, (56)

I−
s (z) = z− n

k
〈
t

n−k
k− , g(t,0)

〉1
k

∫

Sn−1

Ψ −
0 (θ)

∣∣fk(θ)
∣∣− n

k dθ +O
(
z− n+1

k
)
. (57)

2.2.4. Microlocal contribution of C(fk)

(a) Case of k > n, non-integrable singularity on S. Here n/k ∈ ]0,1[, so that the sin-
gularity on the blow-up is integrable. Via Lemma 7, the contribution of I

0,j
s (z) is given

by

1

k
z− n

k

∫

R
2+

|t | n
k
−1|y2|− n

k
(
G̃j (t,0, y2) + G̃j (−t,0,−y2)

)
dt dy2 +O

(
z− n+1

k log(z)
)
.

Reminding that y2(t,0, θ) = fk(θ), we obtain∫
|y2|− n

k G̃j (t,0, y2) dy2 = g(t,0)

∫ ∣∣fk(θ)
∣∣− n

k Ψj (θ) dθ.
R+ {fk(θ)�0}
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Since Ψ ±
0 , Ψj is a partition of unity on Sn−1, by summation of all local contributions Is(z)

is asymptotically equivalent to

z− n
k

k

(〈
t

n
k
−1

+ , g(t,0)
〉 ∫
{fk�0}

∣∣fk(θ)
∣∣−n/k

dθ + 〈
t

n
k
−1

− , g(t,0)
〉 ∫
{fk�0}

∣∣fk(θ)
∣∣− n

k dθ

)
.

(b) Case of p = n/k integer. Here the contribution of I
0,j
s (z) is dominant and we obtain

I
0,j
s (z) ∼ 1

k
log(z)z−p

∫
R

|t |p−1∂
p−1
y2 G̃j (t,0,0) dt +O

(
z−p

)
.

Unless p = 1, there is no way to take the limit directly, and the geometric properties are still
hidden in the Jacobian. But we will reach the result by the Schwartz kernel technic. Clearly,
it is enough to evaluate our derivative and to integrate w.r.t. t . With s = (s1, s2) ∈ R2, we
write the evaluation as

∂
p−1
y2 G̃j (t,0,0) = 1

(2π)2

∫
ei〈s,(y1,y2)〉(is2)

p−1G̃j (t, y1, y2) dy1 dy2 ds.

This integral formulation allows to inverse our diffeomorphism to obtain

∂
p−1
y2 G̃j (t,0,0) = 1

(2π)2

∫
ei〈s,(r,y2(r,θ))〉(is2)

p−1g(t, rθ)Ψj (θ) dr dθ ds.

Extending the integrand by 0 for r < 0, the normalized integral w.r.t. (r, s1) provides δr .
By construction y2(0, θ) = fk(θ), hence

∂
p−1
y2 G̃j (t,0,0) = g(t,0)

1

(2π)

∫

R×Sn−1

eiufk(θ)(iu)p−1Ψj (θ) dθ du. (58)

This Fourier integral makes sense with S
n−1 compact. We recall the density

Jj (w) =
∫

{fk(θ)=w}
Ψj (θ) dLw(θ), (59)

where Jj is compactly supported, and hence in L2(R). Since Jj is smooth near the origin,
the sum over all the Ψj provides

1

(2π)

∫

R2

eiuw(iu)p−1
∑
j

Jj (w)dw du = dp−1Lvol

dwp−1
(0). (60)

Note that n = k is directly accessible. In this case Is dominates Ir with

Is(z) = z−1 log(z)LVol(0)
1

k

∫
R

g(t,0) dt +O
(
z−1).
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(c) k < n and simple pole, integrable singularity on S. Finally, we treat the case of
a simple pole with a non-integrable singularity on S

n−1. Clearly, we can use the same
globalization technic as above. The sum of all positives contributions, completed with the
main term of J+

s , provides

〈T+, g〉 = Cn,k

∞∫
0

|t | n
k
−1g(t,0) dt

∞∫
0

wn− n
k
∂nL(w)

∂wn
dw. (61)

A similar result holds for the directions where fk(θ) < 0. Now, we detail the construc-
tion of the distributional bracket. The key point is that we can put in duality distributions
∂n
u |u|n−α± and Lvol(u) since their singular supports are disjoints. Let be χ ∈ C∞

0 , 0 � χ � 1
on R, chosen such that χ = 1 near the origin and χ(u) = 0 for |u| � ε. If ε > 0 is small
enough, Lvol is smooth on ]−ε, ε[. We write the geometric contribution as

〈T ,Lvol〉 = 〈T ,χLvol〉 + 〈
T , (1 − χ)Lvol

〉
.

Away from the origin, e.g., for u > 0, we obtain directly

Cn,k

〈
dn

dun
u

n−n/k
+ , (1 − χ)(u)Lvol(u)

〉
= 1

k

∫
{fk(θ)>0}

(1 − χ)
(
fk(θ)

)∣∣fk(θ)
∣∣−n/k

dθ.

Note that Eq. (51) for Cn,k justifies the normalization of Eq. (19). On supp(χ), we use
the local regularity of Lvol(u) near u = 0 and integrations by parts to conclude. Finally,
since C(fk) is compact and fk is continuous we can choose our partition of unity such that∑

Ψj = 1 for |fk(θ)| � 2ε. �
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