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Abstract

We study the Berezin transform of bounded operators on the Bergman space on a bounded symmetric
domain Ω in Cn. The invariance of range of the Berezin transform with respect to G = Aut(Ω), the au-
tomorphism group of biholomorphic maps on Ω , is derived based on the general framework on invariant
symbolic calculi on symmetric domains established by Arazy and Upmeier. Moreover we show that as a
smooth bounded function, the Berezin transform of any bounded operator is also bounded under the action
of the algebra of invariant differential operators generated by the Laplace–Beltrami operator on the unit
disk and even on the unit ball of higher dimensions.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The Segal–Bargmann space H 2(Cn, dμ) consists of Gaussian square integrable entire func-
tions on Cn. It is well known that it is a subspace of L2(Cn, dμ) as the L2-closure of the poly-
nomials, and a reproducing-kernel Hilbert space with the Bergman kernel K(z,w) = e〈z,w〉/2,
which satisfies that for any f in H 2(Cn, dμ),

f (z) =
∫
Cn

f (w)K(z,w)dμ(w),
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where 〈z,w〉 = z1w̄1 + · · · + znw̄n and

dμ(z) = (2π)−ne−|z|2/2 dυ(z)

with dυ the Lebesgue volume measure.
For the algebra B(H 2(Cn, dμ)) of all bounded linear operators on the Segal–Bargmann

space, the Berezin transform of X ∈ B(H 2(Cn, dμ)) is defined by Ber :X → X̃ where

X̃(z) = 〈Xkz, kz〉 = trace(XPz),

where Pz = kz ⊗ kz is rank one projection, and kz(w) = K(w,z)K(z, z)−1/2 is the normal-
ized reproducing kernel with ‖kz‖H 2(Cn,dμ) = 1 for any z ∈ Cn. Generally, X̃(z) is real analytic

and bounded by the operator norm of X. Moreover X̃(z) is uniquely determined by X, that is,
X̃(z) = 0 if and only if X = 0. So the mapping Ber is linear and one-to-one. Note that Ber can
also be defined for Bergman space on any bounded domain Ω ⊂ Cn.

Recently, in [5] Coburn obtained a Lipschitz estimate for Ber. More precisely, it was shown
that ∣∣X̃(z) − X̃(w)

∣∣ �
√

2‖X‖|z − w| (1.1)

for any X ∈ B(H 2(Cn, dμ)) and z,w ∈ Cn. The corresponding Lipschitz estimate was also
obtained there for the analogous Bergman space A2(Ω) on any bounded domain Ω ⊂ Cn, with
|z−w| replaced by β(z,w) in (1.1), where β(·,·) is the distance function with respect to Bergman
metric on Ω . It was also pointed out in [5] (without proof) that the Berezin transform of any
bounded operator on H 2(Cn, dμ) is also bounded under the action of the algebra of linear differ-
ential operators with constant coefficients, after the translation invariance of the range of Berezin
transform on C was established there.

We show in this note that the range of Berezin transform is Möbius-invariant (see Theo-
rem 2.1) for the Bergman space A2(Ω) on bounded symmetric domain Ω in Cn. Furthermore
for two particular cases of Ω of rank 1, namely Ω = D unit disk on the complex plane and
Ω = B unit ball in Cn with n > 1, we obtain that the Berezin transform of any bounded operator
on A2(Ω) is bounded under the action of the algebra of invariant differential operators.

Our motivation is due to the following observations. First note that it is easy to show that the
range of Berezin transform on Cn is also unitary-invariant, that is, f ◦U ∈ Ber(B(H 2(Cn, dμ)))

for any unitary transformation U on Cn if f ∈ Ber(B(H 2(Cn, dμ))). In fact, we can define
(RUf )(z) = f (U−1z) on H 2(Cn, dμ), then RU is unitary operator and the adjoint R∗

U = RU−1

and for X ∈ B(H 2(Cn, dμ)),

〈R∗
UXRUkz, kz〉 = 〈XkUz, kUz〉.

Hence combining with Coburn’s result, we conclude that the range of Berezin transform on
Cn is invariant under the action of the group of all orientation-preserving rigid motions of Cn.
Next note that for Cn, the Bergman metric induced by Bergman kernel function of H 2(Cn, dμ)

gives the distance function β(z,w) = |z − w| which is invariant with respect to the group of all
orientation-preserving rigid motions (generated by translations and unitary transformations) of
Cn, whereas the counterpart for bounded symmetric domain Ω is the Möbius group G = Aut(Ω),
which makes us conceive the Möbius invariance of the range of Berezin transform on Ω . Finally
we notice that for bounded symmetric domain of rank 1, the algebra of invariant differential
operator with respect to G is generated by Laplace–Beltrami operator. We take fully advantage
of this fact and explicit formulas of Bergman kernel function and Laplace–Beltrami operator on
D and B in our proof.
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This note is organized as follows. In the next section, we give an overview of some relevant
facts needed for our purpose from the theory of invariant symbolic calculi in [1], and derive
the Möbius invariance of the range of Berezin transform for bounded symmetric domain. In
Sections 3 and 4, we show that the Berezin transform of any bounded operator on Bergman space
on D or B is bounded under the action of any power of Laplace–Beltrami operator, respectively,
from which our general results follow easily. We discuss some related results in the last section.

2. The invariance of range of Berezin transform

For Ω a bounded symmetric (Cartan) domain in Cn with normalized Lebesgue measure dυ(z)

on it, we assume that Ω is in its Harish-Chandra realization so that 0 ∈ Ω , and K(z,0) = 1 for all
z ∈ Ω , then Ω could be realized as the quotient Ω = G/K, where K is the stabilizer in G of the
origin 0 ∈ Ω . For each a in Ω , there is ϕa ∈ G with the properties ϕa(a) = 0 and ϕa ◦ ϕa = I the
identity map, just indicated in [4] where a lot of properties of Bergman kernel function relating
to ϕa are obtained and listed under the above assumptions, such as |(Jcϕa)(z)|2 = |ka(z)|2 and
ka(ϕa(z))ka(z) = 1, where (Jcϕa)(z) is the complex Jacobian of ϕa at z, of which we will make
essential use.

In [1], Arazy and Upmeier established the general theory of invariant symbolic calculi in the
context of weighted Bergman spaces on bounded symmetric domains, which is closely related to
the intertwinement of the action of G on some class of G-invariant functions on Ω and the action
of G on the algebra of bounded operators on the weighted Bergman spaces. In particular, for the
Bergman space A2(Ω), the irreducible projective unitary representation g → Ug of G on A2(Ω)

is given by (see identity (12) in [1])

Ug(f )(z) = (
Jcg

−1)(z)f (
g−1(z)

)
(2.1)

for any g ∈ G, f ∈ A2(Ω) and z ∈ Ω , where (Jcg
−1)(z) is the complex Jacobian of g−1. And

the action of G on B(A2(Ω)) is given by

π(g)T = UgT U−1
g .

It turns out that π is also a genuine representation of G since π(g1 ◦ g2) = π(g1)π(g2) for
g1, g2 ∈ G.

It follows from (2.1) and the transformation laws of reproducing kernels [8, p. 44] that

Ugkz = c(g, z)kg(z), (2.2)

where c(g, z) is a constant of modulus 1 depending on g and z. Recall that Pz = kz ⊗ kz is the
rank one projection onto the span of kz, then (2.2) implies that

π(g)Pz = UgPzU
−1
g = kg(z) ⊗ kg(z) = Pg(z).

Then for any X ∈ B(A2(Ω)) and g ∈ G,

X̃
(
g(z)

) = trace(XPg(z)) = trace
(
XUgPzU

−1
g

)
= trace

(
U−1

g XUgPz

) = ˜
U−1

g XUg(z). (2.3)

So the preceding overview and discussion lead to the following result:

Theorem 2.1. The range Ber(B(A2(Ω))) is Möbius-invariant under the action of G.



1158 B. Li / J. Math. Anal. Appl. 327 (2007) 1155–1166
For h ∈ L∞(Ω), Toeplitz operator defined on A2(Ω) with symbol h is Th(f ) = P(hf ) for
f ∈ A2(Ω), where P is the orthogonal (Bergman) projection from L2(Ω) onto A2(Ω). We
define the Berezin transform of h by

h̃(a) = T̃h(a) = 〈Thka, ka〉 = 〈
P(hka), ka

〉 = 〈hka, ka〉.
It is pointed out in Example 2.1 of [1] that

U−1
g ThUg = Th◦g

for any h ∈ L∞(Ω) and g ∈ G, which has also been obtained in Lemma 8 of [2] for Ω = the unit
disk. This fact combined with (2.3) yields that

Corollary 2.2. For h ∈ L∞(Ω), (h̃ ◦ g)(a) = h̃ ◦ g(a), ∀g ∈ G and a ∈ Ω . In other words,
T̃h ◦ g = T̃h◦g .

For g = ϕa ∈ G, we denote Ua = Uϕa . It is easy to see that Ua is a selfadjoint unitary operator
on A2(Ω) by involutive property of ϕa for a ∈ Ω . For A a bounded operator on A2(Ω), we can
now define an averaging operation by

Â =
∫
Ω

U∗
a AUa dυ(a). (2.4)

Note that Â is determined by

〈Âf, g〉 =
∫
Ω

〈
U∗

a AUaf,g
〉
dυ(a)

for any f,g ∈ A2(Ω). That is, the above operator integral is understood in the weak sense.
It is easy to obtain that for any A ∈ B(A2(Ω)),

˜̂
A(z) =

∫
Ω

Ã ◦ ϕa(z) dυ(a)

and

T̃
Ã
(z) =

∫
Ω

Ã ◦ ϕz(a) dυ(a).

Note that ˜̂
A and T̃

Ã
may not coincide generally. Let Ω = D the unit disk, for instance, and

A = Tz = Mz, then we know Ã(z) = z, so T̃
Ã
(z) = z but ˜̂

A(z) = −z/2 for any z ∈ D. However,

it was shown in Theorem 6 of [3] that for Segal–Bargmann space H 2(Cn, dμ) case, ˜̂
A = T̃

Ã
,

so Â = T
Ã

, where the corresponding (Uaf )(z) = ka(z)f (z − a), ∀a ∈ Cn which is unitary but
selfadjoint. The reason why this difference occurs may be due to the flat structure of H 2(Cn, dμ).

3. The unit disk case

Let Ω ⊂ C be a circular domain containing the origin (i.e., a disk or the entire plane), and the

usual Laplace operator is � = ∂2

∂z∂z̄
defined on C2(Ω). For the sake of simplicity of notation, we

let D = ∂ and D̄ = ∂ , then � = DD̄.

∂z ∂z̄
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Let E0 be the evaluation functional on C∞(Ω) at the origin, that is, E0(f ) = f (0) for
f ∈ C∞(Ω). For any unitary transformation on C, that is, a rotation z → αz for |α| = 1, we
can define the operator Uα(f )(z) = f (αz) on C∞(Ω) due to the circularity of Ω .

Lemma 3.1. Let T = ∑m
j=1

∑n
k=1 cj,kD

j D̄k be a constant coefficient differential operator on
C∞(Ω). If E0T Uα = E0UαT on C∞(Ω) for any α ∈ C with |α| = 1, then

T =
min(m,n)∑

j=1

cj�
j ,

where cj = cj,k for j = k.

Proof. Taking g(z) = zj z̄k for 1 � j � m, 1 � k � n, we know by a direct calculation that

E0T Uα(g) = αj−kcj,kj !k!
and

E0UαT (g) = cj,kj !k!.
Our assumption yields that

cj,k = 0 for j �= k,

then the desired result follows from it. �
Remark 3.2. In fact our preceding result implies the fact that any rotation-invariant constant
coefficient differential operator on Ω ⊂ C must be a polynomial of the Laplacian �.

Let f ∈ C∞(Ω), Mf :C∞(Ω) → C∞(Ω) defined by

(Mf g)(z) = f (z)g(z), ∀g ∈ C∞(Ω),

is the usual multiplication operator with symbol f . Now we denote �f = Mf ◦ � the compo-
sition of multiplication operator and Laplace operator, and �n

f is the composition of �f with
itself n times, which are all linear operators on C∞(Ω) for all n ∈ N.

Proposition 3.3. Suppose that f is a radial function in C∞(Ω) (i.e., f (z) = f (|z|)). Then for
any g ∈ C∞(Ω) and n ∈ N,

(
�n

f g
)
(0) =

n∑
i=1

ci

(
�ig

)
(0), (3.1)

where ci ’s are constants depending only on f and n.

Proof. It is easy to see by induction that

�n
f =

n∑
j,k=1

cj,k(z)D
j D̄k,

where cj,k(z) ∈ C∞(D) depending on f and n. Now we define that

T =
n∑

cj,k(0)Dj D̄k
j,k=1
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by freezing the coefficients of �n
f at the origin, then it is a constant coefficient differential oper-

ator and E0T = E0�
n
f .

For any Uα defined above, we know that �Uα = Uα�, and Mf Uα = UαMf since f is radial,
then �f Uα = Uα�f , and �n

f Uα = Uα�n
f further. It follows that

E0T Uα = E0�
n
f Uα = E0Uα�n

f = UαE0�
n
f = UαE0T = E0UαT ,

where we have applied the simple fact E0Uα = UαE0 = E0. Thus our assertion follows immedi-
ately from Lemma 3.1. �
Remark 3.4.

(i) Our assumption that f is radial is also necessary for �f Uα = Uα�f .
(ii) Our proof of Proposition 3.3 makes use of the circularity of domain Ω . For general domain

containing the origin in C, we can show by direct calculations that (3.1) still holds, provided
that we put some additional restrictions on f , for instance, assuming that DkD̄jf (0) = 0
for (k, j) ∈ Z+ × Z+ \ {(i, i): i = 0,1,2}.

Corollary 3.5. For the invariant Laplace–Beltrami operator �̃ = 4(1 − |z|2)2� on the unit
disk D, and for any g ∈ C∞(D) and n ∈ N,

(
�̃ng

)
(0) =

n∑
i=1

ci

(
�ig

)
(0), (3.2)

where ci ’s are constants depending only on f (z) = 4(1 − |z|2)2 and n.

Proof. It follows from Proposition 3.3 if we write �̃ = �f = Mf ◦ � with f (z) =
4(1 − |z|2)2. �

Now we are ready to prove the main result of this section.

Theorem 3.6. For any n ∈ N, �̃nX̃ ∈ L∞(D) for any X ∈ B(A2(D)). Moreover∥∥�̃nX̃
∥∥∞ � m‖X‖

for some constant m depending only on �̃, n and D.

Proof. We know that for A2(D), K(w,z) = 1
(1−wz̄)2 , so kz(w) = 1−|z|2

(1−wz̄)2 . By binomial expan-
sion formula,

kz(w) = (
1 − |z|2) ∞∑

k=0

(k + 1)(wz̄)k,

where the series converges absolutely and uniformly on compact subset of D in terms of w or
z and also converges in A2(D) for fixed z ∈ D. By the continuity of inner product 〈·,·〉 and
X ∈ B(A2(D)), we have

X̃(z) = 〈Xkz, kz〉

=
∞∑

(j + 1)(k + 1)
(
1 − |z|2)2

zj z̄k
〈
Xwk,wj

〉

j,k=0
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=
∞∑

j,k=0

(j + 1)(k + 1)
(
zj+2z̄k+2 + zj z̄k − 2zj+1z̄k+1)〈Xwk,wj

〉
. (3.3)

Let gj,k(z, z̄) = zj+2z̄k+2 + zj z̄k − 2zj+1z̄k+1, which is a polynomial in z and z̄, then
(�ngj,k)(0) = (DnD̄ngj,k)(0) = 0 if (j, k) /∈ {(n − 2, n − 2), (n − 1, n − 1), (n,n)} for n � 2.
Noting this fact, we differentiate the right side term by term in (3.3), which is legal by the uniform
convergence on compact subsets of D of the above series, and evaluate at 0, then(

�nX̃
)
(0) = (n − 1)2(n!)2〈Xwn−2,wn−2〉 + (n + 1)2(n!)2〈Xwn,wn

〉
− 2n2(n!)2〈Xwn−1,wn−1〉.

Using the fact that for i � 1,‖wi‖2
A2(D)

= ∫
D

|w|2i dυ(w) = 1
i+1 , it is easy to see by a direct

calculation that∣∣(�nX̃
)
(0)

∣∣ � 4n(n!)2‖X‖, (3.4)

which also holds for n = 1.
Now ∀a ∈ D, let Xa = U∗

a XUa as in (2.4), then (�̃X̃a)(z) = �̃(X̃ ◦ϕa)(z) = (�̃X̃)◦ϕa(z) by
(2.3) and the Möbius invariant property of �̃. Furthermore, �̃n(X̃a)(z) = (�̃nX̃)(ϕa(z)). Thus∣∣�̃n(X̃a)(0)

∣∣ = ∣∣(�̃nX̃
)
(a)

∣∣. (3.5)

Now applying Corollary 3.5 to X̃a , and using (3.4), (3.5) and the fact ‖X‖ = ‖Xa‖, we know
there exists a constant m, which depends only on �̃, n and D, such that for any a ∈ D,∣∣(�̃nX̃

)
(a)

∣∣ = ∣∣(�̃nX̃a

)
(0)

∣∣ � m‖X‖,
which completes the proof. �
4. The unit ball case of CCCn for n > 1

We will imitate what we have done in Section 3 to deal with the unit ball case in this part,
where the manipulation of multi-indices is necessary. For that purpose, let zα = z

α1
1 · · · zαn

n where
z = (z1, . . . , zn) ∈ Cn, α = (α1, . . . , αn) with αi ’s non-negative integers. Denote α! = α1! · · ·αn!,
|α| = α1 + · · · + αn, then 〈z,w〉 = z1w̄1 + · · · + znw̄n = ∑

|α|=1 zαw̄α . We denote Di = ∂
∂zi

,

D̄i = ∂
∂z̄i

for i = 1,2, . . . , n, and Dα = D
α1
1 · · ·Dαn

n , D̄α = D̄
α1
1 · · · D̄αn

n . For k = (k1, . . . , kn),(
k
α

) = (
k1
α1

) · · · (kn

αn

)
.

The Laplace–Beltrami operator �̃ defined on C2(B) is

�̃ =
n∑

i,j=1

4
(
1 − |z|2)(δi,j − zi z̄j )DiD̄j ,

where δi,j = 1 if i = j and is 0 otherwise. Let fi,j (z) = 4(1 − |z|2)(δi,j − zi z̄j ), then fi,j is a
polynomial in z and z̄ of degree 4. If we define γi = (0, . . . ,1, . . . ,0) with 1 on the ith slot for
i = 1, . . . , n, then with above notations we can rewrite

�̃ =
n∑

fi,jD
γi D̄γj .
i,j=1
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Moreover we denote � = ∑n
i=1 DiD̄i , which is exactly the usual Laplace operator.

Similar to the case of n = 1, let E0 be the evaluation functional at the origin and U(n) be
the group of unitary transformations on Cn. For any U ∈ U(n), we define Uf (z) = f (Uz) for
f ∈ C∞(Cn).

Lemma 4.1. Let T = ∑
α∈I

∑
β∈J cα,βDαD̄β be a constant coefficient differential operator on

C∞(Cn). If E0T U = E0UT on C∞(Cn) for any U ∈ U(n), then

T =
∑

α∈I∩J

cαDαD̄α,

where cα = cα,β for α = β ∈ I ∩ J .

Proof. Taking g(z) = zαz̄β for α ∈ I , β ∈ J , and U ∈ U(n) such that U(z1, . . . , zn) =
(eiθ1z1, . . . , e

iθnzn) where (θ1, . . . , θn) ∈ Rn, we know by a direct calculation that

E0T U(g) =
(

n∏
j=1

eiθj (αj −βj )

)
cα,βα!β!

and

E0UT (g) = cα,βα!β!.
Our assumption yields that

cα,β = 0 for α �= β,

then the desired result follows from it. �
Remark 4.2. Note that the unitary group U(n) could be replaced by its subgroup circle group in
the above lemma.

The prior lemma is intimately related to the fact that a constant–coefficient differential op-
erator on Cn invariant under unitary rotations must be a polynomial in �, that is, for T =∑

α,β cα,βDαD̄β a constant coefficient differential operator, if T U = UT for any U ∈ U(n),

then T = ∑
i ai�

i .
In fact, let f (z, z̄) = ∑

α,β cα,βzαz̄β be the polynomial corresponding to T , and wt = Uzt

where t means transpose, then Dw = (Dw1 , . . . ,Dwn)
t = UDz = U(Dz1, . . . ,Dzn)

t . So the rota-
tion invariance of T (T U = UT ) is equivalent to f (UDz, ŪD̄z) = f (Dz, D̄z) for any U ∈ U(n).
Furthermore, it reduces to the fact that the polynomial h(z, z̄) = ∑

α,β cα,βzαz̄β , satisfying

h(Uz, Ū z̄) = h(z, z̄) for any U ∈ U(n), must be of the form h(z, z̄) = ∑
i ai〈z, z〉i , which could

be proved by using the homogeneous expansion of h and the invariance of homogeneous poly-
nomial under linear transformations after we apply the circle group first, similar to the proof of
Lemma 4.1, to conclude that h(z, z̄) = ∑

α cαzαz̄α . Thus we give a sketch of proof of the fact
mentioned in the preceding paragraph so far, while the formal proof of it might have appeared
elsewhere already.

Now we come back to consider the particular Laplace–Beltrami operator on the unit ball B

of Cn.
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Proposition 4.3. For any m ∈ N and g ∈ C∞(B),

(
�̃mg

)
(0) =

m∑
|γ |=1

aγ Dγ D̄γ g(0),

where aγ ’s are constants depending on �̃ and m.

Proof. It is easy to see that

�̃m =
m∑

|α|=1

m∑
|β|=1

cα,β(z)DαD̄β,

where cα,β(z) ∈ C∞(B). Define T = ∑m
|α|=1

∑m
|β|=1 cα,β(0)DαD̄β by freezing the coefficients

of �̃m at the origin, then E0�̃
m = E0T . We know that �̃U = U�̃ for any U ∈ U(n) by the

Möbius invariance of �̃. Thus

E0T U = E0�̃
mU = E0U�̃m = E0T = E0UT .

So the assertion follows from the application of Lemma 4.1 to T . �
Theorem 4.4. For any p ∈ N, �̃pX̃ ∈ L∞(B) for any X ∈ B(A2(B)). Moreover∥∥�̃pX̃

∥∥∞ � l‖X‖
for some constant l depending only on �̃, p and B.

Proof. The normalized Bergman kernel function kz(w) on B can be written as

kz(w) = (
1 − |z|2) n+1

2
∑

|α|�0

(|α| + n)!
n!α! wαz̄α.

And

(
1 − |z|2)n+1 =

n+1∑
m=0

∑
|γ |=m

(−1)m
(

n + 1

m

)
m!
γ ! z

γ z̄γ .

Thus for any X ∈ B(A2(B)),

X̃(z) = 〈Xkz, kz〉
=

∑
|α|�0

∑
|β|�0

(|α| + n)!(|β| + n)!
(n!)2α!β!

(
1 − |z|2)n+1

z̄αzβ
〈
Xwα,wβ

〉

=
n+1∑
m=0

(−1)m
(

n + 1

m

)
m!

(n!)2

∑
|α|�0

∑
|β|�0

∑
|γ |=m

(|α| + n)!(|β| + n)!
α!β!γ !

× 〈
Xwα,wβ

〉
z̄α+γ zβ+γ .

Then
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[(
DkD̄k

)
X̃

]
(z)

=
n+1∑
m=0

(−1)m
(

n + 1

m

)
m!

(n!)2

∑
|α|�0

∑
|β|�0

∑
|γ |=m

(|α| + n)!(|β| + n)!
α!β!γ !

× 〈
Xwα,wβ

〉
DkD̄k

(
z̄α+γ zβ+γ

)
=

n+1∑
m=0

(−1)m
(

n + 1

m

)
m!

(n!)2

∑
|α|�0

∑
|β|�0

∑
|γ |=m

(|α| + n)!(|β| + n)!
α!β!γ !

× 〈
Xwα,wβ

〉 (β + γ )!(α + γ )!
(β + γ − k)!(α + γ − k)! z̄

α+γ−kzβ+γ−k.

Evaluating both sides of the above equality at 0, then we have

[(
DkD̄k

)
X̃

]
(0)

=
n+1∑
m=0

(−1)m
(

n + 1

m

)
m!

(n!)2

∑
|γ |=m

((|k − γ | + n)!)2(k!)2

((k − γ )!)2γ !
〈
Xwk−γ ,wk−γ

〉
.

Therefore

∣∣(DkD̄k
)
X̃(0)

∣∣
�

n+1∑
m=0

(
n + 1

m

)
m!

(n!)2

∑
|γ |=m

((|k − γ | + n)!)2(k!)2

((k − γ )!)2γ !
∣∣〈Xwk−γ ,wk−γ

〉∣∣.
Since

∣∣〈Xwk−γ ,wk−γ
〉∣∣ � ‖X‖∥∥wk−γ

∥∥2
A2(B)

= n!(k − γ )!
(n + |k − γ |)! ‖X‖,

we have

∣∣(DkD̄k
)
X̃(0)

∣∣ �
(

n+1∑
m=0

∑
|γ |=m

(n + 1)(|k − γ | + n)!(k!)2

(n + 1 − m)!(k − γ )!γ !

)
‖X‖. (4.1)

For any c ∈ B, g = ϕc ∈ G, let Xc = U−1
ϕc

XUϕc , then Xc and X are unitarily equivalent with

‖Xc‖ = ‖X‖, and X̃c(z) = (X̃ ◦ ϕc)(z) as shown in Section 2. So

(
�̃pX̃c

)
(z) = (

�̃pX̃
) ◦ ϕc(z) (4.2)

by the Möbius invariance of �̃. Therefore by Proposition 4.3, and (4.1) and (4.2), there is a
constant l > 0 such that

∣∣(�̃pX̃
)
(c)

∣∣ = ∣∣(�̃pX̃c

)
(0)

∣∣ � l‖Xc‖ = l‖X‖,
where constant l depends only on �̃, p and B. �
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5. Invariant differential operators

For Ω = D or B, a differential operator T on C∞(Ω) is said to be invariant if

T (f ◦ g) = (Tf ) ◦ g, ∀g ∈ G.

Let A be the algebra of invariant differential operators on C∞(Ω), then we know from [7] that
for any operator T ∈ A, T = ∑n

i=0 ci�̃
i where ci ’s are constants. That is, Laplace–Beltrami

operator �̃ is the generator of A, which force the definitions of weakly harmonic function and
strongly harmonic function on them to coincide. So we have following result based on this fact
and Theorems 3.6 and 4.4.

Theorem 5.1. For any T ∈ A, ‖T X̃‖∞ � l‖X‖ for any X ∈ B(A2(Ω)), where the constant l

depends only on T and Ω .

It is known that the range of Berezin transform belongs to the subalgebra L∞(Ω) ∩ C∞(Ω)

of L∞(Ω). Our main results show that if for any T ∈ A we define T̄ = T ◦ Ber :B(A2(Ω)) →
L∞(Ω), then T̄ is bounded.

Clearly our main results strongly rely on the Möbius invariance of range of Berezin transform,
which has been established for much more general domains, bounded symmetric domains, not
unit disk or unit ball merely. So it is quite natural to ask how to extend our results to the general
case.

As pointed out in the Introduction, unit disk and unit ball are both particularly bounded sym-
metric domains of rank 1, which make the structure of A the algebra of invariant differential
operators much simpler than others of rank more than 1. Generally, it is known [7] that for any
non-compact bounded symmetric domain of rank r � 1, the algebra of invariant differential op-
erators is a polynomial algebra in r algebraically independent commuting operators, where one
of the generators can be chosen as the Laplace–Beltrami operator.

It is pleased to know, when most of our work is done, that Engliš and Zhang in [6] have
obtained the similar results for the general bounded symmetric domains. They considered the lift
of the Berezin transform and the strong derivative of Banach vector-valued function, and proved
the commutativity of differential operators and trace operator. However, it is still an interesting
question raised by them naturally that whether the similar result also holds in the context of any
bounded domain of Cn.
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