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Abstract

The q-difference analog of the classical ladder operators is derived for those orthogonal polynomials arising from a class of
indeterminate moments problem.
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1. Introduction

This work is a follow up to our work [4] where we derived raising and lowering operators for polynomials orthogo-
nal with respect to absolutely continuous measures μ under certain smoothness assumptions of μ′. This approach goes
back to [2,3,11]. The raising and lowering operators derived in these references are differential operators. It was later
realized that a similar theory exists for polynomials orthogonal with respect to a measure with masses at the union
of at most two geometric progressions, {aqn, bqn}, for some q ∈ (0,1) [7]. The corresponding theory for difference
operators is in [9]. This material is reproduced in [8]. The raising and lowering operators involve two functions An(x)

and Bn(x) which satisfy certain recurrence relations. In the case of differential operators we have demonstrated that
the knowledge of An(x) and Bn(x) determines the polynomials uniquely in the cases of Hermite, Laguerre, and Ja-
cobi polynomials, see [5]. This is done through recovering the properties of the polynomials including the three term
recurrence relation which generates the polynomials. This work shows that the corresponding functions determine the
polynomials in the cases of Stieltjes–Wigert and q-Laguerre polynomials.

The orthogonal polynomials which arise from indeterminate moment problems have discrete and absolutely contin-
uous orthogonality measures [1]. In many instances it is more convenient to work with absolutely continuous measures
[8, Chapter 21].
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In this work we derive raising and lowering operators for polynomials orthogonal with respect to absolutely con-
tinuous measures. We shall assume that {Pn(x)} are monic orthogonal polynomials, so that

∞∫
0

w(x)Pm(x)Pn(x) dx = ζnδm,n. (1.1)

A weight function w leads to a potential u defined by

u(x) = −Dq−1w(x)

w(x)
, (1.2)

where Dq is the q-difference operator

(Dqf )(x) = f (x) − f (qx)

x − qx
. (1.3)

Every monic sequence of orthogonal polynomials satisfies a three term recurrence relation of the form

(x − αn)Pn(x) = Pn+1(x) + βnPn−1(x). (1.4)

We also write the monic polynomials Pn(x) as follows:

Pn(x) = xn + p1(n)xn−1 + · · ·
and it follows immediately from the three term recurrence relations (1.4) that

αn = p1(n) − p1(n + 1). (1.5)

A main result of this work is the following theorem.

Theorem 1.1. Let

An(x) := 1

ζn

∞∫
0

u(qx) − u(y)

qx − y
Pn(y)Pn(y/q)w(y)dy, (1.6)

Bn(x) := 1

ζn−1

∞∫
0

u(qx) − u(y)

qx − y
Pn(y)Pn−1(y/q)w(y)dy. (1.7)

Then we have the lowering relation

DqPn(x) = βnAn(x)Pn−1(x) − Bn(x)Pn(x). (1.8)

Theorem 1.1 will be proved in Section 2 along with the difference equations satisfied by An(x) and Bn(x),

Bn+1(x) + Bn(x) = (x − αn)An(x) + x(q − 1)

n∑
j=0

Aj(x) − u(qx), (1.9)

1 + (x − αn)Bn+1(x) − (qx − αn)Bn(x) = βn+1An+1(x) − βnAn−1(x). (1.10)

The identities (1.9)–(1.10) will be referred to as the supplementary conditions.
Theorem 1.1 is the q-analogue of

P ′
n(x) = βnAn(x)Pn−1(x) − Bn(x)Pn(x)

of [4]. See also [5] for a derivation of the supplementary conditions for the q = 1 case.
Let

L1,n := Dq + Bn(x), (1.11)
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be the lowering operator. Thus (1.8) is

L1,nPn(x) = βnAn(x)Pn−1(x). (1.12)

The raising operator can be found as follows: First replace βnPn−1(x) in (1.8) by (x − αn)Pn(x) − Pn+1(x), us-
ing (1.4), and then replace

−(x − αn)An(x) + Bn(x)

by

x(q − 1)

n∑
j=0

Aj(x) − u(qx) − Bn+1(x),

using (1.9). An easy computation shows that

DqPn(x) =
(

Bn+1(x) + u(qx) − x(q − 1)

n∑
j=0

Aj(x)

)
Pn(x) − An(x)Pn+1(x).

With the replacement of n by n − 1 in above equation, the raising operator is

L2,n := Dq + x(q − 1)

n−1∑
j=0

Aj(x) − u(qx) − Bn(x)

and

L2,nPn−1(x) = −An−1(x)Pn(x).

It is useful to recall the following analogue of the product rule:

Dq

(
f (x)g(x)

) = (
Dqf (x)

)
g(x) + f (xq)Dqg(x). (1.13)

The following lemma, whose proof is a calculus exercise, will be used in the proofs of our main results.

Lemma 1.2. If the integrals
∞∫

0

f (x)g(x)
dx

x
,

∞∫
0

f (x)g(qx)
dx

x
,

exist, then the following q-analogue of integration by parts holds:
∞∫

0

f (x)Dqg(x) dx = − 1

q

∞∫
0

g(x)Dq−1f (x)dx. (1.14)

An immediate consequence of Lemma 1.2 and (1.1) is
∞∫

0

u(y)Pn(y)Pn(y/q)w(y)dy = 0. (1.15)

We also have
∞∫

0

u(y)Pn+1(y)Pn(y/q)w(y)dy = 1 − qn+1

1 − q
qζn, (1.16)

which follows from (1.13), (1.2), (1.14), and the fact that

Dqxn = 1 − qn

1 − q
xn−1.



4 Y. Chen, M.E.H. Ismail / J. Math. Anal. Appl. 345 (2008) 1–10
2. Proofs

We shall need the fact [8,13]

ζn = ζ0β1β2 . . . βn, (2.1)

and the Christoffel–Darboux identity [8,13]

n−1∑
k=0

Pk(x)Pk(y)

ζk

= Pn(x)Pn−1(y) − Pn(y)Pn−1(x)

ζn−1(x − y)
. (2.2)

Proof of Theorem 1.1. Let DqPn(x) = ∑n−1
k=0 cn,kPk(x). Then

ζkcn,k =
∞∫

0

Pk(y)w(y)DqPn(y) dy.

Applying Lemma 1.2, (1.13), we see that

qζkcn,k = −
∞∫

0

Pn(y)
[(

Dq−1Pk(y)
)
w(y) + Pk(y/q)Dq−1w(y)

]
dy

=
∞∫

0

Pn(y)Pk(y/q)

[
−Dq−1w(y)

w(y)

]
w(y)dy,

where the orthogonality property was used in the last step. The definition of u (1.2) yields

qζkcn,k =
∞∫

0

Pn(y)Pk(y/q)u(y)w(y)dy = −
∞∫

0

Pn(y)Pk(y/q)
(
u(qx) − u(y)

)
w(y)dy,

where we again used the orthogonality property in the last step. Therefore by the Christoffel–Darboux identity (2.2)

DqPn(x) = − 1

ζn−1

∞∫
0

Pn(y)
u(qx) − u(y)

qx − y

[
Pn(x)Pn−1(y/q) − Pn(y/q)Pn−1(x)

]
w(y)dy

and (2.1), the theorem follows. �
Proof of (1.9). It is clear that

Bn+1(x) + Bn(x) =
∞∫

0

u(qx) − u(y)

ζn(qx − y)

[
Pn+1(y)Pn(y/q) + βnPn(y)Pn−1(y/q)

]
w(y)dy

= I1 + I2,

where

I1 := 1

ζn

∞∫
0

u(qx) − u(y)

qx − y
(y/q − αn)Pn(y)Pn(y/q)w(y)dy,

I2 := 1

ζn

∞∫
0

u(qx) − u(y)

qx − y

[
Pn+1(y)Pn(y/q) − Pn(y)Pn+1(y/q)

]
w(y)dy,

after βnPn−1(y/q) is replaced by (y/q − αn)Pn(y/q) − Pn+1(y/q). It is easy to see that I1 is given by
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I1 = (x − αn)An(x) − 1

ζnq

∞∫
0

(
u(qx) − u(y)

)
Pn(y)Pn(y/q)w(y)dy = (x − αn)An(x) − q−n−1u(qx),

where (1.15) and the fact that

Pj (y/q) = q−jPj (y) + lower degree terms (2.3)

were used. To evaluate I2 first note that (2.3) implies

∞∫
0

Pj (y)Pj (y/q)w(y)dy = ζj q
−j . (2.4)

Next we apply the Christoffel–Darboux formula to

Pn+1(y)Pn(y/q) − Pn(y)Pn+1(y/q),

and replace y − y/q by (y − qx + qx)(1 − 1/q). Therefore we see that

I2 = x(q − 1)

n∑
j=0

Aj(x) + 1 − q

q

∞∫
0

[
u(qx) − u(y)

] n∑
j=0

Pj (y)Pj (y/q)

ζj

w(y)dy

= x(q − 1)

n∑
j=0

Aj(x) + 1 − q

q
u(qx)

n∑
j=0

q−j + 1 − q

q

∞∫
0

n∑
j=0

Pj (y)Pj (y/q)

ζj

Dq−1w(y)dy.

Thus

I2 = x(q − 1)

n∑
j=0

Aj(x) + 1 − q

q
u(qx)

1 − q−n−1

1 − q−1
.

Simplifying I1 + I2 we establish (1.9). �
Proof of (1.10). From the definition of Bn(x) we see that

(x − αn)Bn+1(x) − (qx − αn)Bn(x) =
∞∫

0

w(y)
u(qx) − u(y)

qx − y

×
[(

x − αn

ζn

)
Pn+1(y)Pn(y/q) −

(
qx − αn

ζn−1

)
Pn(y)Pn−1(y/q)

]
dy

=
∞∫

0

w(y)
[
u(qx) − u(y)

][ 1

ζn

(
1

q
+ y/q − αn

qx − y

)
Pn+1(y)Pn(y/q)

− 1

ζn−1

(
1 + y − αn

qx − y

)
Pn(y)Pn−1(y/q)

]
dy

= − 1

ζnq

∞∫
0

w(y)u(y)Pn+1(y)Pn(y/q)dy

+ 1

ζn

∞∫
0

w(y)
u(qx) − u(y)

qx − y
(y/q − αn)Pn(y/q)Pn+1(y) dy

+ 1

ζn−1

∞∫
w(y)u(y)Pn(y)Pn−1(y/q)dy
0
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− 1

ζn−1

∞∫
0

w(y)
u(qx) − u(y)

qx − y
Pn(y)Pn−1(y/q)(y − αn)dy

= − 1

ζnq

∞∫
0

w(y)u(y)Pn+1(y)Pn(y/q)dy

+ 1

ζn

∞∫
0

w(y)
u(qx) − u(y)

qx − y

[
Pn+1(y/q) + βnPn−1(y/q)

]
Pn+1(y) dy

+ 1

ζn−1

∞∫
0

w(y)u(y)Pn(y)Pn−1(y/q)dy

− 1

ζn−1

∞∫
0

w(y)
u(qx) − u(y)

qx − y

(
Pn+1(y) + βnPn−1(y)

)
Pn−1(y/q)dy.

The result follows after some simplifications using (1.16). �
3. Stieltjes–Wigert polynomials

The computations in this and the next section will show that An(x) and Bn(x) are rational in x and consequently
(1.9) and (1.10), the supplementary conditions which are identities valid for all x would be particularly useful for the
recovery of the recurrence coefficients. As we shall see, systems of apparently non-linear difference equations gener-
ated by equating the residues on both sides of (1.9) and (1.10), can be solved explicitly which ultimately determine
the recurrence coefficients.

This is example of an indeterminate moment problem associated with the log-normal density. See [6] for a discus-
sion of the associated moment problem. We take the weight to be

w(x) = c exp
[
(lnx)2/(2 lnq)

]
, 0 < x < ∞, 0 < q < 1,

where c is a positive constant which will not appear in subsequent computations.
An easy calculation shows that

u(x) = q

1 − q

(
1

x
−

√
q

x2

)
,

An(x) = Rn

x2
, where Rn := 1

ζn(1 − q)
√

q

∞∫
0

Pn(y)Pn(y/q)w(y)
dy

y
,

Bn(x) = rn

x2
− 1 − qn

1 − q

1

x
, where rn := 1

ζn−1
√

q(1 − q)

∞∫
0

Pn(y)Pn−1(y/q)w(y)
dy

y
.

From the supplementary conditions, (1.9) and (1.10)

qn+1 + qn − 2

1 − q
= Rn + (q − 1)Sn − 1

1 − q
, (3.1)

rn+1 + rn = −αnRn + 1√
q(1 − q)

, (3.2)

0 = αn

1 − qn+1

1 − q
− αn

1 − qn

1 − q
+ rn+1 − qrn, (3.3)

αn(rn − rn+1) = βn+1Rn+1 − βnRn−1, (3.4)
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where Sn := ∑n
j=0 Rj , and

R0 = 1√
q(1 − q)

∫ ∞
0 w(y)/y dy∫ ∞

0 w(y)dy
= 1

1 − q
. (3.5)

A difference equation satisfied by Rn is found by subtracting (3.1) at “n − 1” from the same at “n”;

qRn − Rn−1 = −(1 + q)qn−1, (3.6)

and since the “integrating factor” is q−n, the unique solution is

Rn = qn

1 − q
. (3.7)

Note that (3.3) simplifies to

−αnq
n = rn+1 − qrn. (3.8)

Multiplying (3.2) by 1 − q , together with Rn(1 − q) = qn and (3.8) one finds

rn − qrn+1 = 1√
q

, (3.9)

and since the “integrating factor” for this is qn, the unique solution subject to r0 = 0, is

rn = 1 − q−n

(1 − q)
√

q
, (3.10)

which with (3.8) immediately gives

αn = q−n

√
q

(
q−n−1 + q−n − 1

)
. (3.11)

Multiplying (3.4) by Rn and replacing αnRn with (3.2), we find the resulting first-order difference equation

r2
n+1 − rn+1√

q(1 − q)
−

(
r2
n − rn√

q(1 − q)

)
= βn+1Rn+1Rn − βnRnRn−1,

where the solution with the initial conditions r0 = β0 = 0 is

r2
n − rn√

q(1 − q)
= βnRnRn−1. (3.12)

This expresses βn in terms of the subsidiary quantities rn and Rn,

βn = rn

RnRn−1

(
rn − 1√

q(1 − q)

)
= q−4n − q−3n. (3.13)

In the next section we take a route for the computations of the recurrence coefficients which does not involve the
determination of the analogous rn and Rn.

4. q-Laguerre polynomials

This is also associated with an indeterminate moment problem at a level “higher” than the Stieltjes–Wigert poly-
nomials, in the sense that when an appropriate limit of a parameter is taken, the q-Laguerre polynomials become the
Stieltjes–Wigert polynomials. See [10]. We refer the reader to [12] for further information.

We take the weight to be

w(x) = xα

, 0 < x < ∞, α > −1, 0 < q < 1, (4.1)

(−x;q)∞
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where

(z;q)∞ :=
∞∏

k=0

(
1 − zqk

)
.

This weight leads to

u(x) = q

1 − q

(
1 − q−α

x
+ q−α

x + q

)
,

u(qx) − u(y)

qx − y
= 1

1 − q

(
q−α − 1

xy
− q−α

(x + 1)(y + q)

)
.

By definition,

An(x) = q−α − 1

ζn(1 − q)x

∞∫
0

Pn(y)Pn(y/q)
w(y)

y
dy − q−α

ζn(1 − q)(x + 1)

∞∫
0

Pn(y)Pn(y/q)
w(y)

y + q
dy

=: Rn

x
− qn

(1 − q)(x + 1)
, (4.2)

Bn(x) = q−α − 1

(1 − q)ζn−1x

∞∫
0

Pn(y)Pn−1(y/q)
w(y)

y
dy − q−α

ζn−1(1 − q)(x + 1)

∞∫
0

Pn(y)Pn−1(y/q)
w(y)

y + q
dy

=: rn

x
− qn−1p1(n)

x + 1
, (4.3)

where the evaluation of the second integrals in An(x) and Bn(x) will follow later.
Here is a computation of R0. By definition,

R0 := q−α − 1

1 − q

∫ ∞
0 w(y)dy/y∫ ∞

0 w(y)dy
= q−α − 1

1 − q

I (α)

I (α + 1)
= 1

1 − q
,

since

I (α) :=
∞∫

0

yα−1

(−y;q)∞
dy = (q1−α;q)∞

(q;q)∞
π

sinπα
.

Also note the identity

1

(−x;q)∞(x + q)
= 1

q(1 + x/q)(−x;q)∞
= 1

q(−x/q;q)∞
.

Hence,

∞∫
0

Pn(y)Pn(y/q)
w(y)

y + q
dy =

∞∫
0

Pn(y)Pn(y/q)
yα

q(−y/q;q)∞
dy = qα

∞∫
0

Pn(qy)Pn(y)w(y)dy = qn+αζn,

and the result for An(x) follows. Similarly,

∞∫
0

Pn(y)Pn−1(y/q)
w(y)

y + q
dy =

∞∫
0

Pn(y)Pn−1(y/q)
yα

q(−y/q;q)∞
dy = qα

∞∫
0

Pn(qy)Pn−1(y)w(y)dy.

To complete the evaluation of the above integral, we note the identity

Pn(qy) = Pn(qy) + qnPn(y) − qnPn(y)

= qnPn(y) + qnyn + qn−1p1(n)yn−1 + · · · − qn
(
yn + p1(n)yn−1 + · · ·)
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= qnPn(y) + p1(n)
(
qn−1 − qn

)
yn−1 + · · ·

= qnPn(y) + p1(n)
(
qn−1 − qn

)
Pn−1(y) + · · · .

Finally,

qα

∞∫
0

Pn(qy)Pn−1(y)w(y)dy = qα

∞∫
0

{
qnPn(y) + p1(n)

(
qn−1 − qn

)
Pn−1(y) + · · ·}Pn−1(y)w(y)dy

=
(

1

q
− 1

)
p1(n)qn+αζn−1,

and the result for Bn(x) follows.
It turns out that for the q-Laguerre weight, the supplementary conditions produce 6 difference equations in contrast

with the 4 in the previous example.
Now, by equating the residues for the simple poles at x = 0 and x = −1 in (1.9), we find

rn+1 + rn = −αnRn − 1 − q−α

1 − q
, (4.4)

p1(n + 1)qn + p1(n)qn−1 = −1 + αn

1 − q
qn + 1 − qn+1

1 − q
+ q−α

1 − q
, (4.5)

respectively. We note here another identity involving Rn only, by equating the constant terms of (1.9) at x = ∞,

Rn − qn

1 − q
+ (q − 1)Sn − 1 − qn+1

1 − q
= 0, (4.6)

where Sn = ∑n
j=0 Rj . A similar consideration on (1.10) shows that

αn(rn − rn+1) = βn+1Rn+1 − βnRn−1, (4.7)

−(1 + αn)q
np1(n + 1) + (q + αn)q

n−1p1(n) = βn+1q
n+1 − βnq

n−1

1 − q
, (4.8)

rn+1 − qrn = −qnαn − 1. (4.9)

We use the fact that αn = p1(n) − p1(n + 1) to rewrite (4.5) as a first-order difference equation,

p1(n + 1)qn+1 − p1(n)qn−1 = qn + qn+1 − (
1 + q−α

)
which has an “integrating factor” qn−1 by inspection. Hence the above equation becomes

p1(n + 1)q2n − p1(n)q2n−2 = (1 + q)q2n−1 − (
1 + q−α

)
qn−1, (4.10)

and we find via a telescopic sum and the initial condition p1(0) = 0,

p1(n + 1)q2n = 1 − q2n+2

q(1 − q)
− (

1 + q−α
)1 − qn+1

q(1 − q)
.

Therefore,

(1 − q)p1(n) = −q + (
1 + q−α

)
q−n+1 − q−2n−α+1, (4.11)

and Eq. (1.5) gives

αn = p1(n) − p1(n + 1) = q−2n−1−α
(
1 + q − qn+1 − qn+α+1). (4.12)

At this stage Rn can be found from a difference equation obtained by subtracting (4.6) at “n” from the same at “n+1,”

qRn+1 − Rn = qn+1 − qn, (4.13)
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with the initial condition R0 = 1/(1 − q). Having now determined αn in (4.12), rn can be found from (4.9) with the
initial condition r0 = 0. We proceed to the determination of βn. Multiply (4.8) by the “integrating factor” qn and by
1 − q,

−(1 + αn)q
2n(1 − q)p1(n + 1) + (q + αn)q

2n−1(1 − q)p1(n) = βn+1q
2n+1 − βnq

2n−1. (4.14)

The left-hand side of the above is simplified to

(1 − q)q2n
(
p1(n) − p1(n + 1)

) − αn(1 − q)
(
p1(n + 1)q2n − p1(n)q2n−1)

= (1 − q)q2nαn

[
1 − (

p1(n + 1) − p1(n)/q
)]

.

With (4.11), the term p1(n + 1) − p1(n)/q simplifies to

1 − q−2n−α−1,

and consequently (4.14) reduces to the first-order difference equation, with the initial condition β0 = 0,

βn+1q
2n+1 − βnq

2n−1 = (1 − q)q−1−ααn. (4.15)

Taking a telescopic sum, and noting that
∑n−1

j=0 αj = −p1(n),

βnq
2n−1 = (1 − q)q−1−α

n−1∑
j=0

αn = −(1 − q)q−1−αp1(n). (4.16)

Finally,

βn = −q−2n−α(1 − q)p1(n) = −q−2n−α
(−q + (

1 + q−α
)
q1−n − q−2n−α+1)

= q−4n−2α+1(1 − qn
)(

1 − qn+α
)
. (4.17)

It is interesting to note that in the computations of αn and βn, not all the 6 equations are required. We have used only
(4.5) and (4.8). However, for an explicit expression of the q-ladder operators and therefore the determination of rn
and Rn we need Eqs. (4.6), (4.9) and αn in (4.12).

We end with the remark that in the case of the classical Laguerre polynomials, αn = 2n + 1 + α, and βn =∑n−1
j=0 αj = n(n + α), and this is analogous to (4.12) and (4.16)–(4.17), however, with appropriate modifications

in the q-case.
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