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1. Introduction

We consider the class of operators
o0
L= {ﬁ‘i,uf(y) =y"/(xy>”f(><)]a(xy)dx, feCq 0, +00) ¢, (11)
0

where ], (r) denotes the usual Bessel function of the first kind, o > —%, v and p are real parameters.

These operators are interesting because they generalize a number of important operators in Analysis. For example, the re-
striction of the Fourier transform to radial functions and the Hankel transform belong to £ (see the next section).

One of the main results of this paper is the following

Theorem 1.1. E%,u is bounded from LP (0, oo) to L9(0, co) whenever ¢ > —%, 1< p <q< oo andifand only if

1 1 1 1 1 1
=——- and —o— — <V —max —/——,0. (1.2)
P q p 2 P q

To prove this theorem we use an interpolation argument of Stein and Weiss. In Appendix A we provide examples that
show that these bounds are best possible.
We are interested in the optimal constants C = C , ; for which
I1£5 . fllLa0,00)

I1fllr 0,00)
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In Section 2 we will show that this problem can be solved for special values of the parameters with the aid of a celebrated
theorem of W. Beckner [2], but the proof seems to be very difficult in the general case.

In this paper we evaluate C , , for v = % and g = p’. Our main result is the following

Theorem 1.2. The following inequality holds forevery 1 < p <2, a > —% and f € C5°(0, 00),

||£(;0f||Lp’(o,oo)

[SE

La+i+1) 1,0 1

2 2 =) £ =

<271 P P M@tz )" (13)
+

= 1 1.1
171170000 ) P+ DHE+ )

== 'E\‘._-

The constant on the right-hand side of (1.3) is best possible and coincides with the LP (0, co) — L' (0, 0o0) norm of the Hankel transform
(see the next section).

By continuity, £% 0 extends to a bounded operator from LP(0, 00) to LP'(0, 00), and it is possible to prove that the
2

equality in (1.3) is attained by the functions fs(x) = x"”'%e*”‘z, s > 0. We will prove this in Section 3.

Theorem 1.2 is interesting because the Hankel transform is a remarkable operator who shares many similarities with the
Fourier transform. However, the steps toward the proof of Theorem 1.2 are as interesting as the result itself. We prove the
theorem using an extension of Beckner’s techniques. We divide the proof into a series of lemmas, some of them crucial,
some of them of technical nature. All the steps of the proof, except the last, are valid for every operators in £, and can be
applied toward the solution of other problems in Analysis.

In particular, we show in Section 5.2 how the full solution to the best constant problem for the operators in £ is related
to the hypercontractivity of the Laguerre semigroup.

2. The Hankel transforms

Our interest in the class £ was originally motivated by the Fourier transform and the Hankel transform.
The Fourier transform f(¢) = fgn e~ iagit+xln) £ (x)dx is well defined when f € C§°(R™), and can be extended to a
bounded linear operator from LP(R") to LY(R") if and only if 1 < p <2 and q = p’ (see e.g. [15]). Furthermore,

1

N noo1 _1.n
Il gy < @OP (PP (P) 7)1 fllwny,  f €LP(R"). (2.1)

The constant on the right-hand side of (2.1) is best possible, as W. Beckner proved in a celebrated paper [2].

The Gaussian functions fs(x) = e~SOTH+X) with s > 0, attain the equality in (2.1). E.H. Lieb proved in [11] that the f;
are the only function for which the equality is attained. Since the Fourier transform of a radial function is radial, we can
state the following important observation: The Fourier transform has the same LP (R") — LP (R") norm of its restriction to the
radial functions of LP (R").

The restriction of the Fourier transform to the space of radial functions can be rewritten as a constant multiple of an
operator of the class L. In fact the Fourier transform of f(|x]) is

+00 +oo
Fieh =@mtie 54 [ rork sy ele)dr=@ofie™ [ et sy c)ar
0 0

=(2n)%£§1nf(|§|). (2.2)

Following [3], we will refer to [Zg_H _q—1» @ > —1, as to the Fourier-Bessel transform of order ¢, even though this operator,

which H. Hankel introduced in 1875 (see [8]), is sometimes referred to as Hankel transform in the literature. We let

+00
Faf ) = L2 1 o 1 f G0 = / FOOE ™ [t de. (23)
0

From (2.2) it follows that

Fg)=@miHy_1£(1El), feC§(0,00), ¢ R,

The Fourier-Bessel transform of order « shares a lot of properties with the Fourier transform. H. Hankel proved the following
inversion formula

Ho(Ha )0 = f(x), feC30,+00). (2.4)
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A short and elegant proof of (2.4) is in [3] It is easy to prove that the Fourier-Bessel transform extends to an isom-
etry on L2((0, 00), 2% *+1dx). Moreover, |Hy f(X)| < ball fl11((0.00).¢20+1 dry» Where by = SUPc(g o0y [t Jor(t)]. By Riesz in-

terpolation theorem, the Fourier-Bessel transform extends to a bounded linear operator from LP((0, c0), t2%t1dt) to
LP'((0, 00), t22*1dt), and

||H fll 20+1 1-2Z
aJ e’ ((0,00),t22+1 dr) <b, 7. (2.5)

I FllLp ((0,00). 201 d)

Note that the LP((0, 00), t2¢+1dr) — LP'((0, o), t2%*+1dt) norm of H, is the same as the LP(0,00) — LP (0, 00) norm
2041
of LS., ,- Indeed, if we let F(t) =t f(t), and we observe that F(t) € LP(0, co) if and only if f(t) € LP((0, 00), t2¢+1 dt),

using (2.3) we can see that

v LS Fl,
”Ho‘f”Lp/((O.oo),[z‘”l dy I 2"”'1 —a,0 ”LP (0,00)

_ (2.6)
I lp (0, 00),t2¢+1 ) 1 FllLp (0,00

LY 0 is the so-called Hankel transform of order «. This is a well-studied operator with remarkable properties. We will let
2

Ha f(x) = ;Of(x):/f(t)(xt)%ja(xt)dt. (2.7)
0

The Hankel transform shares many properties with the Fourier transform as well. The following inversion formula for the
Hankel transform is proved e.g. in [4]

Ho(Ha fY(x) = f(x), [ €C5(0, +00). (2.8)
From (2.8) it follows that the Hankel transform extends to an isometry on L%(0, co). Moreover, |Hq f(%)] < cq I f11L10.00)»

1
where ¢y = SUPe(0,4-00) [£2 Jo (O]
By the M. Riesz convexity theorem, the Hankel transform extends to a bounded linear operator from LP(0, co) to
LP (0, 0o) for every 1 < p <2, and

”Hotf”]_p’(o’oo) < 1-5

(2.9)
Il f 1l 0,00)

In this paper we evaluate the LP (0, co) — LP'(O, oo) norm of this operator (see Theorem 1.2). Unfortunately the techniques
that we used to compute this norm cannot be used to compute the LP((0, co), t2¢+1 dt) — LP'((0, oo), t22+1 dt) norm of the
Fourier-Bessel transform for general «’s. When @ = % — 1, where n is a positive integer, the norm of the Fourier-Bessel
transform can be computed with the aid of the theorems of Beckner and Lieb.

The following proposition is proved in Appendix B.

Proposition 2.1. The following inequality holds forevery 1 < p <2,n > 1and f € LP(0, 00),

”CZ n 1 1
2(7—1)(7—5).

S L= 10f”LP(Ooo) n ﬁ—% p%
< F(—) — (2.10)
(">

HfllLP(O,oo) 2
The constant in (2.10) is best possible, and equals the LP((0, co), t2¢+1dt) — LP'((0, co), 2+ dt) operator norm of 7—7%_1. The

equality in (2.10) is attained by the functions fs(x) = e‘s"z, s > 0. These are the only functions for which the maximum in (2.10) is
attained.

3. Open problems and conjectures

The problem of evaluating the LP — L9 operator norm of Lf u for general values of the parameters seems to be very
difficult. At the moment we can only evaluate it when q=p’, a > —% and v = % (Theorem 1.2), and when g =p’, o = % -1
and v=1-5+ ”p;/l (Proposition 2.1).

The theorem of E.H. Lieb implies that the Gaussian functions are the only maximizers for the operator norm of the
Fourier-Bessel transform when o = 2 — 1. We conjecture that this is true in general, that is, that the Gaussian functions are

. . IHafl .
the only maximizers of the ratio eIy woorm=tan g every o > —1. If that is the case, then the LP((0, 00), r2**+1dr) —

”fHLP((O 00),rM=1dr)
/ .
LP'((0, 00), r2®*+1 dr) norm of the Fourier-Bessel transform is
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at+l
p 1_1
) pa F(Ol-i—])/ p/.

H['2a+1 oz,O(F)“Lp/(O’OO)
= = sup Ll =2
I|f||Lp((0,OO),r2°‘+] dr) ||F||Ll’(0,oo) (p/)

”Hotf”]_p’((oqoo),ﬂtxﬂ dr) (L —

LS
==

More in general, we conjecture the following:

Conjecture 1. The LP — L9 norm of L, is finite if o > —%, 1< p <q< oo andifand only if

1 1 1 1 1
== —= and —a——/<v<——max———,0. (3.1)
P oq p 2 p
For these values of the parameters,

I1£5 . FllLa 0,00 i

s (3.2)
1 fllLp (0,00 VP
where we have let
la4a—v+d ) Ol+U+lL 1
_1p? r +5)14
Cgpq 2" i? 7 4 2)1 (3.3)

qz(oz+v+ ) F(1+a Up—l—z)l’

Conjecture 2. The functions fs(x) = e‘s"le‘””‘, s > 0, are the only maximizers of the ratio in (3.2).

Both conjectures hold true in the special and significant cases of Proposition 2.1, and Theorem 1.2 validates the first
conjecture. In Appendix A we prove that the bounds for n and v are optimal.
153 . .
AUTESIES > C% is easy; the functions fs(x) = e~ 17V are i LP(0,c0) because, by (3.1),

1£1p 0.00) v.p.q
1 1 . LS LD N40,00)
- = 75 = —— — nfFn -
l-v+a>25;+a>0> > A change of variables shows that the ratio AT
,00

Proving that

is independent of s. When s = 1,

2 2
L% (F1)() = y* [ e™T Jo(xy)x*+1dx can be explicitly computed (see e.g. [4, p. 29, no. 10]), and is y‘””“‘e‘yT. Thus,
v,utd 5 0
by the well-known identity

0 14+m
2

s~ 1+m
/ﬂx wax="""r(1E) ms 1, (34)
2 2

0
it follows that

e 1
||£‘5,M(fs)||Lq(0,oo) _ |yvtethe T ||Lq(o ) _ (f yWretiae= 5 )a

_ _
Ifslirooo a-viae S i (f5exI-vtoe )

1 1 1
p7(1+a—v+5) F(a+;+uq+ %)q _co
1 1

qf(u+v+7) l—«(1+(§7vp+%)p

1
vo1
=21 v.p.g-

4. Proof of Theorem 1.1

From now we will use || ||p instead of || ||zp(0,00). In this section, C is a constant that can change from line to line.

The proof of Theorem 1.1 relies on a theorem on interpolation of operators with change of measure proved by E.M. Stein
and G. Weiss in [12].

We let M =N = (0, 00). Let i =0, 1, and let 8; = y™idy be measures on N, and «; = x"dx be measures on M.

We let 8 = Bo + B1, @ = g + «1. With this position, for any measurable E, F C (0, 00),

5i(E)=/hi(Y)dﬂ(J/)s ai(F)=f’<i(X)da(x)7
E F

where hi = W and kl W
For every r, s € [0, 1] we can define the following measures on M and N/,

/3s(15)=/h5h1 S(x)dB = / smi+(1-s)mo g,

or(F) = f Kik ™" (x)do = /”“*“")"de.



370 L. De Carli /J. Math. Anal. Appl. 348 (2008) 366-382

Let 1 < po#p1 <00, 1<qo#qi < oo. For every t € (0, 1), we consider the exponents q; and p; that satisfy the following
relations:

1 t 1-t 1 t 1-t

pe P P04 41 do
We also let s(t) = % (so that 1 —s(t) = (1 - 0)f) and r(t) = %‘. With this position

Qg +1-070

mn _nlo
w0 dy and dayg = Xpt(f oy TA=030) dx.

dBsey =Y

The following theorem is a consequence of the main theorem in [12].
Theorem 4.1. Let T be a sublinear operator satisfying

NTfllai (v,apy < Kill FllLe: (v, das)
(or ITf | gioon,apy < Kill fllLpi m,day) ) fOr every f e LPi(M, da;) and i = 0, 1. Then T is defined also in LPOM, daty ) for every
te(0,1),and

||Tf||Lq(t)(N,dﬁS(t)) < Kf”f”Lq(f)(M,dar(t))’

where K; is independent of f.

We first prove Theorem 1.1 when g < p’ and v = % We let

[ee]

TF(y) :/F(x)]a(xy)dx, F € C5°(0, 00).
0
Then
25, F0 =y [t satndx=yt [ xb £ Jaten =y (et 1) o)
0 0
If we let
df = Y1+ dy,  da=x"%dx, (41)

1 . ey
and F(x) =x2 f(x), we can see at once that the inequalities

IT FllLa¢0,00),d8) < CIIFllLr((0,00),dar)

and

IT FlLa.02((0,00),d8) < CIIFllLr((0,00),dex)

are equivalent to

£, £l < sl

and
HL"E,M‘f”Lq'm(O,OO) g C”f”p

When q = p’ we are in the case of the Hankel transform, so we assume q < p’. The point (%, %) is above the duality line

1 1
1oq-1,
q P

We let (%, ql—o) be the intersection of the duality line and the line that joins the points (1,1) and (%, %).

It is easy to verify that po =1+ % (and of course qo = pp). With this position,

11 11
<<—>:a—o(—u—)+unn
P q Po’ o

when t =

1_ 1
q p-
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To apply Theorem 4.1 we argue as follows: We prove first that £ is bounded from L'(0, co) to L1:°°(0, 00). By the
1-
observations above and (4.1) this is equivalent to proving that [|TF|l 1.c0¢(0,00).ap;) < CIIFII11((0,00).day), Where we have let

dgi = y_% dy and doq —x"Zdx.

We know that £§ 0 is bounded from LP°(0, c0) to L9°(0, c0) because it is the Hankel transform, and so, if we let dBy =
2

P _n
y2 dy and dog = x~ 2 dx, we gather

1T F il 190 ((0,00),dB0) < CIF Il LPo ((0,00),derg) -

Therefore, for every 0 <t <1,

T FllLat (0.00).dBsey) < CNF Lot ((0.00).derr)s

(4.2)
in particular, for t = % — % (which is the value of t for which p; = p and qr = q) and the definitions of dfs«) and do(), we
gather

(1-0pg
q(_ 5 + 7 0 )
dBsy =y 20 2 dy = y‘I(%‘H‘) dy

_ ot _(-bHpg
and doy) =x PC2 "m0 gy =x 8 dx,
and (4.2) is equivalent to

I3 Fla<Cel £,

(4.3)
as required.

Let us prove that £§ __ is bounded from L1(0, 00) to L1:°°(0, 00). Indeed,

1
2

£y _fo= y! /(xy)% Jay) fdx =y~ " Ho f(9),
0

and since

.oyl
Ilﬁ‘i_‘,qf}lp.mmm)=§Slgt}{y- Y " Ha f(y) >t}
and we have recalled in Section 1 that |Hy f(¥)| < C| fll1, then

125 1l ooy < sUPE(ETCIFI) =Cll S,
t>0

(4.4)
as required.

To prove the theorem for q < p’ and —a—%<v<%welet v:%—e,with0<e<%+a—%.

We use the identity (A.1) in Appendix A to infer that (xy)%‘eja(xy) = Hq—eVe(xy), where we have let ¢ (t) =
21=€r () 0.1 () (1 — £2)€-1¢%=€+3 With this position and the inversion formula for the Hankel transform

Ly fy)y=y" / FOOHy—eYe(xy)dx = y* / Ve (@ Ha—e f(zy)dz = / we(Z)Z’“ﬁ‘i_‘;f f(zy)dz.
0 0 0
Thus, by (4.3),

o] o]

82,0, < [ 0@ |15 F @] b2 < Cll o) [ 27 Fpeterdz

0 0
1

— 1_1
=2 Gl o [ (1-2) 2 ez
0
Recall that p =

==

—land0<e<%+a—%,andsotheexponentofzisa—6+%—%>l—

2
7> 1.
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Therefore, the integral is finite, and we have proved Theorem 1.1 also in this case.

To prove the theorem for ¢ > p’ and v < § — % + % we observe that the adjoint of £% , is £%,, _,. Therefore, the
LP — L9 norm of LY , is finite if and only if the same is true for the L9 — L”" norm of LS

Since g = (¢')’ > p’, we are in the case that we have already proved: the L7 — LP’ norm of L5~y s finite if v+ p < %
that is, v < % — % + %. This concludes the proof of Theorem 1.1.

5. Proof of Theorem 1.2

The proof of Theorem 1.2 is a generalization of Beckner’s celebrated proof in [2], and will be performed with a series of
steps which are important in their own because of the connection with other problems in Analysis, the hypercontractivity
of the Laguerre semigroup being one of the most significant issues.

5.1. Preliminaries

In this section we collect together a few preliminary facts concerning the Laguerre polynomials and we state our main
theorem. We refer to [13] or to [14] for details.
For o > —1,x>0and k=0,1,2,..., the Laguerre polynomials of type o are defined by the formula

1 dk
k! dxk

Each L is a polynomial of degree k. The Laguerre polynomials satisfy the following orthogonality relations:

e XLy (x) = (e’xxk*"‘). (5.1)

o Y 0 if k j,
[ Ly, (X)Lj X) diie (x) = I(k+a+1) k=i (5.2)
J INCESVN(ES)) =J

where we have let dug (x) = %dx.

A change of variables shows that the orthogonality relation (5.2) can be rewritten as
+00 : ;
/La<x2>La(x2>dM ® 0 if k#j, (53)
k\ 5 J5i\ o5 o = I (k+o+1) e s .
K 2)7\2 r(a+1)olt“(k+1) if k=j,
X2
e 2 X2a+1

where we have let duy (x) = W T @11

We will use the following important identity, often called the Hille-Hardy identity, which is valid for real or complex w’s
such that |w| <1 and for x, y €R,

oo

w2 o ATREDT@+D) o 2 0r 2
Kw(X Y )_g F(l<+ot+1) Lk (X )L’( (y )C()
1
=1 —w) " (IxylvV=0) T+ e 7@, (W) (5.4)

K&(x?, y?) is the Hille-Hardy kernel of order c. By (5.3),

o0

X2 y2 X2 ‘ y2
/Kg(?, 7)Lﬂ<5>d,ua(x):a) Lg<7>. (5.5)
—00

In what follows we will let

oo

TS () (y) = / K& 0t )9 () dfi (), (5.6)

0

where |w| <1 and ¢ is a polynomial. This is the Laguerre semigroup (see e.g. [14]). After a change of variables and
normalization, the latter is equivalent to

2 ? 2 .2 2
T;’;w)(y?): f Kg(%,y?)w(%)dua(x). (5.7)
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If ¥ (x) = L} (y), then by (5.5),
2 2
Tﬁ(L‘,f)(y?) =a)"(Lg)(y7). (5.8)

5.2. Hypercontractivity of the Laguerre semigroup

The Hille-Hardy identity allows us to replace the Bessel function in the definition of LS . With the Mehler kernel, and
to establish a connection between the LP — L9 mapping properties of these operators and the continuity of the Laguerre
semigroup in weighted LP spaces. We recall the probability measures that we have defined in the previous section:

2
e~ *xk dx e~ 7 x%+1 dx
df =— d d =—0————, k>-1.
(%) Tk an M (%) TR 1) K >

We prove the following

Lemma5l.let1<p<qg<ooanda > —%. Let  and v such that

1 1 1 1 1 1
w=——~ and —a——/<v<——max{—,——,0} (5.9)
P q p 2 q
(see (3.1)). We let
qa+v+pu) =2y +1, (x—v+1p=28+1. (5.10)
Let CF , 4 be defined as in (3.3).
The inequality
125 Fll, < C5pqll fllp (5.11)
is valid for every f € C3°(0, co) if and only if the inequality
o] a 00 H
(/uymwoﬁwnw» s(fwuaﬁwmu» (512)
0 0
is valid for = —pq~!, € = pp—?’, and for every polynomial k.

It is known that the Laguerre semigroup {T{'} is hypercontractive for all &« > —1/2 and t € (0, 1) (see [6,9,10]); that is,
for every p > 1 there exists a strictly increasing function q : R* — [q(0) = p, c0), such that for every t > 0,

o0 l o0 l

q p

(/HNMWWWWWWO <(/Mmfmmu0.
0 0

It would be very interesting to find the optimal range of ¢ > p and t’s for which the inequality above still holds true.

Very little is known about the hypercontractivity of the Laguerre semigroup for negative or complex t's, and, to the best
of our knowledge, there is little or no literature on the continuity of this semigroup in weighted LP spaces. Proving (5.12)
would provide a solution to this problem for a special t. Moreover, a proof of (5.12) could be key to the general solution
of the problem: indeed, Beckner proved in [2] that the Hermite semigroup T, satisfies |To fllrppu;) < IIfllLa@y,) when

1<p<2 q=p, and w=+/—pq~1; a few years later ]. Epperson showed in [5] that a clever modification of Beckner's
proof can be used to find the optimal set of parameters p < q, and w € C, for which the inequality above is still valid.

We hope that a proof of (5.12) and Epperson’s technique will produce a full solution of the hypercontractivity problem
for the Laguerre semigroup. The establishment of (5.12) in the optimal range of all parameters involved would also be of
great interest.

Note that if £ , is the Fourier-Bessel transform, then v = 2";;,“1 —aand p=0,and so 28+1=2y +1 =20+ 1.

Therefore, evaluating the LP — LY operator norm of the Fourier-Bessel transform is equivalent to proving that the La-
guerre semigroup T satisfies | TS fllp@pg) < I fllia@a,) for 1 <p<2,q=p’,and @ = —pq~ L.
If E‘,’,‘,M is the Hankel transform, then v = % and u =0, and # = @ Observe also that the assumptions on @ and v
in (5.9) imply
1 2y+4+1 26+1
<— < —

- < + . (5.13)
q q p H
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Proof of Lemma 5.1. We will let ¢ = p’, since the proof is very similar in the other case. With this assumption, € =1 and
n=0.

Recalling the definition of 8 and y in (5.10), the constant C{} P q n (3.3) can be written as

| p3(+a—v+d) F(“+”+"q+ 1

1 1
_1 q 1 1 (T N2Y (g7 1ya
€Y ,a=2""1" . : Y 1y +D ()] 2 ’
qi(a+u+7) (1+a Y+ )— (C(B+ 1)2B+1p=B-1)p
and (5.11) can be rewritten in the following equivalent fashion:
2i i % £ fl <27 P ’ 5.14
g { —m8 —— Pl - . ;
(F(y+1)21’+1> ” v,uqu\ <I‘(ﬂ+1)2f5+1> I1flp ( )

With a change of variables we can rewrite (5.12) as:
o0
/ TS (k) y\fle 5y de f
@ 2 'y + 1)2V+1
—00
and we can replace y with ,/qy in the first 1ntegral and x with ,/px in the second integral. We obtain
2
i qy e |y + dx e px
q f TE (k) oo ) S /
T(y + 1271
—00

Then, we use the identity (5.4) to replace the Hardy-Hille kernel in the definition of T with a product of J4(xy) and an
exponential function. Indeed,

2 ® 2 X2
T%(k)(%):/l(%(); qg )k(2>dua(x)

1
and recalling that K%(x2, y2) = (1 — )~ (|xy|/=@) T (a + 1~ 16 X+ j, (2l

1
|x|2f"H dx
F(ﬁ T(B+1)28+1

(5.15)

1
P -5 |X|2ﬂ+1 dx
T(B+1)26+1

(RS and @ = —pg! = —(p - 1), we
gather
X qy? et " 1 2aar? o
Kg(??): 1( 5| (pa 1)2) P+ 1ed 7 o (lylp~2)
1
=p ' (2p7 1) T (e + Dlxy| %3 ¥+ | (1xy|p~1).
Therefore,

2 %® 2
Tg(’O(%)=P_1(2P_%)QF(01+1)/Ixyl_“]a(lx)’lp_%)k<x3)€21_q(xz+qyz)dﬂa(x)
—00

o0
1 _a_q —a _1 X2 ﬁ,ﬁ 20+1
=5p? Ixy| ™% Jo(1xyIp™2)k < eI dx
—0o0
® 2
—p STy e /x|y| o(xlylpH)e” wk(" )dx.
0

If let x=,/px’ and recall that by (5.10), v=o +1 — 2p+1 _ 2yt

2y+1
= o (and so 7

=20 +1-— @), we obtain

2 2 r x)? _psl g2
Tg‘-;uo(%) Iyl y?/ D) Ja (X 1y1) ) e ‘—k<”(2) )dx/=|y| T e LY () (y),
0

+1
where we have let h(x) = e~ g X e T k(px ).

Using the identity above and the deﬁnltlon of h, we can see at once that the inequality (5.15) is equivalent to

o0

1 o 1
i1 o dy R = dx ?
q ¢ ( /!EU,O(h)(J’)|qw> <p P ( /|h(X)‘pw> , (5.16)

—00

which is (5.14).
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2841 2
There is no loss of generality if we replace k(pziz) with k(x?). Since the functions of the form of h(x) =x ? e~z k(x%)
are dense in LP (0, co) (see e.g. [1]), it is enough to prove (5.11) for these functions. The proof of the lemma is concluded. O

5.3. Reduction to a discrete operator

Let us recall that (5.12) is equivalent to

® 2 |4 q % 2
(Tem(e ) ()

where € = ”p—zq, @=—pq!
2
X

dug(x) in (5.17) with sequences of discrete measures, and the Laguerre polynomials in % with homogeneous functions in
n variables. Then we will define a discrete analogue of T and we will show that Lemma 5.1 can be proved as a consequence
of the LP — L9 mapping properties of this operator. We will assume € =1 (as in the case q = p’), since the proof can be
easily adjusted when € # 1.

Before we state the next lemma we need some preliminaries. Let &, be the Dirac distribution on R with unitary mass
at tg. We let dv(t) be the Bernoulli trial %(81(t) +8_1(t)), and for every positive integer n, we let t = (t1,...,ty), o () =
t1 + -+ +ty, and dv,(t) = dv(ty)---dv(ty). We also let dvg,(x), or dvg(x) when there is no risk of confusion, be the
probability measure

p 5
dw(x)) : (517)

and k is a polynomial. In the next crucial step we will approximate the measures du, (y) and

o (%) 2+ dvy (%)

Pen®) = 2 O dn ()

dvy n(X) is the discrete analogue of the measure dfix(x) that we have defined in the previous section.
Let Yy q(f) = k! Z]<m1<m<mk<n tm, - - - tm, be the elementary symmetric function in n variables of degree k, and let X, be

the vector space which is generated by the functions o (f)/ Y.n (), with k, j > 0. These functions are homogeneous of degree
k+j.

We prove the following
Lemma 5.2. If there exists N > 0 for which the inequality

1 1
q p
( / |g<¢5§>|qdvy,n<§>> < ( / |g<§>y"dv,s.n<§>> (5.18)
Rn Rn

is valid for every n > N and every function g(s) € Xy, then (5.17) is valid for every polynomial k(x).

Proof. By the central limit theorem, the sequence dv™(t), the n-fold convolutions of dv(y/nt) with itself, converges to
(Zn)*%e*% in the weak topology of the continuous functions on R, and furthermore, the moments of dv™ (t) will converge
to the moments of e‘é (271)‘%. That is,

2

f FOI™dv™ ) — / FOIm = dt (5.19)
R R \/E

whenever m > —1 and f is continuous. Thus

/f(t)ltlz'"“ dv“”(r)szm o t)IEr A P AV (e /D) - d(E /D)
R

R
2

- R/ £ (@ ®)[o ®™ dun(t) — Rf Fom

and

2

R[}o(f)f”'“ dvn(\/ﬁf)—>R/|t|2m+1f/_Tindt
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when n — oo. Therefore

/f(a(f))dvm,n(f)_’ /f(t)dum(t). (5.20)
R R
Observe that
/f(o(f))|a(f)|2m+1 dvy (V/AE) = 1 Zf(ii 4.4 L)‘il +... 4+ 1 e (5.21)
! oo v vn/lvn vn ' '
Rﬂ

where the sum is taken over all possible combinations of n signs (and thus the sum has 2" terms). Therefore, the integral
on the left-hand side of (5.20) equals to

Zf :tl A 1 |£14.--£1)2m+1
NG )14+ £ 12m

From (5.20) it follows that

) 1 _ q _ 1 q
Jim Tfjik(ioz(y)) dvy,n(y)=/T;‘jk<§y2> dpy (v)
R R
and
) 1 5 - p ~ 1 ) p
nler;O k(ia (x)) dv,g,n(x)z/‘ k(5x> dugx).
R R
Therefore,

Q=

i G Tk (o GNITdvy (DT _ (oI Tak(3y*) 9 dpsy )
N0 ([ (A0 2(®) P g () S kA 2) P dpa (x)) 7

Recall that k(x) is a finite linear combination of Laguerre polynomials, and that T acts as a multiplier over the Laguerre
polynomials of order o (see (5.8)).

We show that L%(%a()’c)z) can be dv,(4/nx) approximated with a linear combination of homogeneous functions of de-
gree 2m.

We will need the following lemma, whose proof will be postponed to Appendix C.

Lemma 5.3. For every o > —%, m>0n>1,andx=(+ -

1
N

s

wl1 5. oo Vo
Lm(iaz(x)) =% (%) + ERm(o(x)),

where R, (x) is a polynomial of degree < 2m — 2 whose coefficients depend only on m and o, and & (X) is a homogeneous function
of degree 2m which is defined as follows:

(—1)’”1/, ¥ e 1
g W2m,n (X) fa=-3,
Bl (%)= | Zom T o : (5.22)
Zj:o n%,jo'(x)]WZm—j,n(X) ifa> -3
where the vy n(X) are the elementary symmetric functions in X = (x1, ..., Xp), and
V2
-1Hmy/2r 1_i(2 _1 :
pe =Y V2 (m+°‘1+ )2J<;,”) /(1—2r2)“ 2(t— 1) dt. (5.23)
' Tz(2m)'l >
@m)!T @+ 5) s
Furthermore, for every | > —1 and every q > 1,
1
: oy o 1 2.5 K S\
nler;o P (X) — Ly 50 x) )| dwax)) =0. (5.24)
RTI
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The functions @5 (x) are the analogues of the Laguerre polynomials in %xz. It is important to note that these functions
are homogeneous of degree 2m.

Recall that X, is the vector space which is generated by the functions o (f)/ Y.n(t), with k, j > 0; therefore, every finite
linear combinations of the @3 (x) is in Xp.

We shall define an operator on Xy that approximates TZ. By (5.8)

M yz M L y2
TS D alf (7) =Y qo Lg(7).
k=0 k=0

Since L%(%o(i)z) can be approximated, in the sense of the previous lemma, by &% (X), the natural replacement for T is
the operator Ko, = Ky n : Xn — Xa,

M M
lcw<2ck¢j> ) =) cjo¢;©),
k=0 k=0

where the ¢;’s are homogeneous generators of Xy of degree 2j. Thus, Ky,¢;(5) = wfqu (5) = ¢j(55/w), and if we let k(%) =

22/’:0 cka(%) and g(s) = chqﬁj?‘ (5), we obtain K,g(5) = g(s/w).
By Lemma 5.3,

p g

lim. ( / k(%ﬁ@))- £@) duﬂ_n@) =0
RH
and
1
. 1 5 NE _\¢
nlgqgo(f T"‘k(zﬁ (s)> - Ko(@®) dvy,n(s)) =0.
Rn
Consequently,

L Ui IK0g G dvy n)T (o TSI dpty (5)7

g _ 1 1
" (Jr 1€®)IP dvp n(5) 7 (fR”((%di,U«ﬁ(S))p
and if we prove that, for every n > 1, the ratio on the left-hand side of (5.25) is < 1, then the same is true for the ratio on

the left-hand side of (5.25).
Since we have observed that K,,g(5) = g(~/ws), we have proved the lemma. O

(5.25)

5.4. End of the proof of Theorem 1.2

Replacing T3 with K, is one of the most crucial steps of the proof because it allows to reduce the proof of the inequal-
ity (5.12) to the proof of the discrete inequality

1 1
( / }g<§~/5)|"dvy.n<§>) " < ( f 1) dv,s,n@) " geX (5.26)
R" R"

1 1 2y+1 < 28+1 +

(see (5.18)), whenever & = —pq~"', and when — < = < 5 %

3y — o @™ dvy (/)
et dvm.n($) = T 15 6T duy (s
When =y = —% and g = p’, (5.26) has been proved by Beckner in [2]. That is, Beckner proved the following un-
weighted inequality:

%, and n is sufficiently large. Recall that we have

1 1
( / }g<§~/5)|"dvn(§)>q < ( / \g<§>|"dvn<§>) " geXa. (527)
R" R"

Beckner proved (5.27) with iterated applications of the following “two-point inequality”:

’ ’ l l
AV@D + BIP + |AV@D — B|P' \ ¥’ A+BP+|A—BP\?
(I V@ +BIP + |AVD |)v<(|+|+| |)_ (5.28)

2 2

The weighted inequality (5.26) cannot be proved in the same manner, and its proof seems to be quite difficult.
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We will need the following observation: We have observed that [gu |0 (5)[2™1 dv,(4/n5) converges to (271)*% Jr Ix2mH1
2
e~ dx when n — oo. Therefore, if n is sufficiently large, we can replace fR,. lo (5)|2™H dv, (/nS) with ¢ = (27'[)‘% X

XZ
Jg1xI?™+1e~ 7 dx, and, instead of (5.26), we can prove the following inequality:

5)[2y+1 S\ ¢ 5)[28+1 S\ >
(/\g(§~/5)|q lo®)Y : an(«/ES))" < (/|g(§)|p|0(5)| dvn(\/ﬁs)>!” g€ Xn.
4
R" R"

s

Recalling (5.21), we can see at once that when @ = @, the latter is equivalent to
512V dy (5)\ 1 5112641 gy (5)\
_ = o(s Vn(S _plo(s v (s
</|g(s /w)|q| ()| n()) g(‘/|g(s)|P| ()| n( )) ) (5‘29)
Cy Cp
R" R"

For these values of 8 and y we can actually prove that (5.29) holds for every n > 1 and for the class of functions g(s) for

2B+1
which g(s)|o ()| ? is in LP(dv,(s)). That is, we require that

;—nZ|g(i1,...,i1)\"|ﬂ +.- 2 1P < 0,

where the sum is taken over all possible combinations of n signs. Since this sum is finite, this is equivalent to assume that
lg(£1,...,£1)| < oo for every choice of (£1,...,+£1).

The functions in X belong to this class.

The proof of (5.29) concludes the proof of Theorem 1.2 since, by (5.10),
Hankel transform.

We argue by induction on n. When n=1, s =s =41, and o(s) takes only the values 41, (5.29) is equivalent to

1 1
(/!g(ﬁs)l"dv(s))q < (cﬂ>‘%<cy>%([}g(s)l”dv(s))p.
R R

Z)CT“ = 2’3‘1—“ implies v=1 and © =0, as in the

By (5.27) the following inequality holds true:

1 1
(/!g(dﬁs)l"dv(s))q < (/!g(s)l”dv(s))p.
R R

1 1
So, if 1< (cy)@(cp)” 7, or equivalently, if

1 1
((Zn)*%/|x|2f‘“e*% dx)p < ((271)’%/|x|2”+1e’% dx)q, (5.30)
R R
then (5.29) follows. By Holder’s inequality
1 1 1_
(/(fglxlzﬂ+l dx)p < </e_%lxl%(2ﬂ+l)dx>q </e_% dx)p .
R R R

XZ
Since [pe” 7 dx= (271)*% and ZﬁT“ = @ then

ESIE

1
x2 P 101_1 X2 q
(/e*7|x|2ﬂ“ dx) <@m)% q)(fe’7|x|zy+1 dx) ,
R R

which is (5.30).
We now assume that (5.29) is valid when n > 1, and we prove that the same is true for n + 1.
2841
Let g(5) be such that g(5)[o(5)] P is in LP(dvy4+1(5)). We let 5 = (5, sp41), with " e R", and dvp41(5) =dva (5') dv(sp+1).
We also let

] {g@x 0O 25 if 155 £0
g] (S) = ‘U(S/)‘ ’
0 if 0‘(5/) =0,

and
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g@B) if o) =0,
0 if o(5") #0.
With this position,

8208)= {

o 25 }
g®oE| T =g1®|0G)] T +220).
This is because o (5) only takes the values +1 in the set where o (5') = 0.

.. _ _ _ 21 . _ . 28
g2(5) is in LP(dvpy1(5)) because g(5)|o(5)| P is; for the same reason, the restrictions of g1(s)|o(5')| ? to the sets
where sp11 is constant are in LP(dv,(5")) and the restrictions of g;(5) to the sets where s’ is constant are in LP (dv(spt1)).
Thus,

<24 1 - o1
( / |g(«/5§)|"4'0(sg' dvn+1(§))q=( f |g1<\/5§)|"|a(§’>|2”1d—“";‘(s)+ / Igz(@g)l"—d”":l(s)>q
Rn+1 14 Rn+1 14 Rn+1 14

— (1 +19)7.
Ig can be easily estimated: by (5.27),
a
1< i( f \gz(?)l"dvn+1(§))”,

Cy
Rn+1

1 1
and since we have proved that c{i > c;}’, we can conclude that

- 9
Ik(/lgz(é)}’JM)p. (5.31)
R+1 CIB

Let us estimate [4. Indeed,

/12y +1 1
= ( / ( / |g1w5§>|"dv<sn+1))%dvn@))q

R" R Cy
/) |2Y+1 1
N </</|g1(\/5§/"/CTU$n+1)|qu($n+l))%d]}n(g/)>q’
Y
R" R

and by the one-dimensional inequality (5.27), the last integral is

4 o2y +1
< (f(ﬂgwéﬁﬁsn+1>|"dv(sn+1>)p %dw’))q.
Y

R" R

We recall the following convexity type inequality,

(/(/lf(s, t)!”u(dt))pvws))q < (/(f|f(s, t)|"v(ds>>qu(dr>> ", (532)
S T T S

which holds for every positive measure spaces (S,S,v), (T, 7, u), every measurable function f(s,t) and every 0 < p <
q < oo. By (5.32) and our initial assumptions,

5)2v+1 5 2y +1 2 1
( / Igwm)r’%avm@))p < ( / ( / |g1wca§zsn+1)}q%dvn(§’))q dv(snm)p
v 5 v

Rn+1 R
_plo@)PA 5
<(//Igﬂs)l”%dvn(s>dv(sn+1>> ,
R RH 'H
and since dv, (s")dv(sp+1) =dvpy1(5), we have proved that
q
_plo )21 \?
1< [laor T mae)". (533)

RTH»‘I
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From (5.31) and (5.33) it follows that

26+1 H\ P\ 5
(19 +19)7 < (( / & ()!"%dml(s)) (/\gz(i)!"‘“’”:%)p)q,
Rn+1

and by the elementary 1nequa11ty XM+ y™ < (x + y)™, which is valid whenever x,y > 0 and m > 1, and the fact that

2641 2641
g3)oB)| P =g1(5)|o ()| P + g2(5) because % ﬁ it follows that
B los )I -
(194197 < / 5o T 6.
R’I+]
Therefore, we have proved (5.26) and Theorem 1.2, when q = p’ and 2‘3’%1 = %.
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Appendix A. A few counterexamples

We are left to show that the range of values of v and w in (1.2) is optimal. A simple scaling argument shows that

necessarily i = - — —, but proving that the bounds for v are best possible requires more work. We can assume that q < p’

l

(and so (1.2) is —a — 7 <V < ;), since we can deal with the other case as we did in the proof of Theorem 1.1.

LI VES % is necessary. We recall the identity

/ x)? Ja Xt (1= 22) dx = 25T (s + 1)y ™7 Jorss1 (), (A1)

which is valid for every s > —1. See e.g. Appendix B in [7], which is also an excellent reference for the other properties
of the Bessel functions that we will use in this appendix.

1
Take v = % +2¢, with0<e <1, and s = —% +¢€, so that f(x) =x¥t1-2€(1 — xz)fﬁ"%x(oj)(x), where X ) (t) is the

characteristic function of (a, b), is in LP(0, 1). Then,

! 1
: 1
l:?f_p,f(}’) :yl*/-(xy)%ﬂ ]a(xy)xa‘l“%*Zé (1 _XZ)—E-!—E dx:yuﬂe /(xy)z ]a(xy)x‘)‘ﬂ( xz)—5+e dx
0 0
e+l 11 1
=y P77 D 1_E+6 Jat 14 (A.2)
p

A well-known large variable estimate for Bessel functions is that

cos(s — +%71) 1
Jm(s) = T+O<_@7)

(s)| by replacing | cos(s —

+,++2

We can underestimate | J )| by when it is greater than or equal to % and

ot+l/+e

p
by O elsewhere. Specifically, if k is an integer, in the intervals Ik where s satisfies
Aty ety T

s—in—kﬂlﬁ—,
2 3

/1 1 1
_1/2 —-1/2
}]a+#+€(s)|> 27T +O<S3/2)>_27[s
1

whenever s is sufficiently large.
Therefore, |J,, 1, (V)] > %y‘i whenever y € |, Ix and is sufficiently large. Recalling that u =
p/

then

% % we can see at

once from (A.2) that
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|5 f)| = e
for some positive ¢, whenever y € |, Iy and is sufficiently large, and hence does not belong to L7(0, co).
o V> —a— % is necessary. We now let v = —a — % — ¢, with 0 <€ < 1. We let F(x) =x1+#+€+2a(1 —X2)7%+6X(0,1)(X).
By the identity (A.1),
1
LE F(y)=yV—30 / (xy)?x

0

(U—%)+1+%+6+2l){(1 _ tz)_%ﬂ]a(xt)dt

1
—a—L 1 1
—y e 2*“/(xy)%x°‘+%(1—x2) P Ja(xtydt
0

1 1 a1 1
=2 P+5F<1—E+€>y e ot e W)
P

We can use the well-known representation of the Bessel function into power series to infer that [n(z) = z™(cm +

1
O(z%)), where ¢, = Therefore, ]a+ L= “*5 7€ in a suitable neighborhood of y = 0; in this

1
2m+1r(m+1) 2 Ol+ Ltey

neighborhood, ﬁﬁ‘,MF(y) >cy € - for some ¢ > 0, and hence it is not in L9(0, co).
Appendix B. Proof of Proposition 2.1

It is easy to see that Gaussian functions attain the equality in (2.10). By (2.2), the Fourier-Bessel transform of order
o= % — 1 is a constant multiple of the restriction of the Fourier transform to radial functions of R". Consequently,

T v @7 v
Y n N , Il
‘Hﬂ_lf”LP ((0,00),r"=1dr) = (27[)__ (/ T)|p n— 1dr> = ﬁ(/|f(lxl)|p dX) . (B])
0 2m)22¢" 2" Ny
Furthermore,
l*( )
1 £ 116 (0,005 dry = T2 </|f (Ix] |”dx) : (B.2)
Py-[Zp

and from (B.2) and (B.1) and the theorems of Beckner and Lieb it follows that

~ 1 _1
IH s 1 o (0,00).m1 dr) _2r P (fpo IF 1P dX)"

(e I FOIP dx)?
21

1 1.1 1_1
20 o g2 2p n\p» »p noo1 _1 n\p» » p
< [ F(‘)p (2m) /(pp(P/) p,)n:r<_>" P o
2

—~
o 3|
S |9
~ N
wis| S
)
-'3\
—
Yamny
NS
N——
=

||f||LP((o_oo),rn71 dr)

n-2)2-p")
2w

=

as required.
Appendix C. Proof of Lemma 5.3

Let Hp(x) be the classical Hermite polynomial of degree m. Beckner proved in [2] that the functions Hy (o (5)) can be

dv, (5)-approximated by symmetric functions. That is, for every s = (iﬁ, . i%),
] o
Hin(0®) = ¥nn@® + -3 amrHn2r(0 (), (c1)
r=1

_1 m
where 0 (5) =x1 +---+xp, and the ap, , are bounded with respect to n for a fixed m. We recall that L,;* %) = ;Tl)m!Hz,ﬂ({).
When o > —1, the following identity holds

1
L (D" Tm+a+1) et 1
La -2 — 1— 2 Iy ( >d
m(2§> JaT+1)  @m)! (1-r) 2m —ﬁgt t

-1
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NG
1
(1—262)" 2 Hym(ct) dt (C2)
V2

_ (=D)™2 Tm+a+1)
S AT+ em)!

(see e.g. [13]).
We prove the lemma for o > —1, since the proof is quite similar in the other case. The derivatives of Hy satisfy the
following identity:

&/ H 2] k Hy_; i <k
M k(&)= j k—j(6), J<k

By Taylor’s formula

k
Hi(ct) =Y 0)I(t - 1>f< )Hk J(©),

j=0
and by (C.2),

L“(; )-cmach)f( )HZm J(;)/ —2?)* -1 dt, (€3)

where we have let ¢ o be the constant on the right-hand side of (C.2). By (C.3) and (C.1) the conclusion follows.

X2

To prove (5.24) we recall that the moments of dv,(5) converge to the moments of ‘i;% dx in the weak topology of CO(R);

thus,

2

lim /\R" o) oG dvas) = /\Ra (x)]q|x|21+1J;dx<w

and limp— o0 77 fgn IR (0 ()90 (3)[? 1 dvp(5) =0
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