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1. Introduction

Let H denote the class of analytic functions in the open unit disc U = {z: |z| < 1} of the complex plane C. Let A denote
the subclass of H consisting of functions normalized by f(0) =0, f'(0) =1 and let

zf'(2)
S*((x):{fe.A: Re[i >aforzeU
f@
be the class of a-starlike functions, « € [0, 1). S*(0) = S8* is the class of starlike functions which map U onto a starlike
domain with respect to the origin. We say that f € H is subordinate to g € H in U, written f < g, if and only if there exists
a function w € H with w(0) =0 and |w(z)| <1 in U such that f(z) = g(w(z)) for ze U.If f < g in U, then f(U) C g(U).
Many classes of functions studied in geometric function theory can be described in terms of subordination. Let us denote

+)/Z_ o k
- =1+1+y)) 2 (el (1)

k=1

1
py(2) =

If y # —1 then the function p, maps U onto the half plane Rew > FTV and it is easy to check that for y € (-1, 1]

'(2) . L(1-
{feA: Z}c(—zz)<py(z) in U}:S (Ty> (2)

We say that the function f € H is convex when f(U) is a convex set. It is easy to see that if y # —1 then p,, is a convex
univalent function.
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R. Singh and S. Singh [10] proved that if f € A and Re{f’(2) + zf"(2)} > —}l (z€ U), then f e S*(0). Ponnusamy [4]
improved this result by replacing the constant —1/4 by —0.308.... Recently R. Szasz and L.-R. Albert [9] checked using a
computer that

1 H ! 4 * ]
s <a€1(51foo){Vf e A [Re[f'(2)+azf" ()] >0 = feS*]} < 2
In this paper we consider a similar sufficient condition for functions to be in the class $*(«).
For f(z) =ag + a1z +azz®> +--- and g(z) = bg + b1z + b2z%> + - - - the Hadamard product (or convolution) is defined by
(f * 8)(z) = apbo + a1b1z + aybyz2 + - - -. The convolution has the algebraic properties of ordinary multiplication. Many of
convolution problems were studied by St. Ruscheweyh in [5] and have found many applications in various fields. One of
them is the following theorem due to St. Ruscheweyh and J. Stankiewicz [8] which will be useful in this paper.

Theorem A. Let F, G € H be any convex univalent functionsin U.If f < Fand g < G, then f xg < FxGin U.
The next theorem is a special case of the Julia-Wolf Theorem. It is known as Jack’s Lemma.

Theorem B. (See [2].) Let w(z) be meromorphic in U, w(0) = 0. If for a certain zg € U we have |w(z)| < |w(zo)| for |z| < |zo|, then
200’ (29) =mw(z9), m > 1.

2. Main result

Lemmalleta >0,y eR\{-1}.Iffe Aand f'(2) + éf”(z) < py(2), then
f@ ,

7<1+oz(1+y)Z =H(a,y;2) 3)
k=1

z
— A+kk+a)
and H(w, y; z) is the best dominant in the sense that if @ < G(2), then H(a, y; 2) < G(2).

Proof. For x > 0 the function

[o.¢]

- (1+x)zk
h(x;z) = Z B
P (k + x)

is convex univalent [6]. Ruscheweyh and Sheil-Small in [7] proved the P6lya-Schoenberg conjecture that the class of convex
univalent functions is preserved under convolution. Thus

a k

24 2a

oz

@ =1+ K+ Dkt

[0.¢]
[A(1;2) xh(a; )] =14
k=1
is a convex univalent function. Also p, is convex univalent so by Theorem A we have

[f/(Z) + gf”(Z)] * 8(2) < py (2) * g(2).
It gives (3) because

f@

[f/(Z) + gf”(Z)} *g@="=. py@*g@=H@y:2.

The function H(«a,y;z) is convex univalent as the convolution of convex univalent functions p, and g. Suppose that
I8 < G(2) for each f € A such that f'(2)+ Z f"(2) < py (2). The function fo(z) =zH(, ¥; 2) gives f§(2)+ 2 f§(2) = py (2)
thus @ = H(«a, y; z) < G(2). This means that H(w, y; z) is the best dominant of @ ]

For ¢ > 0 and y > —1 the function H(w, y;z) is convex univalent with positive coefficients so H(U) is a convex set
symmetric with respect to the real axis with

H(a,y;—1) <Re[H(a,y;2)] <H(a,y; 1)

hence we have the following corollary.
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Corollary 1.Leta > 0,y > —1.If f e Aand f'(z) + Z f"(2) < py (2), then

H(a,y;—1)<Re|:@i| <H(a,y;1) (zeU). (4)
Notice that
i K | Myx+1n+Cl fori=1,
k(k+x | y[B&x+1) —1n2] fori=—1,
where
F e > 1
= dt = R 0 5
B@) /1+t lg(z+2k)(z+2k+1) Rez>0) )
o —
is the beta function while ¥ (z) = [InT'(2)]’, where T is the gamma function and C is the Euler’s constant. Thus we have
1+a1l —B(l +a)—In2] for a € (0, +00) \ {1},
Ha,y;-1)= (6)
1+(1+)/)(ﬁ—1) fora =1,
and
T+ o1[1—y(1+a)—C] for a e (0,+00)\ {1},
H,y;1) =
1+(1+y)(%—1) fora=1.

In order to check when H(«, 8; —1) > 0 it is useful to rewrite (6) in the form

Ly
Hi@.y:—1)= 14y [6(2) B +a)] for a e (0,+00)\ {1}, ”
]"‘(]"‘)’)(ﬁ—u for o =1.

Applying (5) we see that the function B is decreasing for z > 0 thus W < 0 for a # 1. Therefore by (7) we conclude
that

1-«a
—1— =g for @ € (0, +00) \ {1},
H,y;-1)>0 & vy <glo):= { 2 (iliizé:;;(;"'“ﬂ fora=1 ©
12— — 7 '

The above result will be useful in the following theorem.

Theorem 1. Let @ € (0, 1] and f € A. Then f € 8*(1%"‘) whenever for z e U
y@) a’+3a+2

’ z " 1
Re[f @+ f (z)]>#._ T Ml = (@ —a +2)B@)] and y(a) < g(a), (9)
where
— (=1)F 5[1—B(1+a)—In2] forael0,1),
Ba)=) —
©=2 TrbkTm {ﬁq fora=1.

Proof. For convenience, in this proof we will drop the variable « in y(«). From (9) we have f'(z) + éf”(z) < py(2). We
have y < g(«) thus, by Corollary 1 and by (8)

Re[¥]>H(a,y;—l)>O (zel). (10)
This gives f(z) #0, z € U. Moreover the function py(z) = Z , Pa(00) = —ar, maps C \ {1} onto C and it is univalent so a
function w(z) w(0) =0, defined by
zf'(2)
w(z) = ( ) 11
@ a

is analytic in U. In view of (2) for proving Theorem 1 it is sufficient to show that Z)’:/((Z? < pa(2) or equivalently that w(z)
is bounded by 1 in U. If this is false we find zg € U such that |w(z)| < |w(z0)| =1, |z| < |zo|. According to Theorem B,

%Z(OZ)") m > 1. Taking the derivative of (11) we obtain after some manipulations the relation

f'(z0) + Z_Of”(zo) _ f(z0) |:Zoa) (z0) (1 + a)w(z0)

il e (1_0)(20))2+P§(w(lo))—(1—Ol)Pa(w(Zo))]- (12)
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If we denote w(zg) = e'?, ¢ € [0, 27r), then we have

20z) 1 ~
(1 — w(z0))? - cosp — 1 <0, Pa (60(20)) =

= i ct
1—w(z0) ; Tl

)

1+aw(zo)_1—a 1+« Q@
2

so the quantity in the square brackets of (12) becomes

[...]

C2m+ o)+ (A +@?(+cosg) [1-a 2—~a
o 4(cosp — 1) [ 2 ] T

It is easy to see that § is a negative real number so from (4) and (12) we have

8 / 20 .y s 4

EH(Ot, v; 1) <Re| f'(z0) + Ef (20) | < EH(Ot, y;—D= &[1 +a(1+y)B@)]. (13)
According to (10) we have H(«, y; —1) =1+ a(1 + y)B(a) > 0. Moreover

(1+a)2+m(1+a)< (1+a)2+(1+a)__a2—a+2

=« < =
2(cosp — 1) 2(-1-1) 4

Therefore we obtain from (13)
a?—a+2
%

which contradicts our assumption (9). O

[1+a(+y)B@)]= ]_TV

Re[f’(lo) + %f//(zo)} < -
3. Some applications

In this section we shall look at some examples where we see how our result improve earlier results.
If @ =1, then by (8) and (9) we obtain 1=¥0 = 6=7° ' (1) = 12470 _ 154 and y(1) < g(1) = 4.63.... Therefore

= 24—n2 24-72
Theorem 1 becomes
Corollary 2. If f € A then f € §*(0) = S* whenever
’ 7 - 772
Re[f'(2) + zf" (2)] > Y —0.273... (zeU). (14)

The integral form of above result due to Miller and Mocanu one can find in [3, p. 309]. Moreover the constant given
in (14) is a little grater than —0.308... given by Ponnusamy [4].
Let us consider « =1/2. If —1 <x < 1 then

o0
_1)k=1) 2k
(Sl =2xarctanx — In(1 + xz)

k2k — 1)
71k
s0 B(1/2) = 302 g =7 — In4—2=—024.... Thus we have
1/2)=-1+ 30 =2.088 and g(1/2)=-1 2 =7.17
viie)= 2—7(r—Ind) oo gll/a)= T—Ind—2

Therefore y(1/2) < g(1/2) and Theorem 1 becomes the following result.
Corollary 3. If f € A then f € S*(1/4) whenever

15
=-0.541... (zel).

Re[f'(2) +2zf"(2)] > 1 — 7 A

Let us consider « =1/3. If —1 <x <1 then

2 (—=Dkx3l 1+x 1 2%—-1 7
—— arctan

N+ —
0 3k+1 3 /2 —x+1 3 V3 643

and if —1 <x <1 then

>, xk 1

=In
k 1—x

k=1
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SO
o k oo k Sl k
(=1) 9 (=1) 3 (=1
3(1/3):92:73] ] =2 ] __Zk
S Gk+3)Gk+D T 243k+1 25 k+1

—9|:1ln2+ i 1] 3[ln2 1]1= 3 3=-0.279
=353 33 5 =5 =-0.279....

Thus we have

143 243
1/3)=-1+———"=2738... and g(1/3)=—-1—- —"""_=974....
vas3 1143 — 47 £01/3) T —2V3

Therefore y(1/3) < g(1/3) and we obtain the following result.

Corollary 4. If f € A then f € S*(1/3) whenever

73
Re[ f’ " 1-— =  =_0.869... )
e[f'(2) +3zf" (2] > 5 —in 0.869 (zeU)

Let us consider « =1/4. If —1 <x <1 then

00 JeAle+1
(—=Dkx 1 X 4+xv2+1 1
In + arctan(xv/2 + 1) + arctan(x+/2 — 1
ZO k+1 a2 R—xVZ41 f[ ( ) ( )

Thus

( -l)k 16 oo
@k +4)(4k+1) 3 Zl k+1
} 4

wl-b

B(1/4) = 162
k=

( -l)k
Sn

_16[ 1 2
[ In +‘f il Zn2-11=-03....
42 4ﬁ 3
Thus we have
A/a)=—1+— 80 3609 and g(1/4)=-1 —12.3
vius = 32_21B(1/4) gL/ = B(1ja) T

Therefore y(1/4) > g(1/4) and Theorem 1 gives the following result.

Corollary 5. If f € A then f € §*(3/8) whenever

Re[ f/(2) + 4zf” 1— 90 ~1.349.. U
e[ f'(2) +4zf" (2)] > m (zel).

If « — 0 then Theorem 1 becomes the next corollary.

Corollary 6. If f € A then f € §*(1/2) whenever

, 2 1
Re[zf"(2)] > ~17280) " 3-mi- —0.61969... (zeU).

Corollary 6 is analogous to a sharp result of the form

3
feA and Re[zf"(2)] > ~ 53 = -0721... = fe&*
obtained by Ali, Ponnusamy and Singh in [1], see also [3, pp. 275-277] for the other results.
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