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We study the boundary value problem (Pm,a): f ′′′ +[(m+1)/2] f f ′′ −mf ′ 2 = 0 on (0,+∞),
subject to the boundary conditions f (0) = a ∈ R, f ′(0) = −1 and f ′(+∞) = 0. The problem
arises in the study of similarity solutions for high frequency excitation of liquid metal
systems in an antisymmetric magnetic field. We give a complete picture of solutions
of (Pm,a) for the physical interesting case: m < −1 and a � 0.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In the metallurgical industry, alternating magnetic fields are widely used to control the motion of liquid metal, to adjust
their shape, and to generate “internal” stirring to make their interior structure more homogeneous, all of which are unique
to magnetohydrodynamics. For example, it is known that the stirring of liquid steel in the process of continuous casting
of steel can produce a more homogeneous finished product by eliminating blowholes which is caused by escaping gases.
However, here it is impossible to use the traditional mechanical stirring. This is due to the fact that the liquid metal is
encased in the solidified steel. In contrast, applying alternating magnetic fields can induce eddy currents in the metal. These
induced currents can interact with the magnetic field to give rise to a rotational Lorenz force which can drive internal fluid
motion without the need for any mechanical contact (see [16,17]).

For those applications making use of the above effects induced by alternating magnetic fields, a high frequency magnetic
field is commonly used. In this circumstance, the magnetic field can only penetrate a small distance into the metal, and
the induced currents and the associated Lorentz force are then confined to a thin surface layer, which is the well-known
“skin effect.” Moreover, if the frequency of the magnetic field is sufficiently high, these effects can be very strong in the
neighborhood of any sharp corners on the rigid boundary of the fluid domain, and the magnetic field and Lorentz force can
be very large inside such a singular region. Note that sharp corners can appear in many practical contexts. For example, the
channel has a square cross section in the typical induction furnaces, and the melt is commonly extruded from a chamber of
square cross-section during the continuous casting process. For more detail on the physical background, we refer the reader
to [16,14,15,19,17].

Therefore, it is of great interest to study the dynamical behaviour of the fluid near these sharp corners. Note that it has
been shown that the net effect of the Lorentz force is to induce an effective surface velocity just inside the surface layer
on the rigid boundary. It turns out that the study of the flow becomes a purely fluid mechanical problem of determining
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the flow inside the liquid metal subject to the prescribed velocity on the rigid boundary (see [16]). In this circumstance,
a Prandtl’s boundary-layer description of the driven flow is appropriate, and so, a deeper understanding of the structure of
similarity solutions of this problem would be essential. These similarity solutions are governed by the following boundary
value problem (Pm,a):

f ′′′ + [
(m + 1)/2

]
f f ′′ − mf ′ 2 = 0, t ∈ (0,+∞), (1.1)

f (0) = a ∈ R, f ′(0) = −1, f ′(+∞) := lim
t→+∞ f ′(t) = 0, (1.2)

where f = f (t) for t ∈ [0,+∞) and m, a are two real parameters. Note that the range for which the problem (Pm,a) has
physical meaning is m < −1 and a = 0. The problem (Pm,a) is proposed by Moffatt [16]. Brighi and Hoernel [6] have used
the direct approach and the so-called blowing-up coordinates to establish a complete picture of the structure of solutions of
(Pm,a) for the case: m > 0 and a ∈ R, and the case: m < −1 and a < 0. For the remaining cases, their results are far from
complete. In particular, for the case m < −1 and a � 0, which is of physical interest, they can only show that there is a
unique convex solution of (Pm,a).

Eq. (1.1) also arises in another physical context. Indeed, similarity solutions of the free convection boundary layer flows
near a vertical flat plate embedded in porous medium are solutions of the following boundary value problem ( P̂m,a):

f ′′′ + [
(m + 1)/2

]
f f ′′ − mf ′ 2 = 0, t ∈ (0,+∞),

f (0) = a ∈ R, f ′(0) = 1, f ′(+∞) := lim
t→+∞ f ′(t) = 0.

The problem ( P̂m,a) has been investigated for many years and received much attention (see [20,9,13,7,8,1,2,11,12,3–5,18] and
references therein). Note that the solutions of ( P̂m,a) depend on two parameters: m, the power-law exponent and a, the mass
transfer parameter. At first glance, the problem (Pm,a) is quite similar to the problem ( P̂m,a) except the initial condition on
the first derivative of the solution. However, the structure of solutions of (Pm,a) is very much different from that of ( P̂m,a).
For example, the problem ( P̂m,a) with m < −1 and a � 0 has no solution (see [3]), while the problem (Pm,a) with m < −1
and a � 0 admits infinitely many solutions. Moreover, the profiles of solutions of (Pm,a) are significantly different from those
of solutions of ( P̂m,a).

Let us digress for a moment to consider the following boundary value problem (Q m,a,c):

f ′′′ + [
(m + 1)/2

]
f f ′′ − mf ′ 2 = 0, t ∈ (0,+∞),

f (0) = a ∈ R, f ′(0) = c, f ′(+∞) := lim
t→+∞ f ′(t) = 0.

We note that if f is a solution of (Q m,a,c) with c < 0 (resp. c > 0), then f (·/√|c|)/√|c| is a solution of (Pm,a/
√|c|) (resp.

( P̂m,a/
√|c| )). In view of this, a good understanding of the structure of solutions of (Pm,a) and ( P̂m,a) can help us to un-

derstand the structure of solutions of (Q m,a,c). Therefore, for physical interest and mathematical completeness, the aim of
this paper is to investigate the structure of solutions of (Pm,a) with m < −1 and a � 0. To begin with, let us consider the
following initial value problem (Pm,a,b):

f ′′′ + [
(m + 1)/2

]
f f ′′ − mf ′ 2 = 0 on [0, Tb),

f (0) = a, f ′(0) = −1, f ′′(0) = b,

where b ∈ R and [0, Tb) is the (right) maximal existence interval of the solution. Then our main result is the following
theorem:

Theorem 1. Fix m < −1 and a � 0. Let fb be the solution of (Pm,a,b).

• If a ∈ [0,
√

6), then there exist 0 < bm,a,− < bm,a,+ such that the following hold:
(i) fb is a solution of (Pm,a) if and only if b ∈ [bm,a,−,bm,a,+].

(ii) If b = bm,a,− , then fb is a convex solution of (Pm,a) and satisfies that fb(t) f ′
b(t)/ f ′′

b (t) → −2/(m + 1) and

f ′ 2
b (t)/[ fb(t) f ′′

b (t)] → 0 as t → +∞.

(iii) If b ∈ (bm,a,−,bm,a,+), then fb is a convex-concave solution of (Pm,a) and satisfies that fb(t) f ′
b(t)/ f ′′

b (t) → +∞ and
f ′ 2
b (t)/[ fb(t) f ′′

b (t)] → (m + 1)/(2m) as t → +∞.

(iv) If b = bm,a,+ , then fb is a convex-concave solution of (Pm,a) and satisfies that fb(t) f ′
b(t)/ f ′′

b (t) → −2/(m + 1) and

f ′ 2
b (t)/[ fb(t) f ′′

b (t)] → 0 as t → +∞.

• If a = √
6, there is a unique solution f of (Pm,a) which is given by f (t) = 6/(t + √

6).

• If a >
√

6, then there exists a positive number bm,a such that the following hold:
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Fig. 1. Corner configuration. δ is the skin thickness and y is the normal boundary layer coordinate.

(i) fb is a solution of (Pm,a) if and only if b = bm,a.

(ii) If b = bm,a, then fb is a convex solution of (Pm,a) and satisfies that fb(t) f ′
b(t)/ f ′′

b (t) → −∞ and f ′ 2
b (t)/[ fb(t) f ′′

b (t)] →
(m + 1)/(2m) as t → +∞.

Here a convex solution f of (Pm,a) means that f ′′ > 0 on [0,+∞), and a convex-concave solution f of (Pm,a) means
that there exists t̂0 > 0 such that f ′′ > 0 on [0, t̂0), f ′′ < 0 on (t̂0,+∞).

Our method for deriving the structure of solutions of (Pm,a) is to use a change of variables introduced in [18] to transform
Eq. (1.1) into a system of two first order equations (see (3.1)–(3.2)). Unlike the usual transformation, the resulting system
(3.1)–(3.2) for our transformation is autonomous, not non-autonomous. The key idea of our strategy is to use the ω-limit set
of the system (3.1)–(3.2) to establish a very delicate correspondence between the solutions of (Pm,a,b) and the trajectories of
the system (3.1)–(3.2). With such a correspondence, it is possible to show our results. To this end, various auxiliary solutions
of (1.1) and trajectories of (3.1)–(3.2) are constructed.

Finally, the plan of this paper is organized as follows. In Section 2, we will briefly describe how to derive the prob-
lem (Pm,a). Section 3 is concerned with some useful properties for the solutions of (Pm,a,b). Then in Section 4, we will
establish the correspondence between the convex and convex-concave solutions of (Pm,a) and the trajectories of the sys-
tem (3.1)–(3.2), while Section 5 is devoted to constructing the correspondence between the solution of (Pm,a,b) and the
ω-limit set in the second quadrant of the phase plane associated with the system (3.1)–(3.2). With the aid of these results
in Sections 4 and 5, we will prove Theorem 1 in Section 6. Finally, a summary and discussion of the results is given in
Section 7.

2. Derivation of the governing equation

For the reader’s convenience, we shall follow Moffatt [16] to give a brief sketch of deriving the problem (1.1)–(1.2).
For more detail, we refer the reader to [16,17]. We first assume that the fluid (liquid metal) is contained in the region
V : α < θ < 2π − α, whose boundary S is rigid electrically insulating and consists of θ = α and 2π − α. The exterior
region is denoted by V + . We shall concentrate on the case: a single-phase high frequency field which is antisymmetric
with respect to the corner bisector (see Fig. 1). Then as Moffatt [16] suggests, the net effect of the rotational Lorentz force
within the skin is to generate an effective tangential velocity uS on S given by

uS = δ2

16μ0ρν
∇|BS |2.

Here BS is the magnetic field on the surface of the rigid boundary S , δ the thickness of the surface layer into which the
magnetic field penetrates, μ0 the permeability of the metal, ρ the density of the fluid and ν the kinematic viscosity of the
fluid. The associated potential for an antisymmetric field is given by

Ψ = ψrλ sin λθ,

which together with the normal condition B · n = 0 on the boundary θ = ±α, gives

λ = π

2α
.

Here (r, θ) is the usual polar coordinates. Therefore the magnetic field on the surface of the rigid boundary S is

BS = ∂Ψ

∂r

∣∣∣∣
θ=±α

r̂ = ±ψλrλ−1r̂,

where r̂ is the unit vector associated with the coordinate r. Since π/2 < α < π , we obtain −1/2 < λ − 1 < 0, and so the
magnetic field BS is singular at r = 0. Now it easily follows that

∇|BS |2 = 2ψ2λ2(λ − 1)r2λ−3r̂.
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Hence the induced surface velocity is given by

uS = δ2

16μ0ρν
∇|BS |2 = Arm r̂ on θ = ±α.

Here

A = δ2ψ2

8μ0ρν

(
π

2α

)2(
π

2α
− 1

)
and m = π

α
− 3.

Since α > π/2, we have m < −1 and A < 0. This implies that the induced surface velocity is towards the corner, and its
magnitude tends to +∞ as r → 0+ . Moreover, the local Reynolds number is given by

Re := |A|ν−1rπ/α−2 → +∞ as r → 0+.

Therefore, a boundary layer treatment is appropriate for small r. To this end, let O x be directed along the boundary θ = α,
and O y be normal to it and point into the fluid. From the configuration of the corner, we may assume that there is no
pressure gradient outside the boundary layer. Then the Prandtl boundary layer equation describing zero pressure gradient
incompressible planar flow in the limit of high Reynolds number can be stated as follows (see [10]):

∂ψ

∂ y

∂2ψ

∂x∂ y
− ∂ψ

∂x

∂2ψ

∂ y2
= ν

∂3ψ

∂ y3

subject to the boundary conditions

ψ = 0, ψy = Axm on y = 0,

ψy → 0 as y → +∞,

where ψ is the stream function. A similarity solution of the form

ψ(x, y) = (
ν|A|xm+1)1/2

f (η), η = (|A|xm+1ν−1)1/2
y

then gives rise to the boundary value problem (Pm,a) with a = 0:

f ′′′ + [
(m + 1)/2

]
f f ′′ − mf ′ 2 = 0,

f (0) = 0, f ′(0) = −1, f ′(+∞) = 0.

3. Mathematical preliminaries

3.1. General properties

In order to study (Pm,a), we recall the following initial value problem (Pm,a,b):

f ′′′ + [
(m + 1)/2

]
f f ′′ − mf ′ 2 = 0 on [0, Tb),

f (0) = a, f ′(0) = −1, f ′′(0) = b,

where m, a, and b ∈ R, and [0, Tb) is the (right) maximal existence interval of the solution.
First, let us recall some useful properties of solutions of (Pm,a) from [2,6].

Proposition 1. Let m < −1 and f be the solution of (Pm,a,b) with the right maximal existence interval [0, T ). Then the following hold:

(i) If f ′′(t̄0) � 0 for some t̄0 ∈ [0, T ), then f ′′(t) < 0 for all t ∈ (t̄0, T ).
(ii) There exists no t0 such that f ′(t0) = f ′′(t0) = 0.

(iii) f satisfies the following equality:

E f (t) := f ′′(t) + [
(m + 1)/2

]
f (t) f ′(t) = b − [

(m + 1)/2
]
a + [

(3m + 1)/2
] t∫

0

f ′(s)2 ds for all t ∈ [0, T ).

(iv) If f is a solution of (Pm,a), then f ′′(0) > 0 and f ′′(+∞) = 0. Moreover, f must be the following two types:
(I) either f is convex and decreasing on [0,+∞) and f is bounded,

(II) or there exist t0 and t̂0 with 0 < t0 < t̂0 such that f ′ < 0 on [0, t0), f ′ > 0 on (t0,+∞), and f ′′ > 0 on [0, t̂0), f ′′ < 0 on
(t̂0,+∞). Moreover, f is negative at infinity.
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Hereafter, we will call a type (I) solution of (Pm,a) as a convex solution of (Pm,a), and a type (II) solution of (Pm,a) as a convex-concave
solution of (Pm,a).

The following lemma concerns the long time behaviour of the first derivative of the solution of (Pm,a,b). Since the proof
is almost immediate (see [9,3,18]), we omit it.

Lemma 3.1. Let m < 0 and f be the solution of (Pm,a,b) defined on [0, T ). Suppose that f ′′ has a fixed sign on [t1, T ) for some
t1 ∈ [0, T ). Then either f ′ → ±∞ or f ′ → 0 as t → T − .

Next, we will see that the second derivative of the solution f of (Pm,a,b) must vanish if the critical point of f exists,
whose proof is postponed to Appendix A.

Lemma 3.2. Let m < −1 and f be a solution of (1.1) defined on the maximal existence interval (S, T ). If there exists t0 ∈ (S, T ) such
that f ′(t0) � 0 and f ′′(t0) > 0, then there exists a t̂0 > t0 such that f ′′ > 0 on (t0, t̂0) and f ′′ < 0 on (t̂0, T ).

Proposition 2. Let m < 0 and f be the solution of (Pm,a,b) defined on the maximal existence interval [0, T ). Then we can classify f
into the following three types:

(A) f ′ < 0 on [0,+∞) and limt→+∞ f ′(t) = 0.
(B) There exists a t0 > 0 such that f ′ < 0 on [0, t0) and f ′(t0) = 0. Furthermore, any type (B) solution f of (Pm,a,b) can be classified

into the following two types:
(B1) There exist t0 and t̂0 with 0 < t0 < t̂0 such that f ′ < 0 on [0, t0), f ′ > 0 on (t0,+∞), f ′ → 0 as t → +∞, and f ′′ > 0 on

[0, t̂0), f ′′ < 0 on (t̂0,+∞).
(B2) There exist t0 , t̂0 , and t1 with 0 < t0 < t̂0 < t1 such that f ′ < 0 on [0, t0), f ′ > 0 on (t0, t1), f ′ < 0 on (t1, T ), and f ′′ > 0

on [0, t̂0), f ′′ < 0 on (t̂0, T ).
(C) f ′ < 0 on [0, T ), and there exists a t̂0 � 0 such that f ′′ > 0 on (0, t̂0) and f ′′ < 0 on (t̂0, T ). Moreover, f is of type (C) for all

b � 0.

Proof. If f ′′(0) � 0, then by part (i) of Proposition 1, f is of type (C) with t̂0 = 0. It remains to consider the case f ′′(0) > 0.
To this end, we need to distinguish two disjoint cases:

(i) f ′ < 0 on [0, T ).
(ii) There exists a t0 > 0 such that f ′ < 0 on [0, t0) and f ′(t0) = 0.

Case (i): If f ′′ > 0 on [0, T ), then by Lemma 3.1, we have T = +∞ and f ′(t) → 0 as t approaches +∞. This implies that
f is of type (A). Otherwise, there exists a t̂0 > 0 such that f ′′ > 0 on [0, t̂0) and f ′′(t̂0) = 0. Then by Proposition 1, we have
f ′′ < 0 on (t̂0, T ). Hence f is of type (C).

Case (ii): Note that f ′′(t0) > 0 by part (ii) of Proposition 1 and that there exists a t̂0 > t0 such that f ′′(t̂0) = 0 by
Lemma 3.2. Hence by part (i) of Proposition 1, f ′′ > 0 on [0, t̂0) and f ′′ < 0 on (t̂0, T ). Now if f ′ > 0 on (t0, T ), then by
Lemma 3.1, we have T = +∞ and f ′(t) → 0 as t approaches +∞. This implies that f is of type (B1). Otherwise, there
exists a t1 > t̂0 such that f ′ < 0 on [0, t0), f ′ > 0 on (t0, t1), and f ′(t1) = 0. Since f ′′ < 0 on (t̂0, T ), we have f ′ < 0 on
(t1, T ). Hence f is of type (B2). This completes the proof. �
3.2. A useful transformation

For further distinction of solutions of (Pm,a,b), we need to transform (1.1) into a system of two first order equations.
Specifically, let f be a solution of (1.1) defined on the open interval (d1,d2) with d1,d2 ∈ R, such that f (t), f ′(t), and f ′′(t)
are not equal to zero for all t ∈ (d1,d2). Now we introduce the following change of variables for the solution f of (1.1):

X(ξ) = f (t) f ′(t)/ f ′′(t), Y (ξ) = f ′(t)2/
[

f (t) f ′′(t)
]
, ξ = − ln

∣∣ f ′(t)
∣∣,

where we require t ∈ (d1,d2). Then (X, Y ) satisfies the following ordinary differential system

dX

dξ
= −X

{
1 + [

(m + 1)/2
]

X + Y − mXY
} := −F (x, y), (3.1)

dY

dξ
= −Y

{
2 + [

(m + 1)/2
]

X − Y − mXY
} := −G(x, y). (3.2)

We note that such a transformation has been introduced in [18].
Note that if f is a solution of (1.1), then so is the function gk,c : t 	→ kf (kt + c) for all k > 0 and c ∈ R. It is easy to check

that the trajectory of (3.1)–(3.2) corresponding to f is the same as that of gk,c . Conversely, we have the following lemma
which forms the basis for our discussion.
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Lemma 3.3. Let m < 0 and fi , i = 1,2, be a solution of (1.1) defined on the maximal existence interval (Ti1, Ti2). Suppose that there
exist di1 , di2 , i = 1,2, with (di1,di2) ⊆ (Ti1, Ti2), such that fi(t), f ′

i (t), and f ′′
i (t) are not equal to zero for all t ∈ (di1,di2) and that

f1(s1) f2(s2), f ′
1(s1) f ′

2(s2), and f ′′
1 (s1) f ′′

2 (s2) are positive where si = (di1 + di2)/2, i = 1,2. We further assume that (Xi(ξ), Yi(ξ))

is the solution of the system (3.1)–(3.2) corresponding to fi(t) for t ∈ (di1,di2) and i = 1,2. If there exist constants ξ1 , ξ2 , and l � 0
such that X1(ξ + l) = X2(ξ) and Y1(ξ + l) = Y2(ξ) for all ξ ∈ (ξ1, ξ2), then the following hold:

(i) There exist d0 ∈ R and k ∈ (0,1] such that there holds

f2(t) = k−1/2 f1
(
k−1/2t + d0

)
for all t ∈ (

max
{√

k(T11 − d0), T21
}
,min

{√
k(T12 − d0), T22

})
.

(ii) If f i is the solution of (Pm,a,bi ) with a � 0 and bi > 0 for i = 1,2, then we have b1 = b2 .

Proof. (i) The first assertion follows from a similar argument of Lemma 5.2 of [18, pp. 334–335].
(ii) By using the assertion of (i) and the analyticity of f i , i = 1,2, we can choose d0 ∈ R and k ∈ (0,1] such that there

holds

f2(t) = k−1/2 f1
(
k−1/2t + d0

)
for all t ∈ [

0,min
{√

k(T12 − d0), T22
})

. (3.3)

Next we claim that d0 = 0. For contradiction, we assume that d0 > 0. Then from (3.3), we can compute

f1(d0) = k1/2 f2(0) = k1/2a, (3.4)

f ′
1(d0) = kf ′

2(0) = −k < 0, (3.5)

f ′′
1 (d0) = k3/2 f ′′

2 (0) > 0. (3.6)

From (3.6) and part (i) of Proposition 1, it follows that f ′′
1 > 0 on [0,d0]. Together with (3.5), this implies f ′

1 < 0 on [0,d0],
and so f1(0) > f1(d0). Since k ∈ (0,1], this leads to a > 0, a contradiction. Hence d0 is nonpositive. On the other hand, if
d0 < 0, then by (3.3), we have

f ′
2

(−k1/2d0
) = k−1 f ′

1(0) = −k−1 < 0, (3.7)

f ′′
2

(−k1/2d0
) = k−3/2 f ′′

1 (0) > 0. (3.8)

From (3.8) and part (i) of Proposition 1, it follows that f ′′
2 > 0 on [0,−k1/2d0]. Thus we have f ′

2(−k1/2d0) > f ′
2(0), a

contradiction to (3.7) and k ∈ (0,1]. Hence we have d0 = 0, thereby completing the proof of the claim.
From the above claim and (3.3), we have that

f1
(
k−1/2t

) = k1/2 f2(t) for all t ∈ [
0,min{√kT12, T22}

)
.

Finally, by differentiating the above equality with respect t and using f ′
i (0) = −1, i = 1,2, we can conclude that k = 1,

which implies f1 ≡ f2. The proof of this lemma is completed. �
3.3. Phase plane analysis

In this subsection, we will collect some results on the phase plane analysis of the system (3.1)–(3.2). Since the proof is
just a straightforward computation, we omit it.

Definition 3.1. For m < −1, we define

D1,1 =
{
(X, Y )

∣∣∣ 0 < X < −1/m, Y >
2 + [(m + 1)/2]X

1 + mX

}
,

L1,1 =
{
(X, Y )

∣∣∣ 0 < X < −1/m, Y = 2 + [(m + 1)/2]X

1 + mX

}
,

D1,2 =
{
(X, Y )

∣∣∣ X > −4/(m + 1), 0 < Y <
2 + [(m + 1)/2]X

1 + mX

}
,

L1,2 =
{
(X, Y )

∣∣∣ X > −4/(m + 1), Y = 2 + [(m + 1)/2]X

1 + mX

}
,

D1,3 =
{
(X, Y )

∣∣∣ −2/(m + 1) < X < −4/(m + 1), 0 < Y <
1 + [(m + 1)/2]X

−1 + mX

}
∪

{
(X, Y )

∣∣∣ −4/(m + 1) � X,
2 + [(m + 1)/2]X

< Y <
1 + [(m + 1)/2]X

}
,

1 + mX −1 + mX
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L1,3 =
{
(X, Y )

∣∣∣ X > −2/(m + 1), Y = 1 + [(m + 1)/2]X

−1 + mX

}
,

D1,4 = {
(X, Y )

∣∣ X > 0, Y > 0
}∖(

3⋃
i=1

D1,i

)
,

D2,1 =
{
(X, Y )

∣∣∣ −3 < X < 1/m,
2 + [(m + 1)/2]X

1 + mX
< Y <

1 + [(m + 1)/2]X

−1 + mX

}
∪

{
(X, Y )

∣∣∣ 1/m � X < 0,
2 + [(m + 1)/2]X

1 + mX
< Y

}
,

L2,1 =
{
(X, Y )

∣∣∣ −3 < X < 0, Y = 2 + [(m + 1)/2]X

1 + mX

}
,

D2,2 =
{
(X, Y )

∣∣∣ −3 � X < 1/m,
1 + [(m + 1)/2]X

−1 + mX
< Y

}
∪

{
(X, Y )

∣∣∣ X < −3,
2 + [(m + 1)/2]X

1 + mX
< Y

}
,

L2,2 =
{
(X, Y )

∣∣∣ −3 < X < 1/m, Y = 1 + [(m + 1)/2]X

−1 + mX

}
,

D2,3 =
{
(X, Y )

∣∣∣ X < −3,
1 + [(m + 1)/2]X

−1 + mX
< Y <

2 + [(m + 1)/2]X

1 + mX

}
,

L2,3 =
{
(X, Y )

∣∣∣ X < −3, Y = 2 + [(m + 1)/2]X

1 + mX

}
,

L2,4 =
{
(X, Y )

∣∣∣ X < −3, Y = 1 + [(m + 1)/2]X

−1 + mX

}
,

D2,4 = {
(X, Y )

∣∣ X < 0, Y > 0
}∖(

3⋃
i=1

D2,i

)
,

D4,1 =
{
(X, Y )

∣∣∣ 0 < X < −2/(m + 1),
1 + [(m + 1)/2]X

−1 + mX
< Y < 0

}
,

L4,1 =
{
(X, Y )

∣∣∣ 0 < X < −2/(m + 1), Y = 1 + [(m + 1)/2]X

−1 + mX

}
,

D4,2 =
{
(X, Y )

∣∣∣ 0 < X � −1/m, Y <
1 + [(m + 1)/2]X

−1 + mX

}
∪

{
(X, Y )

∣∣∣ −1/m < X < −2/(m + 1),
2 + [(m + 1)/2]X

1 + mX
< Y <

1 + [(m + 1)/2]X

−1 + mX

}
∪

{
(X, Y )

∣∣∣ −2/(m + 1) � X < −4/(m + 1),
2 + [(m + 1)/2]X

1 + mX
< Y < 0

}
,

L4,2 =
{
(X, Y )

∣∣∣ −1/m < X, Y = 2 + [(m + 1)/2]X

1 + mX

}
,

D4,3 = {
(X, Y )

∣∣ X > 0, Y < 0
}∖(

2⋃
i=1

D4,i

)
.

Lemma 3.4. Let m < −1. Then the following statements hold:

(i) X = 0 and Y = 0 are the invariant curves for the system (3.1)–(3.2).
(1i) X ′ < 0, Y ′ = 0 for (X, Y ) ∈ L1,1 and X ′ < 0, Y ′ > 0 for (X, Y ) ∈ D1,1 . Moreover, B1,1 := D1,1 ∪ L1,1 is an invariant region for

the system (3.1)–(3.2).
(1ii) X ′ > 0, Y ′ = 0 for (X, Y ) ∈ L1,2 and X ′ > 0, Y ′ > 0 for (X, Y ) ∈ D1,2 . Moreover, B1,2 := D1,2 ∪ L1,2 is an invariant region for

the system (3.1)–(3.2).
(1iii) X ′ = 0, Y ′ < 0 for (X, Y ) ∈ L1,3 and X ′ > 0, Y ′ < 0 for (X, Y ) ∈ D1,3 .
(1iv) X ′ < 0 and Y ′ < 0 for (X, Y ) ∈ D1,4 .

(2i) X ′ > 0, Y ′ = 0 for (X, Y ) ∈ L2,1 and X ′ > 0, Y ′ > 0 for (X, Y ) ∈ D2,1 .
(2ii) X ′ = 0, Y ′ > 0 for (X, Y ) ∈ L2,2 and X ′ < 0, Y ′ > 0 for (X, Y ) ∈ D2,2 .
(2iii) X ′ < 0, Y ′ = 0 for (X, Y ) ∈ L2,3 and X ′ < 0, Y ′ < 0 for (X, Y ) ∈ D2,3 .
(2iv) X ′ = 0, Y ′ < 0 for (X, Y ) ∈ L2,4 and X ′ > 0, Y ′ < 0 for (X, Y ) ∈ D2,4 .
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(3i) X ′ = 0, Y ′ > 0 for (X, Y ) ∈ L4,1 and X ′ < 0, Y ′ > 0 for (X, Y ) ∈ D4,1 . Moreover, B4,1 := D4,1 ∪ L4,1 is an invariant region for
the system (3.1)–(3.2).

(3ii) X ′ > 0, Y ′ > 0 for (X, Y ) ∈ D4,2 .
(3iii) X ′ > 0, Y ′ = 0 for (X, Y ) ∈ L4,2 and X ′ > 0, Y ′ < 0 for (X, Y ) ∈ D4,3 . Moreover, B4,2 := D4,3 ∪ L4,2 is an invariant region for

the system (3.1)–(3.2).

4. Properties of convex and convex-concave solutions of (Pm,a)

4.1. Classification of convex-concave solutions of (Pm,a)

In this subsection, we will classify all of the possible convex-concave solutions of (Pm,a) according to the limit:
limt→+∞( f (t) f ′(t)/ f ′′(t), f ′ 2(t)/ f (t) f ′′(t)).

First, convex-concave solutions of (Pm,a) can be characterized as follows:

Lemma 4.1. Let m < −1 and f be a type (B) solution of (Pm,a,b) defined on [0, T ). Then f is a type (B1) solution of (Pm,a,b) if and
only if there exists s0 > 0 such that

f f ′/ f ′′ > −2/(m + 1) and f ′ 2/( f f ′′) > 0 on (s0, T ). (4.1)

Proof. To begin with, we suppose that f is a type (B1) solution of (Pm,a,b). Hence T = +∞. Recall from part (iii) of
Proposition 1 that

E(t) = E f (t) := f ′′(t) + [
(m + 1)/2

]
f (t) f ′(t) = f ′′(0) + [

(m + 1)/2
]

f (0) f ′(0) + [
(3m + 1)/2

] t∫
0

f ′(s)2 ds,

which implies that E(t) is decreasing in t . Furthermore, by part (iv) of Proposition 1, we have that f is bounded and
f ′′(+∞) = 0. Hence we can conclude E(+∞) = 0, and so E(t) > 0 for all t > 0. Now, by part (iv) of Proposition 1, there
exists s0 > 0 such that f < 0, f ′ > 0, and f ′′ < 0 on (s0,+∞), which together with the fact that E(t) > 0 for all t > 0,
yields (4.1).

Conversely, for contradiction, we assume that f is of type (B2). Then there exists t2 > t1 such that f < 0, f ′ < 0 and
f ′′ < 0 on (t2, T ). Hence, for t ∈ (t2, T ) we have

f (t) f ′(t)
f ′′(t)

< 0 < − 2

m + 1
,

which is a contradiction to (4.1). Therefore, f is a type (B1) solution of (Pm,a,b), thereby completing the proof of this
lemma. �

In order to obtain more delicate characterization of convex-concave solutions of (Pm,a), we need the following lemma
(see Fig. 2).

Lemma 4.2. Let m < −1 and (X(ξ), Y (ξ)) be a solution of the system (3.1)–(3.2) with the right maximal existence interval [0,Ξ).
Then the following hold:

(i) There exists a unique solution (X11∗(ξ), Y11∗(ξ)) (up to a translation in ξ ) of (3.1)–(3.2) defined on the maximal existence interval
(Ξ11∗,+∞) such that the following hold:
(1) X11∗(ξ) > −2/(m + 1) and Y11∗(ξ) > 0 for all ξ ∈ (Ξ11∗,+∞),
(2) X ′

11∗(ξ) < 0 and Y ′
11∗(ξ) < 0 for all ξ ∈ (Ξ11∗,+∞),

(3) limξ→+∞(X11∗(ξ), Y11∗(ξ)) = (−2/(m + 1),0),
(4) the trajectory Γ11∗ := {(X11∗(ξ), Y11∗(ξ)) | ξ ∈ (Ξ11∗,+∞)} of (X11∗, Y11∗) is contained in D1,4 and above the curve L1,3 .

(ii) If there exists ξ1 such that the trajectory of (X(ξ), Y (ξ)) intersects the curve L1,3 at the point (X(ξ1), Y (ξ1)), then there exists
ξ2 > ξ1 such that the trajectory of (X(ξ), Y (ξ)) stays in the region D1,3 for all ξ ∈ (ξ1, ξ2), then crosses the curve L1,2 horizontally
at (X(ξ2), Y (ξ2)), and finally stays in the region D1,2 for all ξ > ξ2 and limξ→+∞(X(ξ), Y (ξ)) = (+∞, (m + 1)/(2m)).

(iii) Let Y = Ŷ11∗(X) be the equation of the trajectory Γ11∗ and D1,0 := {(X, Y ) | X > −2/(m + 1),0 < Y < Ŷ11∗(X)}. If the tra-
jectory of (X(ξ), Y (ξ)) lies in the region D1,0 at some ξ = ξ0 , then the trajectory of (X(ξ), Y (ξ)) will stay in the region D1,0
for all ξ > ξ0 , and there exists ξ1 > ξ0 such that the trajectory of (X(ξ), Y (ξ)) stays in the region D1,2 for all ξ > ξ1 and
limξ→+∞(X(ξ), Y (ξ)) = (+∞, (m + 1)/(2m)).

(iv) There exists a unique solution (X12∗(ξ), Y12∗(ξ)) (up to a translation in ξ ) of (3.1)–(3.2) defined on the maximal existence interval
(Ξ12∗,+∞) such that the following hold:
(1) X ′

12∗(ξ) < 0 and Y ′
12∗(ξ) < 0 for all ξ ∈ (Ξ12∗,+∞),

(2) limξ→+∞(X12∗(ξ), Y12∗(ξ)) = (0,2),
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Fig. 2. The vector field generated by (3.1)–(3.2) for m = −2. The X-coordinates of P and Q are −2/(m + 1) and −4/(m + 1), respectively.

(3) limξ→Ξ+
12∗

(X12∗(ξ), Y12∗(ξ)) = (+∞,+∞),

(4) the trajectory Γ12∗ := {(X12∗(ξ), Y12∗(ξ)) | ξ ∈ (Ξ12∗,+∞)} of (X12∗, Y12∗) is contained in D1,4 .
(v) If the trajectory of (X(ξ), Y (ξ)) lies in the region {X > 0, Y > 0} \ D1,0 at some ξ = ξ0 , then the limit limξ→Ξ− (X(ξ), Y (ξ))

exists and is one of the following: (0,0), (0,2), or (0,+∞). Moreover, if the limit is (0,0) or (0,2), then Ξ = +∞; and if the
limit is (0,+∞), then Ξ is finite.

Proof. It suffices to show that the final assertion of part (i) holds and that Ξ in part (v) is finite for the case: (0,+∞),
since the other assertions follow from a simple phase plane argument (see Lemma 3.4).

First, note that (−2/(m + 1),0) is a saddle point for the system (3.1)–(3.2) with eigenvalues −1,1 and the corresponding
eigenvectors are (−(3m + 1)/(m + 1)2,1) and (1,0), respectively. Therefore, (X11∗(ξ), Y11∗(ξ)) is a solution of (3.1)–(3.2)
corresponding to the stable manifold of the saddle point (−2/(m + 1),0). By a simple computation, the slope of the tangent
line of Y = Ŷ11∗(X) tends to −(m + 1)2/(3m + 1) as X approaches −2/(m + 1), and the slope of the tangent line of the
curve L1,3 at (−2/(m + 1),0) is −(m + 1)2/[2(3m + 1)] which is less than the one of Y = Ŷ11∗(X). Hence for all sufficiently
small X − (−2/(m + 1)) with X > −2/(m + 1), the trajectory Γ11∗ is above the curve L1,3. Together with Lemma 3.4, this
yields that Γ11∗ is above the curve L1,3.

Next, we prove that if limξ→Ξ− (X(ξ), Y (ξ)) = (0,+∞), then Ξ is finite. Since (X, Y ) → (0,+∞) as ξ → Ξ− , there
exists ξ1 > 0 such that for all ξ ∈ (ξ1,Ξ), we have

−(
2 + [

(m + 1)/2
]

X(ξ) − Y (ξ) − mX(ξ)Y (ξ)
)
� Y (ξ)/2.

Using this and (3.2), we can estimate dY /dξ as follows:

dY

dξ
= −Y (ξ)

(
2 + [

(m + 1)/2
]

X(ξ) − Y (ξ) − mX(ξ)Y (ξ)
)
� Y (ξ)2/2 for all ξ ∈ (ξ1,Ξ),

which implies that Ξ is finite. The proof is completed. �
Now we can classify the convex-concave solutions of (Pm,a).

Lemma 4.3. Let m < −1, a ∈ R, and f be a convex-concave solution of (Pm,a). Then f must be one of the following two types:
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(B1,I1 ) f is of type (B1) such that f f ′/ f ′′ ↘ −2/(m + 1) and f ′ 2/( f f ′′) → 0 as t → +∞.
(B1,I2 ) f is of type (B1) such that f f ′/ f ′′ → +∞ and f ′ 2/( f f ′′) → (m + 1)/(2m) as t → +∞.

Moreover, there is at most one type (B1,I1 ) solution of (Pm,a) if a � 0, and the set defined by

B̂m,a := {
b ∈ R

∣∣ the solution fb of (Pm,a,b) is of type (B1,I2 )
}

is open.

Proof. Since f is a convex-concave solution of (Pm,a), by Proposition 1, there exists s0 > 0 such that f < 0, f ′ > 0, and
f ′′ < 0 on [s0,+∞). Let (X(ξ), Y (ξ)) be the solution of the system (3.1)–(3.2) corresponding to f (t) for t ∈ (s0,+∞). Then
(X(ξ), Y (ξ)) is defined on [− ln f ′(s0),+∞). By Lemmas 4.1 and 4.2, either the trajectory of (X, Y ) is contained in the
region D1,0, or there exists l ∈ R such that (X(ξ), Y (ξ)) = (X11∗(ξ + l), Y11∗(ξ + l)) for all ξ � − ln f ′(s0) where D1,0 and
(X11∗, Y11∗) are defined in Lemma 4.2. Transferring back to the origin variable f , f must be type (B1,I1 ) or (B1,I2 ). Moreover,
by part (ii) of Lemma 3.3, there is at most one type (B1,I1 ) solution of (Pm,a) provided a � 0.

Now we will show that B̂m,a is open. Indeed, by using the standard theory of continuous dependence on initial data and
noting that D1,0 is invariant with respect to the system (3.1)–(3.2), it is easy to verify that the set B̂m,a is open. The proof
is completed. �
4.2. A criterion for the existence of convex-concave solutions of (Pm,a)

Recall that the structure of solutions of (Pm,a) for m < −1 and a < 0 has already been deduced by Brighi and Hoernel [6].
In this subsection, we will used the information of these solutions to derive a criterion for the existence of convex-concave
solutions of (Pm,a) for m < −1 and a � 0.

First, for m < −1, a < 0 and b > 0, let fb be the solution of (Pm,a,b) defined on the right maximal existence inter-
val [0, Tb). By part (i) of Proposition 1, we have f ′′

b > 0 on the left maximal existence interval (T̂b,0]. Hence there exists a
unique tb < 0 such that fb(tb) = 0 and f ′

b(t) < 0, f ′′
b (t) > 0 for all t ∈ [tb,0]. In the remaining of this subsection, whenever we

say fb, we always mean that b > 0 and fb is defined on [tb, Tb).
Now let t0b (resp. t̂0b) be the first zero of f ′

b (resp. f ′′
b ) and s0b := min{t0b, t̂0b}. Note that t0b and t̂0b may be +∞.

In this subsection, tb , t0b, t̂0b and s0b have the same definition as above. Let (Xb, Yb) be the solution of the system (3.1)–(3.2)
corresponding to fb(t) for t ∈ (tb, s0b). Note that the initial data of (Xb, Yb) is (Xb(0), Yb(0)) = (−a/b,1/(ab)) which lies on
the straight line defined by

Y = − 1

a2
X . (4.2)

Moreover, we have that fb < 0, f ′
b < 0 and f ′′

b > 0 on (tb, s0b). Hence we have

fb f ′
b

f ′′
b

> 0 and
f ′ 2
b

fb f ′′
b

< 0 on
(
− ln

∣∣ f ′(tb)
∣∣,− lim

t→s−0b

ln
∣∣ f ′(t)

∣∣),

lim
ξ→(− ln | f ′(tb)|)+

(
Xb(ξ), Yb(ξ)

) = (0,−∞).

This suggests that we need to study the behavior of a solution (X, Y ) of (3.1)–(3.2) whose trajectory lies in the fourth
quadrant of the phase plane.

Lemma 4.4. Let m < −1 and (X(ξ), Y (ξ)) be a solution of the system (3.1)–(3.2) with the right maximal existence interval [0,Ξ).
Then the following hold:

(i) There exists a unique solution (X41∗(ξ), Y41∗(ξ)) (up to a translation in ξ) of (3.1)–(3.2) defined on the maximal existence interval
(Ξ41∗,+∞) such that the following hold:
(1) X41∗(ξ) ∈ (0,−2/(m + 1)) and Y41∗(ξ) < 0 for all ξ ∈ (Ξ41∗,+∞),
(2) X ′

41∗(ξ) > 0 and Y ′
41∗(ξ) > 0 for all ξ ∈ (Ξ41∗,+∞),

(3) limξ→+∞(X41∗(ξ), Y41∗(ξ)) = (−2/(m + 1),0) and limξ→Ξ+
41∗

(X41∗(ξ), Y41∗(ξ)) = (0,−∞),

(4) the trajectory Γ41∗ := {(X41∗(ξ), Y41∗(ξ)) | ξ ∈ (Ξ41∗,+∞)} of (X41∗, Y41∗) is contained in D4,2 .
(ii) If there exists ξ1 such that the trajectory of (X(ξ), Y (ξ)) intersects the curve L4,1 (resp. L4,2) at (X(ξ1), Y (ξ1)), then the tra-

jectory of (X(ξ), Y (ξ)) will stay in the region D4,1 (resp. D4,3) for all ξ ∈ (ξ1,Ξ) and limξ→Ξ− (X(ξ), Y (ξ)) = (0,0) (resp.
(+∞,−∞)). Moreover, if the limit is (0,0), then Ξ = +∞; and if the limit is (+∞,−∞), then Ξ is finite.

(iii) Let Y = Ŷ41∗(X) be the equation of the trajectory Γ41∗ and set
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Fig. 3. The vector field generated by (3.1)–(3.2) for m = −2. The X-coordinates of P and Q are −2/(m + 1), and −4/(m + 1), respectively.

D4,21 := {
(X, Y ) ∈ D4,2

∣∣ 0 < X � −1/m, Y < Ŷ41∗(X)
}

∪
{
(X, Y ) ∈ D4,2

∣∣∣ −1/m < X < −2/(m + 1),
2 + [(m + 1)/2]X

1 + mX
< Y < Ŷ41∗(X)

}
∪

{
(X, Y ) ∈ D4,2

∣∣∣ −2/(m + 1) � X < −4/(m + 1),
2 + [(m + 1)/2]X

1 + mX
< Y < 0

}
.

If the trajectory of (X(ξ), Y (ξ)) enters into the region D4,21 (resp. D4,2 \ D4,21) at some ξ = ξ0 , then there exists ξ1 > ξ0 such
that the trajectory of (X(ξ), Y (ξ)) stays in the region D4,21 (resp. D4,2 \ D4,21) for all ξ ∈ (ξ0, ξ1), then crosses the curve L4,2
horizontally (resp. L4,1 vertically) at (X(ξ1), Y (ξ1)), and finally stays in the region D4,3 (resp. D4,1) for all ξ ∈ (ξ1,Ξ) and
limξ→Ξ− (X(ξ), Y (ξ)) = (+∞,−∞) (resp. (0,0)).

Proof. Since the proof is similar to the one for Lemma 4.2, we omit it (see Fig. 3). �
Lemma 4.5. Let m < −1 and a ∈ R. Suppose that f is a convex solution of (Pm,a) with f (+∞) := limt→+∞ f (t) < 0 and the limit

l := lim
t→∞

(
f (t) f ′(t)

f ′′(t)
,

f ′(t)2

f (t) f ′′(t)

)
exists. Then l cannot be equal to (0,0) or (+∞,−∞).

Proof. Case 1: l = (0,0).
By assumption and part (iv) of Proposition 1, the quantity f (+∞) < 0 is finite. From (1.1), we have

lim
t→+∞

f ′′′(t)
f ′′(t)

= lim
t→+∞

[
−m + 1

2
f (t) + m

f ′(t)2

f ′′(t)

]
= −m + 1

2
f (+∞). (4.3)

Since f is a solution of (Pm,a), we have f ′(t), f ′′(t) → 0 as t → +∞. Hence by applying l’Hopital’s rule and using (4.3), we
have

lim
t→+∞

f ′(t)
f ′′(t)

= lim
t→+∞

f ′′(t)
f ′′′(t)

= − 2

(m + 1) f (+∞)
,

hence, f f ′/ f ′′ → −2/(m + 1) as t → +∞, a contradiction.

Case 2: l = (+∞,−∞).
By assumption, there exists s0 > 0 such that f < 0, f ′ < 0, and f ′′ > 0 on [s0,+∞). Let (X, Y ) be the solution of the

system (3.1)–(3.2) corresponding to f (t) for t ∈ [s0,+∞). Since f ′′ > 0 on [0,+∞) and f ′(+∞) = 0, (X, Y ) is defined on
[− ln | f ′(s0)|,+∞) and tends to (+∞,−∞) as ξ → +∞ by assumption. On the other hand, by part (ii) of Lemma 4.4,
(X, Y ) must be defined only on a finite interval, a contradiction. The proof is completed. �
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Now we can give a criterion for the existence of convex-concave solutions of (Pm,a) for m < −1 and a � 0. First, recall
from [6] that for each fixed a < 0, there exist 0 < b− < b+ such that there hold:

• If b < b− , then fb is a type (C) solution.
• If b = b− , then fb is a convex solution of (Pm,a).
• If b ∈ (b−,b+), then fb is a convex-concave solution of (Pm,a) such that limt→+∞ f (t) = 0.
• If b = b+ , then fb is a convex-concave solution of (Pm,a) such that limt→+∞ f (t) = l for some l < 0.
• If b > b+ , then fb is a type (B2).

Hence for each fixed a < 0, fb is a solution of (Pm,a) if and only if b ∈ [b−,b+]. Let (Xb, Yb) be the solution of the
system (3.1)–(3.2) corresponding to fb(t) for t ∈ (tb,min{t0b, t̂0b}). Note that for a < 0, the correspondence b → (Xb, Yb) is
injective by part (ii) of Lemma 3.3. Moreover, if b ∈ [b−,b+], then (Xb, Yb) is defined on (− ln | f ′

b(tb)|,+∞). Furthermore, by
Lemmas 4.4 and 4.5, the trajectory {(Xb−(ξ), Yb− (ξ)) | ξ ∈ (− ln | f ′

b− (tb− )|,+∞)} of (Xb− , Yb− ) coincides with the trajectory
of (X41∗, Y41∗), and so, we have

lim
t→+∞

( fb− (t) f ′
b− (t)

f ′′
b− (t)

,
f ′
b− (t)2

fb− (t) f ′′
b− (t)

)
= (−2/(m + 1),0

)
.

On the other hand, if b = b+ (resp. b ∈ (b−,b+)), then by Lemma 4.3 and part (ii) of Lemma 3.3, we have that fb is a type
(B1,I1 ) (resp. type (B1,I2 )) solution of (Pm,a). Note that for each b ∈ (b−,b+], we have t0b < t̂0b , hence the corresponding so-
lution (Xb, Yb) of the system (3.1)–(3.2) satisfies (Xb(ξ), Yb(ξ)) → (0,0) as ξ → +∞. Now we let (X42∗, Y42∗) be a solution
of the system (3.1)–(3.2) defined on the maximal existence interval (Ξ42∗,+∞) such that the following hold:

(1) X42∗(ξ) ∈ (0,−2/(m + 1)) and Y42∗(ξ) < 0 for all ξ ∈ (Ξ42∗,+∞),
(2) Y ′

42∗(ξ) > 0 for all ξ ∈ (Ξ42∗,+∞),
(3) limξ→+∞(X42∗(ξ), Y42∗(ξ)) = (0,0) and limξ→Ξ+

42∗
(X42∗(ξ), Y42∗(ξ)) = (0,−∞),

(4) the trajectory of (Xb+ , Yb+ ) coincides with the one of (X42∗, Y42∗).

Finally, we let D4,22 be the open domain bounded by the trajectory of (X4i∗, Y4i∗), i = 1,2, and the X-axis (see Fig. 3). Note
that (Xb(0), Yb(0)) lies on the curve (4.2) for each b > 0. Moreover, we have {(Xb(0), Yb(0)) | b > 0} =
{(X, Y ) | Y = −X/a2, X > 0}. Therefore, the above discussion leads to

D4,22 =
⋃

b∈(b−,b+)

{(
Xb(ξ), Yb(ξ)

) ∣∣ ξ ∈ (− ln
∣∣ f ′

b(tb)
∣∣,+∞)}

.

Moreover, a similar argument as above yields

D4,21 ∪ L4,2 ∪ D4,3 =
⋃

b∈(0,b−)

{(
Xb(ξ), Yb(ξ)

) ∣∣ ξ ∈ (− ln
∣∣ f ′

b(tb)
∣∣,− ln

∣∣ f ′
b(t̂0b)

∣∣)},
(D4,1 ∪ D4,2) \ D4,21 ∪ D4,22 =

⋃
b>b+

{(
Xb(ξ), Yb(ξ)

) ∣∣ ξ ∈ (− ln
∣∣ f ′

b(tb)
∣∣,+∞)}

.

Hence, we have

{X > 0, Y < 0} =
⋃
b>0

{(
Xb(ξ), Yb(ξ)

) ∣∣ ξ ∈
(
− ln

∣∣ f ′
b(tb)

∣∣,− lim
t→s−0b

ln
∣∣ f ′

b(t)
∣∣)}

. (4.4)

With these preparation, we are in a position to give a sufficient condition which guarantees the existence of convex-
concave solutions of (Pm,a) for m < −1 and a ∈ R.

Lemma 4.6. Suppose that m < −1 and f is a solution of (1.1) such that f < 0, f ′ < 0 and f ′′ > 0 on [t1, t2] for some t1, t2 > 0. Let
(X, Y ) be the corresponding solution of the system (3.1)–(3.2) defined on [− ln | f ′(t1)|,− ln | f ′(t2)|] and Γ := {(X(ξ), Y (ξ)) | ξ ∈
[− ln | f ′(t1)|,− ln | f ′(t2)|]}. Then the following hold:

(i) f is a type (B1) (convex-concave) solution if and only if the curve Γ lies in the region D4,22 or on the trajectory of (X42∗, Y42∗).
(ii) If the curve Γ lies on the trajectory Γ42∗ of (X42∗, Y42∗), then f is a type (B1,I1 ) solution and limt→+∞ f (t) = l for some l < 0.

(iii) If the curve Γ lies in the region D4,22 , then f is a type (B1,I2 ) solution and limt→+∞ f (t) = 0.

Proof. Recall the definitions of fb , (Xb, Yb), t0b , t̂0b and s0b defined in the beginning of this subsection. Since (X, Y ) is a
solution of (1.1) and lies in the region {X > 0, Y < 0}, by Eq. (4.4) and part (i) of Lemma 3.3, there exist k > 0 and d ∈ R

such that f (t) = kfb(kt + d) for some b > 0. Together with the discussion right before this lemma, the assertions of this
lemma follows. �
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5. Classification of solutions of (Pm,a,b)

In this section, we will classify the solutions f of (Pm,a,b) for m < −1 and a � 0 according to the order of the positions
of zeros of f , f ′ , and f ′′ . Then we will establish the correspondence between these types of solutions and the ω-limit
subset {(0,0), (0,2), (0,+∞), (1/m,+∞), (−∞,+∞)} of the system (3.1)–(3.2).

Recall that f ′ and f ′′ cannot vanish at the same finite point. If f is the solution of (Pm,a,b) with m < −1 and a > 0, then
it is clear that f must be one of the following six types:

Definition 5.1.

(G0) f > 0, f ′ < 0, and f ′′ > 0 on [0,+∞).
(G1) There exists a finite t0 > 0 such that f > 0 on [0, t0], f ′ < 0 on [0, t0) and f ′(t0) = 0, and f ′′ > 0 on [0, t0].
(G2) There exists a finite t0 > 0 such that f > 0 on [0, t0), f ′ < 0 on [0, t0), f (t0) = f ′(t0) = 0, and f ′′ > 0 on [0, t0].
(G3) There exists a finite t̃0 > 0 such that f > 0 on [0, t̃0), f (t̃0) = 0, and f ′ < 0 and f ′′ > 0 on [0, t̃0].
(G4) There exists a finite t̂0 > 0 such that f > 0 on [0, t̂0), f ′ < 0 on [0, t̂0], and f ′′ > 0 on [0, t̂0) and f (t̂0) = f ′′(t̂0) = 0.
(G5) There exists a finite t̂0 > 0 such that f > 0 on [0, t̂0], f ′ < 0 on [0, t̂0], and f ′′ > 0 on [0, t̂0) and f ′′(t̂0) = 0.

Note that a type (G0) solution must be a convex solution of (Pm,a) by Lemma 3.1, and only (G3) solution can be a
convex-concave solution of (Pm,a) by Proposition 1 and Lemma 3.2. Next, we will describe these types of solutions in terms
of two limits.

Lemma 5.1. The following statements hold:

(1) If f is of type (G1), then we have

lim
t→t−0

f (t) f ′(t)/ f ′′(t) = 0, lim
t→t−0

f ′(t)2/
[

f (t) f ′′(t)
] = 0.

(2) If f is of type (G2), then we have

lim
t→t−0

f (t) f ′(t)/ f ′′(t) = 0, lim
t→t−0

f ′(t)2/
[

f (t) f ′′(t)
] = 2.

(3) If f is of type (G3), then we have

lim
t→t̃−0

f (t) f ′(t)/ f ′′(t) = 0, lim
t→t̃−0

f ′(t)2/
[

f (t) f ′′(t)
] = +∞.

(4) If f is of type (G4), then we have

lim
t→t̂−0

f (t) f ′(t)/ f ′′(t) = 1/m, lim
t→t̂−0

f ′(t)2/
[

f (t) f ′′(t)
] = +∞.

(5) If f is of type (G5), then we have

lim
t→t̂−0

f (t) f ′(t)/ f ′′(t) = −∞, lim
t→t̂−0

f ′(t)2/
[

f (t) f ′′(t)
] = +∞.

Proof. It is easy to see that the statements (1), (3) and (5) hold. If f is of type (G2), then it follows that
limt→t−0

f (t) f ′(t)/ f ′′(t) = 0. Furthermore, by applying l’Hopital’s rule, we have

lim
t→t−0

f ′(t)2/
[

f (t) f ′′(t)
] =

{
lim

t→t−0
f ′(t)2/ f (t)

}
/ f ′′(t0) =

{
lim

t→t−0
2 f ′(t) f ′′(t)/ f ′(t)

}
/ f ′′(t0) = 2.

If f is of type (G4). Then we have limt→t̂−0
f ′(t)2/[ f (t) f ′′(t)] = +∞. Therefore it remains to show that f f ′/ f ′′ → 1/m

as t → t̂−
0 . By (1.1), we can compute that

lim
t→t̂−0

f ′′′(t)
f ′(t)

= lim
t→t̂−0

[
−m + 1

2

f (t) f ′′(t)
f ′(t)

+ mf ′(t)
]

= mf ′(t̂0).

Hence by applying l’Hopital’s rule and the above equation, we have

lim
t→t̂−0

f (t)

f ′′(t)
= lim

t→t̂−0

f ′(t)
f ′′′(t)

= 1/
(
mf ′(t̂0)

)
,

and so f f ′/ f ′′ → 1/m as t → t̂− . Hence the lemma follows. �
0
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In the remaining of this subsection, we will show that if f is a type (G0) solution, then the limit (if it exists)

lim
t→+∞

(
f (t) f ′(t)

f ′′(t)
,

f ′(t)2

f (t) f ′′(t)

)
cannot be equal to (0,0), (0,2), (0,+∞), (1/m,+∞), or (−∞,+∞), which will establish the correspondence between
type (G1)–(G5) solutions and the ω-limit subset {(0,0), (0,2), (0,+∞), (1/m,+∞), (−∞,+∞)} of the system (3.1)–(3.2).
To this end, we need two auxiliary lemmas.

Lemma 5.2. Let m < −1 and (X(ξ), Y (ξ)) be a solution of the system (3.1)–(3.2). Then the following hold:

(i) If X(ξ) < 0 and Y (ξ) > 0 for some ξ = ξ0 , then we have limξ→−∞(X(ξ), Y (ξ)) = (−3,1/2).
(ii) There exists a unique solution (X21∗(ξ), Y21∗(ξ)) (up to a translation in ξ ) of (3.1)–(3.2) such that the following hold:

(1) X ′
21∗(ξ) > 0 and Y ′

21∗(ξ) > 0 for all ξ ∈ R,
(2) limξ→+∞(X21∗(ξ), Y21∗(ξ)) = (0,2),
(3) limξ→−∞(X21∗(ξ), Y21∗(ξ)) = (−3,1/2),
(4) the trajectory Γ21∗ := {(X21∗(ξ), Y21∗(ξ)) | ξ ∈ R} of (X21∗, Y21∗) is contained in D2,1 .

(iii) Let Y = Ŷ21∗(X) be the equation of the trajectory Γ21∗ and D2,11 := {(X, Y ) | −3 < X < 0, (2 + [(m + 1)/2]X)/

(1 + mX) < Y < Ŷ21∗(X)}. If (X(ξ), Y (ξ)) enters into the region D2,11 at some ξ = ξ0 , then there exists a ξ1 > ξ0 such
that (X(ξ), Y (ξ)) stays in the region D2,11 for all ξ ∈ (ξ0, ξ1), then crosses the curve L2,1 horizontally at (X(ξ1), Y (ξ1)), and
finally stays in the region D2,4 for all ξ > ξ1 and tends to (0,0) at ξ → +∞.

(iv) There exists a unique solution (X22∗(ξ), Y22∗(ξ)) (up to a translation in ξ ) of (3.1)–(3.2) defined on the maximal existence
interval (−∞,Ξ22∗) for some Ξ22∗ ∈ R, such that the following hold:
(1) X ′

22∗(ξ) > 0 and Y ′
22∗(ξ) > 0 for all ξ ∈ (−∞,Ξ22∗),

(2) limξ→Ξ−
22∗

(X22∗(ξ), Y22∗(ξ)) = (1/m,+∞),

(3) limξ→−∞(X22∗(ξ), Y22∗(ξ)) = (−3,1/2),
(4) the trajectory Γ22∗ := {(X22∗(ξ), Y22∗(ξ)) | ξ ∈ (−∞,Ξ22∗)} of (X22∗, Y22∗) is contained in D2,1 and above the trajectory

Γ21∗ .
(v) Let Y = Ŷ22∗(X) be the equation of the trajectory (X22∗, Y22∗) and D2,12 = {(X, Y ) | −3 < X < 1/m, Ŷ22∗(X) < Y <

(1 + [(m + 1)/2]X)/(−1 + mX)}. If (X(ξ), Y (ξ)) enters into the region D2,12 at some ξ = ξ0 , then there exist ξ0 < ξ1 < Ξ <

+∞ such that (X(ξ), Y (ξ)) stays in the region D2,12 for all ξ ∈ (ξ0, ξ1), then crosses the curve L2,2 vertically at (X(ξ1), Y (ξ1)),
and finally stays in the region D2,2 for all ξ ∈ (ξ1,Ξ) and tends to (−∞,+∞) at ξ → Ξ− .

(vi) Let D2,13 be the open domain bounded by the trajectories Γ21∗ and Γ22∗ , and the Y -axis. If (X(ξ), Y (ξ)) enters into the region
D2,13 at some ξ = ξ0 , then there exists a finite Ξ such that (X(ξ), Y (ξ)) stays in the region D2,13 for all ξ ∈ (ξ0,Ξ), and tends
to (0,+∞) at ξ → Ξ− .

(vii) There exists a unique solution (X23∗(ξ), Y23∗(ξ)) (up to a translation in ξ ) of (3.1)–(3.2) defined on R, such that the following
hold:
(1) X ′

23∗(ξ) < 0 and Y ′
23∗(ξ) < 0 for all ξ ∈ R,

(2) limξ→+∞(X23∗(ξ), Y23∗(ξ)) = (−∞, (m + 1)/(2m)),
(3) limξ→−∞(X23∗(ξ), Y23∗(ξ)) = (−3,1/2),
(4) the trajectory Γ23∗ := {(X23∗(ξ), Y23∗(ξ)) | ξ ∈ R} of (X23∗, Y23∗) is contained in D2,3 , below the curve L2,3 and above the

curve L2,4 .
(viii) Let Y = Ŷ23∗(X) be the equation of the trajectory Γ23∗ , D2,31 := {(X, Y ) | X < −3, Ŷ23∗(X) < Y < (2 + [(m + 1)/2]X)/

(1 + mX)} and D2,32 := D2,3 \ D2,31 . If (X(ξ), Y (ξ)) enters into the region D2,31 at some ξ = ξ0 , then there exist ξ0 < ξ1 <

Ξ < +∞ such that (X(ξ), Y (ξ)) stays in the region D2,31 for all ξ ∈ (ξ0, ξ1), then crosses the curve L2,3 horizontally at
(X(ξ1), Y (ξ1)), and finally stays in the region D2,2 for all ξ ∈ (ξ1,Ξ) and tends to (−∞,+∞) at ξ → Ξ− . On the other
hand, if (X(ξ), Y (ξ)) enters into the region D2,32 at some ξ = ξ0 , then there exists a ξ1 > ξ0 such that (X(ξ), Y (ξ)) stays in the
region D2,32 for all ξ ∈ (ξ0, ξ1), then crosses the curve L2,4 vertically at (X(ξ1), Y (ξ1)), and finally stays in the region D2,4 for
all ξ > ξ1 and tends to (0,0) as ξ → +∞.

Proof. It suffices to prove the uniqueness and existence of the solution (X2i∗(ξ), Y2i∗(ξ)) of (3.1)–(3.2) for i = 2,3, since the
proofs of the other assertions are similar to that of Lemma 4.2.

The existence and uniqueness of (X22∗(ξ), Y22∗(ξ)). First, we prove the existence of (X22∗(ξ), Y22∗(ξ)). Let g be the
solution of the following backward problem:

g′′′ + [
(m + 1)/2

]
gg′′ − mg′ 2 = 0, t < 0,

g(0) = 0, g′(0) = −1, g′′(0) = 0.

By Proposition 1, we can conclude that there exists s1 < 0 such that g > 0, g′ < −1, and g′′ > 0 on [s1,0). Let
(X22∗(ξ), Y22∗(ξ)) be the solution of (3.1)–(3.2) corresponding to g(t) for t ∈ [s1,0). Hence by using a similar argument
as in part (4) of Lemma 5.1, we can compute
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lim
ξ→0−

(
X22∗(ξ), Y22∗(ξ)

) = (1/m,+∞).

Furthermore, by using a simple phase plane analysis (see Lemma 3.4), we can conclude that the set {(X22∗(ξ),

Y22∗(ξ)) | ξ ∈ [− ln |g′(s1)|,0)} is contained in D2,1. (Otherwise, we have that limξ→0− (X22∗(ξ), Y22∗(ξ)) = (−∞,+∞),
(−∞, (m + 1)/(2m)), or (0,0).) Obviously, we can extend the domain of (X22∗(ξ), Y22∗(ξ)) from [− ln(g′(s1)),0) to
(−∞,Ξ22∗) for some Ξ22∗ ∈ R ∪ {+∞}, and (X22∗(ξ), Y22∗(ξ)) has the required properties except uniqueness.

Next, we prove the uniqueness of (X22∗(ξ), Y22∗(ξ)) (up to a translation in ξ ). Let (Xi(ξ), Yi(ξ)), i = 1,2, be the solution
of the system (3.1)–(3.2) defined on (−∞,Ξi22∗) with the required properties stated in (iv). Since Y ′

i > 0 on (−∞,Ξi22∗),
Xi can be viewed as a function of Y for i = 1,2. Without loss of generality, we may assume that X1(Y ) > X2(Y ) for all
Y ∈ (1/2,+∞). With a simple computation, it follows that

F (X1, Y )G(X2, Y ) − F (X2, Y )G(X1, Y ) := M(Y , X1, X2)(X1 − X2),

where

M(Y , X1, X2) := Y

[
2 + (m + 1)(X1 + X2) + (m + 1)2

4
X1 X2

]
+ Y 2

[
1 − 5m + 1

2
(X1 + X2) − m(m + 1)X1 X2

]
+ Y 3[−1 + m(X1 + X2) + m2 X1 X2

]
.

Note that Xi(Y ) ↗ 1/m as Y → +∞ for i = 1,2. Hence, for all sufficiently large Y , we obtain

dX1

dY
− dX2

dY
= [

F (X1, Y )G(X2, Y ) − F (X2, Y )G(X1, Y )
]
/
[
G(X1, Y )G(X2, Y )

]
> 0.

Here we have used the fact that G(Xi, Y ) < 0 for Y > 1/2 for i = 1,2. Then the above inequality is a contradiction to the
fact that

lim
Y →+∞

[
X1(Y ) − X2(Y )

] = 0,

thereby establishing the uniqueness of (X22∗(ξ), Y22∗(ξ)).

The existence and uniqueness of (X23∗(ξ), Y23∗(ξ)). First, we prove the existence of (X23∗(ξ), Y23∗(ξ)). Consider the
curve Γ defined by{

(X, Y )
∣∣ X = −4, Y > 0

}
.

Let Γ intersect the curves L2,3 and L2,4 at A and B , respectively. Now let C be the segment connecting the points A and B .
Set

C1 := {
P ∈ C

∣∣ the trajectory of (3.1)–(3.2) starting from P will tend to (−∞,+∞)
}
,

C2 := {
P ∈ C

∣∣ the trajectory of (3.1)–(3.2) starting from P will tend to (0,0)
}
.

Note that D2,2 and D2,4 are invariant with respect to (3.1)–(3.2). Hence C1 and C2 are open by the theory of continuous
dependence on initial data. By the phase plane analysis (see Lemma 3.4), we have that the trajectory of (3.1)–(3.2) starting
from A will stay in the region D2,2 and goes to (−∞,+∞), and that the trajectory of (3.1)–(3.2) starting from B will stay in
the region D2,4 and goes to (0,0). From these facts it follows that there exists a point P1 ∈ C ∩ D2,3 such that the trajectory
of the solution ((X23∗(ξ), Y23∗(ξ))) of (3.1)–(3.2) starting from P1 will stay in the region D2,3 for all ξ � 0. Thus we have
limξ+∞((X23∗(ξ), Y23∗(ξ))) = (−∞, (m + 1)/(2m)). Moreover, by a simple phase plane analysis (see Lemma 3.4), we have
limξ→−∞(X23∗(ξ), Y23∗(ξ)) = (−3,1/2). This proves the existence of ((X23∗(ξ), Y23∗(ξ))).

Finally, the proof of the uniqueness of (X23∗(ξ), Y23∗(ξ)) (up to a translation in ξ ) is similar to that of (X22∗(ξ), Y22∗(ξ)),
and so we omit it. Therefore, the proof of this lemma is completed. �

In order to reach the goal of this section, it remains to show the following lemma.

Lemma 5.3. Let m < −1 and a � 0. Suppose that f is a convex solution of (Pm,a). If the limit

l := lim
t→+∞

(
f (t) f ′(t)

f ′′(t)
,

f ′(t)2

f (t) f ′′(t)

)
exists, then this limit cannot be equal to (0,0), (0,2), (0,+∞), (1/m,+∞), or (−∞,+∞).

Proof. Case (i): l = (0,0).
By Lemma 4.5, it suffices to consider the case: f (t) is positive for all sufficiently large t . By (1.1), we have
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f ′′′(t) =
[
−m + 1

2
+ m

f ′(t)2

f (t) f ′′(t)

]
f (t) f ′′(t).

Together with the fact that m < −1, it follows that f ′′′(t) > 0 for all sufficiently large t . This is a contradiction to the fact
that f ′′ > 0 on [0,+∞) and f ′′(+∞) = 0.

Case (ii): l = (0,2).
Let g be the solution of the following problem defined on the right maximal existence interval [0, T ):

g′′′ + [
(m + 1)/2

]
gg′′ − mg′ 2 = 0, t ∈ [0, T ),

g(0) = 0, g′(0) = 0, g′′(0) = 1.

By Lemma 3.2 and Proposition 1, we can conclude that there exist s1 < 0 and s2 ∈ (0, T ) such that g > 0, g′ < 0, and g′′ > 0
on [s1,0), and that g > 0, g′ > 0, and g′′ > 0 on (0, s2), and g′′ < 0 on (s2, T ).

Now we set the following change of variables for the function g:

X1(ξ) = g(t)g′(t)
g′′(t)

, Y1(ξ) = g′(t)2

g(t)g′′(t)
, ξ = − ln

∣∣g′(t)
∣∣,

where we require t ∈ [s1,0). Note that (X1, Y1) satisfies the system (3.1)–(3.2) and that

X1(ξ) < 0 and Y1(ξ) > 0 for all ξ ∈ [− ln
∣∣g′(s1)

∣∣,+∞)
.

Since g(0) = g′(0) = 0, by using a similar argument as in part (2) of Lemma 5.1, we can compute

lim
ξ→+∞

(
X1(ξ), Y1(ξ)

) = (0,2).

Therefore, the trajectory {(X1(ξ), Y1(ξ)) | ξ ∈ [− ln |g′(s1)|,+∞)} of (X1, Y1) lies on the trajectory of (X21∗Y21∗) defined in
part (ii) of Lemma 5.2.

Now if f is a convex solution of (Pm,a) with l = (0,2), then there exists s0 > 0 such that the following holds:

f > 0, f ′ < 0, and f ′′ > 0 on (s0,+∞).

Now we set the following change of variables for the solution f :

X(ξ) = f (t) f ′(t)
f ′′(t)

, Y (ξ) = f ′(t)2

f (t) f ′′(t)
, ξ = − ln

∣∣ f ′(t)
∣∣,

where we require t ∈ (s0,+∞). Note that (X, Y ) satisfies the system (3.1)–(3.2) and that

X(ξ) < 0 and Y (ξ) > 0 for all ξ ∈ (− ln
∣∣ f ′(s0)

∣∣,+∞)
,

lim
ξ→+∞

(
X(ξ), Y (ξ)

) = (0,2).

By part (ii) of Lemma 5.2, the trajectory {(X(ξ), Y (ξ)) | ξ ∈ (− ln | f ′(s0)|,+∞)} of (X, Y ) must lie on the trajectory of
(X21∗Y21∗). Combining this with part (i) of Lemma 3.3, it follows that there exists k > 0 and d0 ∈ R such that f (t) =
kg(kt + d0) for all t ∈ (t1, t2) and for some t1, t2 ∈ R. By the standard uniqueness theory for differential equations, we have
f (t) = kg(kt +d0) for all t ∈ (T1,+∞) where (T1,+∞) is the maximal existence interval of f . Hence T = +∞. Since g′′ < 0
on (s2,+∞), this yields that f ′′(t) takes negative value for sufficiently large t . This is a contradiction.

Case (iii): l = (0,+∞), (1/m,+∞) or (−∞,+∞).
By assumption, there exists s0 > 0 such that for all t > s0, we have

f ′(t)2

f (t) f ′′(t)
> 0,

which together with the fact that f ′ < 0 on [0,+∞), yields

f (t) f ′(t)
f ′′(t)

< 0 for all t > s0.

As before, let (X, Y ) be the solution of the system (3.1)–(3.2) corresponding to f (t) for t > s0. Then (X, Y ) is defined on
(− ln | f ′(s0)|,+∞) and limξ→+∞(X(ξ), Y (ξ)) = l. However, by parts (iv)–(viii) of Lemma 5.2, (X, Y ) can only be defined on
a finite interval, a contradiction. Hence the proof of this lemma is completed. �
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Fig. 4. The vector field generated by (3.1)–(3.2) for m = −2. The coordinates of R and S are (0,2) and (−3,1/2), respectively. Note that the trajectory Γ23∗
is bounded by the curves L32 and L24.

6. Proof of Theorem 1

Now we are in a position to prove Theorem 1. Fix m < −1 and a > 0. Let fb be the solution of (Pm,a,b) defined on
the right maximal existence interval [0, Tb). Recall from Proposition 2 that fb is of type (C) for b � 0. Thus, we will assume
that b > 0 throughout the remaining of this section. Also recall from Definition 5.1 that t̃0 = t̃0b , t0b , and t̂0b are the first
zero of fb , f ′

b , and f ′′
b , respectively. Set s0b := min{t̃0b, t0b, t̂0b}. Note that s0b may be +∞. Let (Xb, Yb) be the solution

of the system (3.1)–(3.2) corresponding to fb(t) for t ∈ [0, s0b). Note that the initial data of (Xb, Yb) is (Xb(0), Yb(0)) =
(−a/b,1/(ab)) which lies in the second quadrant of the phase plane and lies on the straight line Γ defined by

Y = − 1

a2
X .

We will consider three disjoint cases: a �
√

6, a ∈ (0,
√

6) and a = 0.

The structure of solutions of (Pm,a) for m < −1 and a �
√

6.
First, we consider the case a �

√
6. Indeed, if a >

√
6, then the initial line Γ intersects the trajectory of (X23∗, Y23∗)

defined in Lemma 5.2 at exactly one point, say (Xbm,a (0), Ybm,a (0)); and if a = √
6, then the initial line Γ intersects the

closure of the trajectory of (X23∗, Y23∗) at (−3,1/2) which we still denote by (Xbm,a (0), Ybm,a (0)). Then by the phase plane
analysis (see Lemma 5.2 and Fig. 4), for each b > bm,a , the solution (Xb(ξ), Yb(ξ)) will tend to (0,0) as ξ → +∞; and for
each b ∈ (0,bm,a), the solution (Xb(ξ), Yb(ξ)) will tend to (−∞,+∞) as ξ approaches some finite Ξ . Hence by Lemmas 5.1
and 5.3, fb is of type (G1) for all b > bm,a and of type (G5) for all b ∈ (0,bm,a). Note that a type (G5) solution cannot be a
solution of (Pm,a) by part (i) of Proposition 1. In fact, a type (G5) solution is of type (C) by Proposition 2. Finally, since a
convex-concave solution f (t) of (Pm,a) must take negative values for all sufficiently large t by part (iv) of Proposition 1, a
type (G1) solution cannot be a solution of (Pm,a), and so is of type (B2) by Proposition 2.

To summarize, if m < −1 and a �
√

6, fb is of type (B2) for all b > bm,a , and of type (C) for all b < bm,a . Since the
set of type (B2) solutions and the set of type (C) solutions are open and disjoint, it follows that fbm,a is a convex solution
of (Pm,a). Moreover, since bm,a is the greatest lower bound of the set of type (B2) solutions, fbm,a > 0 on [0,+∞). When

a >
√

6, the asymptotic behaviour of fbm,a follows from the long time behaviour of (X23∗, Y23∗). We note that when a = √
6,

such a convex solution is given by fbm,a = 6/(t + √
6).

The structure of solutions of (Pm,a) for m < −1 and a ∈ (0,
√

6).
Now, we turn to the case: a ∈ (0,

√
6). The proof of this case is divided into three steps.
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Step 1. In this case, the initial line Γ intersects the trajectory of (X21∗, Y21∗) (resp. (X22∗, Y22∗)) defined in Lemma 5.2 at
exactly one point, say (Xb̂(0), Yb̂(0)) (resp. (Xb̃(0), Yb̃(0))). Note that b̂ and b̃ depend on m and a. Then by the phase plane

analysis (see Lemma 5.2 and Fig. 4), for each b > b̂, the solution (Xb(ξ), Yb(ξ)) will tend to (0,0) as ξ → +∞; and for each
b ∈ (0, b̃), the solution (Xb(ξ), Yb(ξ)) will tend to (−∞,+∞) as ξ approaches some finite Ξ . By using a similar argument
as in the case a >

√
6, fb cannot be a solution of (Pm,a) for all b ∈ (0, b̃] ∪ [b̂,+∞). Moreover, fb is of type (B2) for all b > b̂

and of type (C) for all b < b̃. Hence it remains to consider the case: b ∈ (b̃, b̂).

Step 2. By part (vi) of Lemmas 5.2, 5.1 and 5.3, fb is of type (G3) for all b ∈ (b̃, b̂). Moreover, fb̂ is of type (G2) and fb̃

is of type (G4). Thus, for each b ∈ (b̃, b̂), there exists a finite t̃0b > 0 such that fb > 0 on [0, t̃0b), fb(t̃0b) = 0, and f ′
b < 0

and f ′′
b > 0 on [0, t̃0b]. Hence by the theory of continuous dependence on initial data, we can conclude that if b < b̂ and b

is sufficiently close to b̂, then there exists a t0b > t̃0b such that fb < 0 on (t̃0b, t0b], f ′
b < 0 on [0, t0b) and f ′

b(t0b) = 0, and

f ′′
b > 0 on [0, t0b]; and if b > b̃ and b is sufficiently close to b̃, then there exists t̂0b > t̃0b such that fb < 0 on (t̃0b, t̂0b],

f ′
b < 0 on [0, t̂0b], and f ′′

b > 0 on [0, t̂0b) and f ′′
b (t̂0b) = 0.

Now consider the sets

Bm,a := {
b ∈ (b̃, b̂)

∣∣ the solution fa of (Pm,a,b) is of type (B)
}
,

Cm,a := {
b ∈ (b̃, b̂)

∣∣ the solution fa of (Pm,a,b) is of type (C)
}
.

Note that the sets Bm,a and Cm,a are disjoint and that Bm,a and Cm,a are nonempty by the above discussion. Hence the
quantities

inf Bm,a and sup Cm,a

are well defined and positive. Furthermore, any solution of (Pm,a,b) is either of type (A), type (B), or type (C) by Proposi-
tion 2. By the standard theory of continuous dependence on initial data and part (i) of Proposition 1, the sets Bm,a and
Cm,a are open. From these facts it follows that the solutions f inf Bm,a and fsup Cm,a are of type (A). On the other hand, by
Theorem 1 of [6], type (A) solution of (Pm,a,b) is unique. Hence we have bm,a,− := inf Bm,a = sup Cm,a , which implies that
the solution fb of (Pm,a,b) is of type (B) for all b > bm,a,− , and is of type (C) for all b < bm,a,− . For simplicity, we will write
bm,a,− as b− in the remaining of the proof.

Step 3. Therefore, in order to look for the convex-concave solutions of (Pm,a), it suffices to concentrate on the interval
(b−, b̂). First, since fb is of type (G3) and type (B) for each b ∈ (b−, b̂), there exist finite t̃0b and t0b such that fb < 0
on (t̃0b, t0b], f ′

b < 0 on [0, t0b) and f ′
b(t0b) = 0, and f ′′

b > 0 on [0, t0b] (by part (i) of Proposition 1). Similarly, since fb−
is a convex solution of (Pm,a) and of type (G3), there exists a finite t̃0b− such that fb− < 0, f ′

b− < 0, and f ′′
b− > 0 on

(t̃0b− ,+∞). Now we set s1b = t0b if b ∈ (b−, b̂), and s1b = +∞ if b = b− . For b ∈ [b−, b̂), let ( X̃b, Ỹb) be the solution of the

system (3.1)–(3.2) corresponding to fb(t) for t ∈ (t̃0b, s1b). Note that ( X̃b, Ỹb) is defined on (− ln | f ′
b(t̃0b)|,+∞) for b ∈ [b−, b̂)

and the corresponding trajectory {( X̃b(ξ), Ỹb(ξ)) | ξ ∈ (− ln | f ′
b(t̃0b)|,+∞)} lies in the fourth quadrant of the phase plane.

Now by Lemmas 4.5 and 4.4, we have that the trajectory of ( X̃b− , Ỹb− ) coincides with the one of (X41∗, Y41∗) defined
in Lemma 4.4. Hence the asymptotic behaviour of fb− follows from the long time behaviour of (X41∗, Y41∗). Therefore, by
the theory of continuous dependence on initial data, there exists b0 > b− which is sufficiently close to b− , such that for
each b ∈ (b−,b0), ( X̃b, Ỹb) enters into the region D4,22 defined in the paragraph right before Lemma 4.6. Since D4,22 is
invariant with respect to the system (3.1)–(3.2), the trajectory of ( X̃b, Ỹb) lies in the region D4,22 for all b ∈ (b−,b0). Hence
by Lemma 4.6, fb is a type (B1,I2 ) solution of (Pm,a) and limt→+∞ fb(t) = 0 for all b ∈ (b−,b0).

Now consider the set

B̂m,a := {
b ∈ (b−, b̂)

∣∣ the solution fb of (Pm,a,b) is of type (B1,I2 )
}
.

Note that (b−,b0) ⊆ B̂m,a . By a similar argument as in Step 1, fb is of type (B2) for all b < b̂ sufficiently close to b̂, and
so B̂m,a is bounded above. By Lemma 4.3, the set B̂m,a is open. Hence the quantity bm,a,+ := sup B̂m,a exists, and fbm,a,+
cannot be of type (B2) or of type (B1,I2 ). Thus the solution fbm,a,+ is of type (B1,I1 ) by Lemma 4.3. Moreover, it is a solution

of (Pm,a). Finally, by Lemmas 3.4 and 5.2, the trajectory of (Xb, Yb) are distinct among b ∈ (b̃, b̂), which together with part
(i) of Lemma 3.3, implies that type (B1,I1 ) solution of (Pm,a) is unique among b ∈ (b̃, b̂). Hence fb is of type (B2) for all
b ∈ (bm,a,+, b̂) and of type (B1,I2 ) for all b ∈ (b−,bm,a,+). This completes the proof for the case a ∈ (0,

√
6).

The structure of solutions of (Pm,a) for m < −1 and a = 0.
The proof of this case consists of two steps.

Step 1. First we claim that there exist b̂1 = b̂1(m) > 0, t0 = t0(b), and s0 = s0(b) such that for all b > b̂1 there holds
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fb < 0 on (0, s0) and fb(s0) = 0,

f ′
b < 0 on (0, t0) and f ′

b > 0 on (t0, s0],
f ′′
b (t) ∈ (b/2,3b/2) for all t ∈ [0, s0].

Let b > 0 and consider the auxiliary function

gμ(t) := fb(μt)/μ, μ = 1/b.

Then we see that gμ satisfies the following initial value problem (I):

g′′′
μ = μ2{−[

(m + 1)/2
]

gμg′′
μ + m

(
g′
μ

)2}
,

gμ(0) = 0, g′
μ(0) = −1, g′′

μ(0) = 1.

As μ → 0, the limiting problem of (I) is given by

ψ ′′′ = 0, ψ(0) = 0, ψ ′(0) = −1, ψ ′′(0) = 1,

whose solution is given by

ψ(t) = t2/2 − t,

which yields

ψ < 0 on (0,2) and ψ(2) = 0,

ψ ′ < 0 on (0,1) and ψ ′ > 0 on (1,2],
ψ ′′ ≡ 1 on [0,2].

Then by the standard theory of continuous dependence on parameter, there exist positive numbers μ0 = μ0(m), t′
0 = t′

0(μ),
and s′

0 = s′
0(μ) such that for all μ ∈ (0,μ0), there holds

gμ < 0 on
(
0, s′

0

)
and gμ

(
s′

0

) = 0,

g′
μ < 0 on

(
0, t′

0

)
and g′

μ > 0 on
(
t′

0, s′
0

]
,

g′′
μ(t) ∈ (1/2,3/2) for all t ∈ [

0, s′
0

]
.

Finally, by setting b̂1 = 1/μ0, t0 = μt′
0 and s0 = μs′

0 and recalling that fb(t) = g1/b(bt)/b, the assertion of this claim follows.

From part (iv) of Proposition 1 it follows that for all b > b̂1, fb cannot be a convex-concave solution of (Pm,a), and so is
of type (B2).

Step 2. Let b̃ = 0 and b̂ = b̂1 + 1. By Proposition 1, fb is of type (C) for all sufficiently small positive b. Then applying the
same argument as in Steps 2–3 of the case a ∈ (0,

√
6), we can obtain the desired conclusion. Here note that the uniqueness

of type (B1,I1 ) solution of (Pm,a) is given by Lemma 4.3. Therefore the proof of Theorem 1 is completed.

7. Discussion

In this article, we have studied the boundary value problem (Pm,a) whose solutions are related to the dynamical be-
haviour of the fluid (near the sharp corners) for the liquid metal systems in a high frequency antisymmetric magnetic field.
We have established the complete picture of solutions of (Pm,a) for the case of physical interest: m < −1 and a � 0. In
particular, our results shows that for m < −1 and a ∈ [0,

√
6), there is a family of convex-concave solutions of the prob-

lem (Pm,a), which gives a definite answer to the open problem proposed in [6] (see also [16]).
For mathematical completeness of the structure of solutions of (Pm,a) (or more generally, (Q m,a,c)), it would be interest-

ing to investigate the case for m ∈ (−1,0) and a ∈ R, in particular, the following open problems proposed in [6]:

(O1) For m ∈ (−1/3,0) and a ∈ R, is the convex solution unique?
(O2) For m ∈ (−1,−1/2] and a > 0, is there convex-concave solutions?
(O3) For m ∈ (−1/2,0) and a ∈ R, is there convex-concave solutions?

Our numerical attempts indicates that the structures of solutions of (Pm,a) for the above three cases are quite complicated.
For example, when m ∈ (−1/3,0) and a � 0, the convex solution of (Pm,a) is unique, while there is a family of convex
solutions of (Pm,a) for m ∈ (−1/3,0) and some positive a. The study of these cases will be our future study.
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Appendix A. Proof of Lemma 3.2

In this appendix, we give a proof of Lemma 3.2. For reader’s convenience, we restate it as follows:

Lemma A.1. Let m < −1 and f be a solution of (1.1) defined on the maximal existence interval (S, T ). If there exists t0 ∈ (S, T ) such
that f ′(t0) � 0 and f ′′(t0) > 0, then there exists a t̂0 > t0 such that f ′′ > 0 on (t0, t̂0) and f ′′ < 0 on (t̂0, T ).

Proof. For contradiction, we assume that f ′′ > 0 on [t0, T ). Then by Lemma 3.1, we have f ′ > 0 on (t0, T ) and f ′ → +∞
as t → T − . Hence we can choose a t1 ∈ [t0, T ) such that one of the following three cases holds:

(i) f (t1) = f ′(t1) = 0, and f > 0, f ′ > 0, and f ′′ > 0 on (t1, T ).
(ii) f (t1) > 0, f ′(t1) = 0, and f > 0, f ′ > 0, and f ′′ > 0 on (t1, T ).

(iii) f (t1) = 0, f ′(t1) > 0, and f > 0, f ′ > 0, and f ′′ > 0 on (t1, T ).

In what follows, we only consider case (i) since the other cases follows by analogous arguments. Set the following change
of variables for the solution f :

X(ξ) = f (t) f ′(t)/ f ′′(t), Y (ξ) = f ′(t)2/
[

f (t) f ′′(t)
]
, ξ = ln f ′(t),

where we require t ∈ (t1, T ). Then (X, Y ) satisfies the following ordinary differential system

dX

dξ
= X

{
1 + [

(m + 1)/2
]

X + Y − mXY
}
, (A.1)

dY

dξ
= Y

{
2 + [

(m + 1)/2
]

X − Y − mXY
}
. (A.2)

Note that (X(ξ), Y (ξ)) is defined on (ln f ′(t1),+∞), that X(ξ) > 0 and Y (ξ) > 0 for all ξ > ln f ′(t1), and that the sys-
tem (A.1)–(A.2) is different from the system (3.1)–(3.2) by a negative sign.

Since f (t0) = f ′(t0) = 0, by using a similar argument as in part (2) of Lemma 5.1, we can compute

lim
ξ→(ln f ′(t0))+

(
X(ξ), Y (ξ)

) = (0,2).

Then by using a phase plane analysis (see Lemma 4.2), we have (X(ξ), Y (ξ)) → (+∞,+∞) as ξ → +∞. Hence there exists
ξ1 > 0 such that for all ξ > ξ1, we have

1 + m + 1

2
X(ξ) + Y (ξ) − mX(ξ)Y (ξ) � X(ξ).

Together with (A.1), we can estimate dX/dξ as follows:

dX

dξ
= X(ξ)

(
1 + m + 1

2
X(ξ) + Y (ξ) − mX(ξ)Y (ξ)

)
� X(ξ)2 for all ξ � ξ1.

This implies that (X(ξ), Y (ξ)) is only defined on finite interval, a contradiction. Hence there exists a t̂0 > t0 such that
f ′′ > 0 on (t0, t̂0) and f ′′(t̂0) = 0. Finally, together with part (i) of Proposition 1, we have f ′′ < 0 on (t̂0, T ). This completes
the proof. �
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