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Having in mind applications to the fault-detection/diagnosis of lossless electrical networks,
here we consider some inverse scattering problems for Schrödinger operators over star-
shaped graphs. We restrict ourselves to the case of minimal experimental setup consisting
in measuring, at most, two reflection coefficients when an infinite homogeneous (potential-
less) branch is added to the central node. First, by studying the asymptotic behavior of
only one reflection coefficient in the high-frequency limit, we prove the identifiability of
the geometry of this star-shaped graph: the number of edges and their lengths. Next, we
study the potential identification problem by inverse scattering, noting that the potentials
represent the inhomogeneities due to the soft faults in the network wirings (potentials
with bounded H1-norms). The main result states that, under some assumptions on the
geometry of the graph, the measurement of two reflection coefficients, associated to two
different sets of boundary conditions at the external vertices of the tree, determines
uniquely the potentials; it can be seen as a generalization of the theorem of the two
boundary spectra on an interval.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The rather extensive literature concerning the “inverse scattering problem” and the “inverse Sturm–Liouville problem”
on graphs have mostly followed separate pathways except for a very few results [15,14,1]. In the following paragraphs, we
briefly recall the previous results on these subjects and at the end we will situate the result of this paper with respect to
the others. Indeed, as it will be seen later, the inverse Sturm–Liouville problem considered in this paper raises from the
necessity of finding a minimal setup for solving the inverse scattering problem.

A first set of results deals with inverse scattering problems over graphs. The article [17] considers a star-shaped graph
consisting of N infinite branches and solves the inverse scattering problem assuming the measurement of N − 1 reflection
coefficients. Next, in [18], Harmer provides an extension of the previous result with general self-adjoint boundary conditions
at the central node. This however necessitates the knowledge of N reflection coefficients. The paper [24] studies the relation
between the scattering data and the topology of the graph. The authors show that the knowledge of the scattering matrix
is not enough to determine uniquely the topological structure of a generic graph.

In [9], Brown and Weikard prove that the knowledge of the whole Dirichlet-to-Neumann map for a tree determines
uniquely the potential on that tree.

In [1], Avdonin and Kurasov consider a star-shaped graph with N finite branches. They prove that the knowledge of a
diagonal element of the response operator allows one to reconstruct the graph, i.e. the total number of edges and their
lengths. This result is very similar to Theorem 1 of the present paper and can be seen as a time-domain version of The-
orem 1 (see the remarks after Theorem 1 for further details). Furthermore, they prove, through the same paper [1], that
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the knowledge of the diagonal elements of the response operator over all but one external nodes is enough to identify the
potentials on the branches. At last they prove an extension of the result to the more generic tree case where they need the
whole response operator.

The two more recent papers [3,2] consider other types of inverse scattering problems on trees. The first paper considers
the case of potential-free Schrödinger operators over the branches of a co-planar tree where the matching conditions at
the internal nodes of the graph depends explicitly on the angles between the branches. The authors prove, for the case of
star graph, that the knowledge of the diagonal elements of the Titchmarsh–Weyl matrix at the external nodes is enough
to reconstruct the lengths and the angles between the branches. This result is then extended to the more generic tree
case, where further elements of Titchmarsh–Weyl matrix are needed. The second paper [2], based on a previous one [23],
considers the inverse problem of characterizing the matching condition for the internal node of a star graph through the
knowledge of a part of the scattering matrix.

As mentioned above, in parallel to the research on inverse scattering problems, another class of results consider the
inverse spectral problem for Sturm–Liouville operators on compact graphs. These results can be seen as extensions of the
classical result provided by Borg [7], on the recovering of the Sturm–Liouville operator from two spectra on a finite interval.

A first set of results has been obtained by Yurko [32–34]. The article [32] deals with the inverse spectral problem on
a tree. It provides a generalization of the Borg’s result in the following sense: for a tree with n boundary vertices, it is
sufficient to know n spectra, corresponding to n different settings for boundary conditions at the external nodes, to retrieve
the potentials on the tree. In a recent work [34], the same kind of result is proposed for a star-shaped graph including a
loop joined to the central node. Finally, [33] provides a generalization of [32] to higher order differential operators on a
star-shaped graph.

Pivovarchik and co-workers provide a next set of results in this regard [25–27,8]. In particular, in [27], the author proves
that under some restrictive assumptions on the spectrum of a Sturm–Liouville operator on a star-shaped graph with some
fixed boundary conditions, the knowledge of this spectra can determine uniquely the Sturm–Liouville operator.

A third set of results deals with the problem of identifying the geometry of the graph [16,30]. In particular, [16] provides
a well-posedness result for the identification of the lengths of the branches through the knowledge of the spectrum. This
result is to be compared with Theorem 1 of this paper. While [16] considers a more general setting of generic graphs, it
assumes the Q-independence of lengths, an assumption that has been removed in Theorem 1 for the simpler case of a
star-shaped graph.

Belishev considers the potential-free case over a tree and proves that the knowledge of the eigenvalues and the normal
derivatives of the Dirichlet eigenfunctions at the external node is enough to identify the geometry of the tree up to a spatial
isometry [4]. Together with his co-workers, he further provides an identification algorithm and numerical simulations [5].
Carlson considers the potential-free case over a directed graph and provides information on the boundary conditions at the
external nodes as well as the lengths through the spectrum of the operator [11]. Finally Kursov and Nowaczyk consider
the potential-free case over a finite graph and similarly to [16] treat the problem of identifying the geometry through the
spectral data, provided that the branch lengths are rationally independent [22].

In this paper, we consider a class of inverse scattering problems on star-shaped graphs, having in mind certain appli-
cations such as the fault-detection/diagnosis of electrical networks through reflectometry-type experiments. Even though a
part of the obtained results (Theorems 1 and 2) can be directly applied to such applications, some of them (see Theorem 3
and assumption A2) remain preliminary results and need significant improvement. However, from a theoretical insight all
the results are original and provide some new uniqueness results for the solutions of inverse scattering problems on net-
works. Note that, similarly to the case of a simple line [12], the existence of a solution to the inverse scattering problem
(i.e. classifying the scattering data for which there exists a solution to the inverse scattering problem) remains for itself a
complete subject apart and we do not consider here such existence problems. In other words, we assume that the scattering
data (and notably the reflection coefficient) are precisely obtained from a real physical system and therefore the existence
of the solution to the inverse scattering problem is ensured by the existence of the physical system. Before announcing the
main results of this paper, let us briefly explain how the reflectometry of an electrical network can be related to inverse
scattering problems.

The electric signal transmission through a lossless wired network is, generally, modeled with the “Telegrapher’s equation”
and characterized by the parameters L and C (functions of the space position z along the transmission lines) representing,
respectively, the inductance and the capacitance. In the harmonic regime, this Telegrapher’s equation may be written as⎧⎪⎪⎨

⎪⎪⎩
d

dz
V (k, z) − ıkL(z)I(k, z) = 0,

d

dz
I(k, z) − ıkC(z)V (k, z) = 0,

(1)

assuming the parameters L(z) and C(z) to be strictly positive and twice continuously differentiable with respect to z.
Following [20], we apply the Liouville transformation x(z) = ∫ z

0

√
L(z)C(z)ds and we also use the convention C(x) ≡ C(z(x)),

L(x) ≡ L(z(x)), V (k, x) ≡ V (k, z(x)) and I(k, x) ≡ I(k, z(x)). Setting

y(x,k) =
(

C(x)
) 1

4

V (k, x)

L(x)
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the Telegrapher equation (1) becomes

− d2

dx2
y(x,k) + q(x)y(x,k) = k2 y(x,k),

where q(x) = (
C(x)
L(x) )

− 1
4 d2

dx2 (
C(x)
L(x) )

1
4 . Note, in particular that, in these new terms, the electrical current is given by

I(k, x) = 1

ik

(
1

2

Z ′
c(x)

Z 3/2
c (x)

y(x,k) + 1

Z 1/2
c (x)

d

dx
y(x,k)

)
,

where Zc(x) = √
L(x)/C(x) denotes the characteristic impedance over the transmission line.

To cope with the network case, we translate the Kirchhoff rules at the nodes of the network within this new modeling
framework. Considering v a vertex of the network and E (v) the set of edges joining at v , the Kirchhoff’s matching condition
can be written as∑

e∈E (v)

Ie(v,k) = 0 and V e(v,k) = V e′(v,k), ∀e, e′ ∈ E (v),

where Ie and V e denote the current and the tension over the branch e and where the sum is an algebraic sum (direction
of current is needed to be taken into account). Assuming the continuity of the characteristic impedance Zc(x) = √

L(x)/C(x)
at the nodes of the graph (an assumption that we will make everywhere through this paper), the above Kirchhoff rules give
rise to the following matching conditions after the Liouville transformation:

ye(v,k) = ye′(v,k) =: ȳ(v,k), ∀e, e′ ∈ E (v),∑
e∈Eout(v)

y′
e(v,k) −

∑
e∈Ein(v)

y′
e(v,k) = −1

2

∑
e∈E (v)(Z e

c )
′(v)

Zc(v)
ȳ(v,k)

where Eout(v) (resp. Ein(v)) denotes the set of edges in E (v) such that the current’s direction is outward (resp. inward)
with respect to v . Furthermore, Z e

c denotes the characteristic impedance over the edges e ∈ E (v), admitting the same value
Zc(v) at the vertex v .

The faults, in which we are interested here, are represented by the lengths of the branches (hard faults) and by the
heterogeneities of q(x) along the branches (soft faults). Indeed, in the perfect situation, the parameters L(z) and C(z) are
constant on the network and therefore the potential q(x) is uniformly zero on the whole network. While, we consider the
particular case of a star-shaped network, the reflectometry experiment is based on a far-field method consisting in adding
a uniform (constants L and C ) infinite wire joined to the network at its central node. In practice, connecting a matched
charge to the external node of a finite line is sufficient to emulate the electrical propagation through an infinite line (we
refer to the preprint version of this paper [29] for further details in this regard).

A preliminary version of this paper can be found in [29] where some more details on the above mentioned applications
are provided. More recently, applying the same kind of approaches as in [29], Yang has considered an inverse spectral
problem on a star-shaped graph [31]. In particular, the author shows how to reconstruct the potential on a fixed edge from
the knowledge of some spectra once the potentials on all other edges is known.

2. Main results

Throughout this paper, Γ represents a compact star-shaped network consisting of segments (e j)
N
j=1 of lengths l j joining

at a central node. It will be convenient to take the same positive orientation on all branches, from the central node at x = 0
toward the increasing x. Γ + is the extended graph where a uniform (potential-less) semi-infinite branch e0 is also added to
the graph Γ with the reverse orientation (−∞,0].

Consider the Schrödinger operator on Γ +

L+
N ,D =

N⊗
j=0

(
− d2

dx2
+ q j(x)

) (
q0(x) ≡ 0

)
(2)

acting on the domain

D
(

L+
N ,D

) = closure of C∞
N ,D in H2(Γ +)

, (3)

where C∞
N (Γ +) and C∞

D (Γ +) denote the spaces of infinitely differentiable functions f = ⊗N
j=0 f j defined on Γ + both

satisfying the boundary conditions at the central node

f j(0) = f0(0), j = 1, . . . , N,

N∑
f ′

j(0) − f ′
0(0) = H f0(0). (4)
j=1
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Here

H = −1

2

∑N
j=1(Z j

c )
′(0)

Zc(0)
, (5)

where Z j
c denotes the characteristic impedance over the branch number j and Zc(0) is the common value of the impedances

at the central node.
Moreover for C∞

N (Γ +) (resp. for C∞
D (Γ +)), we assume Neumann condition (resp. Dirichlet condition) at all boundary

vertices:

f ′
j(l j) = 0 for f ∈ C∞

N
(
Γ +)

and f j(l j) = 0 for f ∈ C∞
D

(
Γ +)

, (6)

for j = 1, . . . , N .

Remark 1. The operators (L+
N ,D, D(L+

N ,D)) are essentially self-adjoint. To prove this fact we observe first that these opera-

tors are a compact perturbation of the operators
⊗n

j=0(− d2

dx2 ) with the same boundary conditions. Now, we apply a general
result by Carlson [10] on the self-adjointness of differential operators on graphs. Indeed, following Theorem 3.4 of [10],
we only need to show that at a node connecting m edges, we have m linearly independent linear boundary conditions.
At the terminal nodes of {e j}N

j=1 this is trivially the case as there is one branch and one boundary condition (Dirichlet or
Neumann). At the central node it is not hard to verify that (4) define N + 1 linearly independent boundary conditions as
well. This implies that the operators (L+

N ,D, D(L+
N ,D)) are essentially self-adjoint and therefore that they admit a unique

self-adjoint extension on L2(Γ +).

The reflection coefficients R N ,D(k) for L+
N ,D are defined by the following proposition:

Proposition 1. Assume q = ⊗N
j=1 q j ∈ C0(Γ ) and q j(0) = 0 for j = 1, . . . , N (this ensures the continuity of q(x) at the central node

when the uniform branch e0 is added). Then for almost every k ∈ R there exists a unique solution

ΨN ,D(x,k) =
N⊗

j=0

y j
N ,D(x,k),

of the scattering problem and associated to it, a unique reflection coefficient R N ,D(k). This means that for almost every k ∈ R, there

exist a unique function
⊗N

j=0 y j
N ,D(x,k) and a unique constant R N ,D(k) satisfying

• − d2

dx2 y j
N ,D(x,k) + q j(x)y j

N ,D(x,k) = k2 y j
N ,D(x,k) for j = 0, . . . , N;

• (y j
N ,D(x,k))N

j=0 satisfy the boundary conditions (4) and (6);

• y0
N ,D(x,k) = e+ikx + R N ,D(k)e−ikx.

Finally, the reflection coefficient R N ,D(k) can be extended by continuity to all k ∈ R.

A proof of this proposition will be given in Section 3.1.
As a first inverse problem, we consider the inversion of the geometry of the graph. In fact, we will prove the well-

posedness of the inverse problem of finding the number of branches N and the lengths (l j)
N
j=1 of a star-shaped graph

through only one reflection coefficient R N (k) (the case of Dirichlet reflection coefficient can be treated similarly).

Theorem 1. Consider a star-shaped network Γ composed of n j branches of length l j ( j = 1, . . . ,m) all joining at a central node so
that the whole number of branches N is given by

∑m
j=1 n j . Assume for the potential q on the network to be C0(Γ ) and that it takes the

value zero at the central node. Then the knowledge of the Neumann reflection coefficient R N (k) determines uniquely the parameters
(n j)

m
j=1 and (l j)

m
j=1 .

The problem of identifying the geometry of a graph through the knowledge of the reflection coefficient has been previ-
ously considered in [16,22,1]. Through the two first papers, the authors consider a more general context of any graph and
not only a star-shaped one. However, in order to ensure a well-posedness result, they need to assume a strong assumption
on the lengths consisting in their Q-independence. The third result [1] states a very similar result to that of Theorem 1 for
time-domain reflectometry (see Lemma 2 of [1]). The authors also provide a frequency-domain version of their result (see
Lemma 3 of [1]); however their proof is strongly based on the proof of the time-domain result. We believe that the proof
provided in the present paper, exploring the high-frequency regime of the reflection coefficient and providing a frequency-
based constructive method, can be useful from an engineering point of view, where we are interested in detecting the faults
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without stopping the normal activity of the transmission network (we therefore need to apply test frequencies that are
much higher than the activity frequencies of the transmission network). This proof will be given in Section 3.2.

A second inverse problem can be formulated as the identification of the potentials on the branches. The following

theorem provides a global uniqueness result concerning the quantities q j := ∫ l j

0 q j(s)ds.

Theorem 2. Assume for the star-shaped graph Γ that

B1 l j 	= l j′ for any j, j′ ∈ {1, . . . , N} such that j 	= j′ .

If there exist two potentials q = ⊗N
j=1 q j and q̃ = ⊗N

j=1 q̃ j in H1(Γ ), satisfying q j(0) = q̃ j(0) = 0, and giving rise to the same

reflection coefficient, R N (k) ≡ R̃ N (k), one necessarily has

l j∫
0

q j(s)ds =
l j∫

0

q̃ j(s)ds, j = 1, . . . , N.

Remark 2. Getting back to the transmission line parameters, the moment
∫ l j

0 q j(s)ds can be written as

l j∫
0

q j(s)ds = 1

4

l j∫
0

|(Z j
c )

′(s)|2
|Z j

c (s)|2
ds − 1

2

(
(Z j

c )
′(l j)

Z j
c (l j)

− (Z j
c )

′(0)

Z j
c (0)

)
, (7)

where Z j
c denotes the characteristic impedance over the branch j.

This theorem allows us to identify the situations where the soft faults in the network cause a change of the quantities q j .
In particular, it allows us to identify the branches on which these faults have happened. A next test, by analyzing these
branches separately, will then allow the engineer to identify more precisely the faults. A proof of this theorem will be
provided in Section 3.4.

Next, we will consider the situations where the faults in the network, do not affect the quantities q̄ j . Keeping in mind
the application to the transmission line network, this means that:

A1 q̄ j = ∫ l j

0 q j(s)ds = 0 for j = 1, . . . , N;

as for the perfect setting, we had assumed uniform transmission lines: L and C constant.
In order to provide a well-posedness result for such situations, we need more restrictive assumptions on the geometry

of the graph:

A2 For any j, j′ ∈ {1, . . . , N} such that j 	= j′ , l j/l j′ is an algebraic irrational number.

Under this assumption, the value

M(Γ ) := max

{
m ∈ N

∣∣ ∣∣∣∣ li

l j
− 1

m

∣∣∣∣ <
1

m3
, for some i 	= j

}
(8)

is well defined and is finite. In fact, by Thue–Siegel–Roth Theorem [28], for any irrational algebraic number α, and for any
δ > 0, the inequality

|α − p/q| < 1/|q|2+δ, (9)

has only a finite number of integer solutions p, q (q 	= 0).
Before stating the final theorem, we give a lemma on the asymptotic behavior of the eigenvalues of the Sturm–Liouville

operator − ∂2

∂x2 + q(x) on the segment [0, l], with Dirichlet boundary condition at 0 and Neumann boundary condition at l
(the case of Dirichlet–Dirichlet boundary condition can be treated similarly). This lemma allows us to define a constant C0(l)
which will be used in the statement of the final theorem.

Lemma 1. Assume for the potential q(x) ∈ H1(0, l) that q(0) = 0, that ‖q‖L∞(0,l) < π2

4l2
and that

∫ l
0 q(s)ds = 0. Then, there exists a

constant C0(l) such that λn, the n-th eigenvalue of the operator − ∂2

∂x2 + q(x) on the segment [0, l], with Dirichlet boundary condition
at 0 and Neumann boundary condition at l, satisfies∣∣∣∣λn − (2n − 1)2π2

4l2

∣∣∣∣ � C0(l)
‖q‖H1(0,l)

2n − 1
.
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A proof of this lemma, based on the perturbation theory of linear operators [21], will be given in Appendix A.
In order to state the final theorem, we define the following constants only depending on the geometry of the graph Γ

(lengths of branches):

C1(Γ ) := min

{
π2

4l5/2
j

∣∣ j = 1, . . . , N

}
, (10)

C2(Γ ) := min

{
π2

4lil j(C0(li) + C0(l j))

∣∣ i 	= j, i, j = 1, . . . , N

}
, (11)

C3(Γ ) := min

{
π2

C0(li) + C0(l j)
·
∣∣∣∣ (2n − 1)2

l2j
− (2n′ − 1)2

l2i

∣∣∣∣ ∣∣∣ n = 1,2 . . . , M(Γ )

n′ = 1,2, . . .

i 	= j, i, j = 1, . . . , N

}
, (12)

C(Γ ) := min
(
C1(Γ ), C2(Γ ), C3(Γ )

)
. (13)

Note, in particular that C3(Γ ) is strictly positive as the lengths li and l j are two-by-two Q-independent. We have the
following theorem:

Theorem 3. Consider a star-shaped graph Γ satisfying the geometrical assumption A2. Take the strictly positive constant C(Γ ) as
defined by (13) and consider two potentials q and q̃ belonging to H1(Γ ), satisfying q j(0) = q̃ j(0) = 0, the assumption A1, and

‖q‖H1(Γ ) < C(Γ ) and ‖q̃‖H1(Γ ) < C(Γ ).

If they give rise to the same Neumann and Dirichlet reflection coefficients:

R N (k) ≡ R̃ N (k) and R D(k) ≡ R̃ D(k),

then q ≡ q̃.

A proof of this theorem will be given in Section 3.5. We end this section by a remark on the assumption A2:

Remark 3. The assumption A2 seems rather restrictive and limits the applicability of Theorem 3 in real settings. In fact, such
kind of assumptions have been previously considered in the literature for the exact controllability of the wave equations
on networks [35]. In general, removing this kind of assumptions, one can ensure approximate controllability results rather
than the exact controllability ones. Theorem 3 can be seen in the same vein as providing a first exact identifiability result.
However, in order to make it applicable to real settings one needs to consider improvements by relaxing the assumption A2
and looking instead for approximate identifiability results. This will be considered in future work.

Finally, we note that the only place, where we need the assumption A2, is to ensure that there exists at most a finite
number of co-prime factors (p,q) ∈ N × N, such that the Diophantine approximation (9) holds true. However, this is a
classical result of the Borel–Cantelli Lemma that for almost all (with respect to Lebesgue measure) positive real α’s this
Diophantine approximation has finite number of solutions. Therefore the assumption A2 can be replaced by the weaker
assumption of l j/l j′ belonging to this set of full measure.

3. Proofs of the statements

3.1. Direct scattering problem

This subsection has for goal to give a proof of Proposition 1 ensuring the well-posedness of the direct scattering problem
and allowing us to define the reflection coefficients R N ,D(k).

Proof of Proposition 1. This proof gives us a concrete method for obtaining scattering solutions. Indeed, we will propose a
solution and we will show that it is the unique one.

In this aim, we need to use Dirichlet/Neumann fundamental solutions of a Sturm–Liouville boundary problem.

Definition 1. Consider the potentials q j as before and extend them by 0 on (−∞,0) so that they are defined on the intervals

(−∞, l j]. The Dirichlet (resp. Neumann) fundamental solution ϕ
j

D(x,k) (resp. ϕ
j

N (x,k)), is a solution of the equation,

− d2

dx2
ϕ

j
D,N (x,k) + q j(x)ϕ j

D,N (x,k) = k2ϕ
j

D,N (x,k), x ∈ (−∞, l j),

ϕ
j

D(l j,k) = 0,
(
ϕ j)′

D(l j,k) = 1,

ϕ
j

N (l j,k) = 1,
(
ϕ j)′

N (l j,k) = 0.
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Consider, now, the function

ΨD,N (x,k) =
N⊗

j=0

Ψ
j

D,N (x,k),

where

Ψ 0
D,N (x,k) = e+ıkx + R D,N (k)e−ıkx, x ∈ (−∞,0],

Ψ
j

D,N (x,k) = α
j

D,N (k)ϕ
j

D,N (x,k), x ∈ [0, l j], j = 1, . . . , N.

Here the coefficients R D,N and α
j

D,N are given by the boundary conditions (4) at the central node:

R D,N (k) + 1 = α
j

D,N (k)ϕ
j

D,N (0,k), j = 1, . . . , N, (14)

N∑
j=1

α
j

D,N (k)
(
ϕ

j
D,N

)′
(0,k) + ık

(
1 − R D,N (k)

) = H
(

R D,N (k) + 1
)
. (15)

One sees that this ΨD,N is in D(L+
N ,D), the domain of the operator, and satisfies the conditions of the proposition. This,

trivially, provides the existence of a scattering solution. Here, we show that ΨD,N is actually the unique one.

Assume that there exists another Y D,N = ⊗N
j=0 Y j

D,N (x,k) solution of the scattering problem. Since Y j
D,N (·,k) and

Ψ
j

D,N (·,k) are solutions of the same Sturm–Liouville equation over each branch and their derivatives vanish at l j , Y j
D,N (·,k)

and Ψ
j

D,N (·,k) are co-linear:

Y j
D,N (x,k) = β

j
D,N (k)ϕ

j
D,N (x,k), x ∈ [0, l j], j = 1, . . . , N.

Over the branch e0, as Y 0
D,N (·,k) satisfies a homogeneous Sturm–Liouville equation (q0 = 0), it necessarily admits the

following form

Y 0
D,N (x,k) = e+ıkx + R̃ D,N (k)e−ıkx.

We need to show that one necessarily has R̃ D,N (k) ≡ R D,N (k) and similarly β
j

D,N (k) ≡ α
j

D,N (k). Indeed, for almost

all k ∈ R, Eqs. (14) and (15) provide N + 1 linear relations for the N + 1 unknown coefficients R D,N and (α
j

D,N )N
j=1.

Trivially, as soon as, the coefficients (ϕ
j

D,N (0,k))N
j=1 are non-zero, these linear relations are independent and there exists a

unique solution for the unknowns R D,N and (α
j

D,N )N
j=1. However, the zeros of each one of the coefficients (ϕ

j
D,N (0,k))N

j=1

correspond to isolated values of k (square-root of the eigenvalues of the operator − d2

dx2 + q j(x) with Dirichlet boundary
condition at x = 0 and Dirichlet or Neumann boundary condition at x = l j).

We can compute explicitly these coefficients for all k except for a set K of isolated values: dividing (15) by (1+ R D,N (k))

and inserting (14), we find

1 − R D,N (k)

R D,N (k) + 1
= H

ık
− 1

ık

N∑
j=1

(ϕ
j

D,N )′(0,k)

ϕ
j

D,N (0,k)
, ∀k ∈ R\K. (16)

Finally, inserting the value of R D,N (k) into (14), we find

α
j

D,N (k) = R D,N (k) + 1

ϕ
j

D,N (0,k)
, ∀k ∈ R\K.

What remains to be shown is the extendibility of reflection coefficient R D,N (k) to whole real axis. Let k ∈ K be one of the

isolated values where R D,N is not defined: ϕ
j

N ,D(0,k) = 0 for some j. Then we have to show the continuity of R D,N (k)

at k, i.e.

lim
k→k+

R D,N (k) = lim
k→k−

R D,N (k) =: R D,N (k),

with |R D,N (k)| < ∞ (even more |R D,N (k)| = 1 here).
Indeed, through (16), and by the fact that fundamental solutions are analytic with respect to k, the reflection coefficient

R D,N (k) can be written as a fraction of two analytic functions, at least for k’s where it is well defined. Furthermore,
for these k’s we have |R D,N (k)| = 1. These two facts, together, ensure the existence of the limit when k → k and that
|R D,N (k)| = 1. �
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3.2. Identifiability of geometry

This subsection has for goal to give a proof of Theorem 1 ensuring the uniqueness of the geometry of the graph giving
rise to a measured reflection coefficient R N (k). The method is rather constructive and one can think of an algorithm to
identify the lengths, at least approximately. The proof is based on an asymptotic analysis in high-frequency regime of the
reflection coefficient and some classical results from the theory of almost periodic functions (in Bohr sense).

Before, proving Theorem 1, we need the following lemma:

Lemma 2. Consider a star-shaped network Γ composed of n j branches of length l j ( j = 1, . . . ,m) all joining at a central node so that
the whole number of branches N is given by

∑m
j=1 n j . Assume the potential q on the network to be 0 (q ≡ 0). Then the knowledge of

the Neumann reflection coefficient R N (k) determines uniquely the parameters (n j)
m
j=1 and (l j)

m
j=1 .

Proof. We need to apply the explicit computation of the reflection coefficient provided by (16). The fundamental solutions
are given, simply, by ϕ

j
N (x,k) = cos(k(l j − x)). Therefore:

1 − R D,N (k)

R N (k) + 1
= 1

ık
H − 1

ık

m∑
j=1

n j
k sin(l jk)

cos(l jk)
.

The knowledge of R N (k) determines uniquely the signal:

f (k) :=
m∑

j=1

n j tan(kl j).

Assuming, without loss of generality, that the lengths l j are ordered increasingly l1 < · · · < lm , the first pole of the function
f (k) coincides with π/2lm and therefore determines lm . Furthermore,

nm = lim
k→π/2lm

cos(klm) f (k),

and therefore one can also determine nm . Now, considering the new signal g(k) = f (k) − nm tan(klm), one removes the
branches of length lm and exactly in the same manner, one can determine lm−1 and nm−1. The proof of the lemma follows
then by a simple induction. �

Now we are able to prove the main theorem.

Proof of Theorem 1. Assume that, there exist two graph settings (l j,q j)
N
j=1 and (l̃ j, q̃ j)

Ñ
j=1 (the lengths l j are not necessarily

different) giving rise to the same Neumann reflection coefficients: R N (k) ≡ R̃ N (k). By the explicit formula (16), we have

1

k

N∑
j=1

(ϕ
j

N )′(0,k)

ϕ
j

N (0,k)
≡ 1

k

Ñ∑
i=1

(ϕ̃ i
N )′(0,k)

ϕ̃ i
N (0,k)

.

This is equivalent to:

Ñ∏
j=1

ϕ̃
j

N (0,k)

(
N∑

i=1

(
ϕ i

N
)′
(0,k)

∏
l 	=i

ϕl
N (0,k)

)
−

N∏
j=1

ϕ
j

N (0,k)

(
Ñ∑

i=1

(
ϕ̃ i

N
)′
(0,k)

∏
l 	=i

ϕ̃l
N (0,k)

)
= 0. (17)

Now, we use the fact that the high-frequency behavior of the Neumann fundamental solutions (ϕ
j

N )N
j=1 is given as follows

(see [13, p. 4]):

ϕ
j

N (0,k) = cos(kl j) + O
(

1

k

)
as k → ∞,

(
ϕ

j
N

)′
(0,k) = k sin(kl j) + O(1) as k → ∞. (18)

Defining the function:

F (k) :=
Ñ∏

j=1

cos(kl̃k)

(
N∑

i=1

sin(kli)
∏
l 	=i

cos(kll)

)
−

N∏
j=1

cos(kl j)

(
Ñ∑

i=1

sin(kl̃i)
∏
l 	=i

cos(kl̃l)

)
.

The asymptotic formulas (18) together with (17) imply

F (k) = O(1/k) as k → ∞.
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However, the function F (k) is a trigonometric polynomial and almost periodic in the Bohr’s sense [6]. The function F 2(k) is,
also, almost periodic and furthermore, we have

M
(

F 2) := lim
k→∞

1

k

k∫
0

F 2(k)dk = lim
k→∞

1

k

( 1∫
0

F 2(k)dk +
k∫

1

F 2(k)dk

)

� lim
k→∞

1

k

(
C1 + C2

k∫
1

1

k2
dk

)
= 0.

This, trivially, implies that F = 0 (one only needs to apply the Parseval’s Theorem to the generalized Fourier series of the
function F ). However, the relation F (k) ≡ 0 is equivalent to

N∑
j=1

tan(kl j) =
Ñ∑

j=1

tan(kl̃ j),

and therefore, by Lemma 2, the two settings are equivalent and the theorem follows. �
3.3. From inverse scattering to inverse spectral problem

Here we present some auxiliary propositions that we will need for the proof of Theorems 2 and 3. The main objective
of this subsection is to show the equivalence between the inverse scattering problem on Γ + and some inverse spectral
problem on Γ .

So, as before, we consider a general star-shaped graph Γ (of N finite branches) and a potential q = ⊗N
j=1 q j belonging

to H1(Γ ). We will see that the knowledge of the reflection coefficient R N (k) for L+
N (resp. R D(k) for L+

D ) is equivalent
to the knowledge of different positive spectra of Sturm–Liouville operators defined on Γ with Neumann (resp. Dirichlet)
boundary conditions at terminal nodes and for various boundary conditions at the central node. In fact, defining the function

hN ,D(k) = H + ık(1 − R D,N (k))

(R N ,D(k) + 1)
,

where H is given by (5), we have the following result.

Proposition 2. Fix k ∈ R and define the Schrödinger operators L N ,D(k) on the compact graph Γ as follows:

L N ,D(k) =
N⊗

j=1

(
− d2

dx2
+ q j(x)

)
,

D
(

L N ,D(k)
) = closure of C∞

k;N ,D(Γ ) in H2(Γ ),

where C∞
k;N (Γ ) (resp. C∞

k;D(Γ )) denotes the space of infinitely differentiable functions f = ⊗N
j=1 f j defined on Γ satisfying the

boundary conditions

f j(0) = f j′(0) =: f̄ , j, j′ = 1, . . . , N,

N∑
j=1

f ′
j(0) = hN ,D(k) f̄ ,

f ′
j(l j) = 0

(
f j(l j) = 0 for C∞

k;D(Γ )
)
, j = 1, . . . , N.

Then we are able to characterize the positive spectrum of L N ,D(k) as a level set of the function hN ,D(k):

σ+(
L N ,D(k)

) = {
ξ2

∣∣ ξ ∈ R, hN ,D(ξ) = hN ,D(k)
}
.

Remark 4. As it can be seen through the proof, the above proposition holds for the generic case of any compact graph,
where a test branch of infinite length is added to an arbitrary node of the graph.

Proof. We prove the proposition for the case of Neumann boundary conditions. The Dirichlet case can be treated exactly in
the same manner. We start by proving the inclusion

σ+(
L N (k)

) ⊆ {
ξ2

∣∣ ξ ∈ R, hN (ξ) = hN (k)
}
.
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Let ξ2 ∈ σ+(L N (k)), then there exists Ψ eigenfunction of the operator L N (k) associated to ξ2. In particular, it satisfies

N∑
j=1

Ψ ′
j(0) = hN (k)Ψ̄ ,

where Ψ̄ is the common value of Ψ at the central node.
Now we extend Ψ to the extended graph Γ + , such that Ψ + is a scattering solution for L+

N (see Proposition 1). In
particular, the function Ψ + must satisfy, at the central node,

Ψ +
j (0) = Ψ +

0 (0), j = 1, . . . , N,

N∑
j=1

(
Ψ +

j

)′
(0) − (

Ψ +
0

)′
(0) = HΨ +

0 (0).

Noting that Ψ is an eigenfunction of (L N (k), D(L N (k))), we have

hN (k)Ψ +
0 (0) − (

Ψ +
0

)′
(0) =

N∑
j=1

(
Ψ +

j

)′
(0) − (

Ψ +
0

)′
(0) = HΨ +

0 (0). (19)

Now, noting that Ψ + over the infinite branch admits the following form

Ψ +
0 (x) = R N (ξ)e−ıξx + e+ıξx, x ∈ (−∞,0],

the relation (19) yields to

hN (k)
(

R N (ξ) + 1
) − ıξ

(
1 − R N (ξ)

) = H
(

R N (ξ) + 1
)
,

or equivalently

hN (k) = H + ıξ(1 − R N (ξ))

(R N (ξ) + 1)
= hN (ξ).

This proves the first inclusion. Now, we prove that

σ+(
L N (k)

) ⊇ {
ξ2

∣∣ ξ ∈ R, hN (ξ) = hN (k)
}
.

Let ξ ∈ R be such that hN (ξ) = hN (k). We consider a scattering solution Ψ + of the extended operator L+
N (defined by (3))

associated to the frequency ξ2. We, then, prove that the restriction of Ψ + to the compact graph Γ is an eigenfunction of
L N (k) associated to the eigenvalue ξ2. This trivially implies that ξ2 ∈ σ+(L N (k)).

In this aim, we only need to show that this restriction of Ψ + to Γ is in the domain D(L N (k)). Indeed, this is equivalent
to proving that the boundary condition

N∑
j=1

(
Ψ +

j

)′
(0) = h(k)Ψ +

0 (0) (20)

is satisfied. As Ψ + is a scattering solution of L+
N , it satisfies

N∑
j=1

(
Ψ +

j

)′
(0) = HΨ +

0 (0) + (
Ψ +

0

)′
(0) =

(
H + (Ψ +

0 )′(0)

Ψ +
0 (0)

)
Ψ +

0 (0).

Furthermore,

Ψ +
0 (0) = R N (ξ) + 1 and

(
Ψ +

0

)′
(0) = ıξ

(
1 − R N (ξ)

)
,

and so

N∑
j=1

(
Ψ +

j

)′
(0) =

(
H + ıξ(1 − R N (ξ))

R N (ξ) + 1

)
Ψ +

0 (0) = h(ξ)Ψ +
0 (0) = h(k)Ψ +

0 (0).

This proves (20) and finishes the proof of the proposition. �
The following proposition provides the characteristic equation permitting to identify the eigenvalues of the opera-

tor L N ,D(k):
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Proposition 3. The real λ2 > 0 is an eigenvalue of the operator L N ,D(k) if and only if

ΨN ,D(λ) = hN ,D(k)ΦN ,D(λ),

where

ΦN ,D(λ) :=
N∏

j=1

ϕ
j

N ,D(0, λ) and ΨN ,D(λ) := d

dx

(
N∏

j=1

ϕ
j

N ,D(x, λ)

)∣∣∣∣∣
x=0

, (21)

ϕ
j

N ,D(x, λ) being the fundamental solutions on different branches.

Proof. We give the proof for the Neumann boundary conditions, noting that the Dirichlet case can be treated, exactly, in
the same manner. Assume λ2 to be a positive eigenvalue of L N (k). The associated eigenfunction, yλ(x) = ⊗N

j=1 y j
λ(x), has

necessarily the following form:

y j
λ(x) = α jϕ

j
N (x, λ),

where α j ’s are real constants and the vector (α1, . . . ,αN ) is different from zero. The function yλ , being in the domain
D(L N (k)), it should satisfy the associated boundary condition at the central node. This implies that the vector (α1, . . . ,αN)

is in the kernel of the matrix:

M :=

⎛
⎜⎜⎜⎜⎝

ϕ1
N (0, λ) −ϕ2

N (0, λ) 0 · · · 0

0 ϕ2
N (0, λ) −ϕ3

N (0, λ) · · · 0

0 0 ϕ3
N (0, λ) · · · 0

· · · · · · · · · · · · · · ·
−hN (k)ϕ1

N (0, λ) + ψ1
N (0, λ) ψ2

N (0, λ) ψ3
N (0, λ) · · · ψN

N (0, λ)

⎞
⎟⎟⎟⎟⎠

where ψ
j

N (0, λ) denotes d
dx ϕ

j
N (x, λ)|x=0. This means that the determinant det(M) is necessarily 0. Developing this deter-

minant we find

ΨN (λ) = hN (k)ΦN (λ). �
Corollary 1. Consider two potentials q = ⊗N

j=1 q j and q̃ = ⊗N
j=1 q̃ j and denote by L+

N and L̃+
N , the associated Neumann Schrödinger

operators defined on the extended graph Γ + . Assuming that the reflection coefficients R N (k) and R̃ N (k) are equivalent R N (k) ≡
R̃ N (k), we have

ΦN (k)Ψ̃N (k) = Φ̃N (k)ΨN (k), ∀k ∈ R, (22)

where ΦN , ΨN , Φ̃N and Ψ̃N are defined through (21) for the potentials q and q̃.

Proof. By Proposition 2, k2 is an eigenvalue of the operators L N (k) and L̃ N (k). Applying Proposition 3, this means that

ΨN (k) = hN (k)ΦN (k) and Ψ̃N (k) = h̃N (k)Φ̃N (k).

As R N (k) ≡ R̃ N (k), we have hN (k) ≡ h̃N (k) and thus the above equation yields to (22). �
The above corollary is also valid when we replace the Neumann by Dirichlet boundary conditions. Finally, this corollary

yields to the following proposition on the difference between the two potentials q and q̃.

Proposition 4. Consider two potentials q = ⊗N
j=1 q j and q̃ = ⊗N

j=1 q̃ j and denote by L+
N and L̃+

N , the associated Neumann

Schrödinger operators defined on the extended graph Γ + . Assuming that the reflection coefficients R N (k) and R̃ N (k) are equiva-
lent R N (k) ≡ R̃ N (k), we have

N∑
j=1

∏
i 	= j

ϕ i
N (0,k)ϕ̃ i

N (0,k)

l j∫
0

q̂ j(x)ϕ j
N (x,k)ϕ̃

j
N (x,k)dx = 0, ∀k ∈ R, (23)

where q̂ j = q̃ j − q j .

Proof. For j = 1, . . . , N , we have

l j∫
q̃ j(x)ϕ̃ j

N (x,k)ϕ
j

N (x,k)dx −
l j∫

q j(x)ϕ j
N (x,k)ϕ̃

j
N (x,k)dx
0 0
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= ϕ
j

N (x,k)
d

dx
ϕ̃

j
N (x,k)

∣∣∣∣
x=l j

x=0
− d

dx
ϕ

j
N (x,k)ϕ̃

j
N (x,k)

∣∣∣∣
x=l j

x=0

= ψ
j

N (0,k)ϕ̃
j

N (0,k) − ϕ
j

N (0,k)ψ̃
j

N (0,k). (24)

Here the second line has been obtained from the first one, replacing q j(x)ϕ j
N (x,k) by d2

dx2 ϕ
j

N (x,k) + k2ϕ
j

N (x,k) and inte-
grating by parts. Using (22) and the above equation, we have

N∑
j=1

∏
i 	= j

ϕ i
N (0,k)ϕ̃ i

N (0,k)

l j∫
0

q̂ j(x)ϕ j
N (x,k)ϕ̃

j
N (x,k)dx = ΨN (k)Φ̃N (k) − ΦN (k)Ψ̃N (k) = 0. �

Before finishing this subsection, note that, once more, the above proposition is also valid for the case of Dirichlet bound-
ary conditions and R D(k) ≡ R̃ D(k) implies

N∑
j=1

∏
i 	= j

ϕ i
D(0,k)ϕ̃ i

D(0,k)

l j∫
0

q̂ j(x)ϕ j
D(x,k)ϕ̃

j
D(x,k)dx = 0, ∀k ∈ R. (25)

We are now ready to prove Theorems 2 and 3.

3.4. Proof of Theorem 2

We prove Theorem 2 applying the characteristic equation (23) and high-frequency behavior of ϕ
j

N ,D(x,k). Again, for
simplicity sakes, we give the proof only for the case of Neumann boundary conditions, noting that the Dirichlet case can be
done similarly.

We know the asymptotic behavior of fundamental solutions ϕ
j

N (x,k)

ϕ
j

N (x,k) = cos
(
k(l j − x)

) + O
(

1

k

)
.

In particular the product writes

ϕ
j

N (x,k)ϕ̃
j

N (x,k) = cos2(k(l j − x)
) + O

(
1

k

)
.

Applying the characteristic equation (23) and developing the products ϕ
j

N (x,k), ϕ̃
j

N (x,k), we have

N∑
j=1

(∏
i 	= j

cos2(kli)

) l j∫
0

q̂ j(s) cos2(k(l j − s)
)

ds = O
(

1

k

)
,

N∑
j=1

(∏
i 	= j

cos2(kli)

) l j∫
0

q̂ j(s)

(
1 + cos 2(k(l j − s))

2

)
ds = O

(
1

k

)
,

N∑
j=1

(∏
i 	= j

cos2(kli)

)
1

2

l j∫
0

q̂ j(s)ds = O
(

1

k

)
. (26)

In the last passage, we applied the fact that
∫ l j

0 q̂ j(s) cos 2(k(l j − s))ds = O(1/k), since q̂ is in H1(Γ ).
The left side of (26) is an almost periodic function with respect to k, in the Bohr’s sense. Following the same arguments

as those of Theorem 1 we obtain

N∑
j=1

(∏
i 	= j

cos2(kli)

)
1

2

l j∫
0

q̂ j(s)ds = 0, ∀k ∈ R.

Assume, without loss of generality, that the lengths are ordered increasingly l1, . . . , lN and choose kN = π/2lN :

cos(kNl j) 	= 0 for j 	= N.
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Indeed, we have

∏
i 	=N

cos2(kNli)

lN∫
0

q̂N(s)ds = 0 ⇒
lN∫

0

q̂N(s)ds = 0.

Then, the characteristic equation can be rewritten

cos2(klN )

N−1∑
j=1

(∏
i 	= j

cos2(kli)

)
1

2

l j∫
0

q̂ j(s)ds = 0,

and, since it is a product of two analytic functions w.r.t. k, we have

N−1∑
j=1

(∏
i 	= j

cos2(kli)

)
1

2

l j∫
0

q̂ j(s)ds = 0, ∀k ∈ R,

and we finish the proof of Theorem 2, repeating the same argument N − 1 times.

3.5. Proof of Theorem 3

In this subsection, we consider two potentials q = ⊗N
j=1 q j and q̃ = ⊗N

j=1 q̃ j , satisfying the assumptions of Theorem 3.

Assuming that they give rise to the same Neumann and Dirichlet reflection coefficients, R N (k) ≡ R̃ N (k) and R D(k) ≡ R̃ D(k),
we have the characteristic equations (23) and (25).

Let us define the operators L j
N ,D to be the operator − d2

dx2 + q j(x) over [0, l j] with the domain

D
(

L j
N ,D

) = closure of C∞
N ,D(0, l j) in H2(0, l j),

where C∞
N (0, l j) (resp. C∞

D (0, l j)) denotes the space of infinitely differentiable functions f defined on [0, l j] satisfying Dirich-
let boundary condition at 0 and Neumann (resp. Dirichlet) boundary condition at l j .

Noting that, we have assumed for the potential q j(x) to satisfy ‖q j‖H1(0,l j)
< C(Γ ) � C1(Γ ) := min j=1,...,N

π2

4l5/2
j

and that

q j(0) = 0, we have ‖q j‖L∞(0,l j) < π2

4l2j
(one has the Sobolev injection ‖q j‖L∞(0,l j) �

√
l j‖q j‖H1(0,l j)

). This implies that the

eigenvalues of L j
N remain positive. In fact, π2

4l2j
is the minimum eigenvalue of the potential-less Schrödinger operator (with

Neumann boundary conditions) and therefore by adding a potential whose L∞-norm is smaller than this eigenvalue, the
eigenvalues of L j

N remain positive.

Considering ((λ
j
n)2)∞n=1 (λ j

n > 0) the sequence of eigenvalues of L j
N , (23) implies for each j = 1, . . . , N,

∏
i 	= j

ϕ i
N

(
0, λ

j
n
)
ϕ̃ i

N
(
0, λ

j
n
) l j∫

0

q̂ j(x)ϕ j
N

(
x, λ j

n
)
ϕ̃

j
N

(
x, λ j

n
)

dx = 0, ∀n = 1,2, . . . (27)

where we have applied the fact that ϕ
j

N (0, λ
j
n) = 0.

At this point, we will use the assumption A2 on the lengths l j to obtain a lemma on the non-overlapping of the eigen-
values for different branches:

Lemma 3. Under the assumptions of Theorem 3, for all j = 1, . . . , N,∏
i 	= j

ϕ i
N

(
0, λ

j
n
)
ϕ̃ i

N
(
0, λ

j
n
) 	= 0, ∀n ∈ N.

Proof. In order to prove this lemma, we only need to show that (λ
j
n)2 is not an eigenvalue of Li

N nor L̃i
N for i 	= j.

In this aim, we first show that, if ‖q‖H1 ,‖q̃‖H1 < C2(Γ ) and assumption A2 holds, then there are at most a finite number
of overlapping eigenvalues for different branches. Indeed, for M(Γ ) defined by (8), we show that taking n1,n2 > M(Γ ), λi

n1

is different from λ
j
n2 and λ̃

j
n2 the eigenvalues of L j

N and L̃ j
N ( j 	= i). Assume, contrarily, that there exist n1,n2 > M(Γ ) and

i 	= j, such that

λi
n = λ

j
n or λi

n = λ̃
j
n . (28)
1 2 1 2
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Without loss of generality, we consider the first case. Applying Lemma 1, we have∣∣∣∣λi
n1

− (2n1 − 1)2π2

4l2i

∣∣∣∣ <
C0(li)C2(Γ )

2n1 − 1
,

∣∣∣∣λ j
n2 − (2n2 − 1)2π2

4l2j

∣∣∣∣ <
C0(l j)C2(Γ )

2n2 − 1
. (29)

Therefore, the relation (28) implies that,∣∣∣∣ (2n1 − 1)2π2

4l2i
− (2n2 − 1)2π2

4l2j

∣∣∣∣ < C2(Γ )

(
C0(li)

2n1 − 1
+ C0(l j)

2n2 − 1

)
.

Taking (without loss of generality) n1 � n2, and dividing the above inequality by (2n1 − 1)2π2/4l2j , we have

∣∣∣∣ l2j
l2i

− (2n2 − 1)2

(2n1 − 1)2

∣∣∣∣ < C2(Γ )
4l2j (C0(li) + C0(l j))

π2

1

(2n1 + 1)3
.

Applying the trivial inequality∣∣∣∣ l2j
l2i

− (2n2 − 1)2

(2n1 − 1)2

∣∣∣∣ =
∣∣∣∣ l j

li
+ 2n2 − 1

2n1 − 1

∣∣∣∣
∣∣∣∣ l j

li
− 2n2 − 1

2n1 − 1

∣∣∣∣ >
l j

li

∣∣∣∣ l j

li
− 2n2 − 1

2n1 − 1

∣∣∣∣,
we have∣∣∣∣ l j

li
− 2n2 − 1

2n1 − 1

∣∣∣∣ < C2(Γ )
4lil j(C0(li) + C0(l j))

π2

1

(2n1 + 1)3
� 1

(2n1 + 1)3
,

where we have applied the definition of C2(Γ ). This leads to a contradiction with the definition of M(Γ ).
Now assume that, there exist n1 ∈ {1, . . . , M(Γ )} and n2 ∈ N such that for some i 	= j, λi

n1
= λ

j
n2 and we will find a

contradiction with the fact that ‖q‖H1 < C3(Γ ) (the case of λi
n1

= λ̃
j
n2 can be treated exactly in the same manner). In this

aim, we apply once again Lemma 1. If λi
n1

= λ
j
n2 , we have∣∣∣∣ (2n1 − 1)2π2

4l2i
− (2n2 − 1)2π2

4l2j

∣∣∣∣ < C3(Γ )

(
C0(li)

2n1 − 1
+ C0(l j)

2n2 − 1

)

� C3(Γ )
(
C0(li) + C0(l j)

)
.

This, trivially, is in contradiction with the definition of C3(Γ ). �
Applying Lemma 3 to (27), we have

l j∫
0

q̂ j(x)ϕ j
N

(
x, λ j

n
)
ϕ̃

j
N

(
x, λ j

n
)

dx = 0, ∀ j = 1, . . . , N, ∀n ∈ N.

From Eq. (24) we have

l j∫
0

q̂ j(x)ϕ̃ j
N

(
x, λ j

n
)
ϕ

j
N

(
x, λ j

n
)

dx = ψ
j

N
(
0, λ

j
n
)
ϕ̃

j
N

(
0, λ

j
n
) − ϕ

j
N

(
0, λ

j
n
)
ψ̃

j
N

(
0, λ

j
n
) = 0.

This leads to ψ
j

N (0, λ
j
n)ϕ̃

j
N (0, λ

j
n) = 0, since (λ

j
n)2 is an eigenvalue of L j

N . Furthermore, the value ψ
j

N (0, λ
j
n) is different

from 0, because otherwise we would have a non-zero fundamental solution ϕ
j

N (x, λ j
n) with three zero boundary conditions.

Thus ϕ̃
j

N (0, λ
j
n) = 0 which implies that (λ

j
n)2 is also an eigenvalue of L̃ j

N . Therefore, the eigenvalues of L j
N and L̃ j

N
coincide. In the same manner, we can show that the eigenvalues of L j

D and L̃ j
D coincide as well.

It is well-known result [7,19] that the specification of two spectra of Sturm–Liouville boundary value problem uniquely
determines the potential on the segment e j , i.e.

q̂ j(x) ≡ 0, ∀x ∈ [0, l j], j = 1, . . . , N.

This completes the proof of Theorem 3.
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Appendix A. Proof of Lemma 1

We, basically, use a classical result from the perturbation theory of linear operators (see [21, Chapter VII, Example 2.17]).
The assumption ‖q‖L∞(0,l) < π2

4l2
allows us to apply the Taylor expansion of the eigenvalues of the above operator as a

perturbation of the Laplacian operator with the same boundary conditions. Therefore, following [21], we have∣∣∣∣∣λn − (2n − 1)2π2

4l2
+ 2

l∫
0

q(s) sin2
(

(2n − 1)π

2l
s

)
ds

∣∣∣∣∣ � c0(l)
‖q‖2

L∞
2n − 1

,

for some constant c0(l), only depending on the length l. This leads to

∣∣∣∣λn − (2n − 1)2π2

4l2

∣∣∣∣ � c0(l)
‖q‖2

L∞
2n − 1

+ 2

∣∣∣∣∣
l∫

0

q(s) sin2
(

(2n − 1)π

2l
s

)
ds

∣∣∣∣∣
= c0(l)

‖q‖2
L∞

2n − 1
+ 2

∣∣∣∣∣
l∫

0

q(s)
1 − cos( (2n−1)π

l s)

2
ds

∣∣∣∣∣
< c0(l)

π2

4l3/2

‖q‖H1(0,l)

2n − 1
+

∣∣∣∣∣
l∫

0

q(s) cos

(
(2n − 1)π s

l

)
ds

∣∣∣∣∣
= c0(l)

π2

4l3/2

‖q‖H1(0,l)

2n − 1
+ l

(2n − 1)π

∣∣∣∣∣
l∫

0

q′(s) sin

(
(2n − 1)π s

l

)
ds

∣∣∣∣∣
�

(
c0(l)

π2

4l3/2
+ l3/2

π
√

2

)‖q‖H1(0,l)

2n − 1
.

In the above computations, for passing from the second to the third line, we have applied the facts that ‖q‖L∞ < π2

4l2
, that

‖q‖L∞ �
√

l‖q‖H1 (as q(0) = 0) and that
∫ l

0 q(s)ds = 0. For passing from the third to the fourth line, we have integrated by
parts and finally for passing from the fourth line to last one, we have applied a Cauchy–Schwartz inequality. Therefore, the
constant C0(l) of the lemma is given as follows:

C0(l) = c0(l)
π2

4l3/2
+ l3/2

π
√

2
.
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