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We prove the existence of a periodic solution, y ∈ C1(R,R
�), of a first-order differential

equation ẏ = f (t, y), where f is periodic with respect to t and admits a star-shaped
compact set that is invariant under the Euler iterates of the equation with sufficiently small
time-step. As in Peano’s Theorem for the Cauchy problem, the only required regularity
condition on f is continuity. We present two nontrivial examples that illustrate the
usefulness of this theorem in applications related to forced oscillations.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and problem setting

We consider the problem of existence of classical periodic solutions of the ordinary differential equation

dy

dt
= f (y, t), t ∈ R, (1.1)

where f : D ×R → R
� for some open subset D of R

� . Throughout this article, we consider � a fixed positive natural number.
Our purpose is to study forced oscillations, and so we require that f is T -periodic with respect to the variable t .

The study of forced oscillations has always been relevant, particularly in applications. Nevertheless, the question of
finding general conditions that guarantee its existence has not been comprehensively solved. It is usual to adopt a case by
case approach, carried out with the aid of tools from functional analysis that may demand unnecessarily strong conditions.
The main purpose of this work is to derive a general result that is both sharper and of easier application.

The classical study of the Cauchy problem for Eq. (1.1) showed that the weakest regularity condition on f that can
possibly be demanded is continuity. Following the method of Peano introduced in [11] (see [10], or a more recent account
in [5]), our convergence tool is the Ascoli–Arzelà Theorem ([1] and [2]). As such, we do not require the usual local Lipshitz
continuity estimate of f with respect to y. This condition has been of vital importance in the classical theory, since the
Lipshitz bounds and uniqueness allow the use of Schauder fixed point theory as a convergence tool in periodic solution
problems.

However, it is known since Banach that the space of Lipshitzian functions on [0,1] is not topologically generic in the
space of continuous functions on [0,1] (see [3,7]), nor generic in a measure-theoretic sense (introduced in [8]). Hence, the
problem of existence of strong periodic solutions of (1.1) when f may only be continuous seems relevant. The method we
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use is inspired on Peano’s proof of existence of solution for the Cauchy problem. The problem at hand makes its Euler
schemes implicit, and so we use Brouwer fixed-point theory (introduced in [4], but see [12] for a comprehensive account
on this subject) to show existence of solutions of the approximate problems.

It is trivial to see that T -periodicity and continuity of f are not sufficient to establish existence of periodic solutions.
What fails, on counterexamples, is the existence of a compact set, K ⊂ R

� that is invariant, in some sense, with respect to
the solutions of (1.1) starting in K . Our use of the Euler scheme as an approximation tool makes the following a good choice
of invariance condition.

Definition 1.1. Let K ⊂ R
� be compact and f : K × R → R

� . We say that K is invariant under the Euler iterates of f (in
short, K is E-invariant under f ) if there exists ε > 0 such that, for all t ∈ R, y ∈ K and �t ∈ R

+:

0 < �t < ε ⇒ y + f (y, t)�t ∈ K .

An obvious difficulty with this E-invariance notion is that it excludes cases where f might be tangent to ∂ K . For this
reason, we weaken it in the following way:

Definition 1.2. Let K ⊂ R
� be compact and f : K × R → R

� . We say that K is invariant under f if there exists a sequence
of continuous functions fn : K × R → R

� , that converge uniformly to f on compact subsets of K × R and such that, for all
n ∈ N, K is E-invariant under fn .

If K is invariant but not E-invariant under f then ε (from Definition 1.1), depends on n and, moreover, ε ↓ 0 as n → ∞.
Suppose � � 2 and ∂ K is a differentiable (� − 1)-manifold on a neighborhood of some point y ∈ ∂ K . For any sufficiently
small �t > 0, let n�t be the largest n such that the corresponding ε of Definition 1.1 satisfies �t < ε . Note that n�t → ∞
as �t ↓ 0. Definition 1.2 implies that the distance of the Euler iterate of y, y + f (y, t)�t , to K (hence to ∂ K ) is bound by:

∣∣ f (y, t) − fn�t (y, t)
∣∣�t = o(�t)�t, as �t ↓ 0.

This estimate allows the direction field, f , of Eq. (1.1) to be tangent to ∂ K . Note that, in a setting using Schauder theory as
a convergence tool, the obvious invariance condition — solutions of the Cauchy problem starting on K remain on K up to
some time — requires uniqueness of solution, at least in situations where f may be tangent to ∂ K .

We may now present our problem setting. Let D be an open subset of R
� and consider the first-order differential

equation (1.1), where f : D × R → R verifies the following conditions:

( f 1) There exists T ∈ R
+ such that f is T -periodic with respect to t , that is, f (y, ·) is T -periodic for all y ∈ D .

( f 2) f is continuous in D × R.
( f 3) There exists some star-shaped compact set K in R

� such that K is invariant under f .

Remark 1.1. In this paper, we consider a function of real variable T -periodic if it has a period T > 0, where T may not be
its smallest period. In particular, a constant function is T -periodic for all T > 0. We call a function strictly T -periodic if T is
its smallest period.

The main result of this paper can be stated as follows: if f verifies conditions ( f 1), ( f 2) and ( f 3), then the differential
equation y′ = f (y, t) admits a T -periodic solution.

In Section 2, we describe the Euler discretization scheme used as an approximation tool for the differential equation. In
Section 3 we use the Brouwer fixed point theorem to show that the approximate solutions exist and use Peano’s method to
prove an existence lemma for an equivalent integral equation in the E-invariant case. In Section 4 we show the main result
and in Sections 6 and 7 we apply it to the Solow equation and the forced nonlinear dissipative pendulum.

The invariance condition requires the existence of a uniformly convergent sequence of approximations of f ; hence, it
may seem technically hard to use in practice. In Section 5 we address this concern, providing simple criteria for invariance
of compact subsets of R

� , of the prescribed form, under f .

2. A discretization for the differential equation in the circle

Let I = [0, T ], where t = 0 is identified with t = T ; this makes I topologically equivalent to a circle. The derivative of
a function y : I → R is defined from the appropriate side derivatives of y at t = 0 and t = T . The periodic extension of a
solution of

dy

dt
= f (y, t), t ∈ I, (2.1)

satisfies the original problem.
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We now construct a simple discretized version of problem (2.1). Choose N ∈ N, let �t = T
N , and:

IN = {
0,�t,2�t, . . . , (N − 1)�t, T

} = �t (Z mod N).

Consistently with our interpretation of IN as a discrete version of I , we define addition in IN as it must: given any t = m�t
and s = n�t in IN , let:

t + s = (
(m + n)mod N

)
�t.

Notice that addition is well-defined in IN ; in particular, both t + �t and t − �t are in IN for all t ∈ IN .
The Euler scheme for problem (2.1) is the family of problems (indexed in N ∈ N) given by:

Y N(t + �t) = Y N(t) + f
(
Y N(t), t

)
�t, t ∈ IN . (2.2)

The definition of IN makes this scheme implicit; for each N , (2.2) forms a nonlinear system of N equations in the N
unknowns Y N (t), t ∈ IN . We now derive a fixed point problem that, under our hypothesis, is equivalent to the Euler scheme
equations.

For any N ∈ N, define a map

(
R

�
)IN 
 Y

ΦN�−→ ΦN(Y ) ∈ (
R

�
)IN

by:

ΦN(Y )(t) = Y (t) + f
(
Y (t), t

)
�t (2.3)

for each Y ∈ (R�)IN and t ∈ IN . Consider also the usual shift map, given by:

σ(Y )(t) = Y (t + �t).

From this point on, whenever we are working with the Euler scheme problem (2.2) for some fixed N , we will omit the
subscript N from Y N and ΦN .

If N ∈ N is fixed, then problem (2.2) can be written as:

σ(Y )(t) = Y (t + �t) = Y (t) + f
(
Y (t), t

)
�t = Φ(Y )(t),

for all t ∈ IN . This is equivalent to the fixed point problem

Y = σ−1Φ(Y ) (2.4)

in (R�)IN . Thus, the following is a consequence of the previous definitions.

Lemma 2.1. Let N ∈ N. If Y ∈ (R�)IN is a fixed point of σ−1Φ then Y satisfies the implicit Euler scheme (2.2) in IN .

3. Existence of a T -periodic weak solution

We start by proving existence of solutions for the implicit Euler scheme.

Lemma 3.1. Let K be E-invariant under f : K × [0, T ] → K where, for all t ∈ [0, T ], f (·, t) is continuous on K . If N be large enough
so that �t = T

N < ε , where ε > 0 is given by the condition of E-invariance of K under f , ( f 3), then σ−1Φ has a fixed point in K IN .

Proof. If BN = K IN , we claim that:

a) BN is star-shaped.

Since K is star-shaped, there exists p ∈ K such that the line segment connecting any y ∈ K with p is in K . Let P ∈ B N be
the constant function P (t) ≡ p and Y ∈ B N be arbitrary. If 0 � θ � 1 and t ∈ IN then θY (t) + (1 − θ)P (t) ∈ K .

b) If Y ∈ BN then Φ(Y ) ∈ BN .

If Y ∈ BN and t ∈ IN then, by E-invariance of K under f , Φ(Y )(t) = Y (t) + f (Y (t), t) ∈ K .

c) If Y ∈ BN then σ−1Φ(Y ) ∈ BN .

It is obvious that for any Z ∈ BN , σ−1(Z) ∈ BN . The result now follows from b).
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The uniform convergence of f (·, t), for every t ∈ IN , implies that Φ (and thus σ−1Φ) is continuous in K IN . Applying the
Brouwer fixed point theorem to the map σ−1Φ on the star-shaped set BN , we can conclude that there exists Y ∈ B N such
that Y = σ−1Φ(Y ). �

Next, we present an existence proof for the integral equation problem associated to Eq. (1.1).

Lemma 3.2. Let K be a star-shaped compact subset of R
� , and f : K × [0, T ] → R

� be continuous, and such that K is E-invariant
under f . Then the equation

y(t) = y(0) +
t∫

0

f
(

y(s), s
)

ds

admits a continuous solution, y : [0, T ] → K such that y(0) = y(T ).

Proof. Consider (the tail of) the sequence of Y N , whose terms are given by Lemma 3.1, and where N ∈ N satisfies N > T
ε .

The terms of this sequence are given by (2.2). We extend each Y N to a continuous Ȳ N : [0, T ] → K by the interpolation
formula:

Ȳ N(t) = Y N
(
n(t)�t

) + f
(
Y N

(
n(t)�t

)
,n(t)�t

)
δ(t). (3.1)

Here, n(t) is the largest integer, m, satisfying m�t � t and δ(t) ∈ R
+ is given by δ(t) = t − n(t)�t . Notice that 0 � δ(t) <

�t < ε .
By construction, each Ȳ N is a continuous function on [0, T ] verifying Ȳ N (T ) = Ȳ N (0). From Eq. (3.1) and E-invariance of

K under f , Ȳ N (t) ∈ K for all t ∈ R. In particular, the sequence Ȳ N is uniformly bounded.
As for equicontinuity, let t2, t1 ∈ [0, T ] and consider ni = n(ti) for i = 1,2. Without loss of generality, t2 > t1, so n2 � n1.

Let M � 1 be an upper bound for | f | on K × [0, T ].
If n2 = n1 then |t2 − t1| < �t and so:

∣∣Ȳ N(t2) − Ȳ N(t1)
∣∣ � M

(
δ(t2) − δ(t1)

) = M|t2 − t1|.
If n2 > n1 and t2 − t1 < �t then n2 = n1 + 1. Using both (3.1) and its equivalent form

Ȳ N(t) = Y N
((

n(t) + 1
)
�t

) + f
(
Y N

(
n(t)�t

)
,n(t)�t

)(
δ(t) − �t

)
,

leads to:

∣∣Ȳ N(t2) − Ȳ N(t1)
∣∣ = ∣∣Y N(n2�t) + f

(
Y N(n2�t),n2�t

)
δ(t2)

− Y N
(
(n1 + 1)�t

) − f
(
Y N(n1�t),n1�t

)(
δ(t1) − �t

)∣∣
� Mδ(t2) + M

(
�t − δ(t1)

)
= M|t2 − t1|.

If t2 − t1 � �t then |Ȳ N (t2) − Ȳ N (t1)| � M|t2 − t1| by the previous cases and the triangle inequality. We conclude that Ȳ N is
equicontinuous on [0, T ], as wanted.

By the Ascoli–Arzelà Theorem, there exists a subsequence, Ȳ N j of Ȳ N converging uniformly on [0, T ] to a continuous
limit function y : [0, T ] → K . Since for all N , Y N (T ) = Y N (0), it follows that y(T ) = y(0).

We prove that y is a solution of the integral equation:

y(t) = y(0) +
t∫

0

f
(

y(s), s
)

ds (3.2)

for t ∈ [0, T ]. Here, y(0) = lim j→∞ Y N j (0).
Let t ∈ [0, T ]. Let p = n(t). Then:

Ȳ N(t) = Ȳ N(0) +
p−1∑
k=0

f
(
Ȳ N(k�t),k�t

)
�t + f

(
Ȳ N(p�t), p�t

)
δ(t)

= y(0) +
p−1∑

f
(

y(k�t),k�t
)
�t + f

(
y(p�t), p�t

)
δ(t) + EN(t), (3.3)
k=0
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where:

EN(t) =
p−1∑
k=0

(
f
(
Ȳ N(k�t),k�t

) − f
(

y(k�t),k�t
))

�t + (
f
(
Ȳ N(p�t), p�t

) − f
(

y(p�t), p�t
))

δ(t).

From the uniform convergence of Ȳ N j and the uniform continuity of f on K × [0, T ], the terms of the form f (Ȳ N j (θ), θ) −
f (y(θ), θ) have a uniform bound on θ ∈ [0, T ] that converges to 0 along N j . Hence, EN j (t) → 0 as j → ∞.

On the other hand, the term
∑p−1

k=0 f (y(k�t),k�t)�t + f (y(p�t), p�t)δ(t) in Eq. (3.3), is a Riemann sum of the integral∫ t
0 f (y(s), s)ds on the partition {0,�t,2�t, . . . , p�t, t}, with f (y(·), ·) continuous on [0, t]. Taking the limit on both sides

of Eq. (3.3) along N j , we obtain integral equation (3.2). �
4. Existence of a T -periodic solution

In this section, we prove the main theorem.

Lemma 4.1. Let T > 0, A ⊂ R
� compact and f : A × [0, T ] → R

� continuous, T -periodic with respect to t. If y : [0, T ] → K satisfies
y(0) = y(T ) and

y(t) = y(0) +
t∫

0

f
(

y(s), s
)

ds (4.1)

for all t ∈ [0, T ], then the continuous periodic extension of y to R satisfies the integral equation (4.1) for all t ∈ R. Consequently,
y ∈ C1(A, K ) and satisfies y′ = f (y, t) in R.

Proof. Let ȳ : R → K be the periodic extension of y to R. First note that, from T -periodicity of f ( ȳ(·), ·):

mT∫
0

f
(

ȳ(s), s
)

ds = m

T∫
0

f
(

y(s), s
)

ds = m
(

y(T ) − y(0)
) = 0,

for all m ∈ Z. Given t ∈ R, let m be the largest integer such that mT < t . Then:

ȳ(t) = y(t − mT ) = y(0) +
t−mT∫
0

f
(

y(s), s
)

ds

= ȳ(0) +
t∫

mT

f
(

ȳ(s), s
)

ds

= ȳ(0) +
t∫

0

f
(

ȳ(s), s
)

ds. �

Given a compact set B ⊂ R
m , with m ∈ N, we consider the Banach space of continuous functions ϕ : B → R

� endowed
with the L∞ norm.

Theorem 4.1. Let K be a star-shaped compact subset of R
� , and f : K × R → R

� be continuous, T -periodic with respect to t and such
that K is invariant under f . Then the equation

dy

dt
= f (y, t)

admits a T -periodic solution, y : R → K .

Proof. Let fn be the sequence of approximations of f given by the condition of invariance of K under f . It is a consequence
of Lemma 3.2 that for each n ∈ N there is a function yn : [0, T ] → K satisfying

yn(0) = yn(T ) (4.2)
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and

yn(t) = yn(0) +
t∫

0

fn
(

yn(s), s
)

ds. (4.3)

Since ‖ fn − f ‖ → 0, there exists M1 > 0 such that ‖ fn‖ � M1, for all n ∈ N. Therefore, for all t ∈ [0, T ]:
∣∣yn(t)

∣∣ �
∣∣yn(0)

∣∣ + M1t � M2 + M1T ,

where M2 = max{|y|: y ∈ K }. This means that yn is uniformly bounded.
Furthermore, if 0 � t1 < t2 � T then

∣∣yn(t2) − yn(t1)
∣∣ �

t2∫
t1

∣∣ fn
(

yn(s), s
)∣∣ds � M1|t2 − t1|.

We conclude that yn is equicontinuous.
By the Ascoli–Arzelà Theorem, there exists a subsequence of yn , yn j , converging uniformly on [0, T ] to some continuous

y : [0, T ] → K . Taking the limit on both sides of Eqs. (4.2) and (4.3) and using the uniform convergence of both fn j and yn j ,
we get y(0) = y(T ) and

y(t) = y(0) +
t∫

0

f
(

y(s), s
)

ds, for all t ∈ [0, T ].

The conclusion follows from Lemma 4.1. �
5. Invariance tests

In this section, we derive sufficient conditions for the invariance of compact sets under a direction field. The purpose of
these results is to make a large class of practical applications of Theorem 3.2 into problems of Calculus.

Let A ⊂ R
� be open and bounded. Consider a real function H ∈ C1(A) ∩ C( Ā) with a minimum b = H( ȳ) at some ȳ ∈ A.

Choose a > b in H(A) such that a < H(y) for all y ∈ ∂ A and ∇H(y) �= 0 whenever H(y) = a. Consider the set:

K = {
y ∈ A: H(y) � a

}
.

By construction, K is compact in the relative topology of A but, by continuity of H , the distance from K to ∂ A is positive.
So K is compact in the usual topology of R

� , ∂ K = {y ∈ A: H(y) = a} and H has no stationary points on ∂ K . If H is a
convex function then K is convex. More generally, if for any v ∈ R

� , H( ȳ + tv) is an increasing function of t ∈ R, then K is
star-shaped.

Lemma 5.1. With K and H as defined above, let f : K × R → R be continuous and T -periodic with respect to t. If for all y ∈ ∂ K and
t ∈ [0, T ]

∇H(y) · f (y, t) < 0

then K is E-invariant under f .

Proof. For y ∈ K , let d(y, ∂ K ) be the distance from y to ∂ K , that is, d(y, ∂ K ) = minw∈∂ K |y − w|. Consider the function g :
K × K ×[0, T ] → R

� , given by g(ξ, y, t) = ∇H(ξ) · f (y, t) (in its domain). By hypothesis, g(y, y, t) < 0 for (y, t) ∈ ∂ K ×[0, T ].
From uniform continuity of g , there exists a δ > 0 such that, for all ξ, y ∈ K and t ∈ [0, T ]:

d(y, ∂ K ) < δ ∧ |ξ − y| < δ ⇒ ∇H(ξ) · f (y, t) < 0. (5.1)

Using uniform continuity of f , we can define:

ε = δ

M
, where M = max

{∣∣ f (y, t)
∣∣: y ∈ K and t ∈ [0, T ]}.

Fix any �t ∈ (0, ε), and consider y ∈ K . If d(y, ∂ K ) < δ, then

H
(

y + f (y, t)�t
) = H(y) + �t∇H(ξ) · f (y, t) (5.2)

where ξ ∈ K is some point in the line segment joining y with y + f (y, t)�t . Since
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|ξ − y| < ∣∣ f (y, t)
∣∣�t � Mε = δ,

from (5.1) and Eq. (5.2), it follows that

H
(

y + f (y, t)�t
)
< H(y) � a,

and so y + f (y, t)�t ∈ K , as wanted. In the case d(y, ∂ K ) � δ, | f (y, t)�t| < Mε < δ, hence y + f (y, t)�t is inside K . �
Next, we generalize the above lemma to the invariant case.

Proposition 5.1 (Invariance test). With H and K as previously defined, let f : K × R → R be continuous and T -periodic with respect
to t. If for all y ∈ ∂ K and t ∈ [0, T ]

∇H(y) · f (y, t) � 0

then K is invariant under f .

Proof. Let n ∈ N, and consider the sequence of T -periodic (with respect to t) and uniformly continuous functions on K ×
[0, T ] given by:

fn(y, t) = f (y, t) − 1

n
∇H(y).

The function ∇H is (uniformly) continuous in K , and so:

‖ fn − f ‖ � 1

n
‖∇H‖ → 0 as n → ∞.

On the other hand, since H has no stationary points on ∂ K ,

∇H(y) · fn(y, t) � −1

n

∣∣∇H(y)
∣∣2

< 0 on ∂ K × [0, T ].
By the preceding lemma, we conclude that K is E-invariant under fn . �

In the one-dimensional case, the test for invariance of a compact interval under a direction field becomes a statement of
elementary Calculus.

Corollary 5.1. Let f : [a,b] × [0, T ] → R be continuous and T -periodic with respect to t. If, for all t ∈ [0, T ], f (a, t) � 0 and
f (b, t) � 0 then [a,b] is invariant under f .

Proof. Let H(y) = 1
2 (y − a+b

2 )2. Since H ′(y) f (y, t) = (y − a+b
2 ) f (y, t), both H ′(a) f (a, t) and H ′(b) f (b, t) are nonpositive. �

6. Periodic solutions of the Solow equation

As an example, we prove the existence of strictly periodic solutions of the Solow equation. This example, with prelimi-
nary work in [6], was the main motivation for this work.

Let ϕ : [0,∞) → R be a strictly increasing continuous function such that ϕ(0) = 0 and the following property holds: for
any θ > 0, there exists a unique κ > 0 satisfying:

(a) ϕ(κ) − θκ = 0;
(b) if 0 < k < κ then ϕ(k) − θk > 0;
(c) if k > κ then ϕ(k) − θk < 0.

We call these the generalized Inada conditions (in short, gI-conditions). If s > 0 and ϕ satisfies the gI-conditions, then sϕ
also satisfies them and it follows that sϕ is a strictly concave function.

Let δ > 0, n : R → R be a continuous strictly T -periodic function such that δ + n(t) is always positive and s > 0. The
Solow equation is:

dk

dt
= sϕ(k) − (

δ + n(t)
)
k for t ∈ R. (6.1)

For details on the economical significance of the equation and its parameters, see [9] and [6] for an interpretation of the
meaning of its periodic solutions.
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Theorem 6.1. Under the gI-conditions on ϕ and given n, s and δ as defined above, the Solow equation, (6.1), admits a strictly T -periodic
solution k ∈ C1(R,R).

Proof. Let f : [0,∞) × R → R be given by f (k, t) = sϕ(k) − (δ + n(t))k. Note that f is continuous and T -periodic in the
variable t .

Our goal is to find a compact interval K ⊂ (0,∞) such that K is invariant under f . Let J = [0, T ] and define:

n = min
t∈ J

n(t); n̄ = max
t∈ J

n(t).

By hypothesis, 0 < δ + n < δ + n̄. Let κ and κ̄ be the constants given by the gI-condition (a):

sϕ(κ) − (δ + n̄)κ = 0,

sϕ(κ̄) − (δ + n)κ̄ = 0.

Since

sϕ(κ) − (δ + n)κ > sϕ(κ) − (δ + n̄)κ = 0,

using the gI-conditions (b) and (c) we conclude that 0 < κ < κ̄ .
Choose our compact interval to be K = [κ, κ̄]. From the gI-condition (b):

f (κ, t) = sϕ(κ) − (
δ + n(t)

)
κ � sϕ(κ) − (δ + n̄)κ = 0

and

f (κ̄, t) = sϕ(κ̄) − (
δ + n(t)

)
κ̄ � sϕ(κ̄) − (δ + n)κ̄ = 0.

By Proposition 5.1, it follows that K is invariant under f . Using Theorem 4.1, we can conclude that Eq. (6.1) has a T -periodic
solution, k : R → K . Since there are no constant positive solutions of (6.1), k is not constant.

We remark that, by hypothesis, the function n(t) is strictly T -periodic and, as a consequence, k(t) is also T -periodic. If
that were not true, there would be an m ∈ N for which k(t), and consequently k′(t), would be T

m -periodic. Hence, δ +n(t) =
1

k(t) (sϕ(k(t)) − k′(t)) would necessarily be T
m -periodic, contradicting our hypothesis. �

7. Periodic solutions of the forced nonlinear dissipative pendulum

The forced dissipative nonlinear pendulum has the equation of motion:

q̈ + bq̇ + sin q = f (q, t). (7.1)

Here q : R → R is the angular position, b > 0 is a damping parameter, and f : R × R → R is the driving force. For our
example, we assume that there exists some α ∈ (0,π) such that:

( f 1) f is continuous;
( f 2) For some T > 0, f is T -periodic with respect to t;
( f 3) | f (q, t)| � b

√
2(cos q − cosα), for all (q, t) ∈ [−α,α] × [0, T ];

( f 4) For all q ∈ [−α,α] there exists t ∈ [0, T ] such that − sin q + f (q, t) �= 0.

Writing Eq. (7.1) as a first-order system of ordinary differential equations yields:{
ṗ = − sin q − bp + f (q, t),

q̇ = p.
(7.2)

Here, p = q̇ is the angular velocity of the pendulum. Consider the Hamiltonian function of the (non-forced) conservative
pendulum.

H(p,q) = p2

2
+ 1 − cos q.

Theorem 7.1. With b, f , α and H as defined above, let:

K = {
(p,q) ∈ R

2: H(p,q) � 1 − cosα and |q| � α
}
.

Then system (7.2) has a strictly periodic solution, (p,q) ∈ C1(R, K ) and, consequently, q is a strictly periodic C2 solution of Eq. (7.1).
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Proof. If (p,q) ∈ K then

p2

2
� cos q − cosα.

Since cos q − cosα � 0, we have |p| �
√

2(cos q − cosα) < 2. Take H to be the restriction of H to A = (−2,2) × (−π,π);
then K = H−1([0,1 − cosα]) is compact. Fix (p0,q0) ∈ K , and let 0 � t � 1; then

d

dt
H(tp0, tq0) = tp2

0 + q0 sin(tq0) � 0.

Hence K is star-shaped.
The gradient of H in A is given by

∇H(p,q) = (p, sin q).

If p �= 0, it is obvious that ∇H(p,q) �= 0. On the other hand, (0,q) ∈ ∂ K if and only if q = ±α, in which case ∇H(0,±α) is
also nonzero. We conclude that ∇H(p,q) �= 0 on ∂ K .

The direction field, φ : R
3 → R

2, of system (7.2) is given by

φ(p,q, t) = (− sin q − bp + f (q, t), p
)
.

For |q| � α, (p,q) ∈ ∂ K is equivalent to p2 = 2(cos q − cosα). From condition ( f 3), for any t ∈ [0, T ],
pf (q, t) �

∣∣pf (q, t)
∣∣ � |p|b√

2(cos q − cosα) = bp2,

and so:

φ(p,q, t) · ∇H(p,q) = −bp2 + pf (q, t) � 0.

By Proposition 5.1, K is invariant under φ. Also, by ( f 1) and ( f 2) φ is continuous and T -periodic with respect to t .
Applying Theorem 4.1, we conclude that there exists a periodic solution (p,q) : R → K of system (7.2). By ( f 4) and (7.2),
q is not a constant solution. �

It follows from the proof of Theorem 7.1 that condition ( f 3) is equivalent to | f (q, t)| � b |p|, where p is such that
(p,q) ∈ ∂ K . We recall that −bp equals the dissipative force at any point in the phase space.

If we take α = π then ( f 3)–( f 4) become inconsistent. When α reaches π , two unstable equilibrium points, (0,±π), of
the non-forced pendulum enter K .
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