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This work is a continuation of our previous work [Z.Q. Shao, Global structure stability
of Riemann solutions for linearly degenerate hyperbolic conservation laws under small
BV perturbations of the initial data, Nonlinear Anal. Real World Appl. 11 (2010) 3791–
3808]. In the present paper we investigate the global structure stability of Riemann
solutions for general quasilinear hyperbolic systems of conservation laws under small BV
perturbations of the initial data, where the Riemann solution only contains the shocks
and contact discontinuities, and at least a shock wave. The perturbations are in BV but
they are assumed to be C1-smooth, with bounded and possibly large C1-norms. We get
a lower bound of the lifespan of the piecewise C1 solution to a class of the generalized
Riemann problem, which can be regarded as a small BV perturbation of the corresponding
Riemann problem. Some applications to quasilinear hyperbolic systems of conservation
laws arising in physics, particularly to one-dimensional Euler equations of gas dynamics for
a compressible, inviscid, non-heat conducting gas in Eulerian coordinates, are also given.
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1. Introduction and main result

Consider the following quasilinear hyperbolic system of conservation laws:

∂t u + ∂x f (u) = 0, x ∈ R, t > 0, (1.1)

where u = (u1, . . . , un)T is the unknown vector-valued function of (t, x), f : Rn → Rn is a given C3 vector function of u.
It is assumed that system (1.1) is strictly hyperbolic, i.e., for any given u on the domain under consideration, the Jacobian

A(u) = ∇ f (u) has n real distinct eigenvalues

λ1(u) < λ2(u) < · · · < λn(u). (1.2)

Let li(u) = (li1(u), . . . , lin(u)) (resp. ri(u) = (ri1(u), . . . , rin(u))T ) be a left (resp. right) eigenvector corresponding to λi(u)

(i = 1, . . . ,n):

li(u)A(u) = λi(u)li(u)
(
resp. A(u)ri(u) = λi(u)ri(u)

)
. (1.3)
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We have

det
∣∣li j(u)

∣∣ �= 0
(
equivalently, det

∣∣ri j(u)
∣∣ �= 0

)
. (1.4)

Without loss of generality, we may assume that on the domain under consideration

li(u)r j(u) ≡ δi j (i, j = 1, . . . ,n) (1.5)

and

rT
i (u)ri(u) ≡ 1 (i = 1, . . . ,n), (1.6)

where δi j stands for Kronecker’s symbol.
Clearly, all λi(u), li j(u) and ri j(u) (i, j = 1, . . . ,n) have the same regularity as A(u), i.e., C2 regularity.
We also assume that on the domain under consideration, each characteristic field is either genuinely nonlinear in the

sense of Lax (cf. [24]):

∇λi(u)ri(u) �= 0 (1.7)

or linearly degenerate in the sense of Lax:

∇λi(u)ri(u) ≡ 0. (1.8)

We are interested in the generalized Riemann problem for system (1.1), which is a Cauchy problem with a piecewise C1

initial data of the form:

t = 0 : u =
{

u−
0 (x), x � 0,

u+
0 (x), x � 0,

(1.9)

where u−
0 (x) and u+

0 (x) are C1 vector functions defined for x � 0 and x � 0 respectively with

u−
0 (0) �= u+

0 (0). (1.10)

Problem (1.1) and (1.9) may be regarded as a perturbation of the corresponding Riemann problem (1.1) and

t = 0 : u =
{

û−, x � 0,

û+, x � 0,
(1.11)

in which

û± = u±
0 (0). (1.12)

Let

θ = |̂u− − û+|. (1.13)

When θ > 0 is suitably small, by Lax [24], the Riemann problem (1.1) and (1.10) admits a unique self-similar solution
composed of n + 1 constant states û(0) = û−, û(1), . . . , û(n−1), û(n) = û+ separated by shocks, centered rarefaction waves
(corresponding characteristics are genuinely nonlinear) or contact discontinuities (corresponding characteristics are linearly
degenerate). As in [21], this kind of solution is simply called Lax’s Riemann solution of the system (1.1).

For the self-similar solution of the Riemann problem of general quasilinear hyperbolic systems of conservation laws, the
local nonlinear structure stability has been proved by Li and Yu [27] for one-dimensional case, and by Majda [38] for multi-
dimensional case. If system (1.1) is strictly hyperbolic and linearly degenerate, Li and Kong [26] proved the global structure
stability of the self-similar solution with small amplitude under perturbation (1.9) satisfying (1.12). In this case the self-
similar solution contains only n contact discontinuities. If system (1.1) is strictly hyperbolic and genuinely nonlinear, Li and
Zhao [28] proved the global structure stability of the self-similar solution containing only n shocks under perturbation (1.9)
satisfying (1.12). Precisely speaking, under certain reasonable hypotheses they obtained the following well-known result.

Theorem 1.1. Suppose that system (1.1) is strictly hyperbolic and genuinely nonlinear. Suppose furthermore that u−
0 (x) and u+

0 (x) are
all C1 vector functions on x � 0 and on x � 0 respectively, f (u) is a C2 vector function and

θ
�= |̂u+ − û−| = ∣∣u+

0 (0) − u−
0 (0)

∣∣> 0

is suitably small. Suppose finally that the self-similar solution u = U ( x
t ) of the Riemann problem (1.1) and (1.11) is composed of n + 1

constant states û(0) = û−, û(1), . . . , û(n−1), û(n) = û+ and n non-degenerate typical shocks x = F̂ it (i = 1, . . . ,n):
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u = U

(
x

t

)
=
⎧⎨⎩

û(0), x � F̂ 1t,

û(i), F̂ it � x � F̂ i+1t (i = 1, . . . ,n − 1),

û(n), x � F̂ nt.

Then there exists a positive constant ε so small that if∣∣u−
0 (x) − u−

0 (0)
∣∣, ∣∣u−′

0 (x)
∣∣� ε

1 + |x| , ∀x � 0,∣∣u+
0 (x) − u+

0 (0)
∣∣, ∣∣u+′

0 (x)
∣∣� ε

1 + |x| , ∀x � 0,

then problem (1.1) and (1.9) admits a unique global classical discontinuous solution u = u(t, x) only containing n shocks x =
xi(t)(xi(0) = 0) (i = 1, . . . ,n), such that u(t, x) belongs to C1 on each domain Di (i = 0,1, . . . ,n) and xi(t) (i = 1, . . . ,n) to C2

on t � 0 with∣∣u(t, x) − u(0,0)
∣∣� Kε

1 + t
, ∀(t, x) ∈ Di (i = 0,1, . . . ,n),∣∣∣∣∂u

∂x
(t, x)

∣∣∣∣, ∣∣∣∣∂u

∂t
(t, x)

∣∣∣∣� Kε

1 + t
, ∀(t, x) ∈ Di (i = 0,1, . . . ,n),

∣∣x′
i(t) − x′

i(0)
∣∣� Kε

1 + t
, ∀t � 0 (i = 1, . . . ,n),

where

D0 = {(t, x)
∣∣ t � 0, x � x1(t)

}
,

Di = {(t, x)
∣∣ t � 0, xi(t) � x � xi+1(t)

}
(i = 1, . . . ,n − 1),

Dn = {(t, x)
∣∣ t � 0, x � xn(t)

}
and K is a positive constant independent of t. Moreover, u(0,0) = û(i) on the domain Di (i = 0,1, . . . ,n) and x′

i(0) = F̂ i

(i = 1, . . . ,n). Therefore, as a global perturbation, u(t, x) possesses a similar structure to that of the self-similar solution to Riemann
problem (1.1) and (1.11) on t � 0.

Remark 1.1. Recently, under certain reasonable hypotheses Kong [21,22] proved that Lax’s Riemann solution of general
n × n quasilinear hyperbolic system of conservation laws is globally structurally stable if and only if it contains only non-
degenerate shocks and contact discontinuities, but no rarefaction waves and other weak discontinuities. Shao [42,43] also
studied that the global structure stability and instability of this kind of Lax’s Riemann solution with small amplitude in a
half space.

However, it is well known that the BV space is a suitable framework for one-dimensional Cauchy problem for the
hyperbolic systems of conservation laws (see Bressan [2], Glimm [16]), the result in Bressan [3] suggests that one may
achieve global smoothness even if the C1 norm of the initial data is large. So the following question arises naturally: can we
obtain the global existence and uniqueness of piecewise C1 solution containing only shocks and contact discontinuities to a
class of the generalized Riemann problem, which can be regarded as a small BV perturbation of the corresponding Riemann
problem, for system (1.1) with the following piecewise C1 initial data:

t = 0 : u =
{

û− + u−(x), x � 0,

û+ + u+(x), x � 0,
(1.14)

where u±(x) ∈ C1 with bounded and possibly large C1 norm, but of small bounded variation, such that∥∥u−(x)
∥∥

C1 ,
∥∥u+(x)

∥∥
C1 � M, (1.15)

for some M > 0 bounded but possibly large, and also such that

+∞∫
0

∣∣u′+(x)
∣∣dx,

0∫
−∞

∣∣u′−(x)
∣∣dx � ε, (1.16)

for some ε > 0 sufficiently small? Here, it is important to mention that the global existence of weak solutions to a strictly
hyperbolic system of conservation laws in one space dimension when the initial data is a small BV perturbation of a solvable
Riemann problem has been proved by Schochet [41], unfortunately his method is not useful to show that the solutions are
still either contact discontinuities or shocks. An analogous result on stability of a strong shock wave under perturbations
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of small bounded variation is stated by Corli and Sable-Tougeron [12]. In this paper we exploit to some extent the ideas
of Bressan [3], we will develop the method of using continuous Glimm’s functional to provide a new, concise proof of an
estimate on the lifespan of the piecewise C1 solution to the generalized Riemann problem under consideration mentioned
above. The basic idea we will use here is to combine the techniques employed by Li and Kong [26], especially both the
decomposition of waves and the global behavior of waves on the discontinuity curves, with the method of using continuous
Glimm’s functional. However, we must modify Glimm’s functional in order to take care of the presence of shock waves. This
makes our new analysis more complicated than those for the C1 solutions of the Cauchy problem for linearly degenerate
quasilinear hyperbolic systems in Bressan [3], Dai and Kong [14], Zhou [48].

As in [44,49], the aim of this paper is to study the global structure stability of Lax’s Riemann solution containing only
shocks and contact discontinuities (particularly shocks are present). In this case, we shall first get a lower bound of the
lifespan of the piecewise C1 solution to the generalized Riemann problem.

To do so, we consider the generalized Riemann problem for the system (1.1) with the following piecewise C1 initial data:

t = 0 : u =
{

û− + εu−(x), x � 0,

û+ + εu+(x), x � 0,
(1.17)

where ε (0 < ε �| û+ − û− |) is a small parameter, u−(x) and u+(x) are C1 vector functions defined on x � 0 and x � 0
respectively, which satisfy∥∥u−(x)

∥∥
C1 ,
∥∥u+(x)

∥∥
C1 � K1 (1.18)

and

+∞∫
0

∣∣u′+(x)
∣∣dx,

0∫
−∞

∣∣u′−(x)
∣∣dx � K2, (1.19)

where K1 and K2 are positive constants independent of ε.
Introduce

J S
�=
{

j
∣∣∣ j ∈ {1, . . . ,n}, j-wave in u = U

(
x

t

)
is a shock wave

}
, (1.20)

J
�= { j

∣∣ j ∈ {1, . . . ,n}, λ j(u) is genuinely nonlinear
}

(1.21)

and

I
�= {i

∣∣ i ∈ {1, . . . ,n}, λi(u) is linearly degenerate
}
. (1.22)

Then, the assumption that each characteristic field is either genuinely nonlinear or linearly degenerate gives

I ∪ J = {1, . . . ,n}. (1.23)

Our main results can be summarized as follows:

Theorem 1.2. Suppose that system (1.1) is strictly hyperbolic and each characteristic field is either genuinely nonlinear or linearly
degenerate. Suppose furthermore that u−(x) and u+(x) are all C1 vector functions on x � 0 and on x � 0 respectively satisfying (1.18)
and (1.19) as well as

u−(0) = u+(0) = 0, (1.24)

and

θ = |̂u+ − û−| = ∣∣u+
0 (0) − u−

0 (0)
∣∣> 0 (1.25)

is suitably small. Suppose finally that the self-similar solution u = U ( x
t ) of the Riemann problem (1.1) and (1.11) consists of k shock

waves and n − k contact discontinuities for some integer k (1 � k � n). Then for small θ > 0, there exists a constant ε0 > 0 so small
that for any fixed ε ∈ (0, ε0], the lifespan T̃ (ε) of the piecewise C1 solution to the generalized Riemann problem (1.1) and (1.17)
satisfies

T̃ (ε) � K3ε
−1, (1.26)

where K3 is a positive constant independent of ε. Moreover, when u = u(t, x) blows up in a finite time, u = u(t, x) itself is bounded on
the domain [0, T̃ (ε)) × R, while the first-order derivatives of u = u(t, x) tend to be unbounded as t ↗ T̃ (ε).

Remark 1.2. Our result implies that classical discontinuous solutions to the generalized Riemann problem under considera-
tion exists almost globally in time. We refer to Kong [23] for the definition of an almost global solution.
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Remark 1.3. Suppose that (1.1) is a non-strictly hyperbolic system with characteristics with constant multiplicity, say, on the
domain under consideration,

λ1(u) ≡ · · · ≡ λp(u) < λp+1(u) < · · · < λn(u) (1 � p � n). (1.27)

Then the conclusion of Theorem 1.2 still holds (cf. [14]).

Some of the results related to these topics are listed below. Chen et al. [8–11] investigated the asymptotic stability of
Riemann waves for hyperbolic conservation laws. Hsiao and Tang [17] investigated the construction and qualitative behavior
of the solution of the perturbated Riemann problem for the system of one-dimensional isentropic flow with damping. Xin
et al. [46,19] proved the nonlinear stability of contact discontinuities in systems of conservation laws. Smoller et al. [45]
investigated the instability of rarefaction shocks in systems of conservation laws. For the overcompressive shock waves,
Liu [31] proved the nonlinear stability and instability. Bressan and LeFloch [6] investigated the structural stability and
regularity of entropy solutions to hyperbolic systems of conservation laws. Lions et al. [29] proved the existence and stability
of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Recently,
L1 stability for hyperbolic systems of conservation laws was proved by Bressan, Liu and Yang [7], within the class of solutions
with small total variation (see also [2,5,34,35]). Their results were extended in Lewicka [25] to the case where the initial
data is a BV perturbation of a possibly large Riemann data. Liu and Xin [33] proved the nonlinear stability of discrete shocks
for systems of conservation laws. Dafermos [13] studied the entropy and the stability of classical solutions of hyperbolic
systems of conservation laws. For a relaxation system in several space dimensions, Luo and Xin [37] proved the nonlinear
stability of shock fronts. Liu and Xin [32] investigated the nonlinear stability of rarefaction waves for compressible Navier–
Stokes equations. Hsiao and Pan [18] investigated the nonlinear stability of rarefaction waves for a rate-type viscoelastic
system. Moreover, the nonlinear stability of an undercompressive shock for complex Burgers equation was studied by Liu
and Zumbrun [36]. For the viscous conservation laws, the theory of nonlinear stability of shock waves was established (see
[30,47] and the references therein).

The rest of this paper is organized as follows. For the sake of completeness, in Section 2, we briefly recall John’s formula
on the decomposition of waves with some supplements and give a generalized Hörmander Lemma. In Section 3, we first re-
view the definition of shock and contact discontinuity, and then analyze some properties of waves on discontinuous curves,
which will play an important role in our proof. The main results, Theorem 1.2 is proved in Section 4. Some applications
with physical interest will be given in Section 5.

2. John’s formula, generalized Hörmander Lemma

For the sake of completeness, in this section we briefly recall John’s formula on the decomposition of waves with some
supplements, which will play an important role in our proof.

Let

vi = li(u)u (i = 1, . . . ,n) (2.1)

and

wi = li(u)ux (i = 1, . . . ,n), (2.2)

where li(u) = (li1(u), . . . , lin(u)) denotes the ith left eigenvector.
By (1.5), it is easy to see that

u =
n∑

k=1

vkrk(u) (2.3)

and

ux =
n∑

k=1

wkrk(u). (2.4)

Let

d

dit
= ∂

∂t
+ λi(u)

∂

∂x
(2.5)

be the directional derivative along the ith characteristic. We have (cf. [20,21,26])

dvi

dit
=

n∑
βi jk(u)v j wk (i = 1, . . . ,n), (2.6)
j,k=1
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where

βi jk(u) = (λk(u) − λi(u)
)
li(u)∇r j(u)rk(u). (2.7)

Hence, we have

βi ji(u) ≡ 0, ∀i, j. (2.8)

On the other hand, we have (cf. [20,21,26])

dwi

dit
=

n∑
j,k=1

γi jk(u)w j wk (i = 1, . . . ,n), (2.9)

where

γi jk(u) = 1

2

{(
λ j(u) − λk(u)

)
li(u)∇rk(u)r j(u) − ∇λi(u)r j(u)δik + ( j|k)

}
, (2.10)

in which ( j|k) denotes all the terms obtained by changing j and k in the previous terms. We have

γi j j(u) ≡ 0, ∀ j �= i (i, j = 1, . . . ,n) (2.11)

and

γiii(u) ≡ −∇λi(u)ri(u) (i = 1, . . . ,n). (2.12)

Noting (2.4), by (2.9) we have (cf. [14])

∂ wi

∂t
+ ∂(λi(u)wi)

∂x
=

n∑
j,k=1

Γi jk(u)w j wk
def= Gi(t, x), (2.13)

equivalently,

d
[

wi
(
dx − λi(u)dt

)]= n∑
j,k=1

Γi jk(u)w j wk dt ∧ dx = Gi(t, x)dt ∧ dx, (2.14)

where

Γi jk(u) = 1

2

(
λ j(u) − λk(u)

)
li(u)

[∇rk(u)r j(u) − ∇r j(u)rk(u)
]
. (2.15)

Hence, we have

Γi j j(u) ≡ 0, ∀i, j. (2.16)

Lemma 2.1 (Generalized Hörmander Lemma). Suppose that u = u(t, x) is a piecewise C1 solution to system (1.1), τ1 and τ2 are two
C1 arcs which are never tangent to the ith characteristic direction, and D is the domain bounded by τ1 , τ2 and two ith characteristic
curves L−

i and L+
i . Suppose furthermore that the domain D contains m C1 curves of discontinuity of u, denoted by Ĉ j : x = x j(t)

( j = 1, . . . ,m), which are never tangent to the ith characteristic direction. Then we have∫
τ1

∣∣wi
(
dx − λi(u)dt

)∣∣� ∫
τ2

∣∣wi
(
dx − λi(u)dt

)∣∣+ m∑
j=1

∫
Ĉ j

∣∣[wi]dx − [wiλi(u)
]

dt
∣∣

+
∫ ∫

D

∣∣∣∣∣
n∑

j,k=1

Γi jk(u)w j wk

∣∣∣∣∣dt dx, (2.17)

where Γi jk(u) is given by (2.15) and [wi] = w+
i − w−

i denotes the jump of wi over the curve of discontinuity Ĉ j ( j = 1, . . . ,m), etc.

The proof can be found in Li and Kong [26].
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3. Shock wave and contact discontinuity

In this section, we first review the definitions of shock and contact discontinuity, and then analyze some properties of
waves on the discontinuous curves, which will play an important role in our proof.

Definition 3.1. A piecewise C1 vector function u = u(t, x) is called a piecewise C1 solution containing a kth shock x = xk(t)
(xk(0) = 0) for system (1.1), if u = u(t, x) satisfies system (1.1) away from x = xk(t) in the classical sense and satisfies on
x = xk(t) the following Rankine–Hugoniot condition:

f
(
u+)− f

(
u−)= s

(
u+ − u−) (3.1)

and the Lax entropy condition:

λk
(
u+)< s < λk

(
u−), λk+1

(
u+)> s > λk−1

(
u−), (3.2)

where u± = u±(t, xk(t))
�= u(t, xk(t) ± 0) and s = dxk(t)

dt (when k = 1 (resp. k = n), the term λk−1(u−) (resp. λk+1(u+))
disappears in (3.2)).

Definition 3.2. A piecewise C1 vector function u = u(t, x) is called a piecewise C1 solution containing a kth contact discon-
tinuity x = xk(t) (xk(0) = 0) for system (1.1), if u = u(t, x) satisfies system (1.1) away from x = xk(t) in the classical sense
and satisfies on x = xk(t) the Rankine–Hugoniot condition (3.1) and

s = λk
(
u+)= λk

(
u−), (3.3)

where u± = u±(t, xk(t))
�= u(t, xk(t) ± 0) and s = dxk(t)

dt .

Definitions 3.1 and 3.2 can be found in [24] or [27].
The following lemmas give some properties of waves on the shock and contact discontinuity.

Lemma 3.1. On the kth shock or contact discontinuity x = xk(t), it holds that

v+
i = v−

i + O
(∣∣v±∣∣2) (i = 1, . . . ,k − 1,k + 1, . . . ,n), (3.4)

provided that |u±| is sufficiently small, where vi is defined by (2.1) and v±
i

�= vi(t, xk(t) ± 0), etc.

Lemma 3.2. On the kth contact discontinuity x = xk(t), it holds that

w−
i = w+

i + O

(∣∣u+ − u−∣∣ ·∑
j �=k

∣∣w±
j

∣∣) (i = 1, . . . ,k − 1,k + 1, . . . ,n), (3.5)

provided that |u±| is sufficiently small, where wi are defined by (2.1) and w±
i

�= wi(t, xk(t) ± 0), etc.

Lemma 3.3. On the kth shock x = xk(t), it holds that

w−
i = w+

i + O

(∣∣u+ − u−∣∣ ·∑
j �=k

∣∣w±
j

∣∣)+ O
(∣∣u+ − u−∣∣ · ∣∣(λk

(
u−, u+)− λk

(
u+))w+

k

∣∣)
+ O

(∣∣u+ − u−∣∣ · ∣∣(λk
(
u−, u+)− λk

(
u−))w−

k

∣∣) (i = 1, . . . ,k − 1,k + 1, . . . ,n), (3.6)

provided that |u±| is sufficiently small, where λk(u−, u+) is the kth eigenvalue of the matrix

A
(
u−, u+) �=

1∫
0

∇ f
(
u− + ς

(
u+ − u−))dς. (3.7)

Remark 3.1. By (1.2), if |u+ − u−| is sufficiently small, then the matrix A(u−, u+) has n distinct real eigenvalues:

λ1
(
u−, u+)< λ2

(
u−, u+)< · · · < λn

(
u−, u+). (3.8)

The proofs of Lemmas 3.1–3.3 can be found in Kong [21,22].
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Corollary 3.1. On the kth contact discontinuity x = xk(t), it holds that

(
wiλi(u)

)+ = (wiλi(u)
)− + O

(∣∣u+ − u−∣∣ ·∑
j �=k

∣∣w±
j

∣∣) (i = 1, . . . ,k − 1,k + 1, . . . ,n), (3.9)

provided that |u±| is sufficiently small.

Proof. Noting(
wiλi(u)

)+ − (wiλi(u)
)− = [w+

i − w−
i

](
λi(u)

)+ + w−
i

[(
λi(u)

)+ − (λi(u)
)−]

, (3.10)

from (3.5), we immediately get (3.9). �
4. Proof of Theorem 1.2

For the sake of simplicity and without loss of generality, we may suppose that

0 < λ1(0) < λ2(0) < · · · < λn(0) (4.1)

and

|̂u±| � θ. (4.2)

By the existence and uniqueness of local classical discontinuous solutions of quasilinear hyperbolic systems of con-
servation laws (see [27]), when θ > 0 is suitably small, the generalized Riemann problem (1.1) and (1.17) admits a unique
piecewise C1 solution u = u(t, x) containing only shocks and (or) contact discontinuities (denoted by x = xi(t) (i = 1, . . . ,n))

on the strip [0,h]× R, where h > 0 is a small number; moreover, this solution has a local structure similar to the one of the
self-similar solution to the corresponding Riemann problem. In order to prove Theorem 1.2, we first establish some uniform
a priori estimates on u and ux on the domain of existence of the piecewise C1 solution u = u(t, x).

By (4.1), there exist sufficiently small positive constants δ and δ0 such that

λi+1(u) − λi(v) � δ0, ∀|u|, |v| � δ (i = 1, . . . ,n − 1). (4.3)

For the time being it is supposed that on the domain of existence of the piecewise C1 solution u = u(t, x) to the
generalized Riemann problem (1.1) and (1.17), we have∣∣u(t, x)

∣∣� δ. (4.4)

At the end of the proof of Lemma 4.5, we will explain that this hypothesis is reasonable.
For any fixed T > 0, let

U∞(T ) = sup
0�t�T

sup
x∈R

∣∣u(t, x)
∣∣, (4.5)

V∞(T ) = sup
0�t�T

sup
x∈R

∣∣v(t, x)
∣∣, (4.6)

W∞(T ) = sup
0�t�T

sup
x∈R

∣∣w(t, x)
∣∣, (4.7)

W̃1(T ) = max
i=1,...,n

max
j �=i

sup
C̃ j

∫
C̃ j

∣∣wi(t, x)
∣∣dt, (4.8)

W1(T ) = max
j∈ J S

T∫
0

∣∣(x′
j(t) − λ j

(
u
(
t, x j(t) ± 0

)))
w j
(
t, x j(t) ± 0

)∣∣dt, (4.9)

where | · | stands for the Euclidean norm in Rn , v = (v1, . . . , vn)T and w = (w1, . . . , wn)T in which vi and wi are defined
by (2.1) and (2.2) respectively, while C̃ j stands for any given jth characteristic on the domain [0, T ] × R. In (4.4)–(4.7), on
any contact discontinuity or shock x = xk(t) the values of u(t, x), v(t, x) and w(t, x) are taken to be u±(t, x) = u(t, xk(t)± 0),
v±(t, x) = v(t, xk(t) ± 0) and w±(t, x) = w(t, xk(t) ± 0). Clearly, V∞(T ) is equivalent to U∞(T ).
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First we recall some basic L1 estimates. They are essentially due to Schatzman [39,40] and Zhou [48].

Lemma 4.1. Let φ = φ(t, x) ∈ C1 satisfies

φt + (λ(t, x)φ
)

x = F (t, x), 0 � t � T , x ∈ R, φ(0, x) = g(x),

where λ ∈ C1 . Then

+∞∫
−∞

∣∣φ(t, x)
∣∣dx �

+∞∫
−∞

∣∣g(x)
∣∣dx +

T∫
0

+∞∫
−∞

∣∣F (t, x)
∣∣dx dt, ∀t � T , (4.10)

provided that the right-hand side of the inequality is bounded.

Lemma 4.2. Let φ = φ(t, x) and ψ = ψ(t, x) be C1 functions satisfying

φt + (λ(t, x)φ
)

x = F1(t, x), 0 � t � T , x ∈ R, φ(0, x) = g1(x),

and

ψt + (μ(t, x)ψ
)

x = F2(t, x), 0 � t � T , x ∈ R, ψ(0, x) = g2(x),

respectively, where λ,μ ∈ C1 such that there exists a positive constants δ0 independent of T verifying

μ(t, x) − λ(t, x) � δ0, 0 � t � T , x ∈ R.

Then

T∫
0

+∞∫
−∞

∣∣φ(t, x)
∣∣∣∣ψ(t, x)

∣∣dx dt � C

( +∞∫
−∞

∣∣g1(x)
∣∣dx +

T∫
0

+∞∫
−∞

∣∣F1(t, x)
∣∣dx dt

)

×
( +∞∫

−∞

∣∣g2(x)
∣∣dx +

T∫
0

+∞∫
−∞

∣∣F2(t, x)
∣∣dx dt

)
, (4.11)

provided that the two factors on the right-hand side of the inequality is bounded.

In the present situation, similar to the above basic L1 estimates (4.10)–(4.11), we have

Lemma 4.3. Under the assumptions of Theorem 1.2, on any given domain of existence [0, T ]×R of the piecewise C1 solution u = u(t, x)
to the generalized Riemann problem (1.1) and (1.17), there exists a positive constant k1 independent of θ , ε and T such that

+∞∫
−∞

∣∣wi(t, x)
∣∣dx � k1

{
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

∣∣Gi(t, x)
∣∣dx dt

}
, ∀t � T , (4.12)

provided that the right-hand side of the inequality is bounded.

Proof. To estimate
∫ +∞
−∞ |wi(t, x)|dx, we need only to estimate

a∫
−a

∣∣wi(t, x)
∣∣dx (4.13)

for any given a > 0 and then let a → +∞.
For i = 1, . . . ,n, for any given t with 0 � t � T , passing through point A(t,a) (a > xn(t)) (resp. B(t,−a)), we draw the

ith backward characteristic which intersects the x-axis at a point D(0, xD) (resp. C(0, xC )), see Fig. 1.
Then, applying (2.17) on the domain ABC D , we have

A∫
B

∣∣wi(t, x)
∣∣dx �

xD∫
xC

∣∣wi(0, x)
∣∣dx +

n∑
k=1

∫
̂
∣∣([wi]x′

k(t) − [wiλi(u)
])

dt
∣∣+ ∫ ∫

ABC D

|Gi|dx dt, (4.14)
Ck
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Fig. 1. The domain ABCD in (t, x)-plane.

where Ĉk : x = xk(t) stands for the kth discontinuous curve (shock or contact discontinuity) passing through the origin,
which is contained in the region ABC D . Thus, we get

a∫
−a

∣∣wi(t, x)
∣∣dx �

+∞∫
−∞

∣∣wi(0, x)
∣∣dx +

T∫
0

∣∣(x′
i(t) − λi

(
u
(
t, xi(t) ± 0

)))
wi
(
t, xi(t) ± 0

)∣∣dt

+
n∑

k=1,k �=i

∫
Ĉk

∣∣([wi]x′
k(t) − [wiλi(u)

])
dt
∣∣+ T∫

0

+∞∫
−∞

|Gi|dx dt. (4.15)

Using (3.3), (3.5), (3.6), (3.9) and (4.4), and noting (4.9), it is easy to see that

a∫
−a

∣∣wi(t, x)
∣∣dx �

+∞∫
−∞

∣∣wi(0, x)
∣∣dx + W1(T ) + c1 V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

|Gi |dx dt, (4.16)

where here and henceforth, ci (i = 1,2, . . .) will denote positive constants independent of θ , ε and T .
Noting (1.19), we have

a∫
−a

∣∣wi(t, x)
∣∣dx � c2

{
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

|Gi|dx dt

}
. (4.17)

Letting a → +∞, we immediately get the assertion in (4.12). The proof of Lemma 4.3 is finished. �
Lemma 4.4. Under the assumptions of Theorem 1.2, on any given domain of existence [0, T ]×R of the piecewise C1 solution u = u(t, x)
to the generalized Riemann problem (1.1) and (1.17), there exists a positive constant k2 independent of θ , ε and T such that

T∫
0

+∞∫
−∞

∣∣wi(t, x)
∣∣∣∣w j(t, x)

∣∣dx dt � k2

(
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

∣∣Gi(t, x)
∣∣dx dt

)

×
(
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

∣∣G j(t, x)
∣∣dx dt

)
,

∀i �= j (i, j = 1, . . . ,n), (4.18)

provided that the right-hand side of the inequality is bounded.

Proof. To estimate

T∫ +∞∫ ∣∣wi(t, x)
∣∣∣∣w j(t, x)

∣∣dx dt, (4.19)
0 −∞
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it is enough to estimate

T∫
0

L∫
−L

∣∣wi(t, x)
∣∣∣∣w j(t, x)

∣∣dx dt (4.20)

for any given L > 0 and then let L → +∞.
For i, j ∈ {1, . . . ,n} and i �= j, without loss of generality, we suppose that i < j. Let x = xi(t, L) (0 � t � T ) be the ith

forward characteristic passing through point (0, L) (L > xn(T )). Then, we draw the ith backward characteristic x = si(t)
(0 � t � T ) passing through point (T ,a) (a > xi(T , L)). In the meantime, passing through the point (T ,−L), we draw the
jth backward characteristic x = s j(t) (0 � t � T ) which intersects the x-axis at a point.

We introduce the “continuous Glimm’s functional” (cf. [3,4,48])

Q (t) =
∫ ∫

s j(t)<x<y<si(t)

∣∣w j(t, x)
∣∣∣∣wi(t, y)

∣∣dx dy. (4.21)

Because of the piecewise C1 solution u = u(t, x) containing only n shocks or contact discontinuities x = xk(t) (xk(0) = 0)

(k = 1, . . . ,n), we divide the bounded domain Ω̃
�= {(x, y) | s j(t) < x < y < si(t)} by the straight lines y = xk(t) (k = 1, . . . ,n)

into some parts. Then, the straightforward calculations on all parts of the domain Ω̃ reveal that

dQ (t)

dt
= s′

i(t)
∣∣wi
(
t, si(t)

)∣∣ si(t)∫
s j(t)

∣∣w j(t, x)
∣∣dx − s′

j(t)
∣∣w j
(
t, s j(t)

)∣∣ si(t)∫
s j(t)

∣∣wi(t, x)
∣∣dx

+
n∑

k=1

x′
k(t)
{∣∣wi

(
t, xk(t) − 0

)∣∣− ∣∣wi
(
t, xk(t) + 0

)∣∣} xk(t)∫
s j(t)

∣∣w j(t, x)
∣∣dx

+
∫ ∫

s j(t)<x<y<si(t)

∂

∂t

(∣∣w j(t, x)
∣∣)∣∣wi(t, y)

∣∣dx dy

+
∫ ∫

s j(t)<x<y<si(t)

∣∣w j(t, x)
∣∣ ∂

∂t

(∣∣wi(t, y)
∣∣)dx dy

= s′
i(t)
∣∣wi
(
t, si(t)

)∣∣ si(t)∫
s j(t)

∣∣w j(t, x)
∣∣dx − s′

j(t)
∣∣w j
(
t, s j(t)

)∣∣ si(t)∫
s j(t)

∣∣wi(t, x)
∣∣dx

+
n∑

k=1

x′
k(t)
{∣∣wi

(
t, xk(t) − 0

)∣∣− ∣∣wi
(
t, xk(t) + 0

)∣∣} xk(t)∫
s j(t)

∣∣w j(t, x)
∣∣dx

−
∫ ∫

s j(t)<x<y<si(t)

∂

∂x

(
λ j(u)

∣∣w j(t, x)
∣∣)∣∣wi(t, y)

∣∣dx dy

−
∫ ∫

s j(t)<x<y<si(t)

∣∣w j(t, x)
∣∣ ∂

∂ y

(
λi(u)

∣∣wi(t, y)
∣∣)dx dy

+
∫ ∫

s j(t)<x<y<si(t)

sgn(w j)G j(t, x)
∣∣wi(t, y)

∣∣dx dy

+
∫ ∫

s (t)<x<y<s (t)

∣∣w j(t, x)
∣∣ sgn(wi)Gi(t, y)dx dy
j i
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= −
si(t)∫

s j(t)

(
λ j
(
u(t, x)

)− λi
(
u(t, x)

))∣∣wi(t, x)
∣∣∣∣w j(t, x)

∣∣dx

+ (s′
i(t) − λi

(
u
(
t, si(t)

)))∣∣wi
(
t, si(t)

)∣∣ si(t)∫
s j(t)

∣∣w j(t, x)
∣∣dx

+ (λ j
(
u
(
t, s j(t)

))− s′
j(t)
)∣∣w j

(
t, s j(t)

)∣∣ si(t)∫
s j(t)

∣∣wi(t, x)
∣∣dx

+ (x′
i(t) − λi

(
u
(
t, xi(t) − 0

)))∣∣wi
(
t, xi(t) − 0

)∣∣ xi(t)∫
s j(t)

∣∣w j(t, x)
∣∣dx

+ (λi
(
u
(
t, xi(t) + 0

))− x′
i(t)
)∣∣wi

(
t, xi(t) + 0

)∣∣ xi(t)∫
s j(t)

∣∣w j(t, x)
∣∣dx

+
n∑

k=1,k �=i

x′
k(t)
{∣∣wi

(
t, xk(t) − 0

)∣∣− ∣∣wi
(
t, xk(t) + 0

)∣∣} xk(t)∫
s j(t)

∣∣w j(t, x)
∣∣dx

+
n∑

k=1,k �=i

{
λi
(
u
(
t, xk(t) + 0

))∣∣wi
(
t, xk(t) + 0

)∣∣− λi
(
u
(
t, xk(t) − 0

))∣∣wi
(
t, xk(t) − 0

)∣∣} xk(t)∫
s j(t)

∣∣w j(t, x)
∣∣dx

+
∫ ∫

s j(t)<x<y<si(t)

sgn(w j)G j(t, x)
∣∣wi(t, y)

∣∣dx dy

+
∫ ∫

s j(t)<x<y<si(t)

∣∣w j(t, x)
∣∣ sgn(wi)Gi(t, y)dx dy. (4.22)

Noting (3.2)–(3.3) and (4.1) and using (4.3), we get from (4.22) that

dQ (t)

dt
� −δ0

si(t)∫
s j(t)

∣∣wi(t, x)
∣∣∣∣w j(t, x)

∣∣dx + ∣∣(x′
i(t) − λi

(
u
(
t, xi(t) ± 0

)))
wi
(
t, xi(t) ± 0

)∣∣ xi(t)∫
s j(t)

∣∣w j(t, x)
∣∣dx

+
∑
k �=i

x′
k(t)
{∣∣wi

(
t, xk(t) − 0

)− wi
(
t, xk(t) + 0

)∣∣} xk(t)∫
s j(t)

∣∣w j(t, x)
∣∣dx

+
∑
k �=i

{∣∣λi
(
u
(
t, xk(t) + 0

))
wi
(
t, xk(t) + 0

)− λi
(
u
(
t, xk(t) − 0

))
wi
(
t, xk(t) − 0

)∣∣} xk(t)∫
s j(t)

∣∣w j(t, x)
∣∣dx

+
si(t)∫

s j(t)

∣∣G j(t, x)
∣∣dx

si(t)∫
s j(t)

∣∣wi(t, x)
∣∣dx +

si(t)∫
s j(t)

∣∣Gi(t, x)
∣∣dx

si(t)∫
s j(t)

∣∣w j(t, x)
∣∣dx

� −δ0

si(t)∫
s j(t)

∣∣wi(t, x)
∣∣∣∣w j(t, x)

∣∣dx + ∣∣(x′
i(t) − λi

(
u
(
t, xi(t) ± 0

)))
wi
(
t, xi(t) ± 0

)∣∣ +∞∫
−∞

∣∣w j(t, x)
∣∣dx

+
∑
k �=i

x′
k(t)
{∣∣wi

(
t, xk(t) − 0

)− wi
(
t, xk(t) + 0

)∣∣} +∞∫ ∣∣w j(t, x)
∣∣dx
−∞
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+
∑
k �=i

{∣∣λi
(
u
(
t, xk(t) + 0

))
wi
(
t, xk(t) + 0

)− λi
(
u
(
t, xk(t) − 0

))
wi
(
t, xk(t) − 0

)∣∣} +∞∫
−∞

∣∣w j(t, x)
∣∣dx

+
+∞∫

−∞

∣∣G j(t, x)
∣∣dx

+∞∫
−∞

∣∣wi(t, x)
∣∣dx +

+∞∫
−∞

∣∣Gi(t, x)
∣∣dx

+∞∫
−∞

∣∣w j(t, x)
∣∣dx. (4.23)

It then follows from Lemma 4.3 that

dQ (t)

dt
+ δ0

si(t)∫
s j(t)

∣∣wi(t, x)
∣∣∣∣w j(t, x)

∣∣dx

� k1

+∞∫
−∞

∣∣G j(t, x)
∣∣dx

(
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

∣∣Gi(t, x)
∣∣dx dt

)

+ k1

(∣∣(x′
i(t) − λi

(
u
(
t, xi(t) ± 0

)))
wi
(
t, xi(t) ± 0

)∣∣+∑
k �=i

x′
k(t)
{∣∣wi

(
t, xk(t) − 0

)− wi
(
t, xk(t) + 0

)∣∣}

+
∑
k �=i

{∣∣λi
(
u
(
t, xk(t) + 0

))
wi
(
t, xk(t) + 0

)− λi
(
u
(
t, xk(t) − 0

))
wi
(
t, xk(t) − 0

)∣∣}+
+∞∫

−∞

∣∣Gi(t, x)
∣∣dx

)

×
(
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

∣∣G j(t, x)
∣∣dx dt

)
. (4.24)

Therefore

δ0

T∫
0

si(t)∫
s j(t)

∣∣wi(t, x)
∣∣∣∣w j(t, x)

∣∣dx dt

� Q (0) + k1

T∫
0

+∞∫
−∞

∣∣G j(t, x)
∣∣dx dt

(
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

∣∣Gi(t, x)
∣∣dx dt

)

+ k1

( T∫
0

∣∣(x′
i(t) − λi

(
u
(
t, xi(t) ± 0

)))
wi
(
t, xi(t) ± 0

)∣∣dt +
∑
k �=i

∫
Ĉk

∣∣[wi]
∣∣λk
(
u±)dt

+
∑
k �=i

∫
Ĉk

∣∣[wiλi(u)
]∣∣dt +

T∫
0

+∞∫
−∞

∣∣Gi(t, x)
∣∣dx dt

)

×
(
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

∣∣G j(t, x)
∣∣dx dt

)
. (4.25)

Using (3.5), (3.6), (3.9) and noting (4.4), we obtain

δ0

T∫
0

si(t)∫
s j(t)

∣∣wi(t, x)
∣∣∣∣w j(t, x)

∣∣dx dt � Q (0) + c3

(
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

∣∣Gi(t, x)
∣∣dx dt

)

×
(
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫ +∞∫ ∣∣G j(t, x)
∣∣dx dt

)
. (4.26)
0 −∞
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Noting

Q (0) �
+∞∫

−∞

∣∣wi(0, x)
∣∣dx

+∞∫
−∞

∣∣w j(0, x)
∣∣dx, (4.27)

we get

δ0

T∫
0

si(t)∫
s j(t)

∣∣wi(t, x)
∣∣∣∣w j(t, x)

∣∣dx dt

� c4

(
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

∣∣Gi(t, x)
∣∣dx dt

)

×
(
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

∣∣G j(t, x)
∣∣dx dt

)
. (4.28)

It then follows

T∫
0

si(t)∫
s j(t)

∣∣wi(t, x)
∣∣∣∣w j(t, x)

∣∣dx dt

� c4

δ0

(
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

∣∣Gi(t, x)
∣∣dx dt

)

×
(
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

∣∣G j(t, x)
∣∣dx dt

)
. (4.29)

Therefore
T∫

0

L∫
−L

∣∣wi(t, x)
∣∣∣∣w j(t, x)

∣∣dx dt

� c4

δ0

(
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

∣∣Gi(t, x)
∣∣dx dt

)

×
(
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

∣∣G j(t, x)
∣∣dx dt

)
(4.30)

and the desired conclusion follows by taking L → +∞. The proof of Lemma 4.4 is finished. �
Lemma 4.5. Under the assumptions of Theorem 1.2, for small θ > 0 there exists a constant ε > 0 so small that on any given domain of
existence [0, T ] × R of the piecewise C1 solution u = u(t, x) to the generalized Riemann problem (1.1) and (1.17), there exist positive
constants ki (i = 3, . . . ,7) independent of θ , ε and T , such that the following uniform a priori estimates hold:

W1(T ) � k3ε, (4.31)

W̃1(T ) � k4ε, (4.32)

U∞(T ), V∞(T ) � k5θ (4.33)

and

W∞(T ) � k6ε, (4.34)

where T satisfies

Tε � k7. (4.35)
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Proof. We introduce

Q W (T ) =
n∑

j=1

∑
i �= j

T∫
0

+∞∫
−∞

∣∣wi(t, x)
∣∣∣∣w j(t, x)

∣∣dx dt. (4.36)

By (2.13), it follows from Lemma 4.4 that

Q W (T ) � c5

(
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

∣∣G(t, x)
∣∣dx dt

)2

, (4.37)

where G = (G1, G2, . . . , Gn).
Noting (2.16), we have

T∫
0

+∞∫
−∞

∣∣G(t, x)
∣∣dx dt � c6 Q W (T ). (4.38)

Substituting (4.38) into (4.37), we obtain

Q W (T ) � c7
(
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ Q W (T )
)2

. (4.39)

We next estimate W̃1(T ).
Let

C̃ j : x = x j(t) (0 � t1 � t � t2 � T ) (4.40)

be any given jth characteristic on the domain [0, T ] × R. Then, passing through the point P1(t1, x j(t1)) (resp. P2(t2, x j(t2)))
we draw the ith characteristic which intersects the x-axis at a point A1(0, y1) (resp. A2(0, y2)). Without loss of generality,
we assume that the ith contact discontinuity or shock x = xi(t) passing through O (0,0) is partly contained in the domain
P1 A1 A2 P2. Then, applying (2.17) on the domain P1 A1 A2 P2 and noting (2.16), it is easy to see that

t2∫
t1

∣∣wi
(
t, x j(t)

)∣∣∣∣λ j
(
u
(
t, x j(t)

))− λi
(
u
(
t, x j(t)

))∣∣dt

�
y2∫

y1

∣∣wi(0, x)
∣∣dx +

∑
k∈S1

∫
Ĉk

∣∣([wi]x′
k(t) − [wiλi(u)

])
dt
∣∣+ ∫ ∫

P1 A1 A2 P2

∑
j �=k

∣∣Γi jk(u)w j wk
∣∣dt dx

�
y2∫

y1

∣∣wi(0, x)
∣∣dx +

T∫
0

∣∣(x′
i(t) − λi

(
u
(
t, xi(t) ± 0

)))
wi
(
t, xi(t) ± 0

)∣∣dt

+
∑

k �=i,k∈S1

∫
Ĉk

∣∣([wi]x′
k(t) − [wiλi(u)

])
dt
∣∣+ ∫ ∫

P1 A1 A2 P2

∑
j �=k

∣∣Γi jk(u)w j wk
∣∣dt dx, (4.41)

where S1 stands for the set of all indices k such that the kth discontinuous curve Ĉk : x = xk(t) is partly contained in the
domain P1 A1 A2 P2. Using (1.19), (3.3), (3.5), (3.6), (3.9), (4.3) and (4.4), we have

t2∫
t1

∣∣wi
(
t, x j(t)

)∣∣dt � c8
{
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ Q W (T )
}
. (4.42)

Thus, we get

W̃1(T ) � c8
{
ε + W1(T ) + V∞(T )

(
W̃1(T ) + W1(T )

)+ Q W (T )
}
. (4.43)

We next estimate W1(T ).
(i) For i = n, passing through any fixed point A(T ,a) (a > xn(T )), we draw the nth backward characteristic which inter-

sects the x-axis at a point B(0, xB).
We rewrite (2.14) as

d
(∣∣wi(t, x)

∣∣(dx − λi(u)dt
))= sgn(wi)Gi dx dt. (4.44)
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Without loss of generality, we assume that the nth discontinuous curve x = xn(t) passing through the origin is the shock
curve. Let D denotes the point (T , xn(T )). Then, integrating (4.44) (in which we take i = n) on the domain AB O D gives

T∫
0

(
x′

n(t) − λn
(
u
(
t, xn(t) + 0

)))∣∣wn
(
t, xn(t) + 0

)∣∣dt +
A∫

D

∣∣wn(T , x)
∣∣dx

�
xB∫

0

∣∣wn(0, x)
∣∣dx +

∫ ∫
AB O D

|Gn|dx dt. (4.45)

Using (1.19) and (2.16), it is easy to see that

T∫
0

(
x′

n(t) − λn
(
u
(
t, xn(t) + 0

)))∣∣wn
(
t, xn(t) + 0

)∣∣dt

�
+∞∫
0

∣∣wn(0, x)
∣∣dx +

T∫
0

+∞∫
−∞

|Gn|dx dt � c9
{
ε + Q W (T )

}
. (4.46)

Noting (3.2), we have

T∫
0

∣∣(x′
n(t) − λn

(
u
(
t, xn(t) + 0

)))
wn
(
t, xn(t) + 0

)∣∣dt � c9
{
ε + Q W (T )

}
. (4.47)

(ii) For i = 1, . . . ,n − 1, passing through point A(T ,a) (a > xn(T )), we draw the ith backward characteristic which
intersects the x-axis at a point B(0, xB). Let D denotes the point (T , xi(T )). Then, we divide the bounded domain AB O D
by the discontinuous curves (shocks or contact discontinuities) x = xk(t) (xk(0) = 0) (k = i + 1, . . . ,n) into some parts. Thus,
integrating (4.44) on all parts of the domain AB O D gives

T∫
0

(
x′

i(t) − λi
(
u
(
t, xi(t) + 0

)))∣∣wi
(
t, xi(t) + 0

)∣∣dt +
A∫

D

∣∣wi(T , x)
∣∣dx

�
xB∫

0

∣∣wi(0, x)
∣∣dx +

n∑
k=i+1

∫
Ĉk

∣∣[wi]x′
k(t) − [wiλi(u)

]∣∣dt +
∫ ∫

AB O D

|Gi|dx dt. (4.48)

where Ĉk : x = xk(t) stands for the kth discontinuous curve (shock or contact discontinuity) passing through the origin,
which is contained in the domain AB O D . Without loss of generality, we assume that the ith discontinuous curve x = xi(t)
passing through the origin is the shock curve. Then, using (1.19), (2.16), (3.5), (3.6) and (3.9), we obtain

T∫
0

(
x′

i(t) − λi
(
u
(
t, xi(t) + 0

)))∣∣wi
(
t, xi(t) + 0

)∣∣dt

�
+∞∫
0

∣∣wi(0, x)
∣∣dx + c10 V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

|Gi|dx dt

� c11
{
ε + V∞(T )

(
W̃1(T ) + W1(T )

)+ Q W (T )
}
. (4.49)

Noting (3.2), it is easy to see that

T∫
0

∣∣(x′
i(t) − λi

(
u
(
t, xi(t) + 0

)))
wi
(
t, xi(t) + 0

)∣∣dt � c11
{
ε + V∞(T )

(
W̃1(T ) + W1(T )

)+ Q W (T )
}
. (4.50)

(iii) For i = 1, passing through any fixed point A(T ,a) (a < x1(T )), we draw the 1th backward characteristic which
intersects the x-axis at a point B(0, xB). Without loss of generality, we assume that the 1th discontinuous curve x = x1(t)
passing through the origin is the shock curve.
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Let D denotes the point (T , x1(T )). Then, integrating (4.44) (in which we take i = 1) on the domain AB O D gives

D∫
A

∣∣w1(T , x)
∣∣dx +

0∫
T

(
x′

1(t) − λ1
(
u
(
t, x1(t) − 0

)))∣∣w1
(
t, x1(t) − 0

)∣∣dt

�
0∫

xB

∣∣w1(0, x)
∣∣dx +

∫ ∫
AB O D

|G1|dx dt. (4.51)

Using (1.19) and (2.16), it is easy to see that

T∫
0

(
λ1
(
u
(
t, x1(t) − 0

))− x′
1(t)
)∣∣w1

(
t, x1(t) − 0

)∣∣dt

�
0∫

−∞

∣∣w1(0, x)
∣∣dx +

T∫
0

+∞∫
−∞

|G1|dx dt � c12
{
ε + Q W (T )

}
. (4.52)

Noting (3.2), we have

T∫
0

∣∣(x′
1(t) − λ1

(
u
(
t, x1(t) − 0

)))
w1
(
t, x1(t) − 0

)∣∣dt � c12
{
ε + Q W (T )

}
. (4.53)

(iv) For i = 2, . . . ,n, passing through point A(T ,a) (a < xi(T )), we draw the ith backward characteristic which inter-
sects the x-axis at a point B(0, xB). Let D denotes the point (T , xi(T )). Then, we divide the bounded domain AB O D by
the discontinuous curves (shocks or contact discontinuities) x = xk(t) (xk(0) = 0) (k = 1, . . . , i − 1) into some parts. Thus,
integrating (4.44) on all parts of the domain AB O D gives

T∫
0

(
λi
(
u
(
t, xi(t) − 0

))− x′
i(t)
)∣∣wi

(
t, xi(t) − 0

)∣∣dt +
D∫

A

∣∣wi(T , x)
∣∣dx

�
0∫

xB

∣∣wi(0, x)
∣∣dx +

i−1∑
k=1

∫
Ĉk

∣∣[wi]x′
k(t) − [wiλi(u)

]∣∣dt +
∫ ∫

AB O D

|Gi|dx dt. (4.54)

where Ĉk : x = xk(t) stands for the kth discontinuous curve (shock or contact discontinuity) passing through the origin,
which is contained in the domain AB O D . Without loss of generality, we assume that the ith discontinuous curve x = xi(t)
passing through the origin is the shock curve. Then, using (1.19), (2.16), (3.5), (3.6) and (3.9), we obtain

T∫
0

(
λi
(
u
(
t, xi(t) − 0

))− x′
i(t)
)∣∣wi

(
t, xi(t) − 0

)∣∣dt

�
0∫

−∞

∣∣wi(0, x)
∣∣dx + c13 V∞(T )

(
W̃1(T ) + W1(T )

)+ T∫
0

+∞∫
−∞

|Gi|dx dt

� c14
{
ε + V∞(T )

(
W̃1(T ) + W1(T )

)+ Q W (T )
}
. (4.55)

Noting (3.2), it is easy to see that

T∫
0

∣∣(x′
i(t) − λi

(
u
(
t, xi(t) − 0

)))
wi
(
t, xi(t) − 0

)∣∣dt � c14
{
ε + V∞(T )

(
W̃1(T ) + W1(T )

)+ Q W (T )
}
. (4.56)

Combining (4.47), (4.50), (4.53) and (4.56) all together, we have

W1(T ) � c15
{
ε + V∞(T )

(
W̃1(T ) + W1(T )

)+ Q W (T )
}
. (4.57)

We next estimate U∞(T ) and V∞(T ).
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Passing through any fixed point (t, x) ∈ [0, T ]× R, we draw the ith backward characteristic Ci which intersects the x-axis
at a point (0, y). Integrating (2.6) along this characteristic Ci and noting (2.8) yields

vi(t, x) = vi(0, y) +
∑
k∈S2

[vi]k +
∫
Ci

n∑
j,k=1,k �=i

βi jk(u)v j wk dt, (4.58)

where S2 denotes the set of all indices k such that this characteristic Ci intersects the kth discontinuous curve (shock or
contact discontinuity) x = xk(t) at a point (tk, xk(tk)), and [vi]k = vi(tk, xk(tk)+ 0)− vi(tk, xk(tk)− 0). Noting (1.19) and using
(1.24), we have

∣∣u+(x)
∣∣� +∞∫

0

∣∣u′+(x)
∣∣dx � K2, ∀x ∈ R+ (4.59)

and

∣∣u−(x)
∣∣� 0∫

−∞

∣∣u′−(x)
∣∣dx � K2, ∀x ∈ R−. (4.60)

Therefore, noting the fact that i /∈ S2, and using (1.17), (2.1), (3.4), (4.2) and (4.4), we get from (4.58)–(4.60) that

V∞(T ) � c16
{
θ + ε + V∞(T )

(
V∞(T ) + W̃1(T )

)}
. (4.61)

We now prove (4.31)–(4.33) and

Q W (T ) � k8ε
2, (4.62)

where k8 is a positive constant independent of θ, ε and T .
Recalling (4.2), (4.59) and (4.60), evidently we have

U∞(0), V∞(0) � c17θ (4.63)

and

Q W (0) = W1(0) = W̃1(0) = 0, (4.64)

provided that ε � θ . Thus, by continuity there exist positive constants k3,k4, k5 and k8 independent of θ, ε and T such that
(4.31)–(4.33) and (4.62) hold at least for 0 � T � τ0, where τ0 is a small positive number. Hence, in order to prove (4.31)–
(4.33) and (4.62) it suffices to show that we can choose k3,k4, k5 and k8 in such a way that for any fixed T0 (0 < T0 � T )

such that

W1(T0) � 2k3ε, (4.65)

W̃1(T0) � 2k4ε, (4.66)

V∞(T0) � 2k5θ, (4.67)

Q W (T0) � 2k8ε
2, (4.68)

we have

W1(T0) � k3ε, (4.69)

W̃1(T0) � k4ε, (4.70)

V∞(T0) � k5θ, (4.71)

Q W (T0) � k8ε
2. (4.72)

To this end, substituting (4.65)–(4.68) into the right-hand side of (4.39), (4.43), (4.57) and (4.61) (in which we take T = T0),
it is easy to see that, when θ > 0 is suitably small, we have

Q W (T0) � 4(1 + k3)
2c7ε

2, (4.73)

W̃1(T0) � 2(1 + k3)c8ε, (4.74)

W1(T0) � 2c15ε, (4.75)

V∞(T0) � 3c16θ, (4.76)

provided that ε � θ .
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Hence, if k3 � 2c15, k4 � 2(1 + k3)c8, k5 � 3c16 and k8 � 4(1 + k3)
2c7, then we get (4.69)–(4.72), provided that θ is

suitably small. This proves (4.31)–(4.33) and (4.62).
We finally estimate W∞(T ).
For any fixed point (t, x) ∈ [0, T ] × R, we draw the ith backward characteristic Ci passing through the point (t, x), which

intersects the x-axis at a point (0, y). Integrating (2.9) along this characteristic Ci and noting (2.11) yields

wi(t, x) = wi(0, y) +
∑
k∈S3

[wi]k +
∫
Ci

[
n∑

j,k=1, j �=k

γi jk(u)w j wk + γiii(u)w2
i

]
dt, (4.77)

where S3 denotes the set of all indices k such that this characteristic Ci intersects the kth discontinuous curve (shock or
contact discontinuity) x = xk(t) at a point (tk, xk(tk)), and [wi]k = wi(tk, xk(tk)+ 0)− wi(tk, xk(tk)− 0). Using (3.5), (3.6) and
(4.4) and noting the fact that i /∈ S3, we have

W∞(T ) � c18
{
ε + V∞(T )W∞(T ) + W∞(T )W̃1(T ) + T

(
W∞(T )

)2}
. (4.78)

Noting (1.18), by continuity there exists a positive constant k6 independent of θ, ε and T such that (4.34) holds at least
for T > 0 suitably small. Thus, in order to prove (4.34) it suffices to show that we can choose k6 and k7 in such a way that
for any fixed T0 (0 < T0 � T ) with T0ε � k7 such that

W∞(T0) � 2k6ε, (4.79)

we have

W∞(T0) � k6ε. (4.80)

Substituting (4.79) into the right-hand side of (4.78) (in which we take T = T0) and noting (4.32)–(4.33), it is easy to see
that, when θ > 0 is suitably small, we have

W∞(T0) � 2c18
(
1 + 2k2

6k7
)
ε, (4.81)

Hence, if k6 � 6c18 and k2
6k7 = 1, then we have (4.80), provided that θ is suitably small. Therefore (4.34) is proved.

Finally, we observe that when θ > 0 is suitably small, by (4.33) we have

U∞(T ) � k5θ � 1

2
δ. (4.82)

This implies the validity of hypothesis (4.4). The proof of Lemma 4.5 is finished. �
Proof of Theorem 1.2. By (4.33)–(4.34), we know that for small θ > 0 there exists ε > 0 suitably small such that the
generalized Riemann problem (1.1) and (1.17) admits a unique piecewise C1 solution u = u(t, x) containing shocks and
contact discontinuities on the strip [0, T ] × R, where T satisfies (4.35). Therefore, the lifespan T̃ (ε) of the piecewise C1

solution satisfies

T̃ (ε) � K3ε
−1, (4.83)

where K3(= k7) is a positive constant independent of ε. Moreover, by Lemma 4.5, when the piecewise C1 solution u = u(t, x)
blows up in a finite time, u = u(t, x) itself must be bounded on the domain [0, T̃ (ε))×R. Hence, the first-order derivative ux

of u = u(t, x) should tend to be unbounded as t ↗ T̃ (ε). The proof of Theorem 1.2 is finished. �
5. Applications

5.1. System of one-dimensional gas dynamics

Consider the following Cauchy problem for the system of one-dimensional gas dynamics in Eulerian coordinates (cf. [9]):⎧⎪⎪⎨⎪⎪⎩
∂tρ + ∂x(ρv) = 0,

∂t(ρv) + ∂x
(
ρv2 + p

)= 0,

∂t

(
ρ

(
1

2
v2 + e

))
+ ∂x

(
ρv

(
1

2
v2 + e

)
+ pv

)
= 0,

(5.1)

t = 0 : (ρ, v, e) =
{

(ρ0 + ερ−(x), v0 + εv−(x), e0 + εe−(x)), x � 0,
(5.2)
(ρ0 + ερ+(x), v0 + εv+(x), e0 + εe+(x)), x � 0,
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where ρ , v , p and e are the density, velocity, pressure and internal energy of the gas, respectively; the equations of state
p = p(ρ, S) and e = e(ρ, S) are suitably smooth functions with respect to their arguments, which satisfy

pρ(ρ, S) > 0 and eS(ρ, S) > 0, ∀ρ > 0, (5.3)

in which S is the entropy; moreover, ε > 0 is a small parameter, ρ0 > 0, e0 > 0 and v0 are constants, ρ±(x), v±(x) and
e±(x) ∈ C1 with∥∥ρ±(x)

∥∥
C1 ,
∥∥v±(x)

∥∥
C1 ,
∥∥e±(x)

∥∥
C1 � K4 (5.4)

and

+∞∫
0

∣∣ρ ′+(x)
∣∣dx,

+∞∫
0

∣∣v ′+(x)
∣∣dx,

+∞∫
0

∣∣e′+(x)
∣∣dx,

0∫
−∞

∣∣ρ ′−(x)
∣∣dx,

0∫
−∞

∣∣v ′−(x)
∣∣dx,

0∫
−∞

∣∣e′−(x)
∣∣dx � K5, (5.5)

where K4 and K5 are positive constants independent of ε.
Let

u = (ρ, v, e)T . (5.6)

Then from the basic law of thermodynamics

de = θ dS + p

ρ2
dρ, (5.7)

where θ is the temperature of the gas, we rewrite system (5.1) as

ut + A(u)ux = 0, (5.8)

where

A(u) =
⎛⎜⎝ v ρ 0

1
ρ (pρ − ppS

ρ2eS
) v pS

ρeS

0 p
ρ v

⎞⎟⎠ . (5.9)

By (5.3), it is easy to see that system (5.1) is strictly hyperbolic and has the following three distinct real eigenvalues:

λ1(u) = v − c < λ2(u) = v < λ3(u) = v + c, (5.10)

where

c =
√

pρ(ρ.S).

The corresponding right eigenvectors are

r1(u)//

(
1,− c

ρ
,

p

ρ2

)T

,

r2(u)//

(
pS

ρeS
,0,

1

ρ

(
ppS

ρ2eS
− c2

))T

,

r3(u)//

(
1,

c

ρ
,

p

ρ2

)T

.

It is easy to see that the second characteristic field is linearly degenerate, i.e.,

∇λ2(u)r2(u) ≡ 0,

and if

ρ0

2

∂2 p

∂ρ2
(ρo, S0) + c2(ρ0, S0) �= 0, (5.11)

where

S0 = S(ρ0, e0),
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then in a neighborhood of u = (ρ0, v0, e0)
T , the first characteristic field and the third characteristic field are genuinely

nonlinear, i.e.,

∇λ j(u)r j(u) �= 0, j = 1,3.

By Theorem 1.2 we get

Theorem 5.1. Suppose that (5.11) holds. Suppose furthermore that the corresponding Riemann problem has a self-similar solution
consisting of only non-degenerate shocks and contact discontinuities but no centered rarefaction waves. Suppose finally that ρ−(x),
v−(x), e−(x), ρ+(x), v+(x) and e+(x) are all C1 vector functions on x � 0 and on x � 0, respectively, satisfying (5.4)–(5.5) and

θ
�= ∣∣(ρ+(0), v+(0), e+(0)

)− (ρ−(0), v−(0), e−(0)
)∣∣> 0 is suitably small. (5.12)

Then for small θ > 0, there exists a constant ε0 > 0 so small that for any fixed ε ∈ (0, ε0], the lifespan T̃ (ε) of the piecewise C1 solution
to the generalized Riemann problem (5.1)–(5.2) satisfies

T̃ (ε) � K6ε
−1, (5.13)

where K6 is a positive constant independent of ε.

5.2. System of traffic flow on a road network

Consider the following Cauchy problem for the system of traffic flow on a road network using the Aw–Rascle model (cf.
[1,15]):⎧⎪⎨⎪⎩

∂tρ + ∂x
(

y − ργ +1)= 0,

∂t y + ∂x

(
y2

ρ
− yργ

)
= 0,

(5.14)

t = 0 : (ρ, y) =
{

(ρ̃0 + ερ−(x), ỹ0 + εy−(x)), x � 0,

(ρ̃0 + ερ+(x), ỹ0 + εy+(x)), x � 0,
(5.15)

where γ > 0, ρ > 0 is the density of the cars and y = ρv + ργ +1 is the momentum, v is the velocity of the cars, ρ̃0 > 0
and ỹ0 are constants, ρ±(x) and y±(x) ∈ C1 with∥∥ρ±(x)

∥∥
C1 ,
∥∥y±(x)

∥∥
C1 � K7 (5.16)

and

+∞∫
0

∣∣ρ ′+(x)
∣∣dx,

+∞∫
0

∣∣y′+(x)
∣∣dx,

0∫
−∞

∣∣ρ ′−(x)
∣∣dx,

0∫
−∞

∣∣y′−(x)
∣∣dx � K8, (5.17)

where K7 and K8 are positive constants independent of ε.
Let

u =
(

ρ

y

)
. (5.18)

It is easy to see that in a neighborhood of u = ( ρ̃0
ỹ0

)
, system (5.14) is strictly hyperbolic and has the following two distinct

real eigenvalues:

λ1(u) = y

ρ
− (γ + 1)ργ < λ2(u) = y

ρ
− ργ , (5.19)

i.e.,

λ1(u) = v − γργ < λ2(u) = v. (5.20)

The corresponding right eigenvectors are

r1(u)//

(
1
y
ρ

)
, r2(u)//

(
1

y
ρ + γργ

)
. (5.21)

It is easy to see that the first characteristic field is genuinely nonlinear, i.e.,

∇λ1(u)r1(u) �= 0, (5.22)
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while the second characteristic field is linearly degenerate, i.e.,

∇λ2(u)r2(u) ≡ 0. (5.23)

By Theorem 1.2 we get

Theorem 5.2. Suppose that the corresponding Riemann problem has a self-similar solution consisting of only non-degenerate shocks
and contact discontinuities but no centered rarefaction waves. Suppose furthermore that ρ−(x), y−(x), ρ+(x) and y+(x) are all C1

vector functions on x � 0 and on x � 0, respectively, satisfying (5.16)–(5.17). Suppose finally that

θ
�= ∣∣(ρ+(0), y+(0)

)− (ρ−(0), y−(0)
)∣∣> 0 is suitably small. (5.24)

Then for small θ > 0, there exists a constant ε0 > 0 so small that for any fixed ε ∈ (0, ε0], the lifespan T̃ (ε) of the piecewise C1 solution
to the generalized Riemann problem (5.14)–(5.15) satisfies

T̃ (ε) � K9ε
−1, (5.25)

where K9 is a positive constant independent of ε.
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