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1. Introduction

In this work we give a method which permits to unify the proof of the corona problem in some algebras of pointwise
multipliers of spaces of holomorphic functions on the unit disk D. This set of algebras contains, among other, pointwise
multipliers of Besov spaces, of invariant Besov spaces, of weighted Sobolev spaces, of spaces of Carleson measures for Besov
spaces.

In order to precise these results we need some definitions. We begin recalling the definition of the holomorphic Besov
space on D.

Weighted L p spaces and holomorphic Besov spaces B p
s : Let 1 � p < ∞ and δ > 0. We let dν denote the normalized Lebesgue

measure on D. Let dνδ(z) := (1 −|z|2)δ−1 dν(z) and let L p
δ := L p(dνδ). For s ∈ R, the Besov space B p

s consists of holomorphic
functions f in D satisfying ‖∂k f ‖Lp

(k−s)p
< ∞ for some (any) non-negative integer k > s.

Observe that if s < 0, then we can choose k = 0 and thus B p
s = H ∩ L p

−sp , where H := H(D) denotes the space of
holomorphic functions on D.

For more details about these spaces, we refer the reader to [5].
We now introduce the invariant Besov space Q p

t of holomorphic functions on D, as a generalization of the well-known
invariant Dirichlet space Q t .

Y p
t spaces and invariant Besov spaces Q p

t : If 1 � p < ∞ and 0 < t < 1, then let Y p
t be the space defined by

Y p
t := {

ϕ ∈ Lp
t+p−1: |ϕ|p dνt+p−1 ∈ Yt

}
,
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where Yt denotes the set of the t-Carleson measures on D, which consists of complex Borel measures μ on D satisfying

‖μ‖Yt = sup
ζ∈T

0<r<2

1

rt

∫
{z∈D: |z−ζ |<r}

d|μ|(z) < ∞.

As usual, if ϕ dν ∈ Yt , then we just write ϕ ∈ Yt .
We recall that the invariant Dirichlet space Q t consists of the holomorphic functions f on D such that ‖ f ‖Q t := ‖ f ‖Y 2

t
+

‖∂ f ‖Y 2
t

< ∞. (See [18] and [19] for more details about these spaces.)

As a generalization of these spaces, for 1 � p < ∞ and 0 < t < 1, we define the space Q p
t as

Q p
t := {

f ∈ H ∩ Y p
t : ‖ f ‖Q p

t
:= ‖ f ‖Y p

t
+ ‖∂ f ‖Y p

t
< ∞}

.

Let g = (g1, . . . , gm) be a corona data in an algebra A ⊂ H∞ ∩ Q p
t , that is, let g1, . . . , gm ∈ A satisfy the corona condition

inf
z∈D

∣∣g(z)
∣∣2 := inf

z∈D

m∑
j=1

∣∣g j(z)
∣∣2

> 0.

In [10], it was shown that the corona theorem holds for the algebra A = H∞ ∩ Q 2
t , that is, for any corona data g in A,

there exists hg = (h1, . . . ,hm), h j ∈ A, such that g · hg := ∑m
j=1 g jh j = 1.

To prove this result, the authors used the solution hg given by

h j = G j −
m∑

k=1
k �= j

gkK|ω j,k|(ω j,k), j = 1, . . . ,m, (1)

where G j := g j

|g|2 , ω j,k = G j∂Gk − Gk∂G j and K|ω j,k|(ω j,k) is the Peter Jones’ solution of the equation ∂U = ω j,k .

We recall that if μ ∈ Y1, then the Peter Jones’ solution K|μ|(μ) satisfies:

∂K|μ|(μ) = μ (in the sense of distributions) and
∥∥K|μ|(μ)

∥∥
L∞ � C‖μ‖Y1 . (2)

See [8,10] or [18, Section 7.2] for more details about this solution.
The function hg was also used in [12] to solve the corona problem in Mult(Q 2

t ), the algebra of the pointwise multipliers
of Q 2

t .
In this work we prove that the function hg also gives a solution of the Bezout equation g · h = 1 in several subalgebras

of H∞ ∩ Q p
t , and in particular in Mult(Q p

t ).
To do so, we will need to obtain estimates of |∂hg |. In particular we prove that:
For each τ > 0, there exists Cτ ,g such that

|∂hg | � Cτ ,g
(∣∣∂ g(z)

∣∣ + T −τ
(|∂ g|)), (3)

where T −τ is the integral operator defined by

T −τ (ϕ)(z) :=
∫
D

ϕ(w)
(1 − |z|2)−τ (1 − |w|2)−τ

|1 − zw|2−2τ
dν(w),

|∂hg |2 := ∑m
j=1 |∂h j |2 and |∂ g|2 := ∑m

j=1 |∂ g j |2.
It is clear that combining this estimate with the boundedness of T −τ in a solid normed space X , we can obtain estimates

of ‖|∂h|‖X in terms of ‖|∂ g|‖X . These results lead us to introduce the following class of normed spaces X .
Solid normed spaces X ⊂ Y q

t with some T −τ bounded on X : In this work we consider normed spaces X of measurable
functions on D satisfying the following conditions:

X1: There exist 1 � q < ∞ and 0 < t < 1 such that C⊂ X ⊂ Y q
t .

X2: The space X is solid in the following sense: if ψ0 ∈ X , ψ1 ∈ L1
δ for some δ > 0 and |ψ1| � |ψ0| a.e., then ψ1 ∈ X and

‖ψ1‖X � ‖ψ0‖X .
X3: There exists τ > 0 such that the operator T −τ is bounded on X .

Given a normed space X of functions on D, we denote the subspace H X := H ∩ X and the corresponding Sobolev space

H X1 := {
f ∈ H X: ‖ f ‖H X1 = ‖ f ‖X + ‖∂ f ‖X < ∞}

.
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We now state our main results.

Theorem 1.1. Let X be a normed space satisfying conditions X1, X2 and X3. Then, the corona theorem holds for the algebras H∞ ∩
H X1 and Mult(H X1).

It is easy to check that, if 1 < p < ∞, then the space X = L p
p−1 satisfies conditions X1, X2 and X3. We also prove that if

1 � p < ∞ and 0 < t < 1, then X = Y p
t also satisfies these conditions. Therefore, we have:

Corollary 1.2. If 1 < p < ∞, then the corona theorem holds for H∞ ∩ B p
1/p , Mult(B p

1/p), H∞ ∩ Q p
t and Mult(Q p

t ).

We recall that the first two cases were proved in [9] and [16] using non-explicit solutions. As we have already said, if
p = 2, the two last cases were proved in [10] and in [12] respectively using the solution hg . However, the key point used
in their proofs, which is the characterizations of the functions in Q 2

t in terms of its admissible boundary values, cannot be
used in the general situation we consider.

Note that Theorem 1.1 permits to obtain corona theorems in algebras of pointwise multipliers Mult(H X1) for spaces X
satisfying X1. However, if 0 < s < 1/p, then X = L p

(1−s)p does not satisfy this condition, and therefore in this case we cannot

apply the result to prove the corona theorem in Mult(B p
s ).

In the next theorem we replace the condition X1 on X by other weaker conditions which, in particular, are satisfied for
all the spaces L p

(1−s)p with 1 � p < ∞ and 0 < s < 1/p.

Theorem 1.3. Let C⊂ E ⊂ L1(dν) be a normed space satisfying conditions X2 and X3. If X = Mult(H E1, E) satisfies X1, then:

(i) X also satisfies X2 and X3.
(ii) Mult(H E1) = H∞ ∩ H X1 .

(iii) The corona theorem is true for Mult(H E1) and Mult(H X1).

Observe that assertion (i) in the above theorem follows from (ii), (iii) and Theorem 1.1. Moreover, since Y p
t ⊂ L1(dν) and

X = Mult(H E1, E) ⊂ E , we have that if E satisfies X1, X2 and X3, then X also satisfies these properties.
Therefore, starting from a normed space E := X (0) satisfying the conditions in Theorem 1.3, we can construct the de-

creasing sequence of normed spaces

X (k) := Mult
(

H X (k−1)
1 , X (k−1)

) ⊂ X (k−1), k � 1,

whose terms X (k) satisfy conditions X1, X2 and X3.
Thus, as a consequence of Theorem 1.3, we have:

Theorem 1.4. If E = X (0) satisfies the hypothesis of Theorem 1.3, then the corona theorem holds for all the algebras Mult(H X (k)
1 ) =

H∞ ∩ H X (k+1)
1 , k � 0.

Let us give some applications of this theorem.
First, observe that the space X (k) consists of the functions ϕ ∈ X (k−1) satisfying

‖ϕ‖X(k) := sup
‖ fk−1‖

H X(k−1)
1

=1
· · · sup

‖ f0‖
H X(0)

1
=1

‖ϕ fk−1 · · · f0‖X(0) < ∞.

It is easy to check that, if 1 � p < ∞ and 0 < s � 1/p, then X (0) = L p
(1−s)p satisfies the hypotheses of Theorem 1.3. Thus,

since H X (0)
1 = B p

s , then we have

H X (1)
1 = C B p

s :=
{

g ∈ B p
s : ‖g‖C B p

s
:= sup

‖ f ‖
B

p
s
=1

{∥∥ f
(|g| + |∂ g|)∥∥L p

(1−s)p

}
< ∞

}
,

that is, C B p
s consists of functions g ∈ B p

s such that

dμg(z) = (∣∣g(z)
∣∣ + ∣∣∂ g(z)

∣∣)p(
1 − |z|2)(1−s)p−1

dν(z) ∈ Car
(

B p
s
)
,

where Car(B p
s ) denotes the space of Carleson measures for B p

s .
In this case, C2 B p

s := H X (2)
1 consists of functions g ∈ C B p

s such that

‖g‖C2 B p
s

:= sup
{∥∥ f0 f1

(|g| + |∂ g|)∥∥L p
(1−s)p

: ‖ f0‖B p
s

= ‖ f1‖C B p
s

= 1
}

< ∞.

Analogously we can define the spaces Ck B p
s := H X (k) , k � 2.
1
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Then, we have:

Theorem 1.5. If 1 � p < ∞ and 0 < s � 1/p, then the corona theorem is true for Mult(B p
s ), Mult(C B p

s ) and Mult(Ck B p
s ), k � 2.

If X (0) = Y p
t , then Q p

s = H X (0)
1 , and we can also repeat the above arguments to define the spaces Ck Q p

t := H X (k)
1 , k � 1.

If p = 2, an explicit characterization of C Q 2
t in terms of logarithmic t-Carleson measures can be found in [13] and [20].

As in the above case, we have:

Theorem 1.6. If 1 � p < ∞ and 0 < t < 1, then the corona theorem is true for Mult(Q p
t ), Mult(C Q p

t ) and Mult(Ck Q p
t ), k � 2.

As a consequence of Theorems 1.1 and 1.3, we also obtain the following corona theorem in weighted Sobolev spaces with
weights in the Békollé class Bp (see [6] or Section 5.4 below for more details about these weights).

Theorem 1.7. Let 1 < p < ∞ and θ ∈ L1(dν) a weight in the Békollé class Bp . Let H W p
1 (θ) be the weighted Sobolev space defined by

H W p
1 (θ) := {

f ∈ H ∩ Lp(θ): ‖ f ‖H W p
1 (θ) := ‖ f ‖L p(θ) + ‖∂ f ‖L p(θ)

}
< ∞.

Then, there exists a weight Θ in the Muckenhoupt class Ap such that:

(i) H W p
1 (Θ) = H W p

1 (θ).

(ii) X (0) = L p(Θ) satisfies the hypothesis of Theorem 1.3, and consequently the corona theorem holds for Mult(H X (k)
1 ), k � 0.

In particular, the corona theorem holds for Mult(H W p
1 (θ)).

We recall that assertion (i) was proved in [7]. We also point out that, by analogy with the case θ = 1, the space H W p
1 (θ)

is denoted by many authors as B p
1/p′(θ) (see for instance [1] and [7]).

The paper is organized as follows. In Sections 2 and 3 we prove some properties of the spaces Y p
t and of the operator

T −τ respectively. The corona theorem in H∞ ∩ Q p
t and some pointwise estimate of hg needed to prove our main theorems

will be proved in Section 4. Finally, in Section 5 we prove our main results.
Throughout the paper F � G means that there exists a constant C , which does not depend of F and G , such that F � C G .

We will use F ≈ G to denote that G � F � G .

2. The spaces Y p
t , Q p

t , Car(B p
s ) and C B p

s

Let ζ ∈ T and r > 0. The subarcs of the unit circle T will be denoted by I = I(ζ, r) := {η ∈ T: |η − ζ | < r}, and the
corresponding tents by T (I) = T (I(ζ, r)) := {z ∈ D: |z − ζ | < r}.

In order to obtain norm-estimates of the integral operators which appear in the paper, we will need the following
well-known lemma.

Lemma 2.1. Let M, L � 0 and 0 < N < M + L. Then for w, z ∈D we have∫
D

(1 − |u|2)N−1

|1 − uz|M |1 − uw|1+L
dν(u) �

{ |1 − zw|N−M−L, if M − 1, L < N,
(1−|w|2)N−L

|1−zw|M , if M − 1 < N < L.

The proof of this lemma can be done using standard techniques. See for instance Lemma 2.4 below or Lemma 3.4 in [11].
The following well-known estimate will be used frequently in the next sections.

Lemma 2.2. If w, z ∈D, then

1 − |z|2,1 − |w|2 � 2�(1 − zw) = 1 − |z|2 + 1 − |w|2 + |w − z|2 � 2|1 − zw|.
The next lemma states a well-known characterization of the space of t-Carleson measures (see [18, Lemma 1.4.1]).

Lemma 2.3. If 0 �= a ∈D, let ζa = a/|a| and if a = 0 let ζa = 1. We denote by T (Ia) the tent T (Ia) = {z ∈ D: |1 − zζ a| < 2(1 − |a|2)}.
For a Borel measure μ on D, the following assertions are equivalent:

(i) μ ∈ Yt .
(ii) supa∈D |μ|(T (Ia))

(1−|a|2)t < ∞.

(iii) For some (any) κ > 0, supa∈D
∫

(1−|a|2)κ

t+κ d|μ|(z) < ∞.

D |1−za|
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Moreover, the quantities in (ii) and (iii) are equivalent to ‖μ‖Yt .

The same techniques used to prove the above lemma give:

Lemma 2.4. Let μ ∈ Yt . If 0 < N < t and M > 0, then∫
D

d|μ|(w)

|1 − wz|t−N |1 − wu|t+M
� ‖μ‖Yt

(1 − |u|2)−M

|1 − zu|t−N
.

Proof. Assume μ is positive. Let Ω1 = {w ∈ D: |1 − wu| � |1 − wz|} and let Ω2 = D \ Ω1. We will prove that

A1 :=
∫
Ω1

dμ(w)

|1 − wz|t−N |1 − wu|t+M
� ‖μ‖Yt

(1 − |u|2)−M

|1 − zu|t−N
,

A2 :=
∫
Ω2

dμ(w)

|1 − wz|t−N |1 − wu|t+M
� ‖μ‖Yt

1

|1 − zu|t+M−N
. (4)

These estimates together with the fact that 1 − |u|2 � 2|1 − zu| prove the lemma.
So we are led to show the estimates in (4).
If w ∈ Ω1, then |1 − zu| � |1 − wz| + |1 − wu| � 2|1 − wz|. Since t − N > 0, Lemma 2.3 gives

A1 � 1

|1 − zu|t−N

∫
D

dμ(w)

|1 − wu|t+M
� ‖μ‖Yt

(1 − |u|2)−M

|1 − zu|t−N
.

Analogously, if w ∈ Ω2, then |1 − zu| � 2|1 − wu| and

A2 �
∫
D

dμ(w)

|1 − wz|t−N (|1 − zu| + |1 − wz|)t+M
.

Let J = J (z) be the integer part of − log2(1 − |z|2). We now consider the partition D= ⋃ J
j=1(U j \ U j−1), where

U j = U j(z) := {
w ∈D: |1 − wz| � 2 j(1 − |z|2)}, j = 1, . . . , J − 1,

U0 = ∅ and U J = D \ U J−1. (5)

Because μ(U j) � ‖μ‖Yt 2 jt(1 − |z|2)t , we have

A2 � ‖μ‖Yt

J∑
j=1

2 jN(1 − |z|2)N

(|1 − zu| + 2 j(1 − |z|2))t+M
� 1

|1 − zu|t+M−N
.

The last estimate can be checked decomposing the sum as a sum on the set { j: |1 − zu| < 2 j(1 − |z|2)} and a sum on its
complementary set. �
Lemma 2.5. If 1 � p < ∞ and 0 < t < 1, then Y p

t ⊂ Y1 .

Proof. Let p = 1. If z ∈ T (I), then 1 − |z|2 � |I|. Since 0 < t < 1, we have∫
T (I)

∣∣ϕ(z)
∣∣dν(z) � |I|1−t

∫
T (I)

∣∣ϕ(z)
∣∣(1 − |z|2)t−1

dν(z) � ‖ϕ‖Y 1
t
|I|.

If 1 < p < ∞, the result follows easily from Hölder’s inequality. Indeed∫
T (I)

∣∣ϕ(z)
∣∣dν(z) � Φ0(I)1/pΦ1(I)1/p′

,

where
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Φ0(I) :=
∫

T (I)

∣∣ϕ(z)
∣∣p(

1 − |z|2)t+p−2
dν(z) � ‖ϕ‖p

Y p
t
|I|t,

Φ1(I) :=
∫

T (I)

(
1 − |z|2)−(t+p−2)p′/p

dν(z) =
∫

T (I)

(
1 − |z|2)(1−t)p′/p−1

dν(z) � |I|1+(1−t)p′/p = |I|p′−tp′/p . �

To conclude this section we recall the following well-known result (see [17]):

Proposition 2.6. Let 1 < p < ∞ and 0 < s < 1/p. If |ϕ(z)|p(1 − |z|2)(1−s)p−1 dν(z) ∈ Car(B p
s ), then ϕ ∈ Y p

1−sp , but, in general, the
converse is not true.

Corollary 2.7. If 1 � p < ∞ and 0 < s < 1/p, then C B p
s ⊂ Q p

1−sp .

3. The operator T −τ

In the next proposition, we state the properties of the operator T −τ , which we will need in the forthcoming sections to
prove our main results.

Proposition 3.1. Let 1 � p < ∞, 0 < t < 1, 0 < δ < p and 0 � τ < min{ t
p , 1−t

p , δ
p ,

p−δ
p }.

Then, we have:

(i) If 0 � τ < τ ′ < 1 and ϕ � 0, then T −τ (ϕ) � T −τ ′
(ϕ).

(ii) T −τ is bounded on L p
δ .

(iii) T −τ is bounded on Y p
t .

(iv) If f ∈ B1−1 and ϕ ∈ Y p
t , then

| f |∣∣T −τ (ϕ)
∣∣ � T −τ

(| f ϕ|) + ‖ϕ‖Y p
t
T −τ

(|∂ f |).
Remark 3.2. Operators of type T −τ appear in different problems on the theory of spaces of holomorphic functions. Special
cases of the results in Proposition 3.1 were used in related circumstances and they can be found for instance in [14,4,2]
and [3].

Remark 3.3. The operator T −τ is not bounded on Y 1
1 for any τ � 0, and therefore it is not possible to extend assertion (iii)

to Y 1
1 .

For instance, if ϕ(r) = r2 log−2(1−r)
1−r ∈ L1[0,1], then by integration in polar coordinates, we have ϕ(|z|) ∈ Y 1

1 and

∥∥T 0(ϕ)
∥∥

Y 1
1

�
∫
D

T 0(ϕ)(z)dν(z) ≈
1∫

0

1∫
0

rtϕ(r)

1 − rt
dr dt = +∞,

which proves the remark.

The rest of the section is devoted to prove Proposition 3.1.

Proof of (i). Clearly (i) follows from (1 − |z|2)(1 − |w|2) � |1 − zw|2. �
Proof of (ii). See for instance [21, Lemma 4.2.3]. �
Proof of (iii). We will prove that if 0 � τ p < min{1 − t, t + p − 1}, then∥∥∣∣T −τ (ϕ)(z)

∣∣p(
1 − |z|2)t+p−2∥∥

Yt
�

∥∥∣∣ϕ(w)
∣∣p(

1 − |w|2)t+p−2∥∥
Yt

.

Assume 1 < p < ∞. Let 0 < εp < min{1 − t − τ p, t + p − 1 − τ p}. Since∫
D

(1 − |w|2)εp′−1

|1 − zw|1+2εp′ dν(w) �
(
1 − |z|2)−εp′

,

Hölder’s inequality gives
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∣∣T −τ (ϕ)(z)
∣∣p �

(
1 − |z|2)−τ p−εp

∫
D

∣∣ϕ(w)
∣∣p (1 − |w|2)(1−τ−ε)p−1

|1 − zw|1+(1−2τ−2ε)p
dν(w).

By Lemma 2.3 and Fubini’s theorem, we have

∥∥T −τ (ϕ)
∥∥p

Y p
t

≈ sup
a∈D

∫
D

(
1 − |a|2
|1 − za|2

)t∣∣T −τ (ϕ)(z)
∣∣p(

1 − |z|2)t+p−2
dν(z)

� sup
a∈D

(
1 − |a|2)t

∫
D

∣∣ϕ(w)
∣∣p(

1 − |w|2)(1−τ−ε)p−1 ·
∫
D

(1 − |z|2)t+p−2−(τ+ε)p

|1 − za|2t |1 − wz|1+(1−2τ−2ε)p
dν(z)dν(w).

If p = 1, then Hölder’s inequality is not needed and therefore the above estimate holds even for ε = 0.
By Lemma 2.1 with

N = t + p − 1 − (τ + ε)p, M = 2t and L = (1 − 2τ − 2ε)p,

satisfying M − 1 < N < L, we have

∥∥T −τ (ϕ)
∥∥p

Y p
t

� sup
a∈D

(
1 − |a|2)t

∫
D

|ϕ(w)|p(1 − |w|2)t+p−2

|1 − wa|2t
dν(w) ≈ ∥∥ϕ(w)

∣∣p(
1 − |w|2)t+p−2∥∥

Yt
= ‖ϕ‖p

Y p
t
,

which ends the proof. �
In order to prove Proposition 3.1(iv) we need the following lemmas.

Lemma 3.4. If f ∈ B1−1 , then

∣∣ f (z) − f (w)
∣∣ � |z − w|

(∫
D

|∂ f (u)|(1 − |u|2)
|1 − zu|2|1 − wu| + |∂ f (u)|(1 − |u|2)

|1 − zu||1 − wu|2 dν(u)

)
.

Proof. We can assume f (0) = 0. Since

f (z) =
1∫

0

z(∂ f )(tz)dt = 2

1∫
0

∫
D

u(∂ f )(u) (1 − |u|2)
(1 − tzu)3

dν(u)dt,

we have

∣∣ f (z) − f (w)
∣∣ �

∫
D

∣∣∂ f (u)
∣∣(1 − |u|2)

1∫
0

|(1 − tzu)3 − (1 − t wu)3|
|1 − tzu|3|1 − t wu|3 dt dν(u).

Since |1 − tzu| ≈ 1 − t + |1 − zu| � |1 − zu| and there is an analogous estimate for |1 − t wu|, it is easy to check that the
integral on the variable t in the above inequality is bounded by

C

( |z − w|
|1 − zu|2|1 − wu| + |z − w|

|1 − zu||1 − wu|2
)

,

which concludes the proof. �
Lemma 3.5. Let 1 � p < ∞, 0 < t < 1, 0 < τ p < min{t,1 − t} and 0 � ϕ ∈ Y p

t . Then∫
D

ϕ(w)(1 − |w|2)−τ

|1 − zw|1−2τ |1 − uw| dν(w) � ‖ϕ‖Y p
t

(1 − |u|2)−τ

|1 − zu|1−2τ
.

Proof. Let F (z, u) denote the left-hand term in the above inequality. Assume p = 1. As in the proof of Lemma 2.4, let

Ω1 = {
w ∈D: |1 − uw| � |1 − zw|} and Ω2 = D \ Ω1.
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Since 1 − t − τ > 0 and t − τ > 0, we have

F (z, u) �
∫
Ω1

ϕ(w)(1 − |w|2)t−1

|1 − zw|1−2τ |1 − uw|t+τ
dν(w) +

∫
Ω2

ϕ(w)(1 − |w|2)t−1

|1 − zw|t−τ |1 − uw| dν(w).

Thus, the fact that |ϕ(w)|(1 − |w|2)t−1 ∈ Yt and the same arguments used to prove (4) in Lemma 2.4, give

F (z, u) � ‖ϕ‖Y 1
t

(
(1 − |u|2)−τ

|1 − zu|1−2τ
+ 1

|1 − zu|1−τ

)
� ‖ϕ‖Y 1

t

(1 − |u|2)−τ

|1 − zu|1−2τ
,

which concludes the proof of the case p = 1.
Let 1 < p < ∞. If 0 < εp < min{τ p,1 − t − τ p}, then

F (z, u) � F0(z, u)1/p F1(z, u)1/p′

where

F0(z, u) =
∫
D

ϕp(w)(1 − |w|2)(1+t/p−1/p)p−1

|1 − zw|1−2τ p−(1/p−t/p−τ−ε)p|1 − uw|1−(1/p−t/p−τ+ε)p
dν(w)

=
∫
D

ϕp(w)(1 − |w|2)t+p−2

|1 − zw|t−τ p+εp|1 − uw|t+τ p−εp
dν(w),

F1(z, u) =
∫
D

(1 − |w|2)(1/p−t/p−τ )p′−1

|1 − zw|1+(1/p−t/p−τ−ε)p′ |1 − uw|1+(1/p−t/p−τ+ε)p′ dν(w).

Since ϕp(w)(1 − |w|2)t+p−2 ∈ Yt , Lemma 2.4 gives

F0(z, u) � ‖ϕ‖p
Y p

t

(1 − |u|2)−τ p+εp

|1 − zu|t−τ p+εp
,

and by Lemma 2.1 with N = (1/p − t/p − τ )p′ > 0, 1 � M = 1 + N − εp′ < N + 1 and L = N + εp′ > N , we obtain

F1(z, u) � (1 − |u|2)−εp′

|1 − zu|1+(1/p−t/p−τ−ε)p′ .

Combining these estimates we conclude the proof. �
Proof of (iv). Without loss of generality we may assume ϕ � 0. Then

∣∣ f (z)
∣∣∣∣T −τ (ϕ)(z)

∣∣ �
(
1 − |z|2)−τ

∫
D

| f (w)|ϕ(w)(1 − |w|2)−τ

|1 − zw|2−2τ
dν(w) + (

1 − |z|2)−τ

×
∫
D

| f (z) − f (w)|ϕ(w)(1 − |w|2)−τ

|1 − zw|2−2τ
dν(w). (6)

Therefore, Lemma 3.4 and |z − w| � |1 − zw| give∫
D

| f (z) − f (w)|ϕ(w)(1 − |w|2)−τ

|1 − zw|2−2τ
dν(w) �

∫
D

|∂ f (u)|(1 − |u|2)
|1 − zu|2

∫
D

ϕ(w)(1 − |w|2)−τ

|1 − zw|1−2τ |1 − wu| dν(w)dν(u)

+
∫
D

|∂ f (u)|(1 − |u|2)
|1 − zu|

∫
D

ϕ(w)(1 − |w|2)−τ

|1 − zw|1−2τ |1 − wu|2 dν(w)dν(u).

By Lemma 3.5∫
D

ϕ(w)(1 − |w|2)−τ

|1 − zw|1−2τ |1 − wu| dν(w) � ‖ϕ‖Y p
t

(1 − |u|2)−τ

|1 − zu|1−2τ
.

Since 1 − |u|2 � 2|1 − wu|, the last estimate gives∫
ϕ(w)(1 − |w|2)−τ

|1 − zw|1−2τ |1 − wu|2 dν(w) � ‖ϕ‖Y p
t

(1 − |u|2)−1−τ

|1 − zu|1−2τ
.

D
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Therefore,∫
D

| f (z) − f (w)|ϕ(w)(1 − |w|2)−τ

|1 − zw|2−2τ
dν(w) � ‖ϕ‖Y p

t

∫
D

|∂ f (u)|(1 − |u|2)−τ

|1 − zu|2−2τ
dν(u).

This estimate together with (6) complete the proof. �
4. The corona problem for H∞ ∩ Q p

t

Theorem 4.1. Let 1 � p < ∞, 0 < t < 1 and let g = (g1, . . . , gm) be a corona data in H∞ ∩ Q p
t . Then, the function hg = (h1, . . . ,hm)

defined by (1) satisfies:

(i) If τ > 0, then there exists cτ ,g > 0 such that for all f ∈ B1−1

| f ||∂h j| � cτ ,g
(
T −τ

(| f ||∂ g|) + ‖∂ g‖Y p
t
T −τ

(|∂ f |)).
(ii) g · hg = 1 and h j ∈ H∞ ∩ Q p

t .

Proof. Since |ω j,k| � C g |∂ g| ∈ Y p
t ⊂ Y1, by (2), we have h j ∈ H∞ . Therefore, in order to prove (ii) we only need to show

that ‖∂h j‖Y p
t

< ∞, and this will be a consequence of (i) with f = 1 and Proposition 3.1.
Let us prove (i). In the proof of [10, Theorem 3.1] (see also [18, Section 7.2]) it is shown that there exist functions

L|ω j,k|(ω j,k)(z) ∈ L∞(dν)∩ C1(D), whose boundary values coincide with the ones of zK|ω j,k|(ω j,k)(z) respectively, and which
satisfy∣∣∇L|ω j,k |(ω j,k)

∣∣ � C gT 0(|∂ g|).
Therefore, replacing in the definition of h j the functions K|ω j,k|(ω j,k)(z) by zL|ω j,k|(ω j,k)(z), we obtain a new function

h̃ j ∈ L∞(dν) ∩ C1(D) whose admissible boundary values coincide with the ones of h j , and which satisfies∣∣∂h̃ j(w)
∣∣ � C g

(∣∣∂ g(w)
∣∣ + T 0(|∂ g|)(w)

)
. (7)

Since |∂ g| ∈ Y p
t , Proposition 3.1(iii) gives T 0(|∂ g|) ∈ Y p

t and thus ∂h̃ j ∈ Y p
t . Moreover, we have

∂h j(z) = ∂

∫
T

h̃ j(ζ )

1 − zζ
dσ(ζ ) = −

∫
T

h̃ j(ζ )

(1 − zζ )2

dζ

2π i
=

∫
D

∂h̃ j(w)

(1 − zw)2
dν(w).

By Lemmas 2.2 and 2.1, we have∫
D

dν(w)

|1 − zw|2|1 − wu|2 � cτ
(1 − |z|2)−τ (1 − |u|2)−τ

|1 − zu|2−2τ
, for any τ > 0.

Thus, Fubini’s theorem and (7) give

|∂h j| � cτ ,gT −τ
(|∂ g|). (8)

Clearly, assertion (i) follows from (8) and Proposition 3.1(iv).
Finally, let us prove that ∂h j ∈ Y p

t . By Proposition 3.1, if 0 < τ < min{t/p, (1 − t)/p}, then T −τ is bounded on Y p
t . Thus,

by (8),

‖∂h j‖Y p
t

� cτ ,g
∥∥T −τ

(|∂ g|)∥∥Y p
t

�
∥∥T −τ

∥∥∥∥|∂ g|∥∥Y p
t
,

which concludes the proof of (ii). �
Remark 4.2. Observe that conditions X1, X2 and X3 are the properties of the space X = Y p

t that we have needed to prove
the above result. Therefore, assuming that a normed space X satisfies these conditions, we can follow the proof of the above
theorem to solve the corona problem in H∞ ∩ H X1. We will formulate this result in the next section.

5. The corona theorem for algebras of pointwise multipliers

5.1. The main results

The following lemma will be needed to prove our results.
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Lemma 5.1. Let E be a normed space of functions satisfying C ⊂ E ⊂ L1
δ , for some δ > 0, and the condition X2 .

If ϕ ∈ E, ψ ∈ L∞ and f ∈ H∞ ∩ H E1 , then we have:

(i) |ϕ| ∈ E and ‖|ϕ|‖E = ‖ϕ‖E .
(ii) L∞(D) ⊂ E and ‖ψϕ‖E � ‖ψ‖∞‖ϕ‖E .

(iii) ‖ f ‖H∞∩H E1 := ‖ f ‖H∞ + ‖ f ‖H E + ‖∂ f ‖H E ≈ ‖ f ‖H∞ + ‖∂ f ‖H E .

Proof. Assertion (i) follows applying X2 to ψ0 = ψ ∈ E and ψ1 = |ψ | ∈ L1
δ . In order to prove (ii) apply X2 to ψ0 = ‖ϕ‖∞ ∈ E

and ψ1 = ϕ ∈ L∞ ⊂ L1
δ . Assertion (iii) is a consequence of (ii). �

Theorem 5.2. Let X be a normed space satisfying X1, X2 and X3. Then the corona theorem holds for H∞ ∩ H X1 .

Proof. Given a corona data g in H∞ ∩ H X1, we prove that the functions h j defined in (1) are also in H∞ ∩ H X1, that is
‖h j‖H∞ + ‖∂h j‖X < ∞.

Since X satisfies X1, we have H∞ ∩ H X1 ⊂ H∞ ∩ Q q
t , and thus Theorem 4.1 gives h j ∈ H∞ .

The estimate ‖∂h j‖X � ‖g‖H X1 follows from (8) and properties X2 and X3. Indeed

‖∂h j‖X �
∥∥T −τ

(|∂ g|)∥∥X �
∥∥T −τ

∥∥∥∥|∂ g|∥∥X ,

which concludes the proof. �
As a corollary we obtain an alternative proof of the following well-known result (see [16] and [10]).

Theorem 5.3. The corona theorem holds for H∞ ∩ B p
1/p , p > 1.

Proof. First observe that if X = L p
p−1, then H X1 = B p

1/p . Clearly L p
p−1 contains the constants, satisfies X2 and by Proposi-

tion 3.1 also satisfies X3.
Therefore, in order to apply Theorem 5.2, it is enough to prove that L p

p−1 ⊂ Y q
t , for some 1 < q < ∞ and 0 < t < 1.

Let 1 < q < p, p1 = (p/q)′ = p/(p − q) and 1/p1 < t < 1. Then, by Hölder’s inequality we have∫
T (I)

∣∣ϕ(z)
∣∣q(

1 − |z|2)t+q−2
dν(z)

�
( ∫

T (I)

∣∣ϕ(z)
∣∣p(

1 − |z|2)p−2
dν(z)

)q/p( ∫
T (I)

(
1 − |z|2)p1t−2

dν(z)

)1/p1

� ‖ϕ‖q
L p

p−1
|I|t,

which proves that X ⊂ Y q
t for any 1 < q < p and (p − q)/p < t < 1. �

We now apply Theorem 5.2 to solve corona problems in some algebras of pointwise multipliers of Banach spaces F ⊂ H .
In order to do so, we write the corresponding space of multipliers as H∞ ∩ H X1 with X satisfying the hypothesis of
Theorem 5.2.

The next results are needed to prove Theorem 1.3.

Proposition 5.4. Let C ⊂ E ⊂ L1(dν) be a normed space satisfying condition X2. If X = Mult(H E1, E), then Mult(H E1) = H∞ ∩
H X1 .

Proof. Let us prove the embedding H∞ ∩ H X1 ⊂ Mult(H E1). If f ∈ H E1 and g ∈ H∞ ∩ H X1, then

‖g f ‖H E1 = ‖g f ‖E + ∥∥∂(g f )
∥∥

E � ‖g‖∞
(‖ f ‖E + ‖∂ f ‖E

) + ‖∂ g‖X‖ f ‖H E1 ,

which proves that ‖g‖Mult(H E1) � ‖g‖∞ + ‖g‖H X1 .
Let us prove the converse. If g ∈ Mult(H E1), then for any positive integer k we have∥∥gk

∥∥1/k
H E1

� ‖g‖Mult(H E1)‖1‖1/k
H E1

.

Since, H E1 ⊂ E ⊂ L1(dν), we obtain

‖g‖H∞ � sup
∥∥gk

∥∥1/k
L1 � sup

∥∥gk
∥∥1/k

H E1
� ‖g‖Mult(H E1). (9)
k∈N k∈N
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To complete the proof, we show that

‖g‖H X1 = ‖g‖X + ‖∂ g‖X � ‖g‖Mult(H E1),

which follows from

‖ f g‖H E � ‖g‖∞‖ f ‖H E � ‖g‖Mult(H E1)‖ f ‖H E1 ,

‖ f ∂ g‖H E �
∥∥∂( f g)

∥∥
H E + ‖g∂ f ‖H E �

(‖g‖Mult(H E1) + ‖g‖∞
)‖ f ‖H E1

and (9). �
In order to apply Theorem 5.2 to X = Mult(H E1, E), we will need to check that this space satisfies conditions X1, X2

and X3.

Proposition 5.5. Let C⊂ E ⊂ L1(D) be a normed space satisfying conditions X2 and X3.
If X = Mult(H E1, E) satisfies X1, then it also satisfies X2 and X3.

Proof. Let us prove that X satisfies X2. Assume that ψ0 ∈ X , ψ1 ∈ L1
δ and |ψ1| � |ψ0|. We want to prove that ψ1 ∈ X .

Observe that if E ⊂ L1, then H E1 ⊂ B1
0 ⊂ B∞−1, that is, if f ∈ H E1, then ‖(1 − |z|2) f (z)‖∞ < ∞. Therefore, f ψ1 ∈ L1

δ+1,
f ψ0 ∈ E and | f ψ1| � | f ψ0|. Since E satisfies property X2, f ψ1 ∈ E and

‖ f ψ1‖E � ‖ f ψ0‖E � ‖ψ0‖X‖ f ‖H E1 ,

which proves that X also satisfies X2.
Let us prove that X satisfies X3. If ϕ ∈ X ⊂ Y q

t and f ∈ H E1, then, by Proposition 3.1(iii) and the hypothesis that E
satisfy X2 and X3, we have

∥∥ f T −τ (ϕ)
∥∥

E �
∥∥T −τ

(| f ϕ|)∥∥E + ‖ϕ‖Y q
t

∥∥T −τ
(|∂ f |)∥∥E �

∥∥T −τ
∥∥(‖ϕ‖Mult(H E1,E) + ‖ϕ‖Y q

t

)‖ f ‖H E1 ,

which proves that ‖T −τ (ϕ)‖X � ‖ϕ‖X . �
Corollary 5.6. If E satisfies X1, X2 and X3, then X = Mult(H E1, E) also satisfies these conditions.

Proof. The result follows from Proposition 5.5 and the fact that for some 1 � q < ∞ and 0 < t < 1 we have Mult(H E1, E) ⊂
E ⊂ Y q

t . �
Remark 5.7. Observe that if E = X (0) satisfies conditions in Proposition 5.5, then X (1) := Mult(H E1, E) satisfy conditions X1,
X2 and X3, and, by Corollary 5.6, X (k) := Mult(H X (k−1)

1 , X (k−1)), k � 2, also satisfy these conditions.

We now prove the following theorem.

Theorem 5.8. Let C ⊂ X (0) ⊂ L1(D) be a normed space satisfying properties X2 and X3. If for some 1 < q < ∞ and 0 < t < 1 we
have Mult(H X (0)

1 , X (0)) ⊂ Y q
t , then the corona theorem holds for Mult(H X (k)

1 ), k � 0.

Proof. Proposition 5.4 gives Mult(H X (k)
1 ) = H∞ ∩ H X (k+1)

1 , and by Proposition 5.5 the spaces X (k+1) satisfy properties X1,

X2 and X3. Therefore, by Theorem 5.2, the corona theorem holds for Mult(H X (k)
1 ). �

Corollary 5.9. Let X (0) be a normed space satisfying properties X1, X2 and X3. Then the corona theorem holds for Mult(H X (k)
1 ),

k � 0.

Now we apply Theorem 5.8 and Corollary 5.9 to prove corona theorems for algebras of pointwise multipliers of some
classical spaces of holomorphic functions on D.

5.2. The corona theorem for subalgebras of Mult(B p
s )

Let X (0) = L p
(1−s)p , 1 � p < ∞, 0 < s < 1/p.

By Hölder’s inequality, it is clear that X (0) ⊂ L1(dν) and that X (0) satisfies X2. By Proposition 3.1(ii), it also satisfies X3.
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In this case H X (0) = B p
s−1, H X (0)

1 = B p
s ,

X (1) = Mult
(

H X (0)
1 , X (0)

) = {
ϕ ∈ Lp

(1−s)p: |ϕ|p dν(1−s)p ∈ Car
(

B p
s
)}

,

H X (1)
1 = C B p

s = {
g ∈ B p

s−1:
(∣∣g(z)

∣∣ + ∣∣∂ g(z)
∣∣)p

dν(1−s)p(z) ∈ Car
(

B p
s
)}

and by Proposition 2.6, X (1) ⊂ Y p
1−sp .

Therefore, X (0) satisfies the hypothesis of Theorem 5.8, and then we have:

Theorem 5.10. If 1 � p < ∞, 0 < s � 1/p, s < 1 and X (0) = L p
(1−s)p , then the corona theorem holds for the algebras Mult(H X (k)

1 ).

In particular, the corona theorem holds for Mult(B p
s ) and Mult(C B p

s ).

Remark 5.11. We recall that the corona theorem in Mult(B p
s ) was proved for all 1 � p < ∞ and s > 0 in [16] using other

methods. The cases 1 < p < ∞, s > 1/p and p = 1, s � 1 not considered in the above theorem correspond to the regular
cases where Mult(B p

s ) = B p
s .

5.3. The corona theorem for subalgebras of Mult(Q q
t )

Let X (0) = Y p
t , 1 < p < ∞, 0 < t < 1. In this case H X (0) = H ∩ Y p

t and H X (0)
1 = Q p

t . It is clear that X (0) satisfies X1 and
X2. By Proposition 3.1(iii) it also satisfies X3. Therefore, by Corollary 5.9, we have:

Theorem 5.12. If 1 � p < ∞, 0 < t < 1 and X (0) = Y p
t , then the corona theorem holds for the algebras Mult(H X (k)

1 ), k � 0.
In particular, the corona theorem holds for Mult(Q p

t ).

This theorem generalizes the corona theorem for Mult(Q 2
t ) proved in [12].

5.4. The corona theorem for subalgebras of Mult(H W p
1 (θ)), θ ∈ Bp

In this section we prove Theorem 1.7. To do so we need to recall the definitions of the Bp,κ class given in [6] and of the
Muckenhoupt class Ap,κ .

Definition 5.13. Let 1 < p < ∞ and κ > 0.

The set Bp,κ denotes the Békollé class of positive weights θ ∈ L1(dνκ ) satisfying θ
−1

p−1 ∈ L1(dνκ ) and

Bp,κ (θ) := sup
I⊂T

(
1

|I|1+κ

∫
T (I)

θ dνκ

)1/p(
1

|I|1+κ

∫
T (I)

θ
−1

p−1 dνκ

)1/p′

< ∞.

By Ap,κ we denote the Muckenhoupt class of positive weights θ ∈ L1(dνκ ) satisfying θ
−1

p−1 ∈ L1(dνκ ) and

Ap,κ (θ) := sup
B

(
1

r1+κ

∫
B∩D

θ dνκ

)1/p(
1

r1+κ

∫
B∩D

θ
−1

p−1 dνκ

)1/p′

< ∞,

where the supremum is over all the balls B = B(w, r) with w ∈D and 0 < r < 2.
The classes Ap and Bp correspond to the case κ = 1, that is Ap :=Ap,1 and Bp := Bp,1.

We recall that if 1 < p < ∞, then the Bergman projection is bounded on L p(θ) if and only if θ ∈ Bp (see [6, Theorem 1]).
Since for any ζ ∈ T, then we have that T (I(ζ, r)) = B(ζ, r) ∩D, it is clear that Ap,κ ⊂ Bp,κ .
The next lemma states some properties of the Bp,κ weights. We will give a sketch of the proof for completeness.

Lemma 5.14. Let 1 < p < ∞, 0 < κ and θ ∈ Bp,κ . Then

(i) There exists C > 0, such that for all ζ ∈ T and 0 < r < R∫
T (I(ζ,R))

θ dνκ � CBp,κ (θ)

(
R

r

)(1+κ)p ∫
T (I(ζ,r))

θdνκ .

(ii) If κ0 < κ , then Bp,κ0 ⊂ Bp,κ .
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Proof. In order to prove these results, let

Θκ(ζ, R) :=
( ∫

T (I(ζ,R))

θdνκ

)1/p

, Θ ′
κ (ζ, R) :=

( ∫
T (I(ζ,R))

θ
−1

p−1 dνκ

)1/p′

.

Since νκ(T (I(ζ, R))) ≈ R1+κ , Hölder’s inequality gives

R1+κ ≈ νκ

(
T
(

I(ζ, R)
)) =

∫
T (I(ζ,R))

dνκ � Θκ(ζ, R)Θ ′
κ (ζ, R) � Bp,κ (θ)R1+κ .

Therefore, (i) follows from

Θκ(ζ, R) � Bp,κ (θ)R1+κ

Θ ′
κ (ζ, R)

� Bp,κ (θ)R1+κ

Θ ′
κ (ζ, r)

� Bp,κ (θ)
R1+κ

r1+κ
Θκ(ζ, r).

If z ∈ T (I(ζ, R)), then 1 − |z|2 � 2R and thus

Θκ(ζ, R) � R(κ−κ0)/pΘκ0(ζ, R), Θ ′
κ (ζ, R) � R(κ−κ0)/p′

Θ ′
κ0

(ζ, R),

which proves Bp,κ (θ) � Bp,κ0(θ) and also (ii). �
Theorem 5.15. Let 1 < p < ∞, 0 < κ < 1 and θ ∈ Bp,κ . If X (0) = L p(θ), then the corona theorem holds for the algebras Mult(H X (k)

1 ),
k � 0. In particular the corona theorem holds for Mult(H W p

1 (θ)).

Proof. We prove that the space L p(θ) satisfies the hypothesis of Theorem 5.8.
It is clear that C⊂ L p(θ) and that this space satisfies X2. The proof of the fact that L p(θ) ⊂ L1(dν) follows from Hölder’s

inequality. Indeed, if ψ ∈ L p(θ), then

∫
D

|ψ |dν � ‖ψ‖L p(θ)

(∫
D

θ
−1

p−1 dν

)1/p′

� ‖ψ‖L p(θ)

(∫
D

θ
−1

p−1 dνκ

)1/p′

� ‖ψ‖L p(θ).

In order to prove that L p(θ) satisfies X3 we use the fact that if θ ∈ Bp,κ , then the integral operator with kernel

P
κ (w, z) = (1 − |w|2)κ−1

|1 − zw|1+κ
,

is bounded on L p(θdνκ ) (see [6, Propositions 3, 5]).
Using this result and the estimate 1 − |w|2,1 − |z|2 � 2|1 − zw|, if 0 < τ < min{ 1−κ

p , 1−κ
p′ } and 0 � ψ ∈ L p(θ), then we

have

∥∥T −τ (ψ)
∥∥p

L p(θ)
=

∫
D

(∫
D

ψ(w)
(1 − |w|2)−τ

|1 − zw|2−2τ
dν(w)

)p(
1 − |z|2)−τ p

θ(z)dν(z)

�
∫
D

(
P

κ
(
ψ(w)

(
1 − |w|2)(1−κ)/p)

(z)
)p

θ(z)dνκ(z)

�
∥∥ψ(w)

(
1 − |w|2)(1−κ)/p∥∥p

L p(θ dνκ )
= ‖ψ‖p

L p(θ),

which proves that L p(θ) satisfies X3.
We now prove that if t satisfies κ − 1 < (t − 1)p′ < 0, then X = Mult(H W p

1 (θ), L p(θ)) ⊂ Y 1
t .

Let ϕ ∈ X . We want to show that∫
T (Ia)

|ϕ|dνt �
( ∫

T (Ia)

|ϕ|pθ dν

)1/p( ∫
T (Ia)

θ
−1

p−1 dν(t−1)p′+1

)1/p′

� Cϕ,θ |Ia|t .

For z ∈ T (Ia), we have |1 − za| ≈ 1 − |a|2 and∫
T (Ia)

|ϕ|pθ dν �
∫
D

∣∣∣∣ (1 − |a|2)2

(1 − za)2

∣∣∣∣
p∣∣ϕ(z)

∣∣p
θ(z)dν(z) � ‖ϕ‖p

X

∫
D

(1 − |a|2)2p

|1 − za|3p
θ(z)dν(z).
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Using the partition D= ⋃ J (a)

j=1 U j(a) \ U j−1(a) defined in (5) and Lemma 5.14, we have

∫
T (Ia)

|ϕ|pθ dν � ‖ϕ‖p
X

Ja∑
j=0

(1 − |a|2)−p

23pj

∫
U j(a)

θ dν � ‖ϕ‖p
X

∞∑
j=0

(1 − |a|2)−p

2 jp

∫
T (Ia)

θ dν

� ‖ϕ‖p
X

(
1 − |a|2)−p

∫
T (Ia)

θ dν � ‖ϕ‖p
X

(
1 − |a|2)−p+1−κ

∫
T (Ia)

θ dνκ .

Since κ − 1 < (t − 1)p′ < 0, we have∫
T (Ia)

θ
−1

p−1 dν(t−1)p′+1 �
(
1 − |a|2)(t−1)p′+1−κ

∫
T (Ia)

θ
−1

p−1 dνκ .

Combining these estimates, we obtain
∫

T (Ia)
|ϕ|dνt � ‖ϕ‖p

XBp,κ (θ)|Ia|t , which proves the result. �
We now consider the case κ = 1.
Recall that if θ ∈Ap , p > 1, then there exists 1 < q < p such that θ ∈Aq (see [15, Chapter 5, Section 3]). As it is pointed

in [6], this result is not true for weights θ ∈ Bp . The next result for Ap weights is similar to the one above mentioned.

Lemma 5.16. Let 1 < p < ∞. If θ ∈Ap , then there exists 0 < κ = κ(θ) < 1 such that θ ∈Ap,κ .

Proof. It is well known that if θ ∈ Ap , then there exists q = q(θ) > 1 such that θq ∈ Ap (see [15, Chapter 5, Section 6.1]).
We prove that if 1/q < κ < 1, then θ ∈Ap,κ . Since 0 > (κ − 1)q′ > −1, we have( ∫

B(w,r)

(
1 − |z|2)(κ−1)q′

dν(z)

)1/q′

� r2/q′+κ−1 = r1+κ−2/q.

Thus, applying Hölder’s inequality with exponent q to the next integrals

1

r1+κ

( ∫
B(w,r)

θ dνκ

)1/p( ∫
B(w,r)

θ
−1

p−1 dνκ

)1/p′

,

we obtain Ap,κ (θ) �Ap(θq)1/q which proves the result. �
Proposition 5.17. Let 1 < p < ∞ and θ ∈ Bp . Then, there exists 0 < κ < 1 and Θ ∈Ap,κ such that H W p

1 (Θ) = H W p
1 (θ).

Proof. By [7, Theorem 2.19] and [7, Proposition 3.9], given θ ∈ Bp there exists a weight Θ ∈ Ap such that H W p
1 (Θ) =

H W p
1 (θ). Therefore, the result follows from Lemma 5.16. �

As a consequence of Proposition 5.17 and Theorem 5.15 we have:

Theorem 5.18. If 1 < p < ∞ and θ ∈ Bp , then the corona theorem holds for Mult(H W p
1 (θ)).
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