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1. Introduction

There has been much study of finding positive solutions to various logistic problems involving the Laplacian and the
p-Laplacian; problems which, loosely speaking, contain a nonlinear term that behaves like λup−1(1 − uγ ) with γ > 1.

Also, there has been study of logistic problems with harvesting, where one subtracts a harvesting term of the form ch(x).
These arise from problems in fishery or hunting management [17], in which case one is interested in finding positive
solutions. In [18], Oruganti, Shi and Shivaji looked for results in bounded domains, finding positive solutions to{−�u = au − bu2 − ch(x), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where a,b, c > 0 are constants, Ω is a smooth bounded region with ∂Ω ∈ C2 and h ∈ Cα(Ω̄) is positive in Ω and vanishes
on ∂Ω . They proved that if a > λ1 then there exists a constant c2 = c2(a,b) such that, for 0 < c < c2, (1.1) has a maximal
positive solution and no positive solution for c > c2. In addition, Oruganti, Shi and Shivaji in [19] were able to extend the
above result to the p-Laplacian, finding positive solutions to{−�pu = aup−1 − uγ −1 − ch(x), x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.2)

On the other hand, Du and Ma [8] studied a logistic problem for the Laplacian in R
N , looking for positive solutions (λ, u)

to

−�u = λa(x)u − b(x)uγ in R
N
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where γ > 1, 0 < b(x) ∈ C∞(RN ), 0 < a(x) ∈ C1(RN ) and a(x) � P (x) for a radially symmetric P (x) satisfying∫
RN

P (x)

|x|N−2
< ∞.

In addition, Costa, Drabek and Tehrani [4] and Girão and Tehrani [12] considered the logistic problem for the Laplacian
in R

N with harvesting and extended the result of Oruganti, Shi and Shivaji for the Laplacian in bounded domains. In [4] the
authors find positive solutions to

−�u = a(x)
(
λu − uγ

) − μh(x) in R
N ,

where γ > 1, λ > λ1, 0 < a(x) ∈ LN/2(RN ) ∩ L∞(RN ) and 0 < h(x) is a rapidly decreasing function in R
N . They showed that

there exists μ̂ = μ̂(λ) > 0 such that for all 0 < μ < μ̂ there exists a solution uμ > 0 in R
N satisfying

uμ � C

|x|N−2
for |x| large.

In this paper we will generalize the above results in the non-harvesting case by considering the p-Laplacian on the whole
space. We will look for positive solutions to

−�pu = a(x)
(
λ|u|p−2u − g(u)

)
, x ∈R

N , (1.3)

where g(s) behaves like sγ −1, γ > p, for s large. We will borrow some ideas from [4] and, in doing so, will not only prove
the existence of positive (weak) solutions, but will also have estimates for the behavior of these solutions at infinity. Namely,
we will show existence of a positive solution u0 satisfying

u0(x) � C |x|− N−p
p−1 for |x| large,

and, by strengthening the assumptions on g(u) and a(x), we prove that u0 is in fact the unique positive solution to (1.3)
and that the above estimate at infinity is sharp.

We note that the method of sub and super solutions was used in [19], while the approach in the other works mentioned
above (and in the present paper) uses minimization methods applied to the underlying functional.

2. Preliminaries and variational framework

2.1. Preliminaries

Since the needed preliminary results are scattered throughout the literature, and for the convenience of the reader, we
collect in this section the known results on solutions to some quasilinear equations which have a bearing on the problems
considered in this paper.

We start with a few comments on the notation. All integrals will be assumed to be taken over R
N unless otherwise

stated. We let D1,p = D1,p(RN ) be the completion of C∞
0 = C∞

0 (RN ) under the norm ‖u‖ = (
∫ |∇u|p)1/p . In addition, for a

bounded domain Ω ⊂ R
N , W 1,p(Ω) denotes the completion of C∞(Ω) under the norm ‖u‖W 1,p(Ω) = (

∫
Ω

|∇u|p + |u|p)1/p ,

and W 1,p
0 (Ω) the completion of C∞

0 (Ω) under the norm ‖∇u‖p,Ω = (
∫
Ω

|∇u|p)1/p . We also denote the norm on Lr =
Lr(RN ) by ‖u‖r = (

∫ |u|r)1/r , and define the norm on the weighted Lr space Lr
a(x) = Lr

a(x)(R
N ) by ‖u‖r,a(x) = (

∫
a(x)|u|r)1/r .

Finally, �pu = div(|∇u|p−2∇u) denotes the p-Laplacian operator. Throughout the paper we will be assuming 1 < p < N and
letting p∗ = Np

N−p denote the limiting exponent q = p∗ in the Sobolev embedding W 1,p(Ω) ⊂ Lq(Ω).
A basic result on existence and uniqueness of solution to the p-Laplacian under Dirichlet boundary condition is the

following

Theorem 2.1. (i) Let Ω ⊂ R
N be a bounded domain and consider the Dirichlet problem{−�pu = f in Ω,

u = 0 on ∂Ω,
(2.1)

where f ∈ L p∗ ′(Ω) and p∗′ = p∗
p∗−1 = Np

Np−(N−p)
. Then (2.1) has a unique weak solution u f ∈ W 1,p

0 (Ω), i.e.∫
Ω

|∇u f |p−2∇u f · ∇v =
∫
Ω

f v ∀v ∈ W 1,p
0 (Ω).

In addition, we have ‖∇u f ‖p,Ω � C‖ f ‖1/(p−1)
p∗ ′ for some C > 0 independent of f .

(ii) Let f ∈ L p∗ ′(RN ). Then there is a unique weak solution u f ∈ D1,p(RN ) to

−�pu f = f ,
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i.e. ∫
|∇u f |p−2∇u f · ∇v =

∫
f v ∀v ∈ D1,p

(
R

N)
.

Proof. Part (i) follows from Theorem 3.1 of Drabek and Simander [7] and (ii) follows from Theorem 4.1 of the same
source. �

The next two results provide some estimates for sub and super solutions of equations involving the p-Laplacian:

Theorem 2.2. Consider the equation

−�pu = c(x)|u|p−2u + d(x) (2.2)

in a domain Ω ⊂ R
N , where 1 < p < N and c(x),d(x) ∈ L∞(Ω). Let K = K (3ρ) denote a cube with side length 3ρ > 0 and K ⊂ Ω .

Assume u ∈ D1,p is nonnegative in K .
(i) If u is a weak supersolution of (2.2) in K , then

ρ−N/γ ‖uχK (2ρ)‖γ � C min
K (ρ)

u(x)

for any γ <
N(p−1)

N−p , where C = C(p, N,‖c‖∞,‖d‖∞).
(ii) If u is a weak subsolution of (2.2) in K , then

max
K (ρ)

u(x) � Cρ−N/γ ‖uχK (2ρ)‖γ

for any γ > p − 1, where C = C(p, N,‖c‖∞,‖d‖∞).

Proof. Noting that �pu = div(|∇u|p−2∇u) and setting

A(x, u, v) = |v|p−2 v, B(x, u, v) = c(x)|u|p−2u + d(x),

the forms A(x, u, v) and B(x, u, v) satisfy the conditions of Theorems 1.2 and 1.3 of Trudinger [22] and the result follows. �
Theorem 2.3. Let p > 1, 1

p + 1
q = 1 and let u be a bounded, nonnegative, p-superharmonic function in Ω such that∫

Ω

|∇u|p−2∇u · ∇φ dx =
∫
Ω

φ dμ

for some nonnegative Radon measure μ on Ω and all φ ∈ C∞
0 (Ω). Define

W μ
1,p(x, r) =

r∫
0

(
μ(Bt(x))

tN−p

)q−1 dt

t
.

If B3r(a) ⊂ Ω , then there exists constants A1 , A2 and A3 such that

A1W μ
1,p(a, r) � u(a) � A2 inf

x∈Br(a)
u(x) + A3W μ

1,p(a,2r).

Proof. This is Theorem 1.6 of Kilpelainen and Maly [14] for the case A(x,h) = |h|p−2h. (See also Theorem 3.1 of [13].) �
The next preliminary result provides some maximum and comparison principles for the p-Laplacian operator:

Theorem 2.4. Let Ω ⊂ R
N be a bounded domain of class C1+α , 0 < α < 1 and let p > 1, 1

p + 1
q = 1.

(i) Let u ∈ C1(Ω) satisfy u � 0 in Ω and −�pu � 0 a.e. in Ω . Then either u ≡ 0 or u > 0 on Ω . Moreover, if u ∈ C1(Ω ∪ {x0}) for
any x0 ∈ ∂Ω that satisfies an interior sphere condition and u(x0) = 0, then ∂u

∂ν > 0 where ν is an interior normal at x0 .
(ii) Let u ∈ W 1,p(Ω) ∩ L∞(Ω) be a weak solution to{−�pu = f (x) in Ω,

u = f1 on ∂Ω,

where f ∈ L∞(Ω) and f1 ∈ C1+α(∂Ω). Then there exists 0 < β < 1 such that u ∈ C1+β(Ω̄).
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(iii) (Maximum Principle) Assume that u ∈ W 1,p(Ω) satisfies{−�pu = f (x) in Ω,

u � 0 on ∂Ω,

with f ∈ W −1,q(Ω) ∩ L∞
loc(Ω), f � 0. Then either u > 0 in Ω , or u ≡ 0 in Ω .

(iv) (Weak Comparison Principle) For i = 1,2, suppose ui ∈ W 1,p(Ω) ∩ L∞(Ω) satisfy �pui ∈ L∞(Ω), ui |∂Ω ∈ C1+α(∂Ω)

together with the inequalities{−�pu1 � −�pu2 in Ω,

u1 � u2 on ∂Ω.

Assume in addition that −�pu2 � 0 in Ω and u2 � 0 on ∂Ω . Then

u1(x) � u2(x) for each x ∈ Ω.

Proof. (i) follows from Theorem 5 of Vazquez [23], while (ii) and (iii) follow from results of Garcia-Melian and de Lis [11].
(iv) By part (ii) we have ui ∈ C1+β(Ω̄), and by part (i), u2 > 0 in Ω and ∂u2

∂v < 0 at that part of ∂Ω where u2 = 0.
Therefore there exists c > 1 such that u1 < cu2 in Ω . Consider the problem{−�p v = −�pu2 in Ω,

v = u2 on ∂Ω.
(2.3)

Then u1 and cu2 are sub and supersolutions, respectively, of (2.3). Thus, the method of sub and supersolutions (e.g., see
Theorem 4.14 of Diaz [5]) yields existence of a solution v ∈ W 1,p(Ω) ∩ L∞(Ω) to (2.3), with u1 � v � cu2, which must be
nonnegative.

We claim that (2.3) has a unique nonnegative solution in W 1,p(Ω) ∩ L∞(Ω). Suppose we have two such solutions v1
and v2. Then parts (i) and (ii) imply that v1/v2, v2/v1 ∈ L∞(Ω). Then following a proof similar to that of Lemma 2.7 of
the next section, we have that v1 = cv2 for some constant c. Since v1 = v2 on ∂Ω we have proved the claim.

Therefore v = u2 and we have u1 � u2, completing the proof of the theorem. �
Finally we present a general regularity result for solutions of quasilinear equations associated with the p-Laplacian:

Theorem 2.5. (Cf. Theorem 1 of Tolksdorf [21].) Suppose Ω ⊂ R
N is open and u ∈ W 1,p(Ω) ∩ L∞(Ω), 1 < p < ∞, is a weak solution

to

−�pu = a(x, u,∇u)

in Ω , where |a(x, u,∇u)| � Γ (1+|∇u|)p for some constant Γ > 0 and all x ∈ Ω . Then there exists 0 < α < 1 such that u ∈ C1,α
loc (Ω).

2.2. Variational eigenvalues and eigenfunctions of the p-Laplacian

Next we collect some properties and results on the eigenvalue problem for a weighted p-Laplacian operator. Namely let
0 < a(x) ∈ LN/p(RN ) ∩ L∞(RN ), and consider the eigenvalue problem:

−�pu = λa(x)|u|p−2u, (2.4)

in D1,p , where 1 < p < N . First we need to setup some variational framework. Let V be the completion of C∞
0 with respect

to the norm

‖u‖p
V =

∫
|∇u|p +

∫ |u|p

(1 + |x|)p
.

Let G = {u ∈ V | ∫ a(x)|u|p = 1}, and define

Γk = {
A ⊂ G

∣∣ A is symmetric, compact, and γ (A) � k
}
,

where γ (A) is the genus of A, i.e. the smallest integer k such that there exists an odd continuous map from A to R
k\{0}.

Define I(u) = 1
p

∫ |∇u|p and Ψ (u) = 1
p

∫
a(x)|u|p . Clearly I is well-defined on V . Furthermore, I is bounded below on G

as a simple application of Holder and Sobolev inequalities imply∫
a(x)|u|p � C‖a‖N/p‖u‖p ∀u ∈ D1,p. (2.5)

Finally, the functional I satisfies the Palais–Smale condition on G , i.e. for {un} ⊂ G , if I(un) is bounded and I ′(un) → 0,
then {un} has a convergent subsequence in V (cf. Allegretto and Huang [2]).

The various items in the following theorem as well as the accompanying lemma follow in a straightforward manner from
Ljusternik–Schnirelmann theory and by adapting the standard techniques of bounded domain case (cf. [3,16,15]) to R

N . See
also [9,10].
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Theorem 2.6. (i) The eigenvalue problem (2.4) has a sequence of solutions (λk,Φk) with
∫

a(x)|Φk|p = 1, 0 < λ1 � λ2 � · · · �
λk � · · · . Furthermore,

λ1 = inf
u∈D1,p

∫ |∇u|p∫
a(x)|u|p

and λk = inf
A∈Γk

sup
u∈A

∫
|∇u|p (k � 2).

As such, the solutions (λk,Φk) are called minimax eigenvalues and eigenvectors.
(ii) There exists a first eigenfunction Φ1 such that Φ1 > 0 on R

N .
(iii) λ1 is simple, i.e. the positive eigenfunction corresponding to λ1 is unique up to a constant multiple.
(iv) λ1 is unique, i.e. if v � 0 is an eigenfunction associated with an eigenvalue λ with

∫
a(x)|v|p = 1, then λ = λ1 .

(v) If μ > λ1 is an eigenvalue with eigenfunction v, then v must change signs in R
N .

Lemma 2.7. Suppose u, v ∈ C1 ∩ D1,p , u, v > 0 on R
N , u

v , v
u ∈ L∞ , and let

K (u, v) =
(

−�pu,
up − v p

up−1

)
−

(
−�p v,

up − v p

v p−1

)
.

Then up−v p

up−1 , up−v p

v p−1 ∈ D1,p , K (u, v) � 0 and K (u, v) = 0 if and only if there exists α > 0 such that u = αv.

We conclude this section with the following result on the first eigenfunction:

Theorem 2.8. Let Φ1 denote a first eigenfunction of (2.4) satisfying Φ1 > 0. Then (i) Φ1 ∈ Lr for all p∗ � r < ∞; (ii) Φ1 ∈ D1,p ∩ Lγ
a(x)

for all γ � p.

Proof. The proof of part (i) follows by employing an iteration argument similar to that used in Appendix B of Struwe [20].
For part (ii), we have∫

a(x)Φγ
1 �

(∫
a(x)

N
p

) p
N
(∫

Φ

γ N
N−p

1

) N−p
N

= ‖a‖N/p‖Φ1‖γ
γ N/(N−p) < ∞

where we used part (i) since γ N
N−p � pN

N−p = p∗ . �
3. Main results

In this chapter we prove the first of our main results. Unless stated otherwise, we assume throughout this section that
the following conditions hold:

(A0) g : R+ →R
+ is continuous,

(A1) lims→0+ g(s)
sp−1 = 0,

(A2) 0 < lim infs→∞ g(s)
sγ −1 � lim sups→∞ g(s)

sγ −1 < ∞ with γ > p,

(A3) g(s)
sp−1 is nondecreasing,

(B1) 0 < a(x) ∈ LN/p(RN ) ∩ L∞(RN ),
(B2) λ > λ1,

where λ1 = λ1(a(x), p) denotes the first eigenvalue of the p-Laplacian with weight a(x) as defined in Theorem 2.6.
Our main results in this section concern existence of a positive solution and its asymptotic behavior for

−�pu = λa(x)
(|u|p−2u − g(u)

)
, x ∈R

N . (3.1)

We say that u ∈ D1,p is a (weak) solution to (3.1) if∫
|∇u|p−2∇u · ∇v − λ

∫
a(x)|u|p−2uv +

∫
a(x)g(u)v = 0 (3.2)

holds for all v ∈ D1,p ∩ Lγ
a(x). Note that the condition v ∈ Lγ

a(x) arises from

∫
a(x)|u|γ −1 v �

(∫
a(x)|u|γ

) γ
γ −1

(∫
a(x)|v|γ

) 1
γ

,

and, as our construction below of a weak solution shows, we have u ∈ Lγ
a(x) . Furthermore we do not require v ∈ L p

a(x) , since

D1,p ⊂ L p
a(x) by (2.5).

Our main results in this paper are the following theorems.
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Theorem 3.1. If (A0)-(A3) and (B1), (B2) hold then (3.1) has a solution u0 > 0 in R
N satisfying

u0(x) � C

|x| N−p
p−1

for |x| large.

Theorem 3.2. Assume the hypotheses of Theorem 3.1. If, in addition,

(A′
3) g(s)

sp−1 is increasing,

(B′
3) there exist C > 0 and P > N

p , with 1
P + 1

Q = 1, such that

|x| N
Q (p−1) ‖a‖L P (RN\B |x|(0)) � C ∀x ∈R

N ,

then u0 is the unique positive solution of Eq. (3.1) and

u0(x) = d(x)

|x| N−p
p−1

for |x| large, (3.3)

where C1 � d(x) � C2 for all x ∈R
N and some constants C1, C2 > 0.

3.1. Existence of solution

We first show that the hypothesis (B2) is in fact necessary for existence of a positive solution.

Theorem 3.3. If u ∈ D1,p is a positive weak solution to (3.1) then λ > λ1 .

Proof. By Theorem 2.6 we have that λ1 �
∫ |∇v|p∫
a(x)|v|p for all v ∈ D1,p , hence

λ1

∫
a(x)up � λ

∫
a(x)up −

∫
a(x)g(u)u,

so that (λ1 − λ)
∫

a(x)up � − ∫
a(x)g(u)u < 0, as a(x) > 0, g(u)u > 0. �

Next, in order to prove Theorem 3.1, we extend the definition of g to all of R by taking g(s) = 0, for all s � 0. Also let
G(s) = ∫ s

0 g(t)dt and consider the functionals I and J defined by

J : D1,p → R∪ {∞}, J (u) =
∫

a(x)G(u),

I(u) =
{ 1

p

∫ |∇u|p − λ
p

∫
a(x)(u+)p + J (u), J (u) < ∞,

∞, J (u) = ∞.

Our goal is to find a solution to (3.1) by minimizing I . We will need the following preliminary results:

Lemma 3.4. Define T : D1,p → (D1,p)∗ by 〈T (u), v〉 = ∫
a(x)|u|p−2uv, where a(x) ∈ LN/p ∩ L∞ . Then T is compact.

Proof. See Lemma 2.2ii in [6]. �
Lemma 3.5. For any ε > 0 there exists constants C1 = C1(ε) and C2 = C2(ε) such that

−ε
(
s+)p−1 + C1

(
s+)γ −1 � g(s) � ε

(
s+)p−1 + C2

(
s+)γ −1

,

−ε
(
s+)p + C1

(
s+)γ � G(s) � ε

(
s+)p + C2

(
s+)γ

.

Proof. This follows from our conditions on g and Holder’s Inequality. �
In the next result we provide basic properties of the functional I which allows its minimization in D1,p .

Lemma 3.6. (a) I is coercive, i.e. I(u) → ∞ as ‖u‖ → ∞.
(b) I is a weakly lower semi-continuous functional.
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Proof. (a) We use some ideas of Du and Ma [8] and argue by contradiction.
Assume that there exists {un} ⊂ D1,p such that {I(un)} is bounded above and ‖un‖ → ∞. Let dn = (

∫
a(x)(u+

n )p)1/p . Then
‖un‖ → ∞ and I(un) � 1

p ‖un‖p − λ
p dp

n implies that dn → ∞.

Set ūn = un
dn

. Then
∫

a(x)(ū+
n )p = 1 and

I(un) = dp
n

p

∫
|∇ūn|p − λ

p
dp

n

∫
a(x)

(
ū+

n

)p +
∫

a(x)G(dnūn)

so that

pI(un)

dp
n

=
∫

|∇ūn|p − λ + p

dp
n

∫
a(x)G(dnūn) �

∫
|∇ūn|p − λ.

Therefore, since I(un)

dp
n

→ 0, we have that {‖ūn‖} is bounded. This implies, passing to a subsequence if necessary, that ūn ⇀ ū

in D1,p , ūn → ū a.e. in R
N , and ūn → ū in L p

a(x) (by Lemma 3.4). In addition, we have

pI(un)

dp
n

�
∫

|∇ūn|p − λ − εp

dp
n

∫
a(x)

(
dnū+

n

)p + C1 p

dp
n

∫
a(x)

(
dnū+

n

)γ
� −λ − εp + C1 pdγ −p

n

∫
a(x)

(
ū+

n

)γ
where we used Lemma 3.5.

Therefore, γ > p and dn → ∞ imply that
∫

a(x)(ū+
n )γ → 0. Hence, by Fatou’s Lemma we have∫

a(x)
(
ū+)γ = 0.

Since a(x) > 0 on R
N , we obtain ū � 0 on R

N . However this contradicts the fact that ūn → ū in L p
a(x) and

∫
a(x)(ū+

n )p = 1
for all n. This completes the proof of part (a).

(b) Assume un ⇀ u in D1,p . Then Lemma 3.4 implies∫
a(x)up

n →
∫

a(x)up .

Furthermore, since un(x) → u(x) for a.e. x ∈R
N , we have by Lebesgue Dominated Convergence Theorem and Fatou’s Lemma

that ∫
a(x)

∣∣u+
n

∣∣p →
∫

a(x)
∣∣u+∣∣p

,∫
a(x)G(u) � lim inf

n→∞

∫
a(x)G(un).

Finally, I(u) � lim infn→∞ I(un) since ‖ · ‖p is weakly lower semi-continuous. �
We have proved:

Theorem 3.7. The minimization problem below has a solution u0 ∈ D1,p with

inf
u∈D1,p

I(u) = I(u0). (3.4)

Next we have

Theorem 3.8. Suppose ū is a minimum point of I , i.e. a solution to (3.4). Assume that {tn} ∈ R
+ , limn→∞ tn = 0. Then, if v ∈ D1,p ∩

Lγ
a(x) , we have

0 = lim
n→∞

I(ū + tn v) − I(ū)

tn

=
∫

|∇ū|p−2∇ū · ∇v − λ

∫
a(x)

(
ū+)p−1

v +
∫

a(x)g(ū)v.
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Proof. It is enough to show that for v ∈ D1,p ∩ Lγ
a(x) , we have

lim
n→∞

J (ū + tn v) − J (ū)

tn
=

∫
a(x)g(ū)v,

as this implies the second equality above. Then using the fact that ū is a minimum of I and v can be replaced by −v , the
conclusion follows.

To prove the above equation we need to show that

∫
a(x)

(
1

tn

ū+tn v∫
ū

g(s)ds

)
dx →

∫
a(x)g(ū)v dx.

Define Fn(x) = 1
tn

∫ ū+tn v
ū g(s)ds. Since g is continuous, Fn(x) → g(ū(x))v(x) for a.e. x ∈ R

N . In addition, using the estimates

of Lemma 3.5, we have (for some 0 � t̄n � tn and assuming without loss of generality that tn � 1)

∣∣Fn(x)
∣∣ � 1

tn

(
tn|v|)g(ū + t̄n v)

� 1

tn

(
tn|v|)(ε(

ū+ + v+)p−1 + C2
(
ū+ + v+)γ −1)

� εC
((

ū+)p−1|v| + (
v+)p) + C

((
ū+)γ −1|v| + (

v+)γ )
.

Therefore, for any domain Ω ⊂ R
N ,

∣∣∣∣
∫
Ω

a(x)Fn(x)

∣∣∣∣ � εC

(∫
Ω

a(x)
∣∣ū+∣∣p

) p−1
p

·
(∫

Ω

a(x)|v|p
) 1

p

+ εC

∫
Ω

a(x)|v|p

+ C

(∫
Ω

a(x)
∣∣ū+∣∣γ ) γ −1

γ

·
(∫

Ω

a(x)|v|γ
) 1

γ

+ C

∫
Ω

a(x)|v|γ .

Now, we have v ∈ D1,p ∩ Lγ
a(x) ⊂ L p

a(x) ∩ Lγ
a(x) , ū ⊂ D1,p ⊂ L p

a(x) and
∫

a(x)|ū|γ < ∞ (because ū minimizing I implies∫
a(x)G(ū) < ∞). The result now follows from an application of Vitali’s Convergence Theorem. �

Corollary 3.9. A solution u0 to the minimization problem (3.4) is a weak solution of the problem

−�pu = λa(x)
(
u+)p−1 − a(x)g(u), x ∈R

N , (3.5)

i.e. ∫
|∇u0|p−2∇u0 · ∇v =

∫ (
λa(x)

(
u+

0

)p−1 − a(x)g(u0)
)

v ∀v ∈ Lγ
a(x) ∩ D1,p . (3.6)

In addition, I(u0) < 0, so that u0 is nontrivial.

Proof. The first part follows immediately from Theorem 3.8. For the second part, let Φ1 � 0 be a first eigenfunction (as in
Theorem 2.6), normalized so that ‖Φ1‖ = 1. Then we have

I(tΦ1) � 1

p

(
1 − λ

λ1

)
t p +

∫
a(x)

(
εt pΦ

p
1 + C2tγ Φ

γ
1

)
= 1

p

(
1 − λ

λ1
+ pε

λ1

)
t p + C2tγ

∫
a(x)Φγ

1 .

The result now follows since we are assuming that λ > λ1, by choosing ε and t sufficiently small and using the facts that
γ > p and Φ1 ∈ Lγ

a(x) . �
3.2. Properties of nonnegative solutions

We next consider the properties of our minimizer u0 found above. First, note that since G is a function of u+ and∫ |∇u0| �
∫ |∇u+

0 | we have I(u0) � I(u+
0 ) and, therefore, we may assume that the minimizer u0(x) is nonnegative in all

of RN .
We now consider the question of regularity of any nonnegative solution of (3.6) such as u0 � 0.
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Theorem 3.10. If u0 � 0 is a solution of (3.6), then

u0 ∈ L∞ ∩ Lγ
a(x) ∩ C1,α

loc and lim|x|→∞ u0(x) = 0.

Proof. We note that u0 is a weak solution to the variational inequality

−�pu � λa(x)χ{x|u0(x)>0}|u|p−2u, x ∈R
N .

Therefore, since u0 ∈ L p∗
, an application of Theorem 2.2 part (ii) (with γ = p∗ and moving the center of the cube K (3ρ) to

any x ∈ R
N ) yields that sup u+

0 � C ′‖u+
0 ‖p∗ � C‖u+

0 ‖ and lim|x|→∞ u+
0 (x) = 0 for some constant C = C(λ,‖a‖∞). Therefore

sup u+
0 � C̃, (3.7)

where C̃ = C̃(λ,‖a‖∞,‖u+
0 ‖). Also since u0(x) � 0, we have u0 ∈ L∞ and lim|x|→∞ u0(x) = 0.

Next, since u0 ∈ L∞ ∩ L p
a(x) and γ > p, we have that u0 ∈ Lγ

a(x) . Finally an application of Theorem 2.5 implies that

u0 ∈ C1,α
loc (RN ). �

Our next goal is to study the asymptotic behavior of u0 at infinity, proving in the process that u0 > 0. For that, we will
need the following two preliminary lemmas, whose proofs are slight modifications of those given in [4].

Lemma 3.11. Set f (x) = λa(x)(u+
0 (x))p−1 − a(x)g(u0(x)). Then f (x) � 0 for all x ∈ R

N .

Proof. Let S = max{s | g(s)
sp−1 = λ}. Then, by assumption (A3) in our conditions on g , we have that a(x)(λ(u+

0 (x))p−1 −
g(u0(x))) < 0 if and only if u0(x) > S . Now define v = (u0 − S)+ . Then since 0 � v � u+

0 � |u0| and u0 ∈ Lγ
a(x) ∩ D1,p , v

is an admissible test function in (3.6). Therefore, if {u0 > S} is nonempty then

0 �
∫

{u0>S}
|∇u0|p

=
∫

|∇u0|p−2∇u0 · ∇v

=
∫

{u0>S}
a(x)

(
λ
(
u+

0

)p−1 − g(u0)
)
(u0 − S)+ < 0,

a contradiction, so that u0 � S in R
N , proving the lemma. �

At this point we could prove that u0 > 0 by applying the Maximum Principle of Theorem 2.4. However we employ a
different method, which in addition provides estimates for the behavior of u0 at infinity.

Lemma 3.12. Given ε > 0, set

Vε = {
x
∣∣ u0(x) > εa(x)

N−p
p2 , f (x) > εa(x)

(
u0(x)

)p−1}
.

Then, there exists positive constants ε0, L0 and R1 � 1 such that

‖aχΩ‖N/p � L0,

for all 0 < ε � ε0 , where Ω = Vε ∩ B R1 (0) = Vε ∩{x | |x| � R1}. Here our constants ε0 and L0 may depend on λ, p,‖a‖N/p and ‖u0‖.

Proof. Let ε > 0. To simplify notation we write V = Vε . Then, letting v = u0 in (3.6), we have

‖u0‖p =
∫

λa(x)
(
u+

0

)p−1
u0 −

∫
a(x)g(u0)u0

=
∫
V

λa(x)
(
u+

0

)p−1
u0 −

∫
V

a(x)g(u0)u0 +
∫

RN \V

f (x)u0

� λC‖aχV ‖N/p‖u0‖p +
∫

RN \V

f (x)u0.

Consider the decomposition R
N\V = A1 ∪ A2, A1 ∩ A2 = ∅, where
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A1 = {
x
∣∣ u0(x) � εa(x)

N−p
p2

}
,

A2 = {
x
∣∣ f (x) � εa(x)

(
u+

0 (x)
)p−1

, u0(x) > εa(x)
N−p

p2
}
.

Then we obtain∫
A1

f (x)u0 = λ

∫
A1

a(x)
(
u+

0

)p −
∫
A1

a(x)g(u0)u0

� λεp
∫
A1

a(x)
(
a(x)

N−p
p2

)p

= λεp‖a‖N/p
N/p .

Furthermore,∫
A2

f (x)u0 � ε

∫
A2

a(x)|u0|p � εC‖a‖N/p‖u0‖p .

Therefore, combining the above estimates, we obtain

‖u0‖p � λC‖aχV ‖N/p‖u0‖p + λεp‖a‖N/p
N/p + εC‖u0‖p‖a‖N/p .

Therefore we can find ε0 > 0 (depending only on λ, ‖u0‖ and ‖a‖N/p) such that

λεp‖a‖N/p
N/p + εC‖u0‖p‖a‖N/p � 1

2
‖u0‖p,

for 0 < ε � ε0 and, hence,

‖aχV ‖N/p � 1

2λC
.

Next, we let L0 = 1
4λC . Since a ∈ LN/p(RN ) there exists R1 � 1 such that

‖aχRN \B R1 (0)‖N/p < L0.

Therefore, considering that Vε0 ⊂ Vε for 0 < ε < ε0, it follows that

‖aχVε∩B R1 (0)‖N/p � L0,

completing the proof of the lemma. �
Theorem 3.13. There exists C > 0 such that a nontrivial solution u0 � 0 of (3.6) is a positive weak solution to problem (3.1) and
satisfies

u0(x) � C

|x| N−p
p−1

for |x| large.

Proof. Let u0 � 0 be a nontrivial solution of (3.5). Using the notation of Lemma 3.12 and letting V = Vε0 , we have

−�pu0 = λa(x)
(
u+

0

)p−1 − a(x)g(u0) = f (x) � ε
p
0

(
a(x)

) Np−N+p
p2 on V ∩ B R1(0).

For R > R1, consider z = zR , the solution to the Dirichlet problem{
−�p z = ε

p
0

(
a(x)

) Np−N+p
p2 χV ∩B R1 (0) in B R(0),

z = 0 on ∂ B R(0).

The solution z exists by Theorem 2.1, is continuous (and hence bounded) by Theorem 2.5, and is p-superharmonic by

part (iv) of Theorem 2.4. Since f (x) � ε
p
0 (a(x))

Np−N+p
p2 in V ∩ B R1 (0) and f (x) � 0 in R

N (by Lemma 3.11), we have

−�pu0 � −�p z in B R(0).

Furthermore, since u0 � 0 in R
N , we have that

u0 � z on ∂ B R(0).



180 D.G. Costa et al. / J. Math. Anal. Appl. 391 (2012) 170–182
Therefore, by the Weak Comparison Principle of Theorem 2.4, we conclude that

u0 � z in B R(0).

Now, choose R � 24R1. Then for x ∈ B R/24(0),

B R1(0) ⊂ B R/12(x) ⊂ B R/6(x), and B R/2(x) ⊂ B R(0).

Since −�p z = ε
p
0 (a(x))

Np−N+p
Np χV ∩B R1 (0) in B R/2(x) ⊂ B R(0), we can apply Theorem 2.3 to

μ(Ω) =
∫
Ω

ε
p
0

(
a(x)

) Np−N+p
p2 χV ∩B R1 (0) dx

and get

z(x) � A1

R/6∫
0

(
1

tN−p

∫
Bt (x)

ε
p
0

(
a(y)

) Np−N+p
p2 χV ∩B R1 (0) dy

) 1
p−1 dt

t

� A1

R/6∫
R/12

(
1

tN−p

∫
B R1(0)

ε
p
0

(
a(y)

) Np−N+p
p2 χV ∩B R1 (0) dy

) 1
p−1 dt

t

= Cε
p

p−1
0

(
1

R

) N−p
p−1

( ∫
V ∩B R1 (0)

a
Np−N+p

p2

) 1
p−1

for |x| � R
24 . Now, by Theorem 3.12, we have

LN/p
0 �

∫
V ∩B R1 (0)

aN/p � ‖a‖α∞
∫

V ∩B R1(0)

a
Np−N+p

p2

where α = N
p − Np−N+p

p2 = N−p
p2 . Therefore, taking |x| = R

24 , and using the fact that R � 24R1 is arbitrary, we obtain the

existence of C1 = C1(ε0,‖a‖∞, L0) such that

u0(x) � C1

|x| N−p
p−1

, for |x| � R1.

Furthermore, choosing R = 24R1, we have that there exists C2 = C2(ε0,‖a‖∞, L0) such that

u0(x) � C2, for |x| � R

24
= R1.

Therefore u0 > 0 in R
N and

u0(x) � C

|x| N−p
p−1

for some C > 0 and |x| sufficiently large. This completes the proof. �
3.3. Uniqueness and sharp estimate at infinity

We finish this section by providing a proof for Theorem 3.2. In fact we address the question of uniqueness and sharp
estimate at infinity for u0. First we have

Lemma 3.14. Suppose 0 � h ∈ L1 ∩ L∞ and, for all x ∈ R
N ,

|x| N
Q (p−1) ‖h‖L P (RN\B |x|(0)) � C (3.8)

for some constant C and some P > N
p , with 1

P + 1
Q = 1. Then there exists a unique weak solution w to

−�p w = h
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with w ∈ D1,p ∩ C1 ∩ L∞ , lim|x|→∞ w(x) = 0, and

w(x) � d

|x| N−p
p−1

∀x ∈R
N

for some d > 0.

Proof. We use techniques developed in Lemma 4 of Allegretto and Odiobala [1]. The solution w ∈ D1,p exists and is unique
by Theorem 2.1 and is p-superharmonic on bounded domains by part (iv) of Theorem 2.4. In addition, w ∈ C1 ∩ L∞ and
lim|x|→∞ w(x) = 0 by an application of Theorem 2.5 and Theorem 2.2.

Now, let r > 0. Then by Theorem 2.3 we have A2, A3 > 0 such that

w(x) � A2 inf
a∈B(x,r)

w(a) + A3

2r∫
0

(
1

tN−p

∫
Bt (x)

h(y)dy

) 1
p−1 dt

t
.

Letting r → ∞ and using the fact that lim|x|→∞ w(x) = 0 we get

w(x) � 0 + A3

∞∫
0

(
1

tN−p

∫
Bt (x)

h(y)dy

) 1
p−1 dt

t

= A3

|x|/2∫
0

‖h‖
1

p−1

L1(Bt (x))

(
1

t

) N−1
p−1

dt + A3

∞∫
|x|/2

‖h‖
1

p−1

L1(Bt (x))

(
1

t

) N−1
p−1

dt.

For the second term on the right we have

∞∫
|x|/2

‖h‖
1

p−1

L1(Bt (x))

(
1

t

) N−1
p−1

dt � ‖h‖
1

p−1

L1(RN )

∞∫
|x|/2

(
1

t

) N−1
p−1

dt

= C‖h‖
1

p−1

L1(RN )

(
1

|x|
) N−p

p−1

.

Now, we also have, with hx(y) = h(y + x) and 1
P + 1

Q = 1,

‖h‖L1(Bt (x)) = c1

∫
B1(0)

hx(ty)tN dy

� c2tN
( ∫

B1(0)

(
hx(ty)

)P
dy

)1/P

= c3tN/Q ‖h‖L P (Bt (x)).

Therefore,

|x|/2∫
0

‖h‖
1

p−1

L1(Bt (x))

(
1

t

) N−1
p−1

dt = c
1

p−1
3

|x|/2∫
0

‖h‖
1

p−1

L P (Bt (x))
t

1−N
p−1 + N

Q (p−1) dt

� c5‖h‖
1

p−1

L P (RN\B |x|/2(0))

(
1

|x|
) N−p

p−1

|x| N
Q (p−1)

where we used the fact that P > N
p implies that p−N

p−1 + N
Q (p−1)

> 0. The lemma now follows from our condition (3.8)
on h. �
Proof of Theorem 3.2. By our conditions on g , there exists an S > 0 such that

S = sup
+
λsp−1 − g(s).
s∈R
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Therefore a(x)(λup−1
0 (x) − g(u0(x))) � Sa(x), and so the sharp estimate (3.3) follows by using condition (B′

1), Theorem 3.13
and Lemma 3.14.

Finally, suppose we have two positive solutions u = u0 and v to (3.1). Then, since our results in section 3.2 hold for any
nonnegative solution to (3.6), we get sharp estimates for both u and v at infinity, proving that u

v , v
u ∈ L∞ . In addition, we

have u, v ∈ C1 by Theorem 3.10. Therefore, by Lemma 2.7, we may use test functions up−v p

up−1 and up−v p

v p−1 in (3.2) to get

0 � K (u, v)

= λ

∫
a(x)up−1 up − v p

up−1
−

∫
a(x)g(u)

up − v p

up−1

− λ

∫
a(x)v p−1 up − v p

v p−1
+

∫
a(x)g(v)

up − v p

v p−1

=
∫

a(x)

(
g(v)

v p−1
− g(u)

up−1

)(
up − v p)

.

Therefore assuming (A′
3) on g (i.e. g(s)

sp−1 is increasing) we have that 0 � K (u, v) < 0 if u and v are not identical, a contradic-
tion. Therefore u ≡ v , and hence we have uniqueness for positive solutions to (3.1). �
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