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a b s t r a c t

We study the sublinear elliptic equation having two nonlinear terms, where themain term
f (x, u) is sublinear and odd with respect to u and the perturbation term is any continuous
function with a small coefficient. Then we prove the existence of multiple small solutions.
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1. Introduction and main results

In this paper we prove the existence of multiple solutions for the sublinear elliptic equation
−1u = f (x, u)+ εg(x, u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.1)

where Ω is a bounded smooth domain in RN and ε is a small parameter. We study the problem (1.1) under the condition
that f (x, u) is odd on u, sublinear near u = 0 and g(x, u) is any continuous function. Then we shall show that if |ε| is small
enough, (1.1) has many small solutions. We impose the next assumption.

Assumption (A). Let f (x, u) and g(x, u) be Hölder continuous functions defined onΩ×[−a, a]with some a > 0 and satisfy
the conditions below.

(A1) f (x,−u) = −f (x, u) for x ∈ Ω and |u| ≤ a.
(A2) uf (x, u)− 2F(x, u) < 0 when 0 < |u| < a and x ∈ Ω . Here F(x, u) is defined by

F(x, u) :=

 u

0
f (x, s)ds.

(A3) limu→0

minx∈Ω u−2F(x, u)


= ∞.

Theorem 1.1. Suppose that Assumption (A) holds. Then for any k ∈ N and any δ > 0, there exists an ε(k, δ) > 0 such that if
|ε| ≤ ε(k, δ), then (1.1) has at least k distinct solutions whose C2(Ω)-norms are less than δ. When ε = 0, (1.1) has a sequence
of solutions whose C2(Ω)-norm converges to zero.
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Example 1.2. We give some examples of f (x, u) which satisfy Assumption (A). In the following, we suppose that α(x) and
β(x) are Hölder continuous and α(x) > 0 onΩ .

(i) f (x, u) = α(x)|u|psgn u with 0 < p < 1.
(ii) f (x, u) = −α(x)u log |u|.
(iii) f (x, u) = α(x)|u|psgn u + β(x)|u|qsgn u with 0 < p < min(1, q).

In Case (iii), β(x)may change its sign. Indeed, we have

uf (x, u)− 2F(x, u) = −
1 − p
1 + p

α(x)|u|p+1
−

1 − q
1 + q

β(x)|u|q+1 < 0,

provided that |u| > 0 is small enough. For these nonlinear terms, (1.1) has sufficiently many small solutions if |ε| is small
enough.

For the sublinear elliptic problem with ε = 0, i.e., f (u) is like |u|psgn u with 0 < p < 1, we refer the readers to [1,2,5].
Ambrosetti–Badiale [1] has proved the existence of infinitely many solutions if f (x, u) is sublinear with ε = 0. Ambrosetti
et al. [2] has investigated f (u) = λ|u|qsgn u + |u|psgn u with 0 < q < 1 < p ≤ (n + 2)/(n − 2). Then they have obtained
the detailed and important results on the structure of positive solutions, the existence of two positive solutions and the
existence of infinitely many solutions. Under more general and weak assumptions on f (x, u), we have proved in [5] that
(1.1) has a sequence of solutions whose C2(Ω)-norm converges to zero.

On the other hand, we have considered the sublinear perturbation problem in our paper [6] under the condition that
f (u) = |u|psgn uwith 0 < p < 1, ε = 1, g(x, 0) = 0, g(x, u) is not odd on u and g(x, u) converges rapidly to zero as u → 0.
Then we have obtained a sequence of solutions whose C2(Ω)-norm converges to zero.

Degiovanni and Rădulescu [3] have proved the existence of multiple solutions (u, λ) ∈ H1
0 (Ω)× R of the problem

−1u = λ(f (x, u)+ g(x, u)) in D ′(Ω),
Ω

|∇u|2dx = r2, f (x, u), g(x, u) ∈ L1loc(Ω),

under the assumptions that sf (x, s) > 0, sg(x, s) > 0 for s ≠ 0 and

sup
|s|≤t

f (x, s), sup
|s|≤t

g(x, s) ∈ L1loc(Ω)

for every t > 0 and g(x, s) has at most a polynomial growth as s → ∞.
In the present paper, we do not assume the condition that sf (x, s) > 0 or sg(x, s) > 0 for s ≠ 0 (see Example 1.2(ii),

(iii)) and do not need any growth condition on g(x, s) as s → ∞. We assume the Hölder continuity of f and g for the C2(Ω)
regularity of solutions. Even if we do not assume this condition, Theorem 1.1 is still valid after replacing the C2(Ω) norm
by the C1(Ω) norm. We emphasize that the nonlinear term f (x, u) in our paper is more general than those of the papers
above and our theorem does not need any growth or sign condition on g(x, u). To prove Theorem 1.1, we develop a new
variational method based on the symmetric mountain pass lemma under the next assumption.

Assumption (B). Let E be an infinite dimensional Banach space and I ∈ C([0, 1]×E,R). Suppose that I(t, u)has a continuous
partial derivative Iu and satisfies (B1)–(B5) below.

(B1) inf{I(t, u) : t ∈ [0, 1], u ∈ E} > −∞.
(B2) There exists a function ψ ∈ C([0, 1],R) such that ψ(0) = 0 and

|I(t, u)− I(0, u)| ≤ ψ(t) for (t, u) ∈ [0, 1] × E.

(B3) I(t, u) satisfies the Palais–Smale condition uniformly on t , i.e. if a sequence (tk, uk) in [0, 1] × E satisfies that
supk |I(tk, uk)| < ∞ and Iu(tk, uk) converges to zero, then (tk, uk) has a convergent subsequence.

(B4) I(0, u) = I(0,−u) for u ∈ E and I(0, 0) = 0.
(B5) For any u ∈ E \ {0} there exists a unique s(u) > 0 such that I(0, tu) < 0 if 0 < |t| < s(u) and I(0, tu) ≥ 0 if |t| ≥ s(u).

We define a critical value ak of I(0, u) in the following definition.

Definition 1.3. We set

Sk := {x ∈ Rk+1
: |x| = 1},

Ak := {h ∈ C(Sk, E) : h is odd},
ak := inf

h∈Ak
max
x∈Sk

I(0, h(x)). (1.2)

In Section 2, we shall prove that ak ≤ ak+1 < 0 for k ∈ N and {ak} converges to zero. Hence there exist infinitely many
k’s satisfying ak < ak+1, and so the next theorem makes sense.
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Theorem 1.4. Suppose that Assumption (B) holds. Let k be a positive integer satisfying ak < ak+1. Then there exist constants
tk+1, ck+1 such that 0 < tk+1 ≤ 1, ak+1 ≤ ck+1 < −ψ(t) for t ∈ [0, tk+1] and for each t ∈ [0, tk+1], I(t, ·) has a critical value
in the interval [ak+1 − ψ(t), ck+1 + ψ(t)].

Note that ck+1 + ψ(t) < 0, and hence the critical value in Theorem 1.4 is not zero. We organize this paper into four
sections. In Section 2, we prove Theorem 1.4 by using Lemmas 2.3 and 2.7, which will be stated in Section 2. The proofs of
these lemmas will be given in Section 3. In Section 4, we prove Theorem 1.1 by applying Theorem 1.4.

2. Proof of Theorem 1.4

The purpose of this section is to prove Theorem 1.4. To this end, we need the deformation lemma and a notion of genus.

Definition 2.1. Let E be a Banach space and J ∈ C1(E,R). For c ∈ R and δ > 0, we define

Kc := {u ∈ E : J ′(u) = 0, J(u) = c},
Nδ(Kc) := {u ∈ E : dist(u, Kc) ≤ δ},

dist(u, Kc) := inf{∥u − v∥ : v ∈ Kc}.

If c is a regular value of J(u), then Kc and Nδ(Kc) are empty.

Lemma 2.2 (Deformation Lemma). Let J ∈ C1(E,R) satisfy the Palais–Smale condition. If c ∈ R, ε0 > 0 and δ > 0, then there
exist an ε ∈ (0, ε0) and η ∈ C(E, E) satisfying the conditions below.

(i) η is homeomorphic on E.
(ii) If J(u) ≤ c − ε0, then η(u) = u.
(iii) If J(u) ≤ c + ε and u ∉ Nδ(Kc), then J(η(u)) ≤ c − ε.
(iv) If c is a regular value of J and if J(u) ≤ c + ε, then J(η(u)) ≤ c − ε.
(v) If J is even, then η(·) is odd.

For the proof of Lemma 2.2, we refer the readers to [7, p. 82, Theorem A.4] or [8, p. 83, Theorem 3.4]. Throughout this
section, we impose Assumptions (B1)–(B5).

Lemma 2.3. For any k ∈ N there exists a gk ∈ Ak such that

max
Sk

I(0, gk(x)) < 0.

This lemma will be proved in Section 3. To prove that {ak} defined by (1.2) converges to zero, we use a notion of genus.

Definition 2.4. Let E be an infinite dimensional Banach space and A a subset of E. A is said to be symmetric if x ∈ A implies
−x ∈ A. For a closed symmetric set Awhich does not contain the origin, we define a genus γ (A) of A by the smallest integer
k such that there exists an odd continuous mapping from A to Rk

\ {0}. If there does not exist such a k, we define γ (A) = ∞.
Moreover, we set γ (∅) = 0. Let Bk denote the family of closed symmetric subsets A of E such that 0 ∉ A and γ (A) ≥ k. We
define

bk := inf
A∈Bk

sup
u∈A

I(0, u).

Since I(t, u) is bounded from below, it holds that −∞ < bk < ∞. It follows from the Borsuk–Ulam theorem that
γ (Sk) = k + 1. If h ∈ Ak and 0 ∉ h(Sk), then

γ (h(Sk)) ≥ γ (Sk) = k + 1,

hence h(Sk) ∈ Bk+1. If 0 ∈ h(Sk), then maxSk I(0, h(x)) ≥ 0. Since ak < 0 by Lemma 2.3, we can assume that 0 ∉ h(Sk) in
(1.2) without loss of generality. Consequently, we have

bk+1 ≤ ak < 0 for k ∈ N. (2.1)

Lemma 2.5. Each ak is a critical value of I(0, u) and satisfies

ak ≤ ak+1 < 0 for k ∈ N, lim
k→∞

ak = 0.

Proof. Suppose on the contrary that ak is a regular value. We take an ε > 0 and an odd mapping η by Lemma 2.2. By the
definition of ak, there exists an h ∈ Ak such that the supremum of I(0, h(x)) on Sk is less than ak + ε. Then the composite
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function η ◦ h belongs to Ak. Moreover, Lemma 2.2(iv) implies

sup
Sk

I(0, η ◦ h(x)) ≤ ak − ε,

which contradicts the definition of ak. Therefore ak is a critical value.
We have already proved that ak < 0 in (2.1). To show the convergence of {ak} to zero, it is enough to prove the

convergence of {bk} to zero. We use the samemethod as in Rabinowitz’s argument [7, Proposition 9.33]. Since bk ≤ bk+1 for
k ∈ N by definition, it has a finite limit b∞ (≤ 0). Suppose to the contrary that b∞ < 0. We set

M := {u ∈ E : Iu(0, u) = 0, I(0, u) ≤ b∞}.

Note that 0 ∉ M because b∞ < 0. Since I(0, u) is bounded from below, the Palais–Smale conditionmeans thatM is compact.
HenceM has a finite genus, which is denoted bym := γ (M) < ∞. For δ > 0, we set

Nδ(M) := {u ∈ E : dist(u,M) ≤ δ},

dist(u,M) = inf{∥u − v∥ : v ∈ M}.

It is known (see [7, p. 46, Proposition 7.5]) that if δ > 0 is small enough, then

γ (Nδ(M)) = γ (M) = m.

By Lemma 2.2 with c = b∞, there exist an ε > 0 and an odd mapping η ∈ C(E, E) such that

I(0, η(u)) ≤ b∞ − ε if I(0, u) ≤ b∞ + ε, u ∉ Nδ(M). (2.2)

Fix an integer n ∈ N such that

b∞ − ε < bn. (2.3)

We choose A ∈ Bm+n such that

sup
u∈A

I(0, u) < bm+n + ε ≤ b∞ + ε. (2.4)

Set B = A \ Nδ(M). Then (2.2) with (2.4) gives

I(0, η(u)) ≤ b∞ − ε for u ∈ B. (2.5)

Since γ (B) ≥ γ (A)− γ (Nδ(M)) ≥ n, it follows that B ∈ Bn. Since η is odd and homeomorphic, η(B) belongs to Bn. By the
definition of bn with (2.3) and (2.5), we have

b∞ − ε < bn ≤ sup
u∈η(B)

I(0, u) ≤ b∞ − ε.

A contradiction occurs. Thus we conclude that b∞ = 0 and the proof is complete. �

Definition 2.6. Hereafter we fix the integer k ∈ N such that ak < ak+1. Determine the constant r > 0 so small that

ak + r < ak+1 < 0. (2.6)

Define

Sk+1
+

:=


(x1, . . . , xk+2) :

k+2
i=1

x2i = 1, xk+2 ≥ 0


,

Sk :=


(x1, . . . , xk+2) :

k+2
i=1

x2i = 1, xk+2 = 0


,

Ck+1 := {h ∈ C(Sk+1
+
, E) : h satisfies (H1), (H2)}.

(H1) h(−x) = −h(x) for x ∈ Sk.
(H2) I(0, h(x)) < ak + r for x ∈ Sk.

By definition of ak, there exists an h ∈ Ak satisfying (H1) and (H2). We extend h onto Sk+1
+ as a continuous function,

which belongs to Ck+1. Hence Ck+1 is nonempty. Moreover, we have the next lemma.

Lemma 2.7. There exists an fk+1 ∈ Ak+1 ∩ Ck+1 such that

max
x∈Sk+1

I(0, fk+1(x)) < 0. (2.7)

Lemma 2.7 will be proved in Section 3. Using this lemma, we prove Theorem 1.4.
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Proof of Theorem 1.4. Condition (B2) means

I(0, u)− ψ(t) ≤ I(t, u) ≤ I(0, u)+ ψ(t) for (t, u) ∈ [0, 1] × E. (2.8)

Let fk+1 be as in Lemma 2.7. We define ck+1 by

ck+1 := max
Sk+1
+

I(0, fk+1(x)) = max
Sk+1

I(0, fk+1(x)) < 0. (2.9)

By definition, it follows that ak+1 ≤ ck+1. We choose tk+1 ∈ (0, 1] so small that

ak + r + 2ψ(t) < ak+1, ck+1 + ψ(t) < 0 for t ∈ [0, tk+1]. (2.10)

Fix t ∈ [0, tk+1] arbitrarily and define

dk+1(t) := inf
h∈Ck+1

max
x∈Sk+1

+

I(t, h(x)). (2.11)

Combining (2.11) with (2.8), we have

dk+1(t) ≤ max
Sk+1
+

I(0, fk+1(x))+ ψ(t) = ck+1 + ψ(t) < 0. (2.12)

Give h ∈ Ck+1 arbitrarily. Denote the odd extension of h on Sk+1 by h, i.e., h(x) = h(x) for x ∈ Sk+1
+ and h(x) = −h(−x) for

x ∈ Sk+1
− , where Sk+1

− := −Sk+1
+ . Then h ∈ Ak+1. Since I(0, u) is even, it holds that

max
Sk+1
+

I(0, h(x)) = max
Sk+1

I(0, h(x)). (2.13)

By (2.8) and (2.13), we have

max
Sk+1
+

I(t, h(x)) ≥ max
Sk+1
+

I(0, h(x))− ψ(t)

= max
Sk+1

I(0, h(x))− ψ(t)

≥ ak+1 − ψ(t). (2.14)

The last inequality follows directly from the definition of ak+1. Taking the infimum on h ∈ Ck+1 in (2.14) and using (2.10),
we obtain

dk+1(t) ≥ ak+1 − ψ(t) > ak + r + ψ(t). (2.15)

We shall show that dk+1(t) is a critical value of I(t, ·). Suppose on the contrary that dk+1(t) is a regular value. Observing
(2.15), we use Lemma 2.2 with c = dk+1(t) and c − ε0 = ak + r + ψ(t). Then we have an ε > 0 and η ∈ C(E, E) satisfying
the conditions below.

(E1) If I(t, u) ≤ dk+1(t)+ ε, then I(t, η(u)) ≤ dk+1(t)− ε.
(E2) If I(t, u) ≤ ak + r + ψ(t), then η(u) = u.

By the definition (2.11) of dk+1(t), there exists an h0 ∈ Ck+1 such that

max
Sk+1
+

I(t, h0(x)) < dk+1(t)+ ε. (2.16)

Combining (E1) with (2.16), we have

max
Sk+1
+

I(t, η(h0(x))) ≤ dk+1(t)− ε. (2.17)

We define h1(x) by

h1(x) := η(h0(x)) for x ∈ Sk+1
+
. (2.18)

Then (2.17) is rewritten as

I(t, h1(x)) ≤ dk+1(t)− ε for x ∈ Sk+1
+
. (2.19)

Since h0 ∈ Ck+1, (H2) means

I(t, h0(x)) ≤ I(0, h0(x))+ ψ(t) < ak + r + ψ(t) for x ∈ Sk.
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The inequality above with (E2) implies that η(h0(x)) = h0(x) for x ∈ Sk, i.e., h1(x) = h0(x) on Sk. Since h0(x) satisfies (H1)
and (H2), so does h1(x). Thus h1 ∈ Ck+1. However, (2.19) contradicts the definition of dk+1(t). Consequently, dk+1(t) is a
critical value. Moreover, (2.12) and (2.15) are combined into the inequality,

ak+1 − ψ(t) ≤ dk+1(t) ≤ ck+1 + ψ(t) < 0.

This completes the proof. �

3. Proofs of Lemmas 2.3 and 2.7

In this section, we shall prove Lemmas 2.3 and 2.7. To this end, we use the same idea as in our paper [6]. Throughout this
section, we always suppose that E is an infinite dimensional Banach space and (B4), (B5) hold.

Lemma 3.1. Let K be a compact subset of E such that 0 ∉ K. We put

RK := {λu : λ ∈ R, u ∈ K}, S∞
:= {u ∈ E : ∥u∥ = 1}.

Then S∞
\ RK ≠ ∅.

Proof. To the contrary, suppose that S∞
⊂ RK . Since S∞ is non-compact, we choose a sequence {un} in S∞ whose any

subsequence does not converge. Since un ∈ S∞
⊂ RK , it is represented as un = λnyn with λn ∈ R and yn ∈ K . Choose a

subsequence of {yn} which converges to a limit y∞ ∈ K . Note that y∞ ≠ 0 because 0 ∉ K . Since ∥un∥ = 1, {λn} is bounded
and has a convergent subsequence. Consequently, {un} has a convergent subsequence. This is a contradiction. The proof is
complete. �

Observing Assumption (B5), we define

U := {u ∈ E : I(0, u) < 0} = {tu : u ∈ E \ {0}, 0 < |t| < s(u)}.

Lemma 3.2. Let K be a compact subset of E such that 0 ∉ K. For δ > 0, we set

δK := {δu : u ∈ K}.

Then there exists a δ0 > 0 such that δK ⊂ U for 0 < δ ≤ δ0.

Proof. Suppose that the assertion is false. Then there exist sequences δn > 0 and un ∈ K such that {δn} converges to zero
and δnun ∉ U for n ∈ N. Choose a subsequence of {un} which converges to a limit u∞ ∈ K . Fix t > 0 arbitrarily. Since
t > δn > 0 for n large enough and δnun ∉ U , the definition of U implies that tun ∉ U . Since U is open, it follows that
tu∞ ∉ U for any t > 0. This contradicts (B5). The proof is complete. �

We show Lemma 2.3 by using the lemma above.

Proof of Lemma 2.3. Fix k ∈ N. Let e1, . . . , ek+1 be linearly independent in E and set

K =


k+1
i=1

tiei :

k+1
i=1

t2i = 1


.

Then Lemma 3.2 gives a δ0 > 0 such that δK ⊂ U for 0 < δ ≤ δ0. In other words, we have

I(0, tu) < 0 if u ∈ K and 0 < |t| ≤ δ0. (3.1)

We define

gk(x) = δ0

k+1
i=1

xiei for x = (x1, . . . , xk+1) ∈ Sk.

This satisfies Lemma 2.3. �

To prove Lemma 2.7, we need the next lemma.

Lemma 3.3. Let K be a compact subset of E such that K ⊂ U, where U has been defined before Lemma 3.2. Let v0 be determined
by Lemma 3.1 such that ∥v0∥ = 1 and v0 ∉ RK . Then there exists an ε0 > 0 such that

tu + (1 − t)εv0 ∈ U for u ∈ K , 0 ≤ t ≤ 1 and 0 < ε < ε0. (3.2)

Proof. Note that 0 ∉ K because 0 ∉ U . Suppose that the assertion of the lemma is false. Then there exist sequences {εn}, {un}

and {tn} such that un ∈ K , tn ∈ [0, 1], εn > 0, {εn} converges to zero and

tnun + (1 − tn)εnv0 ∉ U for n ∈ N. (3.3)
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Since K is compact, there are subsequences (denoted by {un} and {tn} again) of {un} and {tn} which converge to u∞ ∈ K and
t∞ ∈ [0, 1], respectively. Letting n → ∞ in (3.3) yields that t∞u∞ ∉ U because U is open. Note that by (B5), if u ∈ U , then
tu ∈ U for 0 < |t| ≤ 1. Since u∞ ∈ K ⊂ U and t∞u∞ ∉ U , we deduce that t∞ = 0. We divide the proof into two cases
below.

(i) There is a subsequence (denoted by {tn/εn} again) of {tn/εn} which converges to a finite limit α ≥ 0.
(ii) {tn/εn} diverges to ∞.

In Case (i), we set

M := {tu + sv0 : 0 ≤ t ≤ α + 1, s ∈ [1/2, 1], u ∈ K}.

ThenM is compact and 0 ∉ M because v0 ∉ RK . By Lemma 3.2, there is a δ0 > 0 such that

δM ⊂ U for 0 < δ ≤ δ0. (3.4)

Hence

tnun + (1 − tn)εnv0 = εn{(tn/εn)un + (1 − tn)v0} ∈ εnM ⊂ U,

for n large enough. This contradicts (3.3).
In Case (ii), we put

M := {u + sv0 : s ∈ [0, 1], u ∈ K}.

In the same argument as in Case (i), we have (3.4). Since {εn/tn} converges to zero in Case (ii), (3.4) means

tnun + (1 − tn)εnv0 = tn{un + (1 − tn)(εn/tn)v0} ∈ tnM ⊂ U,

for n large enough. This contradicts (3.3). In both Cases (i) and (ii), a contradiction occurs. This completes the proof. �

We are now in a position to prove Lemma 2.7.

Proof of Lemma 2.7. By the definition (1.2) of ak, there exists an f ∈ Ak such that

I(0, f (x)) < ak + r < 0 for x ∈ Sk. (3.5)

Put K := f (Sk). Then K is compact and 0 ∉ K because of (3.5). By Lemma 3.3, we choose v0 ∈ E and ε > 0 such that

tf (x)+ (1 − t)εv0 ∈ U,

or equivalently,

I(0, tf (x)+ (1 − t)εv0) < 0 for x ∈ Sk and 0 ≤ t ≤ 1. (3.6)

We use notation,

x = (x1, . . . , xk+1, xk+2) = (x′, xk+2),

x′
= (x1, . . . , xk+1), |x′

| =


k+1
i=1

x2i

1/2

.

For x ∈ Sk+1
+ , i.e.,

k+2
i=1 x2i = 1 and xk+2 ≥ 0, we define

fk+1(x) =


|x′

|f (x′/|x′
|)+ ε(1 − |x′

|)v0, if x′
≠ 0,

εv0, if x′
= 0.

Then fk+1 is continuous on Sk+1
+ . Furthermore, (3.6) is rewritten as

I(0, fk+1(x)) < 0 for x ∈ Sk+1
+
. (3.7)

Observe that x = (x′, xk+2) belongs to Sk if and only if x = (x′, 0)with |x′
| = 1. Then fk+1(x) = f (x) on Sk and hence fk+1(x)

is odd on Sk. We extend fk+1(x) onto Sk+1 as an odd mapping. Then fk+1 ∈ Ak+1 ∩ Ck+1 and (2.7) follows from (3.7). The
proof is complete. �
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4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Instead of Assumption (A), we consider the next assumption.

Assumption (C). f (x, u) and g(x, u) are Hölder continuous functions defined onΩ×R and satisfy the following conditions.

(C1) f (x,−u) = −f (x, u) for (x, u) ∈ Ω × R.
(C2) There exists an a > 0 such that

uf (x, u)− 2F(x, u) < 0 when 0 < |u| < a and x ∈ Ω,

f (x, u) = g(x, u) = F(x, u) = 0 when |u| ≥ a and x ∈ Ω,

F(x, u) > 0 when 0 < |u| < a, x ∈ Ω.

(C3) limu→0

minx∈Ω u−2F(x, u)


= ∞.

We shall explain that Assumption (C) can be supposed without loss of generality. In view of (A3), we replace a > 0 by a
smaller constant such that

F(x, u) > 0 (0 < |u| < a, x ∈ Ω).

Wechoose a functionφ ∈ C∞

0 (R,R) such that 0 ≤ φ(t) ≤ 1 for t ∈ R, φ(t) = 1 for |t| ≤ a/2, φ(t) > 0 for |t| < a, φ(t) = 0
for |t| ≥ a, φ(t) is even in R and strictly decreasing in (a/2, a). We definef (x, u),F(x, u) andg(x, u) by

f (x, u) :=
∂

∂u
(φ(u)F(x, u)), g(x, u) := φ(u)g(x, u),

F(x, u) :=

 u

0

f (x, s)ds = φ(u)F(x, u). (4.1)

It is clear thatf satisfies (C1) and (C3). We verify (C2). By definition,f (x, u),g(x, u) andF(x, u) vanish when |u| ≥ a and
x ∈ Ω . Moreover,F(x, u) > 0 when 0 < |u| < a and x ∈ Ω . Observe the relation,

∂

∂u


u−2F(x, u) = u−3(uf (x, u)− 2F(x, u)). (4.2)

Using (4.1) with (A2), we get

∂

∂u


u−2F(x, u) = φ′(u)u−2F(x, u)+ φ(u)

∂

∂u


u−2F(x, u)


= φ′(u)u−2F(x, u)+ φ(u)u−3(uf (x, u)− 2F(x, u)) < 0,

provided that 0 < u < a and x ∈ Ω . This inequality with (4.2) means thatf (x, u) satisfies (C2). Accordingly,f (x, u) satisfies
(C1)–(C3).

It is enough to prove Theorem 1.1 with f and g replaced byf andg , respectively, becausef (x, u) = f (x, u) andg(x, u) =

g(x, u) for |u| sufficiently small. Consequently, we shall prove Theorem 1.1 under Assumption (C) instead of (A).
We set E := H1

0 (Ω) and define

I(t, u) :=


Ω


1
2
|∇u|2 − F(x, u)− tG(x, u)


dx, (4.3)

F(x, u) :=

 u

0
f (x, s)ds, G(x, u) :=

 u

0
g(x, s)ds.

Lemma 4.1. There exists a constant C > 0 such that if Iu(t, u) = 0 with |t| ≤ 1, then ∥u∥C2(Ω) ≤ C.

Proof. The critical point u of I(t, ·) satisfies

−1u = f (x, u)+ tg(x, u), inΩ, u = 0, in ∂Ω. (4.4)

Since the right hand side of the first equation in (4.4) is bounded and Hölder continuous, the elliptic regularity theorem
(see [4]) gives an a priori bound for the C2(Ω)-norm of solutions. �

Lemma 4.2. For any ε > 0 there exists a δ > 0 such that if |t| ≤ δ, Iu(t, u) = 0 and |I(t, u)| ≤ δ, then ∥u∥C2(Ω) ≤ ε.

Proof. Suppose on the contrary that there exist sequences {uk} and {tk} such that {tk} converges to zero, uk satisfies (4.4)with
t = tk, I(tk, uk) converges to zero and moreover ∥uk∥C2(Ω) ≥ ε0 > 0. Here ε0 > 0 is independent of k. The Ascoli–Arzelà



R. Kajikiya / J. Math. Anal. Appl. 398 (2013) 857–866 865

theorem with Lemma 4.1 yields a subsequence of {uk} which converges to a certain limit u0 in the C1(Ω)-space. Moreover,
the elliptic regularity theorem guarantees that the convergence is valid in the C2(Ω)-sense. Consequently, we have

−1u0 = f (x, u0), x ∈ Ω, u0 = 0, x ∈ ∂Ω, (4.5)

I(0, u0) =


Ω


1
2
|∇u0|

2
− F(x, u0)


dx = 0. (4.6)

Furthermore, ∥u0∥C2(Ω) ≥ ε0 > 0. Multiplying (4.5) by u0 and integrating it overΩ , we get
Ω

|∇u0|
2dx =


Ω

u0f (x, u0)dx.

Substituting the relation above into (4.6), we obtain
Ω


1
2
u0f (x, u0)− F(x, u0)


dx = 0.

Since u0 ∈ H1
0 (Ω), (C2) means that u0 ≡ 0. This contradicts that ∥u0∥C2 ≥ ε0 > 0. The proof is complete. �

We conclude this paper by proving Theorem 1.1.

Proof of Theorem 1.1. We suppose t ≥ 0 because the case t < 0 is similarly treated by replacing g(x, u) by −g(x, u). Let
us verify that I(t, u) defined by (4.3) satisfies Assumption (B). Since F(x, u) and G(x, u) are bounded onΩ × R, (B1) holds.
Assumption (B2) follows from

|I(t, u)− I(0, u)| ≤ |t|

Ω

|G(x, u)|dx ≤ C |t| ≡ ψ(t),

with a constant C > 0 independent of u and t . We shall verify the Palais–Smale condition. Let (tn, un) ∈ [0, 1] × H1
0 (Ω)

be any sequence such that I(tn, un) is bounded and Iu(tn, un) converges to zero. Since F(x, u) and G(x, u) are bounded in
[0, 1] × R by (C2), ∥∇un∥2 is also bounded. Here ∥ · ∥2 denotes the L2-norm. Therefore a subsequence of un converges
weakly in H1

0 (Ω). Moreover, this convergence becomes a strong one, which can be proved in the standard method (see [7]
or [8]). Thus (B3) holds. It is clear that (B4) is fulfilled.

We verify (B5). Fix u ∈ H1
0 (Ω) \ {0} arbitrarily. For s > 0, we define

J(s) :=


Ω


1
2
|∇u|2 − s−2F(x, su)


dx.

Then it follows that

I(0, su) =


Ω


s2

2
|∇u|2 − F(x, su)


dx = s2J(s).

Since u ∈ H1
0 (Ω) \ {0}, we use (C2) to get

J ′(s) = −s−3

Ω

(suf (x, su)− 2F(x, su)) dx > 0 for s > 0.

Thus J(s) is strictly increasing. Choose δ > 0 so small that

µ(D) > 0 and D := {x ∈ Ω : δ < |u(x)| < 1/δ},

where µ denotes the Lebesgue measure of RN . Since F(x, u) ≥ 0, the function J(s) is estimated as

J(s) ≤
1
2
∥∇u∥2

2 −


D
s−2F(x, su)dx

≤
1
2
∥∇u∥2

2 − δ2µ(D) inf
x∈D


(su(x))−2F(x, su(x))


.

From (C3) it follows that lims→0+ J(s) = −∞. Therefore J(s) < 0 for s > 0 small enough. Since F is bounded, J(s) > 0
for s > 0 sufficiently large. Accordingly, J(s) has a unique zero s(u) such that J(s) < 0 for 0 < s < s(u) and J(s) > 0 for
s > s(u). Thus (B5) holds.

In view of Lemma 4.2, it is enough to prove that for any k ∈ N and δ > 0, if |t| is sufficiently small, then I(t, ·) has at
least k distinct critical values whose absolute values are less than δ. Let ak be defined by (1.2). We choose a subsequence of
ak which is strictly increasing. By Theorem 1.4, there exist sequences {tk+1} and {dk+1(t)} such that tk+1 > 0, dk+1(t) is a
critical value of I(t, ·) for t ∈ [0, tk+1] and

ak+1 − ψ(t) ≤ dk+1(t) ≤ ck+1 + ψ(t) < 0.
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Give k ∈ N and δ > 0 arbitrarily. Choose increasing positive integers p(i) with 1 ≤ i ≤ k such that −δ < ap(1) and
cp(i) < ap(i+1) for 1 ≤ i ≤ k. We choose ε > 0 so small that dp(i)(t)with 1 ≤ i ≤ k are defined for t ∈ [0, ε] and

−δ < ap(1) − ψ(t), cp(i) + ψ(t) < ap(i+1) − ψ(t) on [0, ε].

This means that dp(i)(t) < dp(i+1)(t). Then for t ∈ [0, ε], I(t, ·) has at least k critical values

−δ < dp(1)(t) < dp(2)(t) < · · · < dp(k)(t) < 0.

Therefore (1.1) has at least k solutions whose C2(Ω)-norms are small enough.
Let ε = 0. By Lemma 2.5, {ak} is a sequence of critical values of I(0, ·)which converges to zero. Hence the corresponding

critical points are solutions of (1.1) with ε = 0, which converges to zero in C2(Ω) by Lemma 4.2. The proof is complete. �
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