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a b s t r a c t

We give examples of small data blow-up for a three-component system of quadratic
nonlinear Schrödinger equations in one space dimension. Our construction of the blowing-
up solution is based on the Hopf–Cole transformation, which allows us to reduce the
problem to getting suitable growth estimates for a solution to the transformed system.
Amplification in the reduced system is shown to have a close connection with the mass
resonance.
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1. Introduction

We consider the initial value problem for a system of nonlinear Schrödinger equations in the form

i∂t +

1
2mj

∂2x


uj = Nj(u, ∂xu), t > 0, x ∈ R, j = 1, 2, 3,

uj(0, x) = ϕj(x), x ∈ R, j = 1, 2, 3
(1.1)

where u = (uj)j=1,2,3 is a C3-valued unknown,mj is a positive constant and the nonlinear term Nj satisfies

Nj(u, q) = O((|u| + |q|)2) as (u, q) → (0, 0).

We assume that ϕ = (ϕj)j=1,2,3 belongs to the Sobolev space Hs(R) with s ≥ 1, which is defined by Hs(R) = {ψ ; ∂kxψ ∈

L2(R) for all k ≤ s} equipped with the norm

∥ψ∥Hs =


k≤s

∥∂kxψ∥L2 .

A typical nonlinear Schrödinger system appearing in various physical settings is

i∂t +

1
2m1

∆


u1 = u1u2,

i∂t +
1

2m2
∆


u2 = u1

2,

t > 0, x ∈ Rn (1.2)

(see e.g., [1,2] for physical background). What is interesting in (1.2) is that the ratio of the masses can affect the large-time
behavior of the solutions. In the case of n = 2, Hayashi–Li–Naumkin [3] obtained a small data global existence result for
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(1.2) under the relationm2 = 2m1. The non-existence of usual scattering state is also proved whenm2 = 2m1. On the other
hand, when m2 ≠ 2m1, it is shown in [4] that there is a usual scattering state under some restriction of the data. Higher
dimensional case (n ≥ 3) is considered by Hayashi–Li–Ozawa [5] from the viewpoint of small data scattering. Remark that
the relation m2 = 2m1 is often called the mass resonance relation, which was first discovered in the study of nonlinear
Klein–Gordon systems (see [6–13], etc.). More recently, large data case is discussed by Hayashi–Ozawa–Tanaka [14]. In
particular, their result includes finite time blow-up of the negative energy solutions for (1.2) under mass resonance in the
case of 4 ≤ n ≤ 6. However, their approach relies on the so-called virial identity which requires that the initial data of the
blowing-up solutions must be suitably large (whence it should be distinguished from small data blow-up; see the Appendix
below for more details). Also it seems difficult to generalize blow-up results of this type to the case where the nonlinearity
involves the derivatives of the unknowns. Concerning small data blow-up for NLS, very few results are known so far and
many interesting problems are left unsolved (even in the case of single equationswithout derivatives in the nonlinear terms).
We refer the readers to [15–21] etc. for more information and the related topics.

The aim of this paper is to give examples of small data blow-up for (1.1). More precisely, wewill show that there existmj,
Nj and ϕj with ∥ϕ∥Hs = ε such that the corresponding solution blows up in finite time nomatter how small ε > 0 is.Wewill
also specify the order of the lifespan with respect to ε. What we intend here is to illustrate, by using a simple model, how
the interplay between the mass resonance and the nonlinear structure can affect global behavior of the solution. Although
our examples below are somewhat artificial, they will help us to develop the understanding for possible mechanisms of
singularity formation in more general nonlinear Schrödinger systems.

2. Main result

In what follows, we always assume that the nonlinearity in (1.1) is in the form

N1 = 0, N2 = u1
2, N3 = (∂xu3)

2
+ Q (u1, u2)

exp(2m3u3)

2m3
, (2.1)

where Q (u1, u2) is either u2
2, u1u2, u1u2 or |u2|u2. The main result is as follows.

Theorem 1. (1) Let Q = u2
2 and assume m1 : m2 : m3 = 1 : 2 : 4. Then, for any ε ∈ (0, 1] and s ≥ 1, there exists ϕ ∈ Hs(R)

with ∥ϕ∥Hs = ε such that the corresponding solution u for (1.1) satisfies

lim
t→Tε−0

∥u(t, ·)∥Hs = ∞ (2.2)

with Tε ∈ (κε−4, Kε−4), where κ and K are positive constants not depending on ε.
(2) Let Q = u1u2 and assume m1 : m2 : m3 = 1 : 2 : 3. Then, for any ε ∈ (0, 1] and s ≥ 1, there exists ϕ ∈ Hs(R) with

∥ϕ∥Hs = ε such that the corresponding solution u for (1.1) satisfies (2.2) with Tε ∈ (κε−6, Kε−6), where κ and K are positive
constants not depending on ε.
(3) Let Q = u1u2 and assume m1 : m2 : m3 = 1 : 2 : 1. Then, for any ε ∈ (0, 1] and s ≥ 1, there exists ϕ ∈ Hs(R) with

∥ϕ∥Hs = ε such that the corresponding solution u for (1.1) satisfies (2.2) with Tε ∈ (κε−6, Kε−6), where κ and K are positive
constants not depending on ε.
(4) Let Q = |u2|u2 and assume m1 : m2 : m3 = 1 : 2 : 2. Then, for any ε ∈ (0, 1], there exists ϕ ∈ H1(R) with ∥ϕ∥H1 = ε

such that the corresponding solution u for (1.1) satisfies

lim
t→Tε−0

∥u(t, ·)∥H1 = ∞

with Tε ∈ (κε−4, Kε−4), where κ and K are positive constants not depending on ε.

Remark 1. For general ϕ ∈ Hs with ∥ϕ∥Hs = ε, it is not difficult to show a lower bound for Tε of the same order in ε (that is
to say, we can show Tε ≥ κε−4 in the case of (1), for instance) if ε is small enough. The novelty of the above theorem is the
upper bound for Tε . In particular, this tells us that the order of the lifespan is actually influenced by the choice of Q and the
ratio of the masses.

Remark 2. The relation between the choice of Q and the ratio of the masses in Theorem 1 is characterized by the following
condition:

Q (eim1θ z1, eim2θ z2) = eim3θQ (z1, z2), θ ∈ R, z1, z2 ∈ C. (2.3)

Our approach does not work without this condition.

We close this section by explaining our strategy of the proof. By setting

σ(t, x) = 1 − exp(−2m3u3(t, x)), (2.4)
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we can rewrite the system (1.1) with (2.1) as


i∂t +

1
2m1

∂2x


u1 = 0,

i∂t +
1

2m2
∂2x


u2 = u1

2,
i∂t +

1
2m3

∂2x


σ = Q (u1, u2).

This kind of transformation is first introduced byHopf [22] and Cole [23] for the Burgers equation, and (2.4) is used effectively
by Ozawa [24,25] in the study of the quadratic NLS in the form i∂tu +

1
2∆u = (∇u)2 (see also p.38 of [26]). Note that (2.4)

can be rewritten as

u3(t, x) =
−1
2m3

log(1 − σ(t, x))

if |σ(t, x)| < 1, where the branch of the logarithm is chosen so that log 1 = 0. Our main task in the proof of Theorem 1 is to
choose ϕ appropriately so that

σ(Tε, x∗) = 1 (2.5)

holds at some point x∗
∈ R (while ∥σ(t, ·)∥L∞ < 1 for t < Tε). The mass resonance condition (or, equivalently, (2.3)) will

play a crucial role in the proof of this amplification. Once (2.5) is verified, we have

∥u3(t, ·)∥Hs ≥ C |u3(t, x∗)| =
C

2m3
| log(1 − σ(t, x∗))| → ∞

as t → Tε−0 (while ∥u3(t, ·)∥Hs < ∞ for t < Tε). Similar idea can be found in the paper by Yagdjian [27], where semilinear
wave equations with time-periodic coefficients are considered (see also [28,29]). Remark that the amplification in [27] is
due to parametric resonance and the proof is based on the Floquet theory.

3. Preliminaries

In this section, we collect several identities and estimates which are useful in the subsequent sections. In what follows,
we denote several positive constants by the same letter C , which may vary from one line to another.

First we put Lm = i∂t +
1
2m∂

2
x and Jm(t) = x +

it
m∂x for m > 0. Then we have [∂x,Jm(t)] = 1 and [Lm, ∂x] =

[Lm,Jm(t)] = 0, where [·, ·] denotes the commutator, i.e., [P ,Q] = PQ − QP for linear operators P and Q. Also we can
easily check that

J2m(t)(φψ) =
1
2


Jm(t)φ


ψ + φ


Jm(t)ψ


, (3.1)

J3m(t)(φψ) =
1
3


Jm(t)φ


ψ + 2φ


J2m(t)ψ


(3.2)

and

Jm(t)(φψ) = −

Jm(t)φ


ψ + 2φ


J2m(t)ψ


(3.3)

for smooth functions φ and ψ . Next we put Am(t) = FmUm(t)−1, where Fm and Um(t) are defined by
Fmφ


(ξ) =


m
2π


R
e−imyξφ(y)dy

and 
Um(t)φ


(x) =


m

2π it


R
eim(x−y)2/(2t)φ(y)dy,

respectively. Note thatw(t, x) = (Um(t)φ)(x) solves

Lmw = 0, w(0, x) = φ(x).

We also remark that ∂tAm(t)φ = −iAm(t)Lmφ.

Lemma 1. For a smooth function f (t, x), we have

∥f (t)∥L∞ ≥ t−1/2
∥Am(t)f (t)∥L∞ − Ct−3/4ρm[f ](t),

where

ρm[f ](t) = ∥f (t, ·)∥H1 + ∥Jm(t)f (t, ·)∥L2 . (3.4)
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Proof. By the relation Jm(t) = Um(t)xUm(t)−1, we have

∥Am(t)f ∥H1 = ∥FmUm(t)−1f ∥H1

≤ C∥(1 + |x|)Um(t)−1f ∥L2

≤ Cρm[f ](t).

Next we observe that Um(t) can be decomposed into Mm(t)D(t)FmMm(t), where
Mm(t)φ


(x) = eimx2/(2t)φ(x),

D(t)φ

(x) =

1
√
it
φ
x
t


.

We also set Wm(t) = FmMm(t)F −1
m . Then we see that

f = Um(t)Um(t)−1f
= Mm(t)D(t)FmMm(t) · F −1

m Am(t)f
= Mm(t)D(t)Wm(t)Am(t)f .

From the inequalities ∥f ∥L∞ ≤ C∥f ∥1/2
L2

∥∂xf ∥
1/2
L2

and |eimx2/(2t)
− 1| ≤ Ct−1/2

|x|, it follows that

∥(Wm(t)− 1)f ∥L∞ ≤ C∥(Wm(t)− 1)f ∥1/2
L2

∥∂x(Wm(t)− 1)f ∥1/2
L2

≤ C(Ct−1/2
∥f ∥H1)1/2(C∥f ∥H1)1/2

= Ct−1/4
∥f ∥H1 . (3.5)

Consequently we have

∥f − Mm(t)D(t)Am(t)f ∥L∞ = ∥Mm(t)D(t)(Wm(t)− 1)Am(t)f ∥L∞

≤ t−1/2
∥(Wm(t)− 1)Am(t)f ∥L∞

≤ Ct−3/4
∥Am(t)f ∥H1

≤ Ct−3/4ρm[f ](t),

whence

∥f ∥L∞ ≥ ∥Mm(t)D(t)Am(t)f ∥L∞ − ∥f − Mm(t)D(t)Am(t)f ∥L∞

≥ t−1/2
∥Am(t)f ∥L∞ − Ct−3/4ρm[f ](t)

as required. �

Lemma 2. Let f (t, x) and g(t, x) be smooth functions satisfying L2mg = f 2. We have

ρ2m,s[g](t) ≤ ρ2m,s[g](0)+ C
 t

0
ρm,s[f ](τ )2

dτ
τ 1/2

, (3.6)

where ρm,s[ · ] is defined by

ρm,s[f ](t) = ∥f (t, ·)∥Hs + ∥Jm(t)f (t, ·)∥Hs−1

for s ≥ 1. Also we have∂tA2m(t)g(t)

− e−i3π/4t−1/2Am(t)f (t)

2
L∞

≤ Ct−3/4ρm[f ](t)2, (3.7)

where ρm[f ] = ρm,1[f ], as defined in (3.4).

Proof. First we note that Jm(t) =
it
mMm(t)∂xMm(t)−1, which implies

∥f ∥L∞ = ∥Mm(t)−1f ∥L∞

≤ C∥Mm(t)−1f ∥1/2
L2 ∥∂xMm(t)−1f ∥1/2

L2

≤ C∥f ∥1/2
L2
(t−1

∥Jm(t)f ∥L2)
1/2

≤ Ct−1/2ρm[f ](t). (3.8)
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Since [L2m, ∂
j
xJ2m(t)k] = 0, the standard energy method yields

d
dt

∥∂ jxJ2m(t)kg(t, ·)∥L2 ≤ ∥∂ jxJ2m(t)k(f 2)∥L2 (3.9)

for k = 0, 1 and j ≤ s − k. From (3.1), (3.8) and (3.9) it follows that

d
dt
ρ2m,s[g](t) =

1
k=0

s−k
j=0

d
dt

∥∂ jxJ2m(t)kg(t, ·)∥L2

≤

1
k=0

s−k
j=0

∥∂ jxJ2m(t)k(f 2)∥L2

≤ C


s−1
j′=0

∥∂ j
′

x f ∥L∞


1

k=0

s−k
j′′=0

∥∂ j
′′

x Jm(t)kf ∥L2


≤ Ct−1/2ρm,s[f ](t)2.

By integrating with respect to t , we obtain the desired estimate (3.6). To prove (3.7), we put α(t, ξ) =

Am(t)f (t, ·)


(ξ),

β(t, ξ) =

A2m(t)g(t, ·)


(ξ) and

R(t, ξ) = i∂tβ(t, ξ)− e−iπ/4t−1/2α(t, ξ)2.

Note that ∥α(t, ·)∥H1 ≤ Cρm[f ](t) and

i∂tβ = A2m(t)L2mg
= F2mU2m(t)−1(f 2)

= W2m(t)−1D(t)−1M2m(t)−1Mm(t)D(t)Wm(t)α
2

= W2m(t)−1D(t)−1D(t)Wm(t)α
2

= e−iπ/4t−1/2W2m(t)−1Wm(t)α
2
.

With the help of (3.5), we have

∥R(t, ·)∥L∞ = t−1/2
W2m(t)−1Wm(t)α

2
− α2


L∞

≤ t−1/2
(W2m(t)−1

− 1)

Wm(t)α

2
L∞ +

Wm(t)α
2

− α2

L∞


≤ t−1/2


Ct−1/4

Wm(t)α
2

H1 + ∥(Wm(t)+ 1)α∥L∞∥(Wm(t)− 1)α∥L∞


≤ t−1/2


Ct−1/4

∥Wm(t)α∥L∞∥Wm(t)α∥H1 + C∥α∥H1 · Ct−1/4
∥α∥H1


≤ Ct−3/4

∥α(t, ·)∥2
H1

≤ Ct−3/4ρm[f ](t)2,

which yields (3.7). �

Remark 3. The above argument can be generalized as follows: let v1, v2, v3 be smooth functions of (t, x) satisfyingLm3v3 =

Q (v1, v2), where Q : C × C → C satisfies (2.3) and

Q (λz1, λz2) = λ2Q (z1, z2), λ > 0, z1, z2 ∈ C.

Then we have

i∂tα3 = t−1/2Q̃ (α1, α2)+ R,

where

αj(t, ξ) =

Amj(t)vj(t, ·)


(ξ), j = 1, 2, 3,

Q̃ (α1, α2) = eiπ/4Q (e−iπ/4α1, e−iπ/4α2),

R(t, ξ) = t−1/2Wm3(t)
−1Q̃ (Wm1(t)α1,Wm2(t)α2)− Q̃ (α1, α2)


.
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4. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. Since the essential idea is the same, we consider the case of (1) in detail
and only the outline of the proof will be given for the other cases.

In what follows, we fix s ≥ 1 and ψ : R → C which satisfies ∥F −1
m1
ψ∥Hs = 1 and ∥(1 + |x|)s−1∂xψ∥L2 < ∞. Let

v = (vj(t, x))j=1,2,3 be the solution to
Lm1v1 = 0,
Lm2v2 = v1

2,

Lm3v3 = v2
2,

t > 0, x ∈ R

with the initial conditionv1(0, x) = ε(F −1
m1
ψ)(x),

v2(0, x) = 0,
v3(0, x) = 0.

(4.1)

We have the following.

Lemma 3. Let v be as above. Under the assumptionm1 : m2 : m3 = 1 : 2 : 4, there exist positive constants κ and K , independent
of ε, such that

sup
0≤t≤κε−4

∥v3(t, ·)∥L∞ < 1 (4.2)

and

∥v3(Kε−4, ·)∥L∞ > 1. (4.3)

Before turning to the proof of Lemma 3, we show that (1) of Theorem 1 is derived from this lemma: we set Tε =

sup{T > 0 ; ∥v3(t, ·)∥L∞ < 1 for 0 ≤ t < T }. Then (4.2) and (4.3) imply κε−4 < Tε < Kε−4. Also, since the function
R ∋ x → |v3(Tε, x)| is continuous, we can choose x∗

∈ R such that

|v3(Tε, x∗)| = ∥v3(Tε, ·)∥L∞ = 1.

Now we take θ ∈ R so that v3(Tε, x∗) = eim3θ , and we set

ϕ1(x) = εe−im1θ (F −1
m1
ψ)(x), ϕ2(x) = ϕ3(x) = 0.

Then, by the uniqueness of solutions to (1.1), we have

u1(t, x) = e−im1θv1(t, x),
u2(t, x) = e−im2θv2(t, x),

u3(t, x) =
−1
2m3

log

1 − e−im3θv3(t, x)


,

which is a desired blowing-up solution. �
Now we are going to prove Lemma 3. First we show (4.2). We put ρj,s(t) = ρmj,s[vj](t) for j = 1, 2, 3. By (3.6), we have

ρ1,s(t) ≤ ρ1,s(0) = Cε, (4.4)

ρ2,s(t) ≤ 0 + C
 t

0
ρ1,s(τ )

2 dτ
τ 1/2

≤ Cε2t1/2, (4.5)

and

ρ3,s(t) ≤ 0 + C
 t

0
ρ2,s(τ )

2 dτ
τ 1/2

≤ Cε4t3/2. (4.6)

From (3.8) and (4.6) it follows that

∥v3(t, ·)∥L∞ ≤ Ct−1/2ρ3,s(t) ≤ Cε4t ≤ Cκ

for t ≤ κε−4. By choosing κ so small that Cκ < 1, we arrive at (4.2). Next we turn to the proof of (4.3). We put
αj(t, ξ) = (Amj(t)vj(t, ·))(ξ) and ρj(t) = ρmj,1[vj](t) for j = 1, 2, 3. Since ∂tα1 = −iAm1(t)Lm1v1 = 0, we have

α1(t, ξ) = α1(0, ξ) = εψ(ξ). (4.7)
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Also, it follows from (3.7) that∂tαj+1(t, ξ)− e−i3π/4t−1/2αj(t, ξ)2
 ≤ Ct−3/4ρj(t)2

for j = 1, 2. By (4.4) and (4.7), we have

|α2(t, ξ)− 2e−i3π/4ε2ψ(ξ)2t1/2| ≤ |α2(1, ξ)− 2e−i3π/4ε2ψ(ξ)2| + C
 t

1
ρ1(τ )

2 dτ
τ 3/4

≤ Cε2 + Cε2
 t

1

dτ
τ 3/4

≤ Cε2t1/4 (4.8)

for t ≥ 1. As for α3, it follows from (4.5) thatα3(t, ξ)− e−i3π/4
 t

1
(α2(τ , ξ))

2 dτ
τ 1/2

 ≤ |α3(1, ξ)| + C
 t

1
ρ2(τ )

2 dτ
τ 3/4

≤ Cε4 + Cε4
 t

1
τ 1/4dτ

≤ Cε4t5/4.

On the other hand, (4.8) yields t

1
(α2(τ , ξ))

2
− (2e−i3π/4ε2ψ(ξ)2τ 1/2)2

dτ
τ 1/2

 ≤

 t

1
Cε2τ 1/4 · Cε2τ 1/2

dτ
τ 1/2

≤ Cε4t5/4.

Summing up, we deduce thatα3(t, ξ)−
8
3
e−i9π/4ε4ψ(ξ)4t3/2

 ≤ Cε4t5/4

for t ≥ 1. In particular, we obtain

∥α3(t, ·)∥L∞ ≥ C∗ε4t3/2 − Cε4t5/4, (4.9)

where C∗
=

8
3∥ψ∥

4
L∞ > 0. From (4.6), (4.9) and Lemma 1 it follows that

∥v3(t, ·)∥L∞ ≥ t−1/2
∥α3(t, ·)∥L∞ − Ct−3/4ρ3(t)

≥ C∗ε4t − Cε4t3/4.

By taking K large enough, we have

∥v3(Kε−4, ·)∥L∞ ≥ C∗K − CεK 3/4

≥ (C∗K 1/4
− C)K 3/4

> 1,

which completes the proof of (4.3). �
Finally, we give an outline of the proof of (2), (3), (4) of Theorem 1. In the case of (2), the problem is reduced to getting

growth estimates for the solution (vj)j=1,2,3 toLm1v1 = 0,
Lm2v2 = v1

2,
Lm3v3 = v1v2

with the initial condition (4.1). Along the same line as the preceding argument, we can show that

ρ3,s(t) ≤ Cε3t (4.10)

and

∥α3(t, ·)∥L∞ ≥ 2ε3∥ψ∥
3
L∞ t − Cε3t3/4.

Note that the identity (3.2), instead of (3.1), plays the key role in the proof of (4.10). By virtue of (3.8) and Lemma 1, we have

sup
0≤t≤κ ′ε−6

∥v3(t, ·)∥L∞ < 1 and ∥v3(K ′ε−6, ·)∥L∞ > 1
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with some positive constants κ ′ and K ′. It follows from these estimates that Tε ∈ (κ ′ε−6, K ′ε−6), which yields the desired
conclusion. As for the proof of (3), we just have to replace (3.2) with (3.3) to obtain (4.10). The proof of (4) is also similar:
just use

∥Jm2(t)(|v2|v2)∥L2 ≤ C∥v2∥L∞∥Jm2(t)v2∥L2 (4.11)

in order to get the growth bound for ρ3,1(t). �
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Appendix. A quick review on blow-up of negative energy solutions

To make the difference between typical blow-up results and ours clearer, we will give a quick review on the proof of
finite time blow-up for the 3-component NLS system


i∂t +

1
2m1

∆


u1 = u2u3,

i∂t +
1

2m2
∆


u2 = u1u3,

i∂t +
1

2m3
∆


u3 = u1u2,

t > 0, x ∈ Rn, (A.1)

under the assumptions E[u(0)] < 0,m3 = m1 + m2 and 4 ≤ n ≤ 6, where the energy E[ · ] is defined by

E[ψ] =

3
j=1

1
2mj

∥∇ψj∥
2
L2 + 2Re


Rn
ψ1(x)ψ2(x)ψ3(x)dx

for ψ = (ψj)j=1,2,3. Note that the 2-component system (1.2) can be regarded as a degenerate case of (A.1), and the relation
m3 = m1 + m2 should be interpreted as the mass resonance relation associated with (A.1).

The core of the proof is that the following three identities hold (cf. [30,31], etc.):
d
dt

E[u(t)] = 0,

d
dt

3
j=1

mj∥xuj(t)∥2
L2 = 2V [u(t)] − 2(m1 + m2 − m3)Im


Rn

|x|2u1(t, x)u2(t, x)u3(t, x)dx,

d
dt

V [u(t)] =
n
2
E[u(t)] +

4 − n
2

3
j=1

1
2mj

∥∇uj(t)∥2
L2 ,

where V [ · ] is defined by

V [ψ] =

3
j=1

Im


Rn
ψj(x)x · ∇ψj(x)dx.

Once these identities are obtained, we can easily see that
3

j=1

mj∥xuj(t)∥2
L2 ≤

3
j=1

mj∥xuj(0)∥2
L2 + 2V [u(0)]t +

n
2
E[u(0)]t2 < 0

for sufficiently large t . This contradiction implies the non-existence of global solutions to (A.1) in H1(Rn) ∩ L2(Rn
; |x|2dx)

when E[u(0)] < 0, m3 = m1 + m2 and n ≥ 4, while the local existence for (A.1) can be shown when n ≤ 6, which comes
from p + 1 ≤

2n
n−2 with p = 2 (see [14] for the details).

We remark that E[u(0)] < 0 implies u(0) cannot be arbitrarily small, because

E[εψ] = ε2


3

j=1

1
2mj

∥∇ψj∥
2
L2 + 2εRe


Rn
ψ1(x)ψ2(x)ψ3(x)dx


> 0

if ψ ≠ 0 and ε > 0 is small enough. In fact, we can show the global existence of solutions to (A.1) if the data are suitably
small in H1(Rn)∩ L2(Rn

; |x|2dx)when n = 4 (see [14]). In this sense, our small data blow-up result presented in Theorem 1
should be distinguished from this kind of ‘‘large data’’ blow-up.
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