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a b s t r a c t

We employ recent developments of generalized differentiation concepts for set-valued
mappings and present aNewton-like iteration for solving generalized equations of the form
f (x) + F(x) ∋ 0 where f is a single-valued function while F stands for a set-valued map,
both of them being smooth mappings acting between two general Banach spaces X and Y .
The Newton iterationwe propose is constructed on the basis of a linearization of both f and
F ; we prove that, under suitable assumptions on the ‘‘derivatives’’ of f and F , it converges
Q-linearly to a solution to the generalized equation in question. When we strengthen our
assumptions, we obtain the Q-quadratic convergence of the method.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In 1994, Bonnans presented in [1] a Newton-type algorithm for variational inequalities, i.e., inequalities of the form

⟨f (x), y − x⟩ ≥ 0, ∀y ∈ K , x ∈ K ,

where f is a continuously differentiable mapping from Rq to itself and K is a nonempty closed convex subset of Rq. It is
well-known that such an inequality can be equivalently rewritten as

f (x)+ NK (x) ∋ 0, (1)

where NK denotes the normal cone of K at x, defined by

NK (x) =


{v ∈ Rq

| ⟨v, y − x⟩ ≤ 0,∀y ∈ K} if x ∈ K ;

∅ otherwise.

Bonnans proposed the following iterative scheme for solving (1):

f (xk)+ Mk(xk+1 − xk)+ NK (xk+1) ∋ 0, (2)

where Mk stands for a q × q matrix. Two key notions appear to be crucial in [1] for establishing convergence results of the
above method. They read as follows.
Semistable solutions. A solution x̄ of (1) is said to be semistable if there are positive constants c1 and c2 such that, for all
(x, y) ∈ Rq

× Rq, such that f (x)+ NK (x) ∋ y, and x ∈ Bc1(x̄), then ∥x − x̄∥ ≤ c2∥y∥.
Hemistable solutions. A solution x̄ of (1) is said to be hemistable if, for all α > 0, there exists ε > 0 such that, given x̂ ∈ Rq,
the variational inequality (in x)

f (x̂)+ M(x − x̂)+ NK (x) ∋ 0

has a solution x satisfying ∥x − x̄∥ ≤ α, whenever ∥x̂ − x̄∥ + ∥M − f ′(x̄)∥ < ε.
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Bonnans proved the following two results by considering successively the casewhen the variational inequality (1) admits
a semistable solution and a solution that is both semistable and hemistable.
Convergence under semistability (Bonnans [1]). Let x̄ be a semistable solution to (1), and let xk be a sequence satisfying (2) and
converging to x̄. Then:

(i) If (f ′(x̄)− Mk)(xk+1 − xk) = o(xk+1 − xk), then xk converges superlinearly.
(ii) If (f ′(x̄)− Mk)(xk+1 − xk) = O(∥xk+1 − xk∥2) and f ′ is locally Lipschitz, then xk converges quadratically.

Convergence under semi stability and hemistability (Bonnans [1]). If x̄ is a semistable and hemistable solution of (1), there exists
ε > 0 such that if ∥x0 − x̄∥ ≤ ε, then:

(i) There is a sequence xk satisfying (2), with Mk = f ′(xk), such that ∥xk+1 − xk∥ ≤ 2ε.
(ii) The sequence xk converges superlinearly (quadratically if f ′ is locally Lipschitz) to x̄.

Note that the semistability of the solution x̄ in the first statement does not imply the existence of a Newton sequence
xk; to prove the existence of such a sequence, the author needed an additional assumption, namely, the hemistability of the
solution x̄.

Twoyears later, Dontchev considered in [2] amore general setting bypresenting aNewtonmethod for solving generalized
equations of the form

f (x)+ F(x) ∋ 0, (3)

with f : X → Y a function and F : X ⇒ Y a set-valued map, X and Y being Banach spaces. Dontchev showed the local
quadratic convergence of a Newton-type iteration, based on a partial linearization of the mapping f + F , for solving (3).
More precisely, by considering the iterative procedure

0 ∈ f (xk)+ ∇f (xk)(xk+1 − xk)+ F(xk+1), (4)

where ∇f is the Fréchet derivative of f , he proved the following result:
Local convergence of a Newton-type method (Dontchev [2]). Let x∗ be a solution of (3), let f be a function which is Fréchet
differentiable in an open neighborhood O of x∗, and let its derivative ∇f be Lipschitz in O with constant L. Let F have closed graph
and let the map (f (x∗)+∇f (x∗)(· − x∗)+ F(·))−1 be Aubin continuous at (0, x∗)with modulus M . Then for every c > (1/2)ML
one can find δ > 0 such that for every starting point x0 ∈ Bδ(x∗) there exists a Newton sequence xk for (3), defined by (4),which
satisfies

∥xk+1 − xk∥ ≤ c∥xk − x∗
∥
2.

The Aubin continuity assumption in the above statement refers to the pseudo-Lipschitz continuity of the mapping in question
(see Section 2, Definition 2.3). Additional results in connection with this Newton iteration for generalized equations can be
found in [3,4].

It was also in the mid-nineteen nineties that Azé and Chou [5] presented a Newton method for solving the inclusion

F(x) ∋ 0, (5)

involving a strictly lower differentiable set-valuedmap F acting between twoBanach spacesX and Y . Under someassumptions
on the derivative of F at a reference point in the graph of F they showed the (strong) convergence of a Newton-type
method for solving (5). Lately, following the works of Aze and Chou, Dias and Smirnov [6] considered a Newton iteration,
for solving (5) in finite dimension, involving a locally Lipschitz continuous and differentiable set-valued map. They proved
the Q-quadratic convergence of their algorithm under some additional regularity properties on themapping F . We will take
a closer look at theses works of Aze and Chou and Dias and Smirnov in the last section of this paper.

Both Bonnans and Dontchev’s iterations rely on a partial linearization technique, in the sense that they only linearize
the single-valued function f and leave the set-valued mapping (NK or F ) unchanged. In [5,6] the authors are interested in
solving the general inclusion (5). In this paper, our approach is somewhat different. First of all, we are primarily interested
in solving the generalized equation

f (x)+ F(x) ∋ 0; (6)

and it is our belief that it is worth studying this specific type of inclusions in a separate manner rather than just considering
them as a special case of inclusion (5); first, because of the important role played by the function f and second because
they perfectly fit the framework of several problems in variational analysis such as complementarity problems, first order
necessary conditions or feasibility problems. Taking advantage of some recent developments on generalized differentiation
concepts for set-valued mappings, we propose here a Newton-type iteration for solving (6) where both the single-valued
function f , which is supposed to be not identically zero, and the set-valued mapping F are ‘‘linearized’’.

In a seminal paper dealing with differential calculus of nondifferentiable mappings, Ioffe [7] introduced a general class
of objects, for local approximation of nonsmooth single-valued functions, consisting of set-valued mappings which are
positively homogeneous and closed-valued (see Definition 2.1). Such objects are called prederivatives. This concept extended
the framework of differential calculus to more general classes of functions. Ever since, a growing literature on generalized
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differentiation of set-valued maps attests the importance of this topic, especially in variational analysis where this kind of
tools happen to be crucial. For an overview of the State-of-the-Art, one may refer to the monograph by Mordukhovich [8].
Lately, Pang [9] adapted the work of Ioffe by proposing a notion of generalized differentiation for set-valued mappings,
called T -differentiability, involving positively homogeneous maps (in this work, we chose to call it H-differentiability
because of the positive homogeneity property of the mapping H). Actually, Pang introduced several concepts of generalized
differentiability, all of them inspired by the works of Ioffe. The one we are interested in is called strict H-differentiability and
reads as follows.
Strict H-differentiability (Pang [9]). Let X and Y be Banach spaces. Let H be a positively homogeneous set-valued mapping from
X into Y . We say that a set-valued mapping F from X into Y is strictly H-differentiable at x̄ if for any δ > 0, there exists a
neighborhood U of x̄ such that

F(x) ⊂ F(x′)+ H(x − x′)+ δ∥x − x′
∥B for all x, x′

∈ U . (7)

For a comprehensive study on these concepts of generalized differentiability for set-valuedmappings involving positively
homogeneous maps one can refer to [9] and as well to [10,11] for recent advances on this topic.

In this paper, we work in general real Banach spaces X and Y , we assume that the single-valued function f : X → Y is
Fréchet differentiable on a neighborhood of some solution x̄ to (6) and that its derivative is Lipschitz continuous around this
point. In addition, we suppose that the set-valued mapping F : X ⇒ Y is strictly H-differentiable at x̄ in the sense of Pang
for some suitable positively homogeneous mapping H . Then, we prove in our main result (Theorem 3.3) that, whenever the
mapping H−1 is pseudo-Lipschitz continuous around (0, 0), there is a neighborhood Ω of x̄ such that for any initial guess
x0 ∈ Ω , there exists a sequence xn, the elements of which lie inΩ , generated by the following Newton iteration

f (xn)+ ∇f (xn)(xn+1 − xn)+ F(xn)+ H(xn+1 − xn) ∋ 0, (8)

which converges Q-linearly to the solution x̄ to (6).
In the same way f (xn) + ∇f (xn)(xn+1 − xn) linearizes f (xn+1), the expression F(xn) + H(xn+1 − xn) can be viewed as a

first-order approximation of F(xn+1), hence the iteration (8) is nothing but the method (4) proposed by Dontchev where we
have replaced F(xn+1)with its first order approximation. When the set-valued mapping F does not enjoy ‘‘nice’’ properties
(as being a cone, for instance), the set F(xn+1) in Dontchev’s method could be difficult to deal with in practical situations, in
that case the iteration (8) could provide us with a useful alternative.

We end the present section by providing some notation, then, in Section 2, we collect some definitions and results that
we will need in the sequel. In Section 3, we state and prove our theorems regarding the Q-linear (local) convergence of
the Newton iteration (8) for solving the generalized equation (6) while we prove in Section 4 its Q-quadratic convergence
by considering some additional assumptions. Finally, in the last section, we point out the major differences between the
Newton method we presented and the other works we are aware of; by doing so, we try to emphasize the interest of our
study.

Notation. Let (E, d) be a metric space. If x ∈ E and ρ > 0, then the (closed) ball with center x and radius ρ is Bρ(x) := {z ∈

E | d(z, x) ≤ ρ} and the (closed) unit ball is denoted by B. The interior of a subset A in E is denoted by int(A). If A and B are
two subsets of (E, d), the excess of A over B (with respect to d) is defined by the formula

e(A, B) = sup
a∈A

d(a, B).

It is clear that e(A, B) = inf{ε > 0 | A ⊂ B + εB}, moreover, we adopt the convention that e(∅, B) = 0 when B ≠ ∅ and
e(∅, B) = ∞ if B = ∅.

Let F be a set-valued mapping from X into the subsets of Y , indicated by F : X ⇒ Y . Then, gph F = {(x, y) ∈ X × Y | y ∈

F(x)} is the graph of F and the range of F is the set rge F = {y ∈ Y | ∃ x, F(x) ∋ y}. The inverse of F , denoted by F−1, is
defined as x ∈ F−1(y) ⇔ y ∈ F(x).

2. Background material

The concept of generalized differentiation we are dealing with strongly relies on positively homogeneous set-valued
mappings. This is the reason why we start this section by recalling a few facts about these particular mappings. First, we
state their definition.

Definition 2.1. Let H : X ⇒ Y be a set-valued mapping. It is called positively homogeneous if H(0) ∋ 0 and H(λx) = λH(x)
for all x ∈ X and λ > 0.

One can immediately note that a mapping is positively homogeneous if and only if its graph is a cone and that the
inverse of a positively homogeneous mapping is another positively homogeneous mapping. Graphical derivatives of set-
valuedmappings, introducedbyAubin [12], are positively homogeneous set-valuedmappings and so are sublinearmappings
(i.e., set-valued mappings such that their graph is a convex cone).

To be able to work efficaciously with positively homogeneous mappings we need the following tool known as the outer
norm.
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Definition 2.2. Let H : X ⇒ Y be a positively homogeneous mapping. The outer norm of H is

|H|
+

= sup
∥x∥≤1

sup
y∈H(x)

∥y∥, (9)

with the convention that supy∈∅ ∥y∥ = −∞.

Note that an equivalent (and useful) formulation of (9) is given by

|H|
+

= inf{κ > 0 | H(B) ⊂ κB}.

Let us now present a Lipschitz-like concept and a regularity property for set-valued mappings. The pseudo-Lipschitz
continuity for set-valued maps (also known as the Aubin property or Aubin continuity) has been introduced by Aubin
in [13,14] in the framework of the inverse function theorem in finite-dimensional spaces, and later, in [15] for Banach spaces.
It definition reads as follows.

Definition 2.3 (Pseudo-Lipschitz Continuity). A set-valued mapping F : X ⇒ Y is said to be pseudo-Lipschitz around the
point (x̄, ȳ) of its graph if one of the following equivalent assertions holds

(i) there is a positive constant κ together with neighborhoods U of x̄ and V of ȳ such that

F(x′) ∩ V ⊂ F(x)+ κ∥x′
− x∥B, for all x, x′

∈ U . (10)

(ii) there exist κ,U and V as described in(i), such that

e(F(x′) ∩ V , F(x)) ≤ κ∥x′
− x∥, for all x, x′

∈ U . (11)

Note that, in general, relations (10) and (11) are not themselves equivalent, it is the case when the mapping F is closed-
valued on U , i.e.,when F(x) is a closed subset of Y for all x ∈ U .

Definition 2.4 (Strong Metric Subregularity). Amapping F : X ⇒ Y is strongly metrically subregular at x̄ for ȳ if F(x̄) ∋ ȳ and
there exists κ > 0 along with neighborhoods U of x̄ and V of ȳ such that

∥x − x̄∥ ≤ κd(ȳ, F(x)) for all x ∈ U .

This property is equivalent to the ‘‘local Lipschitz property at a point’’ of the inverse mapping, a property first formally
introduced in [16] where a stability result parallel to the Lyusternik–Graves theorem was proved. Finally, we state the
following set-valued generalization of the Banach fixed point established by Dontchev and Hager in [17]. It will play an
important role in proving our main convergence theorem.

Theorem 2.5 (Set-Valued Banach Fixed Point Theorem). Let (X, ρ) be a completemetric space, and consider a set-valuedmapping
Φ : X ⇒ X, a point x̄ ∈ X, and nonnegative scalars α and θ be such that 0 ≤ θ < 1, the sets Φ(x) ∩ Bα(x̄) are closed for all
x ∈ Bα(x̄) and the following conditions hold:

(i) d(x̄,Φ(x̄)) < α(1 − θ);
(ii) e(Φ(u)


Bα(x̄),Φ(v)) ≤ θρ(u, v) for all u, v ∈ Bα(x̄).

ThenΦ has a fixed point in Bα(x̄). That is, there exists x ∈ Bα(x̄) such that x ∈ Φ(x).

3. Local behavior of the Newton iteration

From now on we assume that the solution set of (6) is nonempty, i.e., there exists an element x̄ ∈ X such that

− f (x̄) ∈ F(x̄). (12)

Before giving our main convergence result, we establish two technical lemmas which are useful in the sequel.

Lemma 3.1. Consider a single-valued function f : X → Y and let F : X ⇒ Y be a set-valued map that is strictly H-differentiable
at x̄ for some positively homogeneous map H : X ⇒ Y . If x̄ is a solution to (6) then for all δ > 0 there exists a neighborhood U of
x̄ so that for all x ∈ U there are some elements z ∈ F(x) and u ∈ B such that

− f (x̄)− z − δ∥x̄ − x∥u ∈ H(x̄ − x). (13)

Proof. Since the mapping F is strictly H-differentiable at x̄, for any δ > 0, there is a constant a > 0 such that

F(x) ⊂ F(x′)+ H(x − x′)+ δ∥x − x′
∥B for all x, x′

∈ Ba(x̄). (14)
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Take any x ∈ Ba(x̄). From (12) and (14) we obtain

−f (x̄) ∈ F(x̄) ⊂ F(x)+ H(x̄ − x)+ δ∥x̄ − x∥B.

Therefore there exist z ∈ F(x) and u ∈ B such that

−f (x̄)− z − δ∥x̄ − x∥u ∈ H(x̄ − x). �

Lemma 3.2. Consider a single-valued function f : X → Y , a positively homogeneous mapping H : X ⇒ Y such that |H|
+ < ∞,

a constant δ > 0 and let x̄ be a solution to (6). Assume in addition that the function f is Fréchet differentiable at x̄ and that
its derivative ∇f is Lipschitz continuous on a neighborhood Ω of x̄ with constant κ and is such that there exists a constant κ̂
satisfying ∥∇f (x)∥ ≤ κ̂ , for all x ∈ Ω . If there exist a constant τ > 0 together with some elements z ∈ Y , u ∈ B such that

− f (x̄)− z − δ∥x̄ − x∥u ∈ H(x̄ − x) for all x ∈ Bτ (x̄) (15)

then for all v ∈ Bτ (x̄)

∥f (x)+ z + ∇f (x)(v − x)∥ ≤
κ

2
∥x̄ − x∥2

+ (|H|
+

+ δ)∥x̄ − x∥ + κ̂∥v − x̄∥. (16)

Proof. Let τ > 0, z ∈ Y and u ∈ B such that relation (15) holds. Then, for each x ∈ Bτ (x̄) there exists an element h ∈ H(x̄−x)
such that

−f (x̄)− z = δ∥x̄ − x∥u + h,

therefore

∥f (x̄)+ z∥ ≤ (δ + |H|
+)∥x̄ − x∥.

Moreover, the function ∇f being Lipschitz continuous on a neighborhoodΩ of x̄with constant κ we have

∥∇f (x)− ∇f (x′)∥ ≤ κ∥x − x′
∥, for all x, x′

∈ Ω. (17)

Now adjust τ if necessary so that Bτ (x̄) ⊂ Ω and take any x, v ∈ Bτ (x̄). We have

∥f (x)+ ∇f (x)(v − x)+ z∥ = ∥f (x̄)− f (x)− ∇f (x)(v − x)− (z + f (x̄))∥
= ∥f (x̄)− f (x)− ∇f (x)(x̄ − x)− (z + f (x̄))− ∇f (x)(v − x̄)∥

≤

 1

0


∇f (tx̄ + (1 − t)x)(x̄ − x)− ∇f (x)(x̄ − x)


dt


+ ∥z + f (x̄)∥ + ∥∇f (x)(v − x̄)∥

≤ ∥x̄ − x∥
 1

0
∥∇f (tx̄ + (1 − t)x)− ∇f (x)∥dt

+ (δ + |H|
+)∥x̄ − x∥ + ∥∇f (x)∥ ∥v − x̄∥

≤
k
2
∥x̄ − x∥2

+ (δ + |H|
+)∥x̄ − x∥ + κ̂∥v − x̄∥,

which gives us the desired conclusion. �

The following theorem establishes the local convergence of the Newton iteration we consider in this paper.

Theorem 3.3. Consider the generalized equation (6). Assume that there is a point x̄ ∈ X satisfying (12) and that the function f is
Fréchet differentiable on a neighborhoodΩ of x̄ while the set-valued mapping F is strictly H-differentiable at x̄. In addition, we
suppose that:

(i) the derivative of f ,∇f , is Lipschitz continuous onΩ with a constant κ̄ and is such that there exists a constant κ̂ satisfying
∥∇f (x)∥ ≤ κ̂, for all x ∈ Ω;

(ii) the graph of the set-valued mapping H−1 is locally closed at (0, 0) and H−1 is pseudo-Lipschitz continuous around this point
with a constant κ > 0, moreover, |H|

+ < ∞;
(iii) κκ̃ < 1/2, where κ̃ := max{κ̄, κ̂}.

Then, there is a positive constant r such that for any initial guess x0 ∈ Br(x̄) there exists a sequence xn, the elements of which lie
in Br(x̄), generated by the Newton iteration (8) and converging Q-linearly to x̄.

Proof. Fix δ ∈ (0, κ̃/2), since the mapping F is strictly H-differentiable at x̄, there is a constant a > 0 such that

F(x) ⊂ F(x′)+ H(x − x′)+ δ∥x − x′
∥B for all x, x′

∈ Ba(x̄). (18)
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Making a smaller if necessary we can assume that

(a) a < 1
(b) H−1 is pseudo-Lipschitz continuous around the point (0, 0) with constant κ and with neighborhoods Ba(0) and Bb(0),

i.e.,

H−1(y) ∩ Ba(0) ⊂ H−1(y′)+ κ∥y − y′
∥B, for all y, y′

∈ Bb(0); (19)

(c) Ba(x̄) ⊂ Ω;
(d) ( κ̃2 a +

3κ̃
2 + |H|

+)a ≤ b.

Let r < a/2 and take any x0 ∈ Br(x̄). Thanks to Lemma 3.1 (and its proof) there exist z0 ∈ F(x0) and u0 ∈ B such that

− f (x̄)− z0 − δ∥x̄ − x0∥u0 ∈ H(x̄ − x0). (20)

Consider now the set-valued mappingΦ0 : X ⇒ X defined by

Φ0 : x → H−1(−f (x0)− z0 − ∇f (x0)(x − x0))+ x0.

One can immediately see that if x1 is a fixed point ofΦ0 then one has

−f (x0)− ∇f (x0)(x1 − x0) ∈ z0 + H(x1 − x0) ⊂ F(x0)+ H(x1 − x0),

which implies f (x0) + ∇f (x0)(x1 − x0) + F(x0) + H(x1 − x0) ∋ 0, that is, the Newton iteration (8) is satisfied for n = 0.
To prove the existence of such an element x1, we apply the set-valued Banach fixed point theorem (Theorem 2.5) to the
mapping Φ0. First, we show that w0 := −f (x0) − z0 − ∇f (x0)(x̄ − x0) ∈ Bb(0). Applying Lemma 3.2 with v = x̄, τ = r
together with the choice of the constants κ̃, δ and a we get

∥w0∥ ≤
κ̃

2
∥x̄ − x0∥2

+ (|H|
+

+ δ)∥x̄ − x0∥

≤


κ̃

2
a +

κ̃

2
+ |H|

+


a ≤ b.

Therefore,

− f (x0)− z0 − ∇f (x0)(x̄ − x0) ∈ Bb(0). (21)

And, using (20) again, it follows that ∥ − z0 − f (x̄)− δ∥x̄ − x0∥u0∥ ≤ |H|
+a ≤ b, i.e.,

− z0 − f (x̄)− δ∥x̄ − x0∥u0 ∈ Bb(0). (22)

By hypothesis, the constants κ and κ̃ are such that κκ̃ < 1/2, therefore there exists a number γ such that κκ̃
1−κκ̃ < γ < 1.

Let us set α0 := γ ∥x0 − x̄∥. Note that, since γ < 1, we have α0 < r . Thanks to the pseudo-Lipschitz continuity of H−1

around (0, 0) together with relations (20)–(22) we obtain

d(x̄,Φ0(x̄)) = d(x̄ − x0,H−1(−f (x0)− z0 − ∇f (x0)(x̄ − x0)))
≤ eH−1(−f (x̄)− z0 − δ∥x̄ − x0∥u0) ∩ Ba(0),H−1(−f (x0)− z0 − ∇f (x0)(x̄ − x0))
≤ κ∥f (x̄)− f (x0)− ∇f (x0)(x̄ − x0)∥ + κδ∥x̄ − x0∥

≤
κκ̃

2
∥x̄ − x0∥2

+ κδ∥x̄ − x0∥ ≤
κκ̃

2
r∥x̄ − x0∥ +

κκ̃

2
∥x̄ − x0∥

≤ κκ̃∥x̄ − x0∥ < α0(1 − κκ̃).

Consequently, the first assumption in Theorem 2.5 is satisfied. Now, we show that the second one holds too.
Take arbitrary points u and v in Bα0(x̄) ⊂ Br(x̄). Let Ψ 0

u,v := e

Φ0(u)∩ Bα0(x̄),Φ0(v)


, and define the points z0u and z0v of

Y by

z0u := −f (x0)− z0 − ∇f (x0)(u − x0) and z0v := −f (x0)− z0 − ∇f (x0)(v − x0).

Let us prove that z0u and z0v are in Bb(0):
Using Lemma 3.2 (with v = u and τ = r) together with the choice of the constants κ̃, δ and a, we obtain

∥z0u∥ ≤
κ̃

2
∥x0 − x̄∥2

+ ∥z0 + f (x̄)∥ + κ̃∥u − x̄∥

≤


κ̃

2
a + δ + |H|

+
+ κ̃


a ≤


κ̃

2
a +

3κ̃
2

+ |H|
+


a ≤ b.

Likewise it is easy to see that z0v ∈ Bb(0). Moreover, we have

Ψ 0
u,v = sup{d(ζ 0

u − x0,H−1(−f (x0)− z0 − ∇f (x0)(v − x0))) | ζ 0
u ∈ Φ0(u) ∩ Bα0(x̄)}.
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Noting that, for all ζ 0
u ∈ Φ0(u)∩Bα0(x̄), one has ζ

0
u −x0 ∈ H−1(z0u)∩Ba(0)we get, thanks to the pseudo-Lipschitz continuity

of the mapping H−1 around (0, 0),

Ψ 0
u,v ≤ e(H−1(z0u) ∩ Ba(0),H−1(z0v ))

≤ κ∥z0u − z0v∥
= κ∥∇f (x0)(u − x0)− ∇f (x0)(v − x0)∥
≤ κκ̃∥u − v∥.

Then, Theorem 2.5 provides us with the existence of a fixed point x1 ∈ Bα0(x̄) ⊂ Br(x̄) ofΦ0, i.e., the existence of a point x1
such that

∥x1 − x̄∥ ≤ γ ∥x0 − x̄∥,

and satisfying

f (x0)+ ∇f (x0)(x1 − x0)+ F(x0)+ H(x1 − x0) ∋ 0.

We now proceed by induction to complete the proof. Assume that there are elements x1, x2, . . . , xn in X , all of them lying
in the ball Br(x̄), such that, for i = 0, 1, . . . , n − 1, relation (8) holds and ∥xi+1 − x̄∥ ≤ γ ∥xi − x̄∥.

Since xn ∈ Ba(x̄), using Lemma 3.1, and similar arguments as in (21) and (22), we show that there exist zn ∈ F(xn) and
un ∈ B such that

−f (x̄)− zn − δ∥x̄ − xn∥un ∈ H(x̄ − xn) ∩ Bb(0) and − f (xn)− zn − ∇f (xn)(x̄ − xn) ∈ Bb(0).

Then, we consider the set-valued mappingΦn : X ⇒ X defined by

Φn : x → H−1(−f (xn)− zn − ∇f (xn)(x − xn))+ xn.

Let αn := γ ∥x̄ − xn∥, clearly αn < r . We get, thanks to the pseudo-Lipschitz continuity of H−1 around the point (0, 0),

d(x̄,Φn(x̄)) ≤ e

H−1(−f (x̄)− zn − δ∥x̄ − xn∥un) ∩ Ba(0),H−1(−f (xn)− zn − ∇f (xn)(x̄ − xn))


≤ κ∥f (x̄)− f (xn)− ∇f (xn)(x̄ − xn)∥ + κδ∥x̄ − xn∥

≤
κκ̃

2
∥xn − x̄∥2

+
κκ̃

2
∥x̄ − xn∥ < αn(1 − κκ̃).

Moreover for any u and v in Bαn(x̄), let Ψ
n
u,v := e


Φn(u) ∩ Bαn(x̄),Φn(v)


, and set

znu := −f (xn)− zn − ∇f (xn)(u − xn) and znv := −f (xn)− zn − ∇f (xn)(v − xn).

Using again Lemma 3.2 and the same argument as we did for z0u and z0v we obtain that znu and znv are in Bb(0). Then, from the
pseudo-Lipschitz continuity of the mapping H−1 around (0, 0)we have

Ψ n
u,v ≤ e(H−1(znu) ∩ Ba(0),H−1(znv ))

≤ κ∥znu − znv∥
= κ∥∇f (xn)(u − xn)− ∇f (xn)(v − xn)∥
≤ κκ̃∥u − v∥.

Finally, from the set-valued Banach fixed point theorem, we obtain that the mappingΦn has a fixed point xn+1 such that

f (xn)+ ∇f (xn)(xn+1 − xn)+ F(xn)+ H(xn+1 − xn) ∋ 0,

and

∥xn+1 − x̄∥ ≤ γ ∥xn − x̄∥,

which gives us the desired conclusion. �

The following result gives a sufficient condition, in terms of conditioning, ensuring the finite termination of the Newton
iteration (8). More precisely, we prove that under constant conditioning of the set-valuedmapping f +F , for n large enough,
the iterate xn is a solution to the generalized equation (6). Before going further,we recall the concept of constant conditioning
we use here.

We say that T : X ⇒ Y isψ-conditioned (see, e.g., [18]) if and only if there exists a functionψ : R+
→ R+

∪ {+∞} with
ψ(0) = 0 such that

ψ( d(x, T−1(0)) ) ≤ d(0, T (x)), for all x ∈ X . (23)

Whenψ is a linear mapping on R+ then relation (23) can be seen as a global version of metric subregularity of the mapping
T at any point x̄ for 0 where (x̄, 0) lies in the graph of T . The set-valued mapping T is said to be δ-constant conditioned if it
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is ψ-conditioned with ψ(t) = δ whenever t > 0 and ψ(0) = 0. Equivalently, T is δ-constant conditioned if and only if for
all (x, y) in the graph of T , ∥y∥ < δ implies x ∈ T−1(0).

Proposition 3.4 (Finite Termination of the Newton Iteration). Under the same hypotheses as in Theorem 3.3, if the set-valued
mapping f + F is β-constant conditioned (for some positive constant β) then the Newton iteration (8) has finite termination,
i.e., there is an integer n such that xn is a solution to (6).

Proof. Thanks to the proof of Theorem 3.3, there is a Newton sequence xn satisfying (8) and such that for n = 0, 1, . . . ,

∥xn+1 − x̄∥ ≤ γ ∥xn − x̄∥,

with κκ̃
1−κκ̃ < γ < 1. After a straightforward computation, we get from the above inequality, the following estimation of the

error in the nth iterate xn:

∥xn − x̄∥ ≤ γ n
∥x0 − x̄∥ ≤ γ nr, (24)

where the constant r is as defined in the statement of Theorem 3.3. Moreover, the proof of this same theorem provides us
with the existence of an element zn ∈ F(xn), for n = 0, 1, . . . , such that

∥ − f (xn)− zn − ∇f (xn)(x̄ − xn)∥ ≤
κ̃

2
∥xn − x̄∥2

+ (|H|
+

+ δ)∥xn − x̄∥.

From which, together with (24), we infer,

∥f (xn)+ zn∥ ≤ ∥∇f (xn)(x̄ − xn)∥ +
κ̃

2
∥xn − x̄∥2

+ |H|
+
∥xn − x̄∥ +

κ̃

2
∥x̄ − xn∥

≤ κ̃∥xn − x̄∥ +
κ̃

2
γ nr∥xn − x̄∥ + |H|

+
∥xn − x̄ ∥ +

κ̃

2
∥x̄ − xn∥

≤


κ̃

2
γ nr +

3κ̃
2

+ |H|
+


∥xn − x̄∥

≤


κ̃

2
γ nr +

3κ̃
2

+ |H|
+


γ nr.

Since γ < 1 we have
κ̃

2
γ nr +

3κ̃
2

+ |H|
+


γ nr <


κ̃

2
r +

3κ̃
2

+ |H|
+


γ nr < β, eventually .

It follows that there exists an integer n such that ∥f (xn) + zn∥ < β . Moreover, since (xn, f (xn) + zn) ∈ gph (f + F) for all
integer n, the set-valued mapping f + F being β-constant conditioned we get xn ∈ (f + F)−1(0), i.e., xn is a solution to the
generalized equation (6) and the Newton iteration (8) has finite termination. �

4. Quadratic convergence of the Newton iteration

By strengthening our hypotheses we can show the quadratic convergence of our Newton iteration (8). Throughout this
section, Y stands now for a Hilbert space. Before stating our second convergence theoremwe need to establish two lemmas.
The first one reads as follows.

Lemma 4.1. Consider a Hilbert space H and let C be a closed convex subset of H. Let x ∈ H and let ε be a positive real number.
If x + εB ⊂ C + εB then x ∈ C.

Proof. Let x ∈ H and take ε > 0. We show that if x ∉ C then x + εB ⊄ C + εB. Assume that x ∉ C , then we shall find an
element y ∈ x + εB such that y ∉ C + εB. Since C is a closed subset of H and x ∉ C there is a positive number α such that
d(x, C) = α. Moreover if xC denotes the projection of the point x onto the closed convex subset C we have

d(x, C) = ∥x − xC∥ = α. (25)

Now consider the point

y := xC +


ε

α
+ 1


(x − xC ). (26)

Clearly, y belongs to the line through x and xC , moreover, ∥y − x∥ = ε that is y ∈ x + εB. To complete the proof we show
that y ∉ C + εB, to this end, we intend to prove that d(y, C) > ε.
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We denote by yC the projection of y onto C and we claim that yC = xC . Since xC ∈ C , to prove that claim it is sufficient to
show that

⟨y − xC , c − xC ⟩ ≤ 0, ∀c ∈ C,

where ⟨·, ·⟩ denotes the inner product on the Hilbert space H . From (26), we get

⟨y − xC , c − xC ⟩ =


ε

α
+ 1


⟨x − xC , c − xC ⟩.

Since xC is the projection of x onto C, ⟨x − xC , c − xC ⟩ ≤ 0 for all c ∈ C and thus we have proved that yC = xC . Therefore,

d(y, C) = ∥y − yC∥ =


ε

α
+ 1


∥x − xC∥.

From (25) we infer that d(y, C) = ε + α > ε then y ∉ C + εB and the proof is complete. �

From now on we make additional assumptions on the mappings F and H to ensure the quadratic convergence of the
Newton iteration we consider. First, we assume that there is a solution x̄ to the inclusion (6) such that

− f (x̄) ∈ int (F(x̄)). (27)
Assumption (27) may occur in several situations, for instance, consider the case when f = 0 and F = ∂g where
g : R ∋ x → |x| is the absolute value function and ∂g denotes the subdifferential of g . Recall that the subdifferential
(of convex analysis) of g at a point x0 ∈ R is the set

∂g(x0) = {u ∈ R | u · (x − x0) ≤ g(x)− g(x0),∀x ∈ R}.

Since the absolute value function is a convex continuous mapping, searching critical points of g (actually, its minimizers)
reduces to solving the inclusion ∂g(x) ∋ 0. A straightforward computation gives

∂g(x) =


−1 if x < 0,
[−1, 1] if x = 0,
1 if x > 0.

Hence, the unique solution to the inclusion ∂g(x) ∋ 0 is 0 and one has
−f (0) = 0 ∈ int (∂g(0)) = [−1, 1].

Second, we assume that the mapping F is both closed-valued and convex-valued in a neighborhood of x̄, i.e.,
∃α > 0, ∀x ∈ Bα(x̄), F(x) is a closed convex subset of Y , (28)

while the mapping H is both convex-valued and compact-valued in a neighborhood of 0, i.e.,

∃α′ > 0, ∀x ∈ Bα′(0), H(x) is a convex compact subset of Y . (29)
The second lemma we need provides us with a technical result that turns out to be a cornerstone of our forthcoming

proof, it reads as follows.

Lemma 4.2. Consider a Banach space X alongwith aHilbert space Y . Let f : X → Y be a single-valued function and let F : X ⇒ Y
be a set-valued map that is strictly H-differentiable at x̄ for some positively homogeneous map H : X ⇒ Y . Let x̄ be a solution
to (6). If assumptions (27)–(29) are satisfied then there exists a neighborhood U of x̄ such that for all x ∈ U, there is an element
z ∈ F(x) such that −f (x̄)− z ∈ H(x̄ − x).

Proof. Since −f (x̄) ∈ int (F(x̄)) there exists a positive number ε such that

− f (x̄)+ εB ⊂ F(x̄). (30)

Fix δ > 0, the mapping F being strictly H-differentiable at x̄, there is a constant a > 0 such that

F(x) ⊂ F(x′)+ H(x − x′)+ δ∥x − x′
∥B for all x, x′

∈ Ba(x̄). (31)

Adjust a if necessary so that δa < ε. Take any x ∈ Ba(x̄), we get from (30) and (31)

−f (x̄)+ εB ⊂ F(x̄) ⊂ F(x)+ H(x̄ − x)+ δ∥x̄ − x∥B;

−f (x̄)+ εB ⊂ F(x)+ H(x̄ − x)+ εB.

Adjusting a if necessary, thanks to assumptions (28) and (29) we get that F(x) + H(x̄ − x) is a closed convex subset of the
Hilbert space Y . Thus, we can apply Lemma 4.1 and we obtain that −f (x̄) ∈ F(x) + H(x̄ − x), hence, there is an element
z ∈ F(x) such that

− f (x̄)− z ∈ H(x̄ − x), (32)

which is the desired conclusion. �
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We can now state and prove the main result of this section regarding the quadratic convergence of the Newton
iteration (8).

Theorem 4.3. Consider the generalized equation (6). Assume that there is a point x̄ ∈ X satisfying (27) and that the function f is
Fréchet differentiable on a neighborhoodΩ of x̄ while the set-valued mapping F is strictly H-differentiable at x̄. In addition, we
suppose that:
(i) the derivative of f ,∇f , is Lipschitz continuous onΩ with a constant κ̄ and is such that there exists a constant κ̂ satisfying

∥∇f (x)∥ ≤ κ̂, for all x ∈ Ω;
(ii) the graph of the set-valued mapping H−1 is locally closed at (0, 0) and H−1 is pseudo-Lipschitz continuous around this point

with a constant κ > 0, moreover, |H|
+ < ∞;

(iii) κκ̃ < 2/3, where κ̃ := max{κ̄, κ̂};
(iv) assumptions (28) and (29) are satisfied.
Then, there is a positive constant r such that for any initial guess x0 ∈ Br(x̄) there exists a sequence xn, the elements of which lie
in Br(x̄), generated by the Newton iteration (8) and converging Q-quadratically to x̄.

Since Theorem4.3 can be proved inmuch the sameway as Theorem3.3we only give here a sketch of its proofmentioning
the main arguments we need.
Proof. Fix δ > 0, since the mapping F is strictly H-differentiable at x̄, there is a constant a > 0 such that

F(x) ⊂ F(x′)+ H(x − x′)+ δ∥x − x′
∥B for all x, x′

∈ Ba(x̄). (33)

Making a smaller if necessary we can assume that δa < ε and that a satisfies assertions (a) to (d) in the proof of Theorem 3.3
where assertion (d) becomes

(d)

κ̃

2
a + κ̃ + |H|

+


a ≤ b.

Let r < a/2 and take any x0 ∈ Br(x̄). Thanks to Lemma 4.2 (and its proof) there exists an element z0 ∈ F(x0) such that

− f (x̄)− z0 ∈ H(x̄ − x0). (34)

We consider here the same mappingΦ0 defined in the proof of Theorem 3.3. and using the same arguments we prove that

− f (x0)− z0 − ∇f (x0)(x̄ − x0) ∈ Bb(0) and − z0 − f (x̄) ∈ Bb(0). (35)

Moreover, since the constants κ and κ̃ are such that κκ̃ < 2/3, there exists a constant γ such that κκ̃
2(1−κκ̃) < γ < 1.

Setting α0 := γ ∥x0 − x̄∥2, the pseudo-Lipschitz continuity of H−1 around (0, 0) together with relations (34) and (35) yield

d(x̄,Φ0(x̄)) ≤ e

H−1(−f (x̄)− z0) ∩ Ba(0),H−1(−f (x0)− z0 − ∇f (x0)(x̄ − x0))


≤ κ∥f (x̄)− f (x0)− ∇f (x0)(x̄ − x0)∥

≤
κκ̃

2
∥x̄ − x0∥2 < α0(1 − κκ̃).

The first assumption in Theorem 2.5 is therefore satisfied. Now take arbitrary points u and v in Bα0(x̄) ⊂ Br(x̄) and define
Ψ 0

u,v := e

Φ0(u) ∩ Bα0(x̄),Φ0(v)


along with the points z0u and z0v as in the proof of Theorem 3.3. As in the proof of

Theorem 3.3, Lemma 3.2 together with the choice of κ̃ and a ensure that both z0u and z0v are in Bb(0).
Then, the pseudo-Lipschitz continuity of the mapping H−1 around (0, 0) implies

Ψ 0
u,v ≤ e(H−1(z0u) ∩ Ba(0),H−1(z0v )) ≤ κκ̃∥u − v∥.

Applying Theorem 2.5 it follows that there exists a fixed point x1 ∈ Bα0(x̄) ⊂ Br(x̄) ofΦ0, i.e., a point x1 such that

∥x1 − x̄∥ ≤ γ ∥x0 − x̄∥2,

and satisfying

f (x0)+ ∇f (x0)(x1 − x0)+ F(x0)+ H(x1 − x0) ∋ 0.

The induction step is now clear, we assume that there are x1, x2, . . . , xn in the ball Br(x̄), such that, for i = 0, 1, . . . , n − 1,
relation (8) holds and ∥xi+1 − x̄∥ ≤ γ ∥xi − x̄∥2. Repeating exactly the same arguments we used above for n = 0 we obtain
that the mappingΦn (defined in the proof of Theorem 3.3) has a fixed point xn+1 lying in the ball of radius αn := γ ∥xn − x̄∥2

and centered at x̄. Hence, such a point satisfies

f (xn)+ ∇f (xn)(xn+1 − xn)+ F(xn)+ H(xn+1 − xn) ∋ 0,

and

∥xn+1 − x̄∥ ≤ γ ∥xn − x̄∥2.

Consequently, the sequence xn converges Q-quadratically to the solution x̄ to (6). �
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5. Concluding remarks

There is no doubt that, among the works we found in the literature, the Ref. [5] by Azé and Chou and [6] by Dias and
Smirnov are the closest to our concerns. This is the reason why we will endeavor to give, in the present section, more
specific information and comments about these works. This will allow us to emphasize the interest of our results.

A Newton type method by Azé and Chou.
In [5], given two Banach spaces X and Y and a closed set-valued mapping G : X ⇒ Y , Azé and Chou proposed a Newton

type method for solving the inclusion

G(x) ∋ 0. (36)

They consider a new notion of tangent cone based on the definition of the Clarke’s tangent cone (also known as the
circatangent cone) fromwhich they derive a concept of derivative for set-valuedmaps: the strict lower differentiability. More
precisely, according to Azé and Chou, a cone C ⊂ X is said to be equi-circatangent to A ⊂ X at a if

lim
(t,b)→(0,a)

e(C ∩ B, t−1(A − b)) = 0.

If C(A, a) and TA(a) denote respectively the Clarke’s tangent cone and the contingent cone, for any equi-circatangent cone
C to A at a we have C ⊂ C(A, a) ⊂ TA(a). For more details regarding these concepts of tangent cones the reader could refer
to the comprehensive monograph by Aubin and Frankowska [19].

A set-valuedmapping F : X ⇒ Y is said to be strictly lower differentiable at (a, b) ∈ gph F if there exists a closed positive
homogeneous mapping DF(a, b) : X ⇒ Y that is equi-circatangent to F at (a, b).

In their paper, Azé and Chou make the following assumptions:

(α) the mapping G in (36) is strictly lower differentiable at (a, b) ∈ gphG;
(β) the mapping DG(a, b) is surjective;
(γ ) ∥DG(a, b)−1

∥ < +∞.

The ‘‘norm’’ ∥ · ∥ in assumption (γ ) is the one defined in [19] by

∥F∥ = sup
u∈domF

∥u∥−1d(0, F(u)), for any F : X ⇒ Y .

It turns out that the definition of this norm agrees with the one of the so-called inner norm (see, e.g., [20]) given by

∥F∥
−

= sup
∥x∥≤1

inf
y∈F(x)

∥y∥,

then, thanks to [21, Theorem 1.2], we know that assumption (γ ) implies that the mapping G is metrically regular at a for b
the latter being equivalent to the pseudo-Lipschitz continuity (see Definition 2.3) of G−1 around (b, a).

The Newton-type method proposed in [5] consists in constructing sequences un in X converging to 0, δn in R converging
to 0 and (xn, yn) ⊂ gphG converging to some element (x̄, 0) ∈ gphG (i.e., x̄ is a solution to the inclusion (36)) such that for
each integer n

(1) yn + DG(a, b)(un) ∋ 0,
(2) limn→∞ d((xn + un, 0), gphG) = 0,
(3) d((xn+1, yn+1), (xn + un, 0)) ≤ d((xn + un, 0), gphG)+ δn.

In particular assertions (2) and (3) imply that, for each n, un is close to xn+1 − xn, thus assertion (1) is not very
far from the classical Newton iteration for solving nonlinear equations of the form f (x) = 0 which can be written as
f (xn)+ Df (a)(xn+1 − xn) = 0, where a is a point close to the initial guess x0.

Under assumptions (α), (β) and (γ ) Azé and Chou generate a Newton sequence xn satisfying the above assertions (1)–(3)
and strongly converging to a solution to the inclusion (36).

A Newton type method by Dias and Smirnov.
In [6], Dias and Smirnov consider the inclusion

F(x) ∋ 0, (37)

where F : Rn ⇒ Rm is a locally Lipschitz continuous set-valued mapping with closed values. They study the convergence of
a Newton-type method consisting in generating a sequence (xn, vn) ∈ gph F satisfying

xn+1 = xn + tnx̄n and vn+1 ∈ π(0, F(xn+1)), (38)

where the positive number tn is the step-length, π(0, F(xn+1)) denotes the set of all the projections of 0 onto F(xn+1) and
x̄n is a solution to the inclusion −vn ∈ DF(xn, vn)(x̄n).

Assuming, in addition, that the mapping F is metrically regular at some reference point (i.e., F−1 is pseudo-Lipschitz
continuous around this point) the authors prove the Q-quadratic convergence of their Newton-type method to a solution
to (37).
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A significant advance in the solving of variational inclusions was made in both [5,6] where the Newton-type methods
proposed by the authors involve a linearization of the set-valued mapping. Here, we follow the same path but as we said
in the introduction we chose to focus on the particular case of generalized equations of the form (6). Moreover, contrary to
Dias and Smirnovwe do not work in the finite dimensional framework andwe neither need themetrically regularity nor the
local Lipschitz continuity of the set-valued mapping F . Our assumptions and setting are closer to the ones used by Azé and
Chou, nevertheless we do know the rate of convergence (Q-linear or Q-quadratic) of our iteration while the Newton-type
algorithm they propose is strongly convergent to a solution to the problem without any information regarding the speed
of the convergence. Finally, it would be interesting to be able to compare the two concepts of graphical derivatives used
in [5,6] with the generalized derivative we consider here; unfortunately the lack of relations between these concepts has
been pointed out in the finite dimensional setting by Pang in [9].
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