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a b s t r a c t

Exponential B-splines are the most well-known non-stationary subdivision schemes. A
crucial limitation of these schemes is that they can reproduce at most two exponential
polynomials (Jena et al., 2003) [26]. Although interpolatory schemes can improve the
reproducing property of exponential polynomials, they are usually less smooth than the
(exponential) B-splines of corresponding orders. In this regard, this paper proposes a new
family of non-stationary subdivision schemes which extends the exponential B-splines
to allow reproduction of more exponential polynomials. These schemes can represent
exactly circular shapes, spirals or parts of conics which are important analytical shapes
in geometric modeling. This paper also discusses the Hölder regularities of the proposed
schemes. Lastly, some numerical examples are presented to illustrate the performance of
the new schemes.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Subdivision schemes are powerful tools for generating smooth curves and surfaces. These schemes have attracted much
attention in the recent decades for they allow designs of efficient, local and hierarchicalmodeling algorithms in awide range
of applications related to computer-aided geometric design and computer graphics. A subdivision begins with a set of initial
control points and then recursively produces denser control points by a linear combination of points at a lower refinement
level. The control points at increasing refinement level typically converge to a smooth function called the limit function. If the
refinement rule is the same at all levels and positions of each iteration, the scheme is called stationary. A general treatment
of stationary schemes can be found in selected Refs. [5,16,18]. Among the most familiar examples of such schemes are the
subdivisions of B-splines [4,7] and the interpolatory schemes [15]. The polynomial reproduction property of a subdivision
scheme was investigated recently in [6,9,17,22].

This paper is mainly concerned with non-stationary subdivision schemes. The non-stationary refinement process is usu-
ally formalized as follows. Given a set of initial control points f0 := {f 0n ∈ R : n ∈ Z}, the new control points fk+1 are defined
recursively by the rule depending on k:

f k+1
n =


m∈Z

a[k]
n−2mf

k
m. (1)

The sequence a[k]
:= {a[k]

n ∈ R : n ∈ Z} is called the subdivision mask at level k. It is assumed that only a finite number
of coefficients a[k]

n are non-zero, and hence, the sum in (1) can be computed efficiently. To simplify the presentation of a
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subdivision scheme and its analysis, it is convenient to assign to each mask a[k] the z-transform

a[k](z) =


n∈Z

a[k]
n zn,

which is called the symbol of the scheme.When only a finite number of coefficients a[k]
n are non-zero, the z-transform a[k](z)

becomes a Laurent polynomial.
A subdivision scheme is said to be C0 (or convergent) if for an initial data f0 = {f 0n : n ∈ Z} in ℓ∞(Z), there exists a

function f ∈ C0(R) such that for any compact set K in R,

lim
k→∞

sup
n∈Z∩2kK

|f kn − f (2−kn)| = 0 (2)

and f is not identically 0 for some initial data f0. In particular, the so-called basic limit function is obtained from the Dirac
delta sequence f0 = {δn,0 : n ∈ Z}. A non-stationary subdivision is said to reproduce an exponential polynomial ϑ if the
scheme {Sa[k]} is convergent (i.e., C

0) and

ϑ = lim
k→∞

Sa[k] · · · Sa[0] f
0

for the initial data f 0n = ϑ(n) with n ∈ Z.
One of the most important properties for convergent stationary subdivision schemes is the ability of reproducing

polynomials. Such schemes generate (or approximate) curves or surfaces very accurately with the corresponding
approximation order but have a limitation in representing circular shapes, spirals or parts of conics, which are important
analytical shapes in geometric modeling. This limitation can be overcome by employing non-stationary schemes which can
reproduce or generate such families of trigonometric (or exponential) polynomials and sections (see, for example, [1–3,10,
11,13,14,19–21,23–25,27–29]). A necessary and sufficient condition for a symbol of a non-stationary scheme to reproduce
exponential polynomials has been studied [12,26]. We note in passing that the condition in [12] involves more general
parameterizations while the study [26] concerns with uniform dyadic parameterizations of subdivision.

The most familiar examples of such schemes are subdivisions of exponential B-splines [8,14,19,28]. However, these
schemesmaynot reproduce any exponential polynomialswithout a suitable normalization factor. Evenwith a normalization
factor, the exponential B-splines can reproduce at most two linearly independent exponential polynomials [26]. Recently,
Conti et al. and Romani studied non-stationary subdivision schemes reproducing exponential polynomials [8,10,28]. In
particular, for the purpose of reproducing a certain set of exponential polynomials, they modified the exponential B-spline
to an interpolatory scheme at the expense of the mask length [8,28]. However, although interpolatory schemes provide
high approximation orders, they are usually less smooth than the (exponential) B-splines of the corresponding orders. For
instance, the 4-point (non-stationary) interpolatory scheme generates C1 curves, while the fourth-order (exponential) B-
spline is C2. Moreover, in spite of being a very desirable property in curve (and surface) designs, interpolation may raise
twisting artifacts to the parametric curves if the initial control points are highly irregular. From this point of view, there is a
need for new non-stationary subdivision schemes that extend the exponential B-splines while overcoming their drawbacks
at the same time.

This study proposes a new class of non-stationary subdivision schemes that can reproduce more exponential functions
than the exponential B-splines do. This gives us flexibility in designs to accommodate the various design circumstances
along with higher precision. To be more precise, we first introduce a new family of non-stationary schemes that reproduce
up to four exponential polynomials. These schemes will be termed as ‘exponential quasi-splines’ to reflect the fact that each
scheme in this family can be explained as the convolution of an exponential B-spline and a suitable distribution [14]. We see
that most of the known schemes (both stationary and non-stationary) turn out to be special cases of this family. This paper
discusses the Hölder regularities of the new schemes and provides some numerical results that illustrate the performance of
new schemes. Furthermore, we provide a generalized version of the exponential quasi-spline for the purpose of extending
the precision set.

The rest of the paper is organized as follows: Section 2 is devoted to provide a new family of non-stationary subdivision
schemes. Their Hölder regularities are discussed in Section 3. Section 4 deals with the exponential polynomial reproducing
property of the proposed scheme. In Section 5,we further generalize the new schemes to enhance the reproducing capability
of exponential polynomials. The performance of the new schemes is demonstrated with some numerical examples in
Section 6.

2. Exponential quasi-splines

The main purpose of this section is to present a new family of non-stationary subdivision schemes reproducing expo-
nential polynomials of the form ϕ(x) = xαeλx, where α is a nonnegative integer and λ belongs to R or iR. To this end, we



B. Jeong et al. / J. Math. Anal. Appl. 402 (2013) 207–219 209

first briefly review the subdivisions of the exponential B-splines. Let

Λ := {λn ∈ R or iR : n = 1, . . . ,N}

be a set of N numbers, where the values λn are not necessarily distinct. An exponential B-spline associated with the set Λ

can be defined in terms of the following symbol:

β
[k]
N (z) = 2z−⌈N/2⌉

N
n=1

1 + eλn2−k−1
z

2
, (3)

where ⌈x⌉ indicates the smallest integer bigger than or equal to x. Since #Λ = N , the corresponding exponential B-spline
is termed as an Nth order scheme. The new family of non-stationary subdivision schemes suggested in this study is defined
in terms of the following symbol:

a[k](z) = β
[k]
N (z)q[k](z) (4)

with the Laurent polynomial

q[k](z) = νk + ωk(z−1
+ z). (5)

As will be discussed in Section 3, the parameters νk and ωk play a crucial role in determining the smoothness and the expo-
nential polynomial reproducing property of the proposed scheme. For instance, a (normalized) exponential B-spline of any
order (i.e., ωk = 0) reproduces at most two exponential polynomials that depend on the choice of the factor νk [26]. How-
ever, by choosing a suitable ωk, the scheme reproduces (up to) four exponential polynomials. In fact, the proposed schemes
can be generalized to extend the precision set. The specific form will be given in Section 5.

This new family unifies most of the well-known schemes (both stationary and non-stationary), such as the (classical and
exponential) B-splines and the Deslauriers–Dubuc’s four-point interpolatory schemes. In particular, when ωk = 0 for any
k ∈ Z+, the suggested scheme becomes a normalized exponential B-spline with the symbol

b[k](z) = νkβ
[k]
N (z).

In fact, the scheme associatedwith a[k] in (4) can be explained as the convolution of an exponentialB-spline and a distribution
associated with the symbol q[k](z) (see [14] for the details). In this regard, the proposed scheme is termed as an ‘exponential
quasi-spline’ of order N . Before we further advance our discussion, let us observe some particular cases of the exponential
quasi-splines.

2.1. Stationary quasi-spline

Let λn = 0 for any λn ∈ Λ. Then the proposed scheme becomes stationary and reproduces a certain set of algebraic
polynomials. Accordingly, it is reasonable to write ωk = ω and set νk = 1 − 2ω so that each sum of the even and the odd
mask becomes 1. Then the corresponding symbol is of the form

a(z) = 2z−⌈N/2⌉

1 + z
2

N

q(z) (6)

with

q(z) = 1 − 2ω + ω(z−1
+ z). (7)

The parameterω plays an important role in determining the regularity and the polynomial reproducing property of the pro-
posed scheme. For a fixed N , the Hölder regularities vary depending onω (see Section 3). Moreover, this scheme reproduces
cubic algebraic polynomials for the case that ω = −N/8 [17,22]; see also Example 2.1. In the following example, we see
that this family extends the subdivision schemes introduced by Hormann and Sabin [22].

Example 2.1 (Hormann and Sabin’s Schemes). A family of stationary subdivision schemes reproducing cubic polynomials are
proposed in [22], where the symbol of each scheme is of the form

a(z) = 2

1 + z
2

N

(−N + (8 + 2N)z − Nz2)/8.

This is identified as a special case of the stationary quasi-spline in (6)withω = −N/8. Theorem3.1 tells that the smoothness
of the quasi-spline can be improved when ω is bigger than −N/8 and that the maximal smoothness is obtained when
ω = 1/4.
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Fig. 1. Basic limit functions of the cubic quasi-spline. Here, from top with respect to the origin, ω = −5/8, −1/2, −3/8, −1/4, −1/8, 0, 1/8, 1/4.

Fig. 2. Limit curves generated by the cubic quasi-spline. Here, from the outermost to innermost, ω = −5/8, −1/2, −3/8, −1/4, −1/8, 0, 1/8, 1/4.

2.2. Fourth order exponential quasi-splines

Among the proposed schemes, the fourth order (i.e., N = 4) scheme may be of most interest for its practical usages. Put
Λ = {±λ1, ±λ2} and

γn,k := e−λn2−k−1
+ eλn2−k−1

, n = 1, 2.

The mask of the corresponding scheme is supported in Z ∩ [−3, 3] except for the case that ωk = 0. Its general form is given
by

a[k]
0 = ((2 + γ1,kγ2,k)νk + 2(γ1,k + γ2,k)ωk)/8,

a[k]
−2 = a[k]

2 = (νk + (γ1,k + γ2,k)ωk)/8,

a[k]
−1 = a[k]

1 = ((γ1,k + γ2,k)νk + (3 + γ1,kγ2,k)ωk)/8,

a[k]
−3 = a[k]

3 = ωk/8.

(8)

Some numerical results are provided in Section 6 to illustrate the performance of this fourth order method.

Example 2.2 (Stationary Quasi-Spline). In the stationary case, as observed in Section 2.1, γ1,k = γ2,k = 2 since λj = 0. Also,
ωk = ω and νk = 1 − 2ω. Then the mask of the cubic quasi-spline is of the form

a0 = (3 − 2ω)/4, a−2 = a2 = (1 + 2ω)/8,
a−1 = a1 = (4 − ω)/8, a−3 = a3 = ω/8.

Fig. 1 displays its basic limit functions for ω = −5/8, −1/2, −3/8, −1/4, −1/8, 0, 1/8 and 1/4, respectively. In particular,
when ω = 0, 1/4 or −1/2, the scheme becomes the cubic, the quintic B-splines, and Deslauriers–Dubuc’s 4-point inter-
polatory scheme, respectively. Fig. 2 presents other results on the limit curves with the same choices for ω as above. If the
given control points are highly irregular, the limit curve of the interpolatory scheme (i.e., ω = −1/2) results in unpleasant
artifacts. However, by choosing ω bigger than −1/2, we can obtain visually better curves without twisting artifacts.

Example 2.3. Non-stationary 4-point schemes reproducing conic sections are developed in [1,25]. These schemes can be
obtained with suitable choices for νk and ωk in (8). The exact values of νk, ωk, and the corresponding subdivision mask are
given in Theorem 4.4. Also, the well-known (exponential) B-splines of order 4 and 6 as well as the (non-stationary) 4-point
interpolatory schemes are special cases of the fourth order exponential quasi-spline.



B. Jeong et al. / J. Math. Anal. Appl. 402 (2013) 207–219 211

3. Smoothness analysis

For a given γ = n + s with n ∈ N and s ∈ (0, 1], the Hölder space Cγ is defined as the set of n-times continuously
differentiable functions f whose n-th derivative f (n) satisfies the Lipschitz condition

sup
x,h∈R,h≠0

|f (n)(x + h) − f (n)(x)|
|h|s

≤ C

with a constant C > 0. In this section, we first discuss the Hölder regularity of stationary quasi-splines by using the method
based on the joint spectral radius [18]. Based on this result, we then show that the exponential quasi-spline has the same
integer smoothness as its stationary counterpart. To do this, we employ the concept of asymptotical equivalence among
subdivision schemes [19,21]; see also (14).

The concept of the joint spectral radius is well-known in the literature. However, in order for this paper to be self-
contained, we briefly introduce its definition. Consider the Laurent polynomial

a(z) = 2

1 + z
2

N

b(z),

where N is the maximal number of the smoothing factor in this symbol. Let bn, n = 0, 1, . . . , n0, be the coefficients of 2b(z),
and let B0 and B1 be n0 × n0 matrices that have components of the form

(B0)i,j = bi−2j+n0 , (B1)i,j = bi−2j+1+n0 , (9)

for i, j = 1, 2, . . . , n0. The joint spectral radius ρ of B0 and B1 is given by

ρ := ρ(B0, B1) = lim sup
n→∞

(max{∥Bϵn · · · Bϵ1∥
1/n
∞

: ϵi ∈ {0, 1}, i = 1, . . . , n}). (10)

Then the associated stationary subdivision scheme has the Hölder regularity N − log2 ρ. From the definition of ρ in (10), we
have

max{ρ(B0), ρ(B1)} ≤ ρ ≤ max{∥B0∥∞, ∥B1∥∞}. (11)

Based on this, we now compute the Hölder regularities of the stationary quasi-splines.

Theorem 3.1 (Stationary Quasi-Spline). Let SN,ω be the quasi-spline scheme of order N associated with the symbol in (6). Then
the scheme SN,ω is CN−log2 ρ with

ρ = 2 − 4ω, if 2−1
− 2N−2

≤ ω ≤ 1/4,
2 − 4ω ≤ ρ ≤ 4ω, if 1/4 < ω ≤ 1/3,
2ω ≤ ρ ≤ 4ω, if 1/3 < ω ≤ 1,

4ω − 2 ≤ ρ ≤ 4ω, if 1 < ω ≤ 2N−2.

(12)

Proof. The two matrices B0 and B1 in (9) corresponding to the Laurent polynomial q(z) in (7) are of the form:

B0 =


2(1 − 2ω) 0

2ω 2ω


, B1 =


2ω 2ω
0 2(1 − 2ω)


. (13)

A direct calculation yields the spectral radii of B0 and B1 as follows:

ρ(B0) = ρ(B1) = 2max{|1 − 2ω|, |ω|}.

It is also straightforward that

∥B0∥∞ = ∥B1∥∞ = 2max{|1 − 2ω|, 2|ω|}.

This in connection with (11) derives the result (12). �

Example 3.2 (Smoothness of Cubic Quasi-Splines). Fig. 3 presents the Hölder regularities of the cubic quasi-spline with the
parameter ω. The maximal smoothness is obtained when ω = 1/4 which corresponds to the quintic B-spline.

We now estimate the Hölder regularity of exponential quasi-splines based on the concept of asymptotical equivalence
between two schemes. A non-stationary scheme with the mask {a[k]

} is said to be asymptotically equivalent to a stationary
scheme with the mask a [19] if

k∈Z+

∥a[k]
− a∥∞ < ∞. (14)

Then, if the stationary scheme is C0, then the corresponding non-stationary scheme is also C0. The following theorem further
details the Hölder regularity of a non-stationary scheme [19,21].
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Fig. 3. Plot of Hölder regularity 4 − log2 ρ of the cubic quasi-spline with for −7/2 ≤ ω ≤ 1/4. Here, D–D4 indicates Deslauriers–Dubuc’s four-point
interpolatory scheme.

Theorem 3.3 ([19,21]). Let {Sa[k]} be a non-stationary subdivision scheme with the mask {a[k]
} and let Sa be a stationary scheme

with the mask a. Assume that supp(a) = supp(a[k]) for k ∈ Z+ and Sa is Cµ for some µ ∈ (0, 1). If

∥a[k]
− a∥∞ < c2−k, k ∈ Z+,

then {Sa[k]} is C
s for some s ∈ (0, 1).

Furthermore, we cite the following result from [21].

Lemma 3.4 ([21]). Let {Sa[k]} be a non-stationary subdivision scheme associated with the symbol of the form a[k](z) =
1
2 (1 +

rkz)b[k](z). Suppose

|1 − rk| ≤ c2−k, k ∈ Z+,

and the scheme corresponding to {Sb[k]} is Cℓ+µ with ℓ ∈ Z+ andµ ∈ (0, 1). Then the scheme {Sa[k]} is C
ℓ+1+s for some s ∈ (0, 1).

In the following theorem, we derive a simple condition on the parameters νk and ωk such that the exponential quasi-
spline scheme has the same integer smoothness as its stationary counterpart.

Theorem 3.5. Let SN,ω be the quasi-spline of order N with the symbol in (6), and assume that SN,ω is Cℓ+µ for some µ ∈ (0, 1).
Let {Sa[k]} be the exponential quasi-spline of order N associated with the symbol a[k] in (4). Suppose that the parameters νk and
ωk in a[k] satisfy the following conditions:

|νk − (1 − 2ω)|, |ωk − ω| ≤ c2−k, k ∈ Z+. (15)

Then {Sa[k]} is C
ℓ+s with s ∈ (0, 1).

Proof. Let b(z) = a(z)2ℓ(1 + z)−ℓ. Since the quasi-spline SN,ω is Cℓ, the subdivision associated with b(z) is Cµ with µ ∈

(0, 1). Its non-stationary counterpart of b(z) can be given as follows. Let Λℓ be an arbitrary subset of Λ so that #Λℓ = ℓ. Set

b[k](z) = a[k](z)

 
λn∈Λℓ

1 + eλn2−k−1
z

2

−1

and let {Sb[k]} be the corresponding scheme. Then, seeing that

|eλn2−k−1
− 1| < c2−k, ∀λn ∈ Λ,

for some constant c > 0 and using the condition (15), we can claim from the expression of a[k](z) in (4) that the scheme
{Sb[k]} is asymptotically equivalent to Sb and that {Sb[k]} is C s1 for some s1 ∈ (0, 1) by Theorem 3.3. Moreover, by applying
Lemma 3.4 repeatedly, we can conclude that Sa[k] is C

ℓ+s for s ∈ (0, 1). The proof is done. �

4. Exponential polynomial reproducing property

The goal of this section is to show that the exponential quasi-spline reproduces up to four exponential polynomials with
suitable parameters νk and ωk. A general version of the proposed scheme reproducing more exponential polynomials will
be discussed later in Section 5. We cite the following result which serves as a basic tool for our proof.

Theorem 4.1 ([26, Theorem 2.3]). A non-stationary subdivision scheme with the symbol a[k](z) reproduces a set of exponential
polynomials {xℓeλx

: ℓ = 0, . . . , µ − 1} if and only if for some Laurent polynomial b[k](z),

2 − a[k](z1+τ )zτ
= b[k](z)(1 − eλ2−k−1−τ

z)µ, (16)

where τ = 0 if N is even, and τ = 1 if N is odd.
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Remark 4.2. In [12], Conti and Romani studied a necessary and sufficient condition for a symbol of a non-stationary scheme
to reproduce exponential polynomials. This condition is indeed equivalent to (16) but involves more general parameteriza-
tions while Theorem 4.1 concerns with the typical (called primal and dual [9,17]) parameterizations of subdivision.

Now, recall that the symbol of exponential quasi-spline is of the form

a[k](z) = β
[k]
N (z)q[k](z) (17)

with q[k](z) = νk +ωk(z−1
+ z). In order for a subdivision scheme to be symmetric, the setΛ = {λj : j = 1, . . . ,N} is forced

to be of the form

Λ =


{λn, −λn : n = 1, . . . ,N/2}, if N is even,
{λ0, λn, −λn : λ0 = 0, n = 1, . . . , (N − 1)/2}, if N is odd. (18)

For simplicity in notation, we use the abbreviation

βj,k := β
[k]
N (e−λj2−k−1

)e−λj2−k−2τ , (19)

where β
[k]
N (z) is the symbol of the exponential B-spline in (3). We first verify that the exponential quasi-spline reproduces

at least two linearly independent exponential polynomials under a suitable choice of νk.

Lemma 4.3. Let a[k](z) be the symbol of the exponential quasi-spline scheme as in (17). For a given λj ∈ Λ and a parameter ωk,
choose the parameter νk to be

νk = 2β−1
j,k − ωkγj,k. (20)

Then the exponential quasi-spline reproduces at least two linearly independent exponential polynomials associated with ±λj.

Proof. In view of Theorem 4.1, we need to show that 2 − a[k](z1+τ )zτ
= 0 at z = e±λj2−k−1−τ

. To do this, we first consider
the case that τ = 0 and z = e−λj2−k−1

. Then a direct calculation gives the result

a[k](e−λj2−k−1
) = βj,k · 2β−1

j,k = 2

with βj,k in (19). We can prove similarly for the cases that z = eλj2−k−1
and τ = 1 (i.e., z = e±λj2−k−2

). �

The following theorem shows that the proposed scheme can enhance the reproducing capability of exponential polyno-
mials with a suitable choice of ωk. Our proof is divided into two cases: (i) N is even, (ii) N is odd. The case that N is even is
considered below.

Theorem 4.4. Suppose λj, λℓ ∈ Λ and #Λ = N is even. Let the parameter ωk be given as

ωk =


−

2(βj,k − βℓ,k)

βj,kβℓ,k(γj,k − γℓ,k)
if λℓ ≠ λj,

−
2

βj,k

N/2
n=1

1
γj,k + γn,k

if λℓ = λj.

(21)

If νk is chosen as in (20), then the corresponding exponential quasi-spline reproduces four linearly independent exponential
polynomials associated with ±λj and ±λℓ.

Proof. By Theorem 4.3, it suffices to show that the scheme {Sa[k]} reproduces the exponential polynomials associated with
λℓ and −λℓ. To this end, we first consider the case λℓ ≠ λj. Then by Theorem 4.1, we need to show that 2 − a[k](z) = 0 at
z = e−λℓ2−k−1

. This is indeed proved by a direct calculation as follows:

a[k](e−λℓ2−k−1
) = βℓ,k · 2β−1

ℓ,k = 2.

Similarly, we can get the same result for z = eλℓ2−k−1
. Next, consider the case that λℓ = λj. We then need to show that

d
dz (2 − a[k])(z) = 0 at z = e−λj2−k−1

. This is verified by the calculation

d
dz

(2 − a[k])(e−λj2−k−1
) = −

d
dz

a[k](e−λj2−k−1
) = 0.

Similarly, we have the same result for z = eλℓ2−k−1
. Therefore, by applying Theorem 4.1, the proof is done. �
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The following theorem treats the case that N is odd.

Theorem 4.5. Suppose λj, λℓ ∈ Λ and #Λ = N is odd. Let the parameter ωk be given as

ωk =


−

2(βj,k − βℓ,k)

βj,kβℓ,k(γj,k − γℓ,k)
if λℓ ≠ λj,

−
2

βj,k


1

2(2 + γj,k)
+

(N−1)/2
n=1

1
γj,k + γn,k


if λℓ = λj.

(22)

If νk is chosen as in (20), then the corresponding exponential quasi-spline reproduces four linearly independent exponential
polynomials associated with ±λj and ±λℓ.
Proof. The proof is analogous to the proof of the previous theorem. �

Remark 4.6 (The Four-Point Interpolatory Schemes).When N = 4, the exponential quasi-splines reproducing four exponen-
tial polynomialswith the choice of νk in (20) andωk in (21) become the four-point interpolatory schemes. The corresponding
mask is of the form

a[k]
2n = δn,0, n ∈ Z,

a[k]
−1 = a[k]

1 =
γ 2
1,k + γ1,kγ2,k + γ 2

2,k − 3

γ1,kγ2,k(γ1,k + γ2,k)
, a[k]

−3 = a[k]
3 =

−1
γ1,kγ2,k(γ1,k + γ2,k)

.

5. Generalized exponential quasi-spline

As observed in Section 4, the (exponential) quasi-spline reproduces up to four exponential polynomials. In this section,
we introduce its generalized version that reproduces more exponential polynomials. More specifically, for a given set
Λ◦

= {±λn : n = 1, . . . ,M} ⊂ Λ, our aim is to construct a scheme reproducing 2M exponential polynomials associated
with the set Λ◦. It indeed can be achieved by employing the extended form of the symbol

a[k](z) = β
[k]
N (z)q[k]

M (z) (23)
with the Laurent polynomial

q[k]
M (z) =

M−1
m=0

ωm,k(z−1
+ z)m, (24)

where 2M ≤ N . A natural question arising here is in the existence of the parameters ωm,k, m = 0, . . . ,M − 1, such that
the corresponding scheme reproduces exponential polynomials associated with Λ◦. In view of Theorem 4.1, we see that
determining the parameters ωm,k, m = 0, . . . ,M − 1, is translated into solving the linear system

dα(2 − a[k](z1+τ )zτ )

dzα


(e−λn2−k−1−τ

) = 0, α = 0, . . . , µn − 1, (25)

where µn indicates the number of values of λn that are duplicated in Λ◦. The existence of the solution of this linear system
is treated below.

Theorem 5.1. The linear system in (25) has a unique solution for ωm,k in (24) with m = 0, . . . ,M − 1.

Proof. The Laurent polynomial q[k]
M in (24) can be rewritten as

q[k]
M (z) = ω0,k +

M−1
m=1

ωm,k

m
ℓ=1

(z−1
+ z − γℓ,k)

for some suitableωm,k withm = 0, . . . ,M − 1. Then, we show inductively that the parametersωm,k form = 0, . . . ,M − 1
are uniquely determined by Eq. (25). Here, recalling that a[k](z) = β

[k]
N (z)q[k]

M (z), we consider only the case that N is even
since the other case can be proved similarly. Observe first that

a[k](e−λ12−k−1
) = β1,kω0,k.

Thus Eq. (25) with n = 1 and α = 0 gives the solutionω0,k = 2β−1
1,k . Next, assume thatωℓ,k for ℓ = 0, . . . ,m have been

determined. To solve Eq. (25) forωm+1,k, let

Λν := {λn : n = 1, . . . , ν}

and denote by µν,ℓ the duplication of λℓ in Λν . It can easily be seen that Eq. (25) with n = m + 2 and α = µm+1,m+2 − 1
has only one unknown variable, namely,ωm+1,k. Thusωm+1,k is obtained uniquely. This completes the proof. �
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Fig. 4. Limit curves generated by using the mask (26) with various (λ1, λ2). Here, from the innermost to the outermost, t = 0, 1/4, 1/2, 3/4, 1, and
(λ1, λ2) = (a) (0, 3), (b) (0, 1), (c) (0, iπ/2), (d) (0, 2.7i).

Theorem 5.2. Let N be a positive even integer and put M = N/2. Assume that the exponential quasi-spline associated with the
symbol in (23) reproduces 2M linearly independent exponential polynomials. Then the scheme is interpolatory.

Proof. This theorem holds immediately from Theorem 2.5 and Remark 2.6 in [20]. �

Remark 5.3 (Approximation Order). It is discussed in [26] that a non-stationary scheme provides the approximation order
N if it reproduces N linearly independent exponential polynomials. More precisely, assume that the initial data f0 is of the
form f0 := {f 0n = f (2−κn) : n ∈ Z} for some κ ∈ Z+ with a smooth function f satisfying ∥f (ℓ)

∥L∞(K) < ∞ for ℓ = 0, . . . ,N .
Then

∥f ∞
− f ∥L∞(K) ≤ cf 2−κN

with a constant cf > 0 depending on f but independent of κ , where K is a compact set in R.

Remark 5.4. In [10], the authors constructed a family of non-stationary subdivision schemes based on the exponential
B-splines. The associated symbols are in fact equivalent to the one in (23) with M = 3 so that the corresponding schemes
reproduce up to six exponential polynomials. However, the study [10] is mainly concerned with Λ in (18) which satisfies
the following condition. If ±λn, n = 1, . . . , q, are the distinct elements in Λ, then λn’s need to be of the form

λn = nλ, n = 1, . . . , q,

where λ ∈ R or iR.

6. Numerical example

In this section, we present some numerical results which illustrate the performance of the proposed schemes. To do this,
we first employ the fourth-order exponential quasi-spline with the mask in (8). We especially employ νk in (20) and set

ωk =
−8t

γ1,kγ2,k(γ1,k + γ2,k)
,

which is just the mask in (21) multiplied by t ∈ R. When t = 0, 1, the scheme results in the cubic exponential B-spline and
the non-stationary four-point interpolatory scheme, respectively. Furthermore, we assume that λ1 = 0 (i.e., γ1,k = 2) to
guarantee


n∈Z a[k]

j−2n = 1 for j = 1, 2. Then the resulting mask is given by

a[k]
0 =

1 + γ2,k + t
2 + γ2,k

, a[k]
−2 = a[k]

2 =
1 − t

2(2 + γ2,k)

a[k]
−1 = a[k]

1 =
γ2,k(2 + γ2,k) + t
2γ2,k(2 + γ2,k)

, a[k]
−3 = a[k]

3 =
−t

2γ2,k(2 + γ2,k)
.

(26)

Example 6.1 (Various Shapes and Tensions). Fig. 4 presents the limit curves generated with t = 0, 1/4, 2/1, 3/4, 1, and
various values of λ2. It demonstrates how different tension parameters ωk affect the limit function. Other curves generated
with real λn (n = 1, 2) and t = 1/4 are given in Fig. 5. Here, we used (λ1, λ2) = (0, 1), (0, 4), (0, 8) and (0, 16).

Example 6.2 (Reproduction of Surfaces). Polynomials, trigonometric functions and hyperbolic functions are frequently used
in many applications. The proposed scheme can reproduce such functions exactly by employing a suitable set Λ. Fig. 6
presents reconstructions of the surfaces termed as a tear drop, a Möbius strip, a figure-8 Klein bottle and a toroidal knot,
respectively, by using the mask (26) with t = 1. The specific parametric equations of these surfaces can be given as follows.
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Fig. 5. Limit curves with t = 1/2 and (λ1, λ2) = (a) (0, 1), (b) (0, 4), (c) (0, 8), (d) (0, 16).

Fig. 6. From top to bottom, reproduction of surfaces termed as a tear drop, a Möbius strip, a figure-8 Klein bottle and a toroidal knot.

(Tear drop): for 0 ≤ u ≤ 4 and 0 ≤ v ≤ 2,

x(u, v) =
1
2
cos

πu
2


1 − cos

πv

2


sin

πv

2
,

y(u, v) =
1
2
sin

πu
2


1 − cos

πv

2


sin

πv

2
,

z(u, v) = cos
πv

2
.

(Möbius strip): for 0 ≤ u ≤ 4 and −1 ≤ v ≤ 1,

x(u, v) = 3 cos
πu
2

+ v cos
πu
4

,

y(u, v) = 3 sin
πu
2

+ v cos
πu
4

,

z(u, v) = v sin
πu
4

.

(Figure-8 Klein bottle): for 0 ≤ u, v ≤ 4,

x(u, v) =


3 + cos

πu
4

sin
πv

2
− sin

πu
4

sinπv

cos

πu
2

,
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Fig. 7. Surfaces of revolutions generated by using themask (26)with various vertical tensors. Here, (a) the initial control polyhedron, (b) t = 0, (c) t = 1/2,
(d) t = 1.

Fig. 8. Limit curves by the interpolatory scheme with the mask in (27) and the parameter ω2 in (28): (a) initial control points, (b) (t, λ2) = (1, 0), (c)
(t, λ2) = (1, 4), (d) (t, λ2) = (1, 8), (e) (t, λ2) = (0.25, 1.5).

y(u, v) =


3 + cos

πu
4

sin
πv

2
− sin

πu
4

sinπv

sin

πu
2

,

z(u, v) = sin
πu
4

sin
πv

2
+ cos

πu
4

sinπv.

(Toroidal knot): for 0 ≤ u, v ≤ 4,

x(u, v) =


4 − cos

πu
2

+ sin
3πv

2


cosπv,

y(u, v) =


4 − cos

πu
2

+ sin
3πv

2


sinπv,

z(u, v) = sin
πu
2

− cos
3πv

2
.

In order to reproduce such surfaces, we used tensor product schemes of two independently parameterized exponential
quasi-splines. More specifically, seeing that the parametric equations of these surfaces are of the form

L
ℓ=1 fℓ(u)gℓ(v)with

suitable trigonometric functions fℓ and gℓ, we first construct tensor product schemes reproducing their component functions
fℓ(u)gℓ(v) for L = 1, . . . , L, respectively. Then, these tensor product schemes are combined together to reconstruct the
given parametric surfaces. For this experiment, we adopt the initial control points fℓ(n2−k)gℓ(n2−k) with k = 1 (tear drop),
0 (Möbius strip), 1 (figure-8 Klein bottle), 2 (toroidal knot).

Example 6.3 (Surface of Revolution). The surface of revolution is commonly used in many geometric design applications.
From the initial control polyhedron in Fig. 7(a), different types of wine glasses are obtained as presented in Fig. 7(b)–(d).
For the horizontal components of the surfaces, the mask (26) with λ2 = π/2 and t = 1 was used to reproduce a circle. The
vertical components were generated by using the mask with t = 0, 1/2, 1, respectively.

Example 6.4. The interpolatory schemes often generate limit curveswith unpleasant oscillatory artifacts if the given control
points are highly irregular, as depicted in Fig. 8(b)–(d). However, by choosing proper parameters in the exponential quasi-
spline, this drawback can be overcome. Consider the 4-point interpolatory scheme with the symbol

a[k]
2 (z) = β

[k]
2 (z)q[k]

2 (z)

=


z−1

+ z + γ1,k

2

 
ω0,k + ω1,k(z−1

+ z) + ω2,k(z−1
+ z)2


.

In particular, by choosing λ1 = 0, ω0,k = 1, and ω1,k = −2ω2,k, we get the interpolatory mask

a[k]
2n = δn,0,

a[k]
−1 = a[k]

1 =
1
2

−
ω2,k

2
, a[k]

−3 = a[k]
3 =

ω2,k

2
.

(27)
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Fig. 9. Comparison between the exponential quasi-spline (top) and the four-point scheme (bottom) for the encircled region in Fig. 8: (a) t = 1/2, (b)
t = 1/4, (c) t = 1/6, (d) t = 1/8.

Set

ω2,k = −
t

γ2,k(2 + γ2,k)
. (28)

Note that when t = 1, we obtain the non-stationary 4-point interpolatory scheme reproducing 1, x, eλ2x and e−λ2x if λ2 ≠ 0.
In Fig. 8(e), we see that the suggested non-stationary scheme has an advantage in eliminating the artifact. For the results in
Fig. 8(b)–(d), we used the parameter (28) with t = 1 and λ2 = 0, 4, 8. For Fig. 8(e), we employed t = 1/4 and λ2 = 1.5.
Fig. 9 shows an interesting comparison of the known 4-point scheme by Dyn et al. [16], which also reduces the oscillatory
behavior. Nonetheless, the advantage of the proposed scheme ismore noticeable. In this experiment, we employed λ2 = 1.5
for our non-stationary scheme.
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