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a b s t r a c t

The main contribution of this paper is to obtain a threshold value for the existence and
uniqueness of a nontrivial endemic periodic solution of an age-structured SIS epidemic
model with periodic parameters. Under the assumption of the weak ergodicity of a non-
autonomous Lotka–McKendrick system, we formulate a normalized system for an infected
population as an initial boundary value problem of a partial differential equation. The
existence problem for endemic periodic solutions is reduced to a fixed point problem of a
nonlinear integral operator acting on aBanach space of locally integrable periodic L1-valued
functions. We prove that the spectral radius of the Fréchet derivative of the integral
operator at zero plays the role of a threshold for the existence anduniqueness of a nontrivial
fixed point of the operator corresponding to a nontrivial periodic solution of the original
differential equation in a weak sense. If the Malthusian parameter of the host population
is equal to zero, our threshold value is equal to the well-known epidemiological threshold
value, the basic reproduction number R0. However, if it is not the case, then two threshold
values are different from each other and we have to pay attention on their actual biological
implications.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The seasonality of infectious diseases is one ofmost important research interests inmathematical epidemiology, since the
transmission parameters and host population behavior usually depend on season. Therefore many authors have examined
differential equations systems with periodic parameters in order to model the seasonal spread of infectious diseases
[12,13,28,2,1,37,30].

One of the most important concepts in this field is the basic reproduction number R0. It is epidemiologically defined as
the expected number of secondary cases produced by a typical infectious individual during its entire infectious period in a
completely susceptible host population, and usually, it is mathematically obtained as the spectral radius of a linear operator,
which is called the next generation operator [9,8,36,10].

Intuitively speaking, we can expect that the disease can invade into a completely susceptible host population if R0 > 1,
while it cannot if R0 < 1 in a local sense. This is a principle of invasion threshold based on R0. Moreover, usually we can
also expect that there exists at least one endemic steady state if R0 > 1, although it may not be a necessary condition
for existence of endemic steady states. In fact, endemic steady states can exists under the subcritical condition R0 < 1
(for instance, see [26,17]). This endemic threshold result has been widely established among autonomous epidemic sys-
tems for age-structured populations [18,26,17,19,20].

On the other hand, the general definition of the basic reproduction number in periodic environments was first
successfully established by Bacaër andGuernaoui in 2006 [2], and then it has been extended to the case ofmore general time-
heterogeneous environments by Thieme [34] and Inaba [21]. As is shown in Inaba [22], the invasion threshold principle for
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periodic structured epidemic models has been well-established based on the definition of Bacaër and Guernaoui. However,
the endemic threshold result for periodic epidemic systems based on R0 of the definition of Bacaër andGuernaoui has not yet
been fully examined for structured population models, although for non-structured population models, Nakata and Kuniya
[30] have shown existence of periodic endemic solution when R0 > 1, where R0 is given by the definition of Bacaër and
Guernaoui.

Introduction of age-structure into epidemicmodels is a crucial point so thatwe dealwith realistic situations. For example,
any disease prevention policy depends on age structure of the host population. Due to their relatively complex form, the
analysis is difficult and there are not a few open problems on the relation between R0 and mathematical properties such
as the existence, uniqueness, local and global stability of steady states. However, we strongly conjecture that the endemic
threshold result for structured population in periodic environments will be properly formulated by R0 defined by Bacaër
and Guernaoui.

The main purpose of this paper is to obtain threshold results for an age-structured epidemic model with periodic
parameters and study the relation between R0 and the solution behavior of the model.

The model we study in this paper is an age-structured SIS epidemic model, in which total population is divided into two
epidemiological classes, susceptibles and infectives, and individuals recovered from infection do not obtain immunity and
directly go back to the susceptible class. The age-structured SIS epidemic models with time-independent parameters have
been studied in [4,16,5,15,11]. A generalization of such models to a periodic systemwas given in [28], in which the periodic
age-space-structured SIS epidemic model with reaction–diffusion terms is considered, so it has quite a general form. They
showed the global asymptotic stability of a nontrivial endemic periodic solution, however, they relied on the assumption
of the existence of such a periodic solution (for the case where there is no recruitment from other environments). Thus, the
existence of a threshold value like R0 for the existence of a nontrivial endemic periodic solution has not been investigated
for any age-structured SIS periodic epidemic models, and this is the point we focus on in this paper.

Under the assumption of the weak ergodicity of a nonautonomous Lotka–McKendrick population system, the age-
structured SIS periodic epidemic model we shall consider can be normalized to a single equation of fraction of infected
population. Integrating it along the characteristic lines, we obtain an expression of the fraction of the infected by the force
of infection. Substituting the expression into the definition of the force of infection, we obtain an integral equation, which
can be a fixed point equation in a Banach space of locally integrable, time-periodic L1-valued functions. We show that the
spectral radius of the Fréchet derivative of the fixed point operator at zero is the desired threshold value, that is, if it is less
than one, the trivial disease-free steady state of the normalized system is globally asymptotically stable, while if it is greater
than one, there exists a unique nontrivial endemic periodic solution.

In case the Malthusian parameter of the host population is equal to zero, it is shown that the threshold value is equal to
the basic reproduction number R0 obtained by following to the definition in [2,34,22]. However, if it is not equal to zero, they
can be different and therefore we have to pay attention to possible cases such as the relatively decreasing but absolutely
increasing (or, vice versa) infected population.

The organization of this paper is as follows: In Section 2, we formulate the mainmodel of this paper and normalize it to a
single equation as mentioned above. In Section 3, we show the well-posedness of the time evolution problem. In Section 4,
we obtain the threshold value as mentioned above, and prove the existence of a nontrivial endemic periodic solution of the
system in case the threshold value is greater than one. In Section 5, we prove the uniqueness of such a nontrivial solution in
case the threshold value is greater than one. In Section 6, we prove the global asymptotic stability of the trivial disease-free
steady state of the system in case the threshold value is less than one. In Section 7, we investigate the relation between the
threshold value and the basic reproduction number R0. Finally, in Section 8, numerical illustration is given.

2. The basic model

Let S (t, a) and I (t, a) be the age-densities at time t and age a ∈ [0, ω] of susceptible and infective population
respectively, where ω < ∞ denotes the maximum attainable age. Let P (t, a) be the age-density of host population at
time t and thus we have P (t, a) = S (t, a)+ I (t, a). Let N (t) be the total size of the population at time t and thus we have

N(t) =

 ω

0
P (t, a) da.

Let µ (t, a) be the age-specific mortality rate at time t, γ (t, a) be the age-specific recovery rate, k (t, a, σ ) be the
transmission coefficient between susceptible individuals aged a and infective individuals aged σ , f (t, a) be the age-specific
fertility rate and λ (t, a) be the force of infection to susceptible individuals aged a, at time t , respectively. We make the
following technical assumption on vital parameters:

Assumption 1. The basic vital parameters f , γ , µ and k are periodic in time t with period T > 0, and we assume that
f (t, ·), γ (t, ·) ∈ L∞

+
(0, ω), k(t, ·, ·) ∈ L∞

+
([0, ω] × [0, ω]) and µ(t, a) is locally integrable along the characteristic line

t − a = const. and ω

0
µ(t + σ , σ )dσ = ∞,

for all t ∈ R, which implies that the cohort survival rate is zero at age ω.
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Then the age-structured SIS epidemic model with time-periodic parameters is formulated as follows:
∂

∂t
+
∂

∂a


S (t, a) = −λ (t, a) S (t, a)− µ (t, a) S (t, a)+ γ (t, a) I (t, a) ,

∂

∂t
+
∂

∂a


I (t, a) = λ (t, a) S (t, a)− (µ (t, a)+ γ (t, a)) I (t, a) ,

λ(t, a) =
1

N (t)

 ω

0
k (t, a, σ ) I (t, σ ) dσ ,

S(t, 0) =

 ω

0
f (t, a) P (t, a) da,

I(t, 0) = 0,
S(0, a) = S0(a), I(0, a) = I0(a),

(2.1)

where the force of infection is given by the standard type of incidence and the initial data are given by nonnegative integrable
functions.

Since we neglect an additional death rate for infected, the host population dynamics is described by the Lotka–
McKendrick system with periodic coefficients:

∂

∂t
+
∂

∂a


P (t, a) = −µ (t, a) P (t, a) ,

P (t, 0) =

 ω

0
f (t, a) P (t, a) da,

P (0, a) = P0(a) := S0(a)+ I0(a).

(2.2)

To simplify the basic model, we introduce the age distribution of ratio for each epidemiological class as follows:

s (t, a) :=
S (t, a)
P (t, a)

, i (t, a) :=
I (t, a)
P (t, a)

. (2.3)

Now we can rewrite model (2.1) as
∂

∂t
+
∂

∂a


s (t, a) = −λ(t, a)s(t, a)+ γ (t, a)i(t, a),

∂

∂t
+
∂

∂a


i (t, a) = λ(t, a)s(t, a)− γ (t, a)i(t, a),

λ(t, a) =

 ω

0
k(t, a, σ )

P (t, σ )
N (t)

i (t, σ ) dσ ,

s(t, 0) = 1, i(t, 0) = 0,
s (0, a) = s0 (a) , i (0, a) = i0 (a) .

(2.4)

Here we assume that the Lotka–McKendrick system (2.2) has a positive persistent solution as

P∗(t, a) = er(t−a)b(t − a) e−
 a
0 µ(t−a+σ ,σ ) dσ ,

where the Malthusian parameter r and a positive periodic function b(t) satisfy the characteristic relation:

b(t) =

 ω

0
f (t, a) e−ra−

 a
0 µ(t−a+σ ,σ )dσ b(t − a) da.

Let θ(t, a) be the periodic age profile:

θ(t, a) :=
P∗(t, a) ω

0 P∗(t, x)dx
.

In this paper we assume that the age profile of the host population has already attained a periodic stable age profile θ ,
that is,

P(t, a) = N(t)θ(t, a),

holds for all t ≥ 0. We adopt a technical, but biologically reasonable, assumption as follows:
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We remark that if we assume that the non-autonomous system (2.2) is weakly ergodic, the age profile of the host
population converges to a periodic age profile θ in a L1-sense, that is,

lim
t→∞

P (t, ·)
N (t)

− θ(t, ·)

L1

= 0,

where we use the notation θ neglecting the phase difference.
The stable population model with periodic parameters was first studied by A. J. Coale [6,7] based on the renewal integral

equation. The reader may refer to [35,23,32,31,22] for the proof of the above statements. Note that our analysis covers a
special case that only epidemic parameters are periodic and all demographic parameters are time independent, hence the
Lotka–McKendrick system (2.2) becomes an autonomous system and there exists a disease-free steady state (see Section 8).

Since it follows from (2.3) that s (t, a) ≡ 1 − i (t, a), system (2.4) can be reduced to a single equation for i (t, a) as
∂

∂t
+
∂

∂a


i (t, a) = λ (t, a) (1 − i (t, a))− γ (t, a)i(t, a),

λ(t, a) =

 ω

0
β (t, a, σ ) i (t, σ ) dσ ,

i(t, 0) = 0, i(0, a) = i0(a),

(2.5)

where

β (t, a, σ ) := k(t, a, σ )θ(t, σ )

is a given time-periodic transmission kernel.
It is obvious that system (2.5) always has the trivial disease-free steady state i ≡ 0. The main interest of this paper is to

investigate the existence and uniqueness of a nontrivial endemic periodic solution of system (2.5).

3. Abstract formulation

Although the mathematical well-posedness of the initial-boundary value problem (2.5) is well known [4,15], here we
sketch a method to show it for the readers’ convenience. Note that we can reformulate system (2.5) as an abstract Cauchy
problem in Banach space E := L1(0, ω).

Let us define a linear operator A : D (A) ⊂ E → E as
(Aϕ) (a) := −

d
da
ϕ (a) ,

D (A) =

ϕ ∈ E : ϕ ∈ W 1,1(0, ω), ϕ (0) = 0


,

(3.1)

where W 1,1(0, ω) denotes the set of absolutely continuous functions on (0, ω). Let C be a closed convex set defined by

C := {ϕ ∈ E+ : 0 ≤ ϕ (a) ≤ 1 a.e.} , (3.2)

where E+ denotes the positive cone of E. Let us define family {F (t, ·)}t≥0 : C ⊂ E → E of nonlinear bounded operators as

F (t, ϕ) (a) := λ [t, a| ϕ] (1 − ϕ (a))− γ (t, a) ϕ (a) , (3.3)

where

λ [t, a|ϕ] :=

 ω

0
β (t, a, σ ) ϕ (σ ) dσ .

Then system (2.5) is reformulated as a semilinear nonautonomous Cauchy problem

d
dt

i (t) = Ai (t)+ F (t, i (t)) , i (0) = i0 (3.4)

in E. It is easy to see that operator A is the infinitesimal generator of a C0-semigroup

etA


t≥0 defined by


etAϕ


(a) =


0, t > a,
ϕ (a − t) , t < a (3.5)

on E. Here note that although (3.5) is not defined for t = a, it does not matter since ϕ (0) = 0 always holds for ϕ ∈ D (A).
From (3.5) we immediately have etA (C) ⊂ C .
Using the fact that γ and β are bounded above and the same kind of argument as in [4], it is easy to show that the

following holds:
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Proposition 3.1. F (t, ·) : C → E is Lipschitz continuous for any fixed t ∈ R+. There exists a constant α ∈ (0, 1) such that if
φ ∈ C, then φ + αF (t, φ) ∈ C.

Using α appeared in Proposition 3.1, we can rewrite problem (3.4) as

d
dt

i (t) =


A −

1
α


i (t)+

1
α
(i (t)+ αF (t, i (t))) , i (0) = i0. (3.6)

Now we are in position to look for a mild solution i ∈ C of (3.6), which is given by the solution of integral equation

i (t) = e−
1
α t etAi0 +

1
α

 t

0
e−

1
α (t−s) e(t−s)A

{i (s)+ αF (s, i (s))} ds. (3.7)

Eq. (3.7) provides the following scheme for the standard iterative procedure for obtaining mild solution i ∈ C:

i0 (t) = i0,

in+1 (t) = e−
1
α t etAi0 +

1
α

 t

0
e−

1
α (t−s) e(t−s)A 

in (s)+ αF

s, in (s)


ds, n = 0, 1, 2, . . . .

Since it is easy to see that C is invariant with respect to the iteration process, that is, in+1
∈ C if in ∈ C , according to the

argument in [4,15], we can prove the following theorem [15]:

Theorem 3.1. Let i0 ∈ C. Then, abstract Cauchy problem (3.4) has a unique mild solution i (t) = U (t, 0) i0 in C, where
U (t, s) , t ≥ s ≥ 0 defines an evolutionary systems with the following property:

U (s, s) = I, U (t, σ )U (σ , s) = U (t, s) , U (t, s) (C) ⊂ C,
U (t, s) u ≤ U (t, s) v, if u ≤ v.

4. Existence of an endemic periodic solution

In this section, we investigate the existence of an endemic T -periodic solution of system (2.5). Let XT be the set of locally
integrable T -periodic E-valued functions with norm

∥ϕ∥XT :=

 T

0
∥ϕ (t) ∥E dt =

 T

0

 ω

0
|ϕ (t, a) | da dt,

and XT ,+ be its positive cone. LetΩT be the state space given by

ΩT :=

ϕ ∈ XT ,+ : 0 ≤ ϕ (t, a) ≤ 1 a.e.


. (4.1)

If an endemic T -periodic solution i∗ ∈ ΩT \ {0} of system (2.5) exists, it satisfies
∂

∂t
+
∂

∂a


i∗ (t, a) = λ∗ (t, a)


1 − i∗ (t, a)


− γ (t, a)i∗(t, a),

λ∗ (t, a) =

 ω

0
β (t, a, σ ) i∗ (t, σ ) dσ ,

i∗(t, 0) = 0.

(4.2)

Integrating the first equation of (4.2) along the characteristic lines, we have

i∗ (t, a) =

 a

0
λ∗ (t − a + σ , σ ) e−

 a
σ [λ∗(t−a+ρ,ρ)+γ (t−a+ρ,ρ)] dρ dσ . (4.3)

Note that if a time-periodic E-valued function λ∗(t, ·) is given, i∗(t, a) calculated from (4.3) is differentiable along the
characteristic line t − a = const., that is, it follows that

Di∗ (t, a) = λ∗ (t, a)

1 − i∗ (t, a)


− γ (t, a)i∗(t, a), (4.4)

where operator D is a directional derivative defined by

(Df )(t, a) := lim
h→0

f (t + h, a + h)− f (t, a)
h

.

In the following, we look for a time-periodic solution of (4.2) in a weak sense such that the differential operator ∂t + ∂a
is interpreted as the directional derivative D. If we assume differentiability of parameter β , the weak solution becomes a
classical solution.
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Substituting (4.3) into the second equation of (4.2), we have

λ∗ (t, a) =

 ω

0
β (t, a, σ )

 σ

0
λ∗ (t − σ + ρ, ρ) e−

 σ
ρ [λ∗(t−σ+η,η)+γ (t−σ+η,η)] dη dρ dσ

=

 ω

0

 σ

0
β (t, a, σ ) λ∗ (t − τ , σ − τ) e−

 σ
σ−τ [λ

∗(t−σ+η,η)+γ (t−σ+η,η)] dη dτ dσ

=

 ω

0

 σ

0
β (t, a, σ ) λ∗ (t − τ , σ − τ) e−

 τ
0 [λ∗(t−ζ ,σ−ζ )+γ (t−ζ ,σ−ζ )] dζ dτ dσ

=

 ω

0

 ω

τ

β (t, a, σ ) e−
 τ
0 [γ (t−ζ ,σ−ζ )+λ∗(t−ζ ,σ−ζ )] dζλ∗ (t − τ , σ − τ) dσ dτ .

Define a nonlinear positive operator

Φ (ϕ) (t, a) :=

 ω

0

 ω

τ

β (t, a, σ ) e−
 τ
0 [γ (t−ζ ,σ−ζ )+ϕ(t−ζ ,σ−ζ )] dζϕ (t − τ , σ − τ) dσ dτ (4.5)

on XT . Then if Φ has a nontrivial fixed point λ∗
= Φ (λ∗) in XT ,+ \ {0}, there exists an endemic T -periodic solution i∗ in

ΩT \ {0} in a weak sense. In fact, if there exists such a fixed point λ∗
= Φ (λ∗) ∈ XT ,+ \ {0}, then from (4.3) we easily see

that i∗ ≥ 0, i∗ ≠ 0 and

i∗ (t, a) =

 a

0


λ∗ (t − a + σ , σ )+ γ (t − a + σ , σ )


e−

 a
σ λ

∗(t−a+ρ,ρ)+γ (t−a+ρ,ρ) dρ dσ

−

 a

0
γ (t − a + σ , σ ) e−

 a
σ [λ∗(t−a+ρ,ρ)+γ (t−a+ρ,ρ)] dρ dσ

= 1 − e−
 a
0 [λ∗(t−a+ρ,ρ)+γ (t−a+ρ,ρ)] dρ

−

 a

0
γ (t − a + σ , σ ) e−

 a
σ [λ∗(t−a+ρ,ρ)+γ (t−a+ρ,ρ)] dρ dσ ≤ 1.

Hence i∗ ∈ ΩT \ {0} and it satisfies (4.2) in the weak sense. Therefore, in what follows, we investigate the existence of a
nontrivial fixed point λ∗ of operatorΦ in XT ,+ \ {0}.

Let us define a positive bounded linear operator

(Kϕ) (t, a) :=

 ω

0

 ω

τ

β (t, a, σ ) e−
 τ
0 γ (t−ζ ,σ−ζ ) dζϕ (t − τ , σ − τ) dσ dτ , ϕ ∈ XT , (4.6)

which is the Fréchet derivative of operator Φ at ϕ = 0 and it is a majorant of Φ , that is Φ ≤ K . Without loss of generality,
we can assume that β is uniformly bounded above, soΦ and K define maps from the positive cone of XT into itself.

Let ρ (K) be the spectral radius of operator K . Our main purpose here is to show the following proposition.

Proposition 4.1. Suppose that ρ (K) > 1. Then operator Φ has at least one nontrivial fixed point λ∗
= Φ (λ∗) ∈ XT ,+ \ {0}.

For the proof of this proposition, we prepare two lemmas. The first one is as follows.

Lemma 4.1. The operator Φ is monotone nondecreasing on XT andΦ (ϕ) , ϕ ∈ XT ,+ is uniformly bounded.

Proof. From (4.5), we have

Φ (ϕ) (t, a) =

 ω

0
β (t, a, σ )

 σ

0
{ϕ (t − τ , σ − τ)+ γ (t − τ , σ − τ)} e−

 τ
0 ϕ(t−ζ ,σ−ζ )+γ (t−ζ ,σ−ζ ) dζ dτdσ

−

 ω

0
β (t, a, σ )

 σ

0
γ (t − τ , σ − τ) e−

 τ
0 ϕ(t−ζ ,σ−ζ )+γ (t−ζ ,σ−ζ ) dζ dτ dσ

=

 ω

0
β (t, a, σ )


1 − e−

 σ
0 ϕ(t−ζ ,σ−ζ )+γ (t−ζ ,σ−ζ ) dζ


dσ

−

 ω

0
β (t, a, σ )

 σ

0
γ (t − τ , σ − τ) e−

 τ
0 ϕ(t−ζ ,σ−ζ )+γ (t−ζ ,σ−ζ ) dζ dτ dσ . (4.7)

ThenΦ is monotone nondecreasing. Moreover, from (4.7), we have

Φ (ϕ) (t, a) ≤

 ω

0
β (t, a, σ ) dσ ≤ k+,

where k+
:= sup k < +∞, which is well defined by Assumption 1. �

Now we make the following technical assumption, which is needed to ensure compactness of the fixed point operator
and its derivative:
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Assumption 2. For the transmission coefficient k, it holds that

lim
h→0

 T

0

 ω

0
|k(t + h, a + h, σ )− k(t, a, σ )| da dt = 0 uniformly for σ ∈ [0, ω]. (4.8)

Lemma 4.2. Under the Assumption 2, if ρ (K) > 0, it is a positive eigenvalue of K associated with a positive eigenvector
v0 ∈ XT ,+ \ {0}.
Proof. First we show that K is regarded as a compact operator on L1([0, T ] × [0, ω]). Observe that K is a linear map from
XT into itself leaving the cone invariant, and we have

(Kϕ) (t, a) =

 ω

0

 ω

τ

β (t, a, σ ) e−
 τ
0 γ (t−ζ ,σ−ζ ) dζϕ (t − τ , σ − τ) dσ dτ

=

 ω

0

 ω−τ

0
β (t, a, τ + x) e−

 τ
0 γ (t−ζ ,τ+x−ζ ) dζϕ (t − τ , x) dx dτ

=

 t

t−ω

 ω−t+s

0
β (t, a, t − s + x) e−

 t−s
0 γ (t−ζ ,t−s+x−ζ ) dζϕ (s, x) dx ds. (4.9)

If we extend the domain of parameter as β(t, a, σ ) = 0 for (a, σ ) ∉ [0, ω] × [0, ω], we can rewrite (4.9) as

(Kϕ) (t, a) =

 t

−∞

 ω

0
β (t, a, t − s + x) e−

 t−s
0 γ (t−ζ ,t−s+x−ζ ) dζϕ (s, x) dx ds.

Note that t

−∞

=

 t

0
+

∞
n=0


−nT

−(n+1)T
,

and 
−nT

−(n+1)T

 ω

0
β (t, a, t − s + x) e−

 t−s
0 γ (t−ζ ,t−s+x−ζ ) dζϕ (s, x) dx ds

=

 T

0

 ω

0
β (t, a, t − s + (n + 1) T + x) e−

 t−s+(n+1)T
0 γ (t−ζ ,t−s+(n+1)T+x−ζ ) dζϕ (s − (n + 1) T , x) dx ds

=

 T

0

 ω

0
Ψ (t, a, t − s + (n + 1) T , x) ϕ (s, x) dx ds,

where Ψ is defined by

Ψ (t, a, z, x) := β (t, a, z + x) e−
 z
0 γ (t−ζ ,z+x−ζ ) dζ . (4.10)

According to [1], we define

Ψ̂ (t, a, s, x) :=


∞
n=0

Ψ (t, a, t − s + nT , x) for t > s,

∞
n=1

Ψ (t, a, t − s + nT , x) for t < s.
(4.11)

Then Ψ̂ is well defined, because the right hand side is a finite sum due to the fact that Ψ (t, a, z) = 0 for z > ω.
Then it follows from (4.9) that

(Kϕ) (t, a) =

 T

0

 ω

0
Ψ̂ (t, a, s, x) ϕ (s, x) dx ds.

Hence, we can regard K as an operator on L1 ([0, T ] × [0, ω]). From (4.8) and the well-known compactness criteria in L1
(see, for instance, [38, p. 275]), we see that K is compact. Since K is positive, linear and compact, it follows from the
Krein–Rutman theorem [27] that if ρ (K) > 0, it is a positive eigenvalue of K associated with a positive eigenvector
ṽ0 ∈ L1

+
([0, T ] × [0, ω]) \ {0}. That is

(K ṽ0) (t, a) = ρ (K) ṽ0 (t, a) .

Hence, it is easy to see that there exists a periodic eigenvector v0 in XT ,+ \{0} of K , which is associatedwith eigenvalue ρ (K)
and is the periodization of ṽ0. �
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Using the above two lemmas, we prove Proposition 4.1.
Proof of Proposition 4.1. It follows from Lemma 4.2 that for vector v0 ∈ XT ,+ \ {0} we have

(Kv0) (t, a) = ρ (K) v0 (t, a) =

 T

0

 ω

0
Ψ̂ (t, a, s, x) v0 (s, x) dx ds. (4.12)

Hence, we have

ρ (K) v0 (t, a) ≤ Ψ̂+
∥v0∥XT , (4.13)

where Ψ̂+
:= sup Ψ̂ (t, a, s, x) < ∞. Let

λ0 :=
ρ (K) log ρ (K)

Ψ̂+ω

v0

∥v0∥XT

∈ XT ,+ \ {0} , (4.14)

whose positivity follows from ρ (K) > 1. Then, from (4.12)–(4.14), we have

Φ (λ0) (t, a) =

 ω

0

 ω

τ

β (t, a, σ ) e−
 τ
0 γ (t−ζ ,σ−ζ )+λ0(t−ζ ,σ−ζ ) dζλ0 (t − τ , σ − τ) dσ dτ

≥

 ω

0

 ω

τ

e−
 ω
0 λ0(t−ζ ,σ−ζ ) dζβ (t, a, σ ) e−

 τ
0 γ (t−ζ ,σ−ζ ) dζλ0 (t − τ , σ − τ) dσ dτ

=

 ω

0

 ω

τ

e
−

log ρ(K)
Ψ̂+ω∥v0∥XT

 ω
0 ρ(K)v0(t−ζ ,σ−ζ ) dζ

β (t, a, σ ) e−
 τ
0 γ (t−ζ ,σ−ζ ) dζλ0 (t − τ , σ − τ) dσ dτ

≥ e− log ρ(K) (Kλ0) (t, a)
= λ0 (t, a) .

Hence, from the monotonicity of operatorΦ proved in Lemma 4.1, we can define a monotone sequence as

λn = Φ (λn−1) , λ0 ≤ λ1 ≤ · · · ≤ λn ≤ · · · .

FromLemma4.1we see thatλn is bounded above. Therefore, it follows fromB. Levi’s theorem that there existsλ∗
∈ XT ,+\{0}

such that limn→∞ λn = λ∗ and λ∗
= Φ(λ∗). �

From Proposition 4.1 and the arguments stated in the above, we immediately have the following proposition:

Proposition 4.2. Suppose that ρ (K) > 1. Then, system (2.5) has at least one endemic T-periodic weak solution.

5. Uniqueness of endemic periodic solution

Next we investigate the uniqueness of endemic T -periodic solution. For our purpose, we add the following assumptions:

Assumption 3. There exists a positive number ϵ > 0 such that k(t, a, σ ) ≥ ϵ for all (t, a, σ ) ∈ R × R+ × R+.

Biologically speaking, we assume that transmission can occur between every susceptible and infected. In order to prove
the uniqueness result, we prepare a following lemma:

Lemma 5.1. If an endemic T-periodic solution i∗ ∈ ΩT \ {0} satisfying (4.2) exists, there exist numbers 0 < α1 = α1(i∗) <
α2 = α2(i∗) such that α1 ≤ λ∗

≤ α2 for the force of infection λ∗ corresponding to i∗.

Proof. Let i∗ be a periodic solution of (4.2). Observe that

ϵV (t) ≤ λ∗(t, a) ≤ k+V (t)

where

V (t) :=

 ω

0
θ(t, a)i∗(t, a)da.

Then V (t) is the prevalence (proportion of infected) at time t , and it is clear 0 ≤ V ≤ 1. To complete our proof, it is sufficient
to show inft∈R V (t) > 0. Without loss of generality, we can assume that V (t) is a positive, continuous periodic function,
since

V (t) =
1

N(t)

 ω

0
I∗(t, a)da,

where I∗(t, a) = P∗(t, a)i∗(t, a) is a periodic solution of the original system. Then its global minimum is nonnegative. If
there exists a time t0 such that V (t0) = 0, then i∗(t0, a) = 0 for almost all a ∈ [0, ω], which implies that i∗(t, a) = 0 for all
t ≥ t0 by the uniqueness of solution. This is a contradiction, so the global minimum of V (t) is positive. �
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Lemma 5.2. Let λ∗ be the force of infection corresponding to a periodic endemic classical solution i∗. For a number κ ∈ (0, 1),
there exists a positive number η(i∗) > 0 such that

Φ

κλ∗


(t, a) ≥ κΦ


λ∗


(t, a)+ η. (5.1)

Proof. From Eq. (4.5), we have

Φ

κλ∗


(t, a)− κΦ


λ∗


(t, a) =

 ω

0

 ω

τ

β(t, a, σ ) e−
 τ
0 γ (t−ζ ,σ−ζ ) dζκλ∗ (t − τ , σ − τ) e−

 τ
0 λ

∗(t−ζ ,σ−ζ ) dζ

×


e(1−κ)

 τ
0 λ

∗(t−ζ ,σ−ζ ) dζ
− 1


dσ dτ

≥ ϵκα1

i∗
  ω

0
dσθ(t, σ )

 σ

0
e−(γ+

+α2)τ

e(1−κ)α1τ − 1


dτ ,

where γ+
:= sup γ < ∞. Then if we define

η := ϵκα1(i∗)
 ω

0
dσθ(t, σ )

 σ

0
e−(γ+

+α2)τ

e(1−κ)α1τ − 1


dτ ,

then η = η(i∗) is positive. This completes our proof. �

Proposition 5.1. The basic system (2.1) has at most one endemic T-periodic classical solution.

Proof. Suppose that there exist two endemic periodic classical solution. Let λ∗

1 and λ∗

2 be corresponding force of infections.
From the above lemma, there exist positive numbers αjk = αjk(i∗j ), (j, k = 1, 2) such that

0 < αj1 ≤ λ∗

j (t, a) ≤ αj2, j = 1, 2. (5.2)

From inequality (5.2) we have

λ∗

1 ≥ α11 = α11α
−1
22 α22 ≥ α11α

−1
22 λ

∗

2. (5.3)

Let κ := sup

η : λ∗

1 ≥ ηλ∗

2


. Then κ > 0 follows from inequality (5.3). Suppose that κ < 1. Then it follows from the above

lemma that there exist positive numbers η1 and η2 such that

Φ(κλ∗

j ) ≥ κΦ

λ∗

j


(t, a)+ ηj, j = 1, 2.

Therefore, from Lemma 4.1 and the fact that λ∗

j = Φ(λ∗

j ), (j = 1, 2), we have

λ∗

1 = Φ

λ∗

1


≥ Φ


κλ∗

2


≥ κΦ


λ∗

2


+ η2 = κλ∗

2 + η2α
−1
22 α22 ≥ κλ∗

2 + η2α
−1
22 λ

∗

2 =

κ + η2α

−1
22


λ∗

2,

which contradicts the definition of κ . Thus, we have κ ≥ 1 and λ∗

1 ≥ κλ∗

2 ≥ λ∗

2 . Exchanging the role of λ∗

1 and λ∗

2 , we can
prove λ∗

2 ≥ λ∗

1 . Therefore, λ
∗

1 = λ∗

2 and hence i∗1 = i∗2 . �

6. Global stability of the disease-free steady state

In this section, we investigate the case where ρ (K) < 1. First it is easy to see that under the subcritical condition
ρ (K) < 1, system (2.5) does not have any endemic T -periodic solutions. In fact, if we assume that there exists an endemic
T -periodic solution i∗ ∈ ΩT \ {0}. Then we see that operator Φ has a nontrivial fixed point λ∗

= Φ(λ∗) ∈ X+ \ {0}. Then
we have λ∗

= Φ(λ∗) ≤ Kλ∗, which implies ρ (K) ≥ 1.
As is shown in Theorem 5.6 of [28], we can expect that if system (2.5) does not have any endemic T -periodic solutions in

ΩT \ {0}, then the disease-free steady state i∗ ≡ 0 of system (2.5) is globally asymptotically stable in regionΩT . In fact, we
have the following proposition.

Proposition 6.1. Suppose that ρ (K) < 1. Then, the disease-free state i∗ ≡ 0 of system (2.5) is globally asymptotically stable.

Proof. Instead of (2.5), let us consider a linear system as
∂

∂t
+
∂

∂a


y (t, a) = −γ (t, a)y(t, a)+

 ω

0
β(t, a, σ )y(t, σ )dσ ,

y(t, 0) = 0, y(0, a) = i0(a).
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Then it is easy to see that 0 ≤ i(t, a) ≤ y(t, a). Integrating along the characteristic line, we obtain an expression:

y(t, a) =


 a

0
e−

 a
σ γ (t−a+z,z)dzB(t − a + σ , σ )dσ , t − a > 0,

e−
 t
0 γ (σ ,a−t+σ)dσ i0(a − t)+

 t

0
e−

 t
σ γ (z,a−t+z)dzB(σ , a − t + σ)dσ , a − t > 0

where

B(t, a) :=

 ω

0
β(t, a, σ )y(t, σ )dσ ,

is the density of newly infected in the linear phase of the normalized system. Inserting the above expression of y into the
definition of B and changing the order of integrals, we have a renewal equation:

B(t, a) = G(t, a)+

 t

0
dη

 ω

η

β(t, a, σ ) e−
 η
0 γ (t−x,σ−x)dxB(t − η, σ − η)dσ ,

where

G(t, a) :=

 ω

t
β(t, a, σ ) e−

 t
0 γ (z,σ−t+z)dz i0(σ − t)dσ , 0 < t < ω,

and G = 0 for t > ω. Define a time-periodic operator Ψ acting on L1(0, ω) as

(Ψ (t, η)f )(a) :=

 ω

η

β(t, a, σ ) e−
 η
0 γ (t−x,σ−x)dxf (σ − η)dσ ,

we arrive at an abstract renewal equation for L1-valued functions:

B(t) = G(t)+

 t

0
Ψ (t, η)B(t − η)dη,

where B(t) = B(t, ·) ∈ L1, etc. Then we note that the operator K on XT is expressed as

(Kϕ)(t, a) =

 ω

0
(Ψ (t, η)ϕ(t − η, ·))(a)dη, ϕ ∈ XT ,

which is a kind of next generation operator introduced by Bacaër and Guernaoui [2]. Let us introduce a Laplace transform
of Ψ by

(K̂(z)ϕ)(t, a) :=

 ω

0
(e−zηΨ (t, η)ϕ(t − η, ·))(a)dη.

Using the periodic renewal theorem [35,22,21], we can conclude that there exists a periodic (vector-valued) function ϕ0(t)
such that B(t) ∼ er0tϕ0(t) as t → ∞, where ϕ0 is a positive eigenfunction of K̂(r0) associatedwith eigenvalue ρ(K(r0)) = 1.
Therefore if ρ(K) = ρ(K(0)) < 1, the Malthusian parameter r0 is negative, we have limt→∞ B(t) = 0. Therefore we have
limt→∞ y(t, a) = limt→∞ i(t, a) = 0, which shows the global asymptotic stability of the disease-free state. �

7. The basic reproduction number R0

Here let us introduce the basic reproduction number R0 for the periodic SIS epidemic system (2.1) to discuss the relation
between R0 and the threshold parameter ρ(K). Originally, the basic reproduction number is defined as the average number
of secondary cases produced by a typical infected individual, introduced into a completely susceptible host population,
during its entire period of infectiousness. In this definition, the host population is assumed to be in a demographic steady
state [9,8].

Recently, the definition of the basic reproduction number has been extended so that it can be applied to the case of time
periodic environments [2,1,22,21]. However, even in this extended definition for periodic environments, the Malthusian
parameter of the host susceptible population is assumed to be zero.

If the Malthusian parameter of host susceptible population is not zero, we have to distinguish two cases of the growth
of infected population, absolute growth and relative growth. Based on the general theory of R0 in a time-heterogeneous
environment [21], we can calculate the basic reproduction number for a small group of infected invading into a growing
susceptible population. However, the ratio of infected to the total population can go to zero if the growth rate of infected is
less than theMalthusian parameter of the total population (relative eradication). Therefore we can define another threshold
parameter which determines whether the ratio of infected can increase or not.

First let us introduce the basic reproductionnumberR0 as a threshold value for absolute growth of infected population. Let
y(t, a) be a perturbation from the disease-free persistent solution (P∗(t, a), 0) of (2.1). Then the linearized system around
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the persistent solution is written as
∂

∂t
+
∂

∂a


y(t, a) = v(t, a)− (µ(t, a)+ γ (t, a))y(t, a),

v(t, a) =

 ω

0
θ(t, a)k(t, a, σ )y(t, σ ) dσ ,

(7.1)

where v(t, a) denotes the density of newly infected individuals in the linear invasion phase.
Integrating the first equation of the linearized system (7.1) along the characteristic lines, we have

y(t, a) =

 a

0
v (t − a + σ , σ ) e−

 a
σ [µ(t−a+η,η)+γ (t−a+η,η)] dη dσ . (7.2)

Substituting (7.2) into the second equation of (7.1), we have

v(t, a) =

 ω

0
θ(t, a)k (t, a, σ )

 σ

0
v(t − σ + ρ, ρ) e−

 σ
ρ [µ(t−σ+η,η)+γ (t−σ+η,η)] dη dρ dσ

=

 ω

0

 ω

τ

θ(t, a)k (t, a, σ ) v(t − τ , σ − τ) e−
 τ
0 [µ(t−ζ ,σ−ζ )+γ (t−ζ ,σ−ζ )] dζ dσ dτ

=

 ω

0

 ω

τ

θ(t, a)k (t, a, σ ) e−
 τ
0 µ(t−ζ ,σ−ζ )+γ (t−ζ ,σ−ζ ) dζv(t − τ , σ − τ) dσ dτ . (7.3)

Let us define linear operator A (t, τ ) from E = L1(0, ω) into itself as

(A (t, τ ) ϕ) (a) :=

 ω

τ

θ(t, a)k (t, a, σ ) e−
 τ
0 µ(t−ζ ,σ−ζ )+γ (t−ζ ,σ−ζ ) dζϕ (σ − τ) dσ .

Then (7.3) can be written as an abstract homogeneous renewal equation:

v(t, a) =

 ω

0
(A (t, τ ) v(t − τ)) (a) dτ .

From the periodic renewal theorem [35,22], v(t, a) is asymptotically proportional to an exponential solution er0tw(t).
The Malthusian parameter r0 is a real root of the characteristic equation ρ(Â(z)) = 1, where Â(z), z ∈ C is a linear operator
on XT defined by

(Â(z)ϕ)(t) :=

 ω

0
e−zτA (t, τ ) ϕ (t − τ) dτ ,

and w ∈ XT is a positive eigenfunction of Â(r0) associated with the positive eigenvalue unity. Therefore the sign relation
sign(r0) = sign(ρ(Â(0))− 1) holds.

Based on the above observation, R0 in a periodic environment is defined by the spectral radius of the next generation
operator, denoted by KT , on the space of periodic vector-valued functions XT [2,22]:

(KTϕ) (t) := (Â(0)ϕ)(t) =

 ω

0
A (t, τ ) ϕ (t − τ) dτ , ϕ ∈ XT .

We know that KT is a positive operator from XT ,+ into itself:

(KTϕ) (t, a) = θ(t, a)
 ω

0

 ω

τ

k(t, a, σ ) e−
 τ
0 [µ(t−ζ ,σ−ζ )+γ (t−ζ ,σ−ζ )] dζϕ (t − τ , σ − τ) dσ dτ . (7.4)

As is shown in [21], R0 = ρ(KT ) gives the asymptotic per generation growth factor of infected population. Now we can
establish a following relation between R0 = ρ(KT ) and ρ(K):

Proposition 7.1. Suppose that KT and K are compact positive operators. Then it holds that R0 ≥ ρ(K) if r > 0, R0 = ρ(K) if
r = 0 and R0 ≤ ρ(K) if r < 0.

Proof. Define a formal multiplication operator L : ψ → qψ on XT , where q ∈ XT is given by

q(t, a) := e−rtP∗(t, a) = e−rab(t − a) e−
 a
0 µ(t−ζ ,a−ζ )dζ .

Then we have

((KT L)ψ)(t, a) =
P∗(t, a)
N(t)

 ω

0

 ω

τ

k(t, a, σ ) e−
 τ
0 [µ(t−ζ ,σ−ζ )+γ (t−ζ ,σ−ζ )] dζ q(t − τ , σ − τ)ψ(t − τ , σ − τ) dσ dτ ,

where we can observe that

q(t − τ , σ − τ) = e−r(t−τ)P∗(t, σ ) e
 τ
0 µ(t−ζ ,σ−ζ )dζ .
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Therefore we obtain a formal relation that

((KT L)ψ)(t, a) = q(t, a)
 ω

0

 ω

τ

k(t, a, σ ) erτ−
 τ
0 γ (t−ζ ,σ−ζ ) dζ P

∗(t, σ )
N(t)

ψ(t − τ , σ − τ) dσ dτ .

Therefore we have L−1KT L > K if r > 0, L−1KT L = K if r = 0 and L−1KT L < K if r < 0. Since ρ(L−1KT L) = ρ(KT ) = R0, we
arrive at the conclusion. �

Note that if K and KT are semi-nonsupporting compact operators, we can apply the comparison theorem by Marek [29]
to obtain a more sharp sign relation as

sign(r) = sign(R0 − ρ(K)).

If r = 0, that is, the Malthusian parameter of the host susceptible population is zero, the threshold value ρ(K) coincides
with the basic reproduction number R0, so we do not need to distinguish absolute growth and relative growth (in the
normalized system) of infected population, and we obtain an endemic threshold result that there exists a unique periodic
endemic state if R0 > 1, while the disease-free periodic state is globally stable if R0 < 1. As is mentioned above, if r > 0,
there is a possibility that ρ(KT ) > 1 > ρ(K). In this case, the size of infected population increases, but the proportion of
infected population to the total population decrease. On the other hand, if r < 0 and ρ(KT ) < 1 < ρ(K), the proportion of
infected population can increase, although the size of infected decreases.

8. Numerical examples

In this section, providing some numerical examples, we verify the validity of our results obtained in the previous
sections. To simplify, we consider the case where parameters f (t, a) ≡ f (a) and µ (t, a) ≡ µ (a) are only age-dependent,
γ (t, a) ≡ γ is constant and k (t, a) ≡ k (t) is only time-periodic.

8.1. Calculation of threshold values

In the case of time-independent and age-dependent vital rates f (a) and µ (a), from the strong ergodicity theorem (see,
e.g., [14,24]), we have

θ (t, a) ≡
e−ra e−

 a
0 µ(ρ) dρ ω

0 e−ra e−
 a
0 µ(ρ) dρ da

=: θ (a) ,

where r denotes the Malthusian parameter as in the previous sections. Hence, operators K and KT are given by

(Kϕ) (t, a) = k(t)
 ω

0

 ω

τ

θ (σ ) e−γ τϕ (t − τ , σ − τ) dσ dτ (8.1)

and

(KTϕ) (t, a) = k (t) θ (a)
 ω

0

 ω

τ

e−
 τ
0 µ(σ−ζ ) dζ−γ τϕ (t − τ , σ − τ) dσ dτ , (8.2)

respectively, where ϕ ∈ XT . Since the right-hand side of (8.1) is independent of a, the spectral radius ρ (K) is obtained by
solving the eigenvalue problem

ρ (K) v (t) = k (t)
 ω

0
φ1 (τ ) v (t − τ) dτ , v ∈ XT , (8.3)

where

φ1 (τ ) :=

 ω

τ

θ (σ ) dσ e−γ τ . (8.4)

Moreover, since

(KTvθ) (t, a) = k (t) θ (a)
 ω

0

 ω

τ

θ (σ − τ) e−
 τ
0 µ(σ−ζ ) dζ dσ


e−γ τv (t − τ) dτ ,

we see that the basic reproduction number R0 = ρ (KT ) is obtained by solving the eigenvalue problem

R0v (t) = k (t)
 ω

0
φ2 (τ ) v (t − τ) dτ , v ∈ XT , (8.5)
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where

φ2 (τ ) :=

 ω

τ

θ (σ − τ) e−
 τ
0 µ(σ−ζ ) dζ dσ e−γ τ

=

 ω

τ

e−r(σ−τ) e−
 σ−τ
0 µ(ρ) dρ ω

0 e−ra e−
 a
0 µ(ρ) dρ da

e−
 σ
σ−τ µ(ρ) dρ dσ e−γ τ

=

 ω

τ

θ (σ ) dσ e(r−γ )τ . (8.6)

In what follows we consider the transmission coefficient with form k (t) = p {1 + q cos (2π t/T )}, where p > 0, 0 < q < 1
and T > 0. Thus, using the method of [3], we can compute ρ (K) as the largest real root of

ρ (K)
φ1,0

− 1 = 2Re
q2/4

ρ(K)
φ1,1

− 1 −
q2/4

ρ(K)
φ1,2

−1− q2/4
···

,

where

φ1,n := p
 ω

0
φ1 (τ ) e−i 2πT nτ dτ , n = 0, 1, 2, . . . ,

and R0 as the largest real root of

R0

φ2,0
− 1 = 2Re

q2/4
R0
φ2,1

− 1 −
q2/4

R0
φ2,2

−1− q2/4
···

,

where

φ2,n := p
 ω

0
φ2 (τ ) e−i 2πT nτ dτ , n = 0, 1, 2, . . . .

As in [3], both of them are easily obtained by using the backward iterative algorithm

zn :=
xi
φi,n

− 1, zk−1 :=
xi

φi,k−1
− 1 −

q2/4
zk

, i = 1, 2, k = n, n − 1, . . . , 2,

where x1 = ρ (K) and x2 = R0. From (8.4) and (8.6), we see that if r = 0, then φ1 (τ ) = φ2 (τ ) and hence ρ (K) = R0. This
coincides with the statement of Proposition 7.1.

8.2. Case r = 0

In what follows, we fix µ (a) = (a − 30)2 × 10−4, γ = 0.2, ω = 100 and vary f (a) and k (t). First we set

f (a) =


1

6.09923
sin2


a − 15
30

π


, a ∈ [15, 45] ,

0, otherwise

and k (t) = 0.25 (1 + 0.8 cos t). In this case, we have r ≃ 0 and φ1,0 ≃ φ2,0 ≃ 1.07885 and R0 ≃ ρ (K) ≃ 1.07921 > 1.
From Propositions 4.2 and 5.1, we can expect that system (2.5) has a unique periodic solution with period 2π . In fact, (a) of
Fig. 1 exhibits a solution j (t, a) =

 100
0 i (t, a) da converging to a periodic solution.

Nextwe change k (t) to 0.22 (1 + 0.8 cos t). In this case, we haveφ1,0 ≃ φ2,0 ≃ 0.949388 and R0 ≃ ρ (K) ≃ 0.949708 <
1. Hence, from Proposition 6.1 we can expect that the disease-free steady state of system (2.5) is globally asymptotically
stable. In fact, (b) of Fig. 1 exhibits a solution j (t, a) =

 100
0 i (t, a) da converging to the disease-free steady state 0.

8.3. Case r > 0

Next we change k (t) to 0.25 (1 + 0.8 cos t) and f (a) to

f (a) =


1
3
sin2


a − 15
30

π


, a ∈ [15, 45] ,

0, otherwise.

In this case, we have r ≃ 0.0239891 > 0. Hence, from Proposition 7.1, we can expect that R0 > ρ (K). In fact, in this case,
we have φ1,0 ≃ 1.0865 > 0.981739 ≃ φ2,0 and R0 ≃ 1.08716 > 1 > 0.982352 ≃ ρ (K). This inequality particularly
implies the absolutely growing but relatively decaying infected population (see Fig. 2).
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Fig. 1. Solution behavior of j (t) =
 100
0 i (t, a) da for R0 ≃ ρ (K) ≃ 1.07921 > 1 (left) and R0 ≃ ρ (K) ≃ 0.949708 < 1 (right).
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(a) J (t) =
 100
0 I (t, a) da versus time t for R0 ≃ 1.08716 > 1. (b) j (t) =

 100
0 i (t, a) da versus time t for ρ (K) ≃ 0.982352 < 1.

Fig. 2. Behavior of absolutely growing (a) but relatively decaying (b) infected population for r ≃ 0.0239891 > 0, R0 ≃ 1.08716 > 1 and
ρ (K) ≃ 0.982352 < 1.

8.4. Case r < 0

Finally we change k (t) to 0.23 (1 + 0.8 cos t) and f (a) to

f (a) =


1
10

sin2

a − 15
30

π


, a ∈ [15, 45] ,

0, otherwise.

In this case, we have r ≃ −0.016387 < 0. Hence, from Proposition 7.1, we can expect that R0 < ρ (K). In fact, in this case,
we have φ1,0 ≃ 0.973187 < 1.04609 ≃ φ2,0 and R0 ≃ 0.973365 < 1 < 1.04627 ≃ ρ (K). This inequality particularly
implies the absolutely decaying but relatively growing infected population (see Fig. 3).

9. Discussion

In this paper, we have formulated an age-structured SIS epidemic model with periodic parameters, and studied the
existence of a threshold value which can determine the asymptotic behavior of the model. We have proven that for
normalized system (2.5), the spectral radius ρ (K) of the linear operator K plays the role of a threshold for the global
asymptotic stability of the disease-free steady state and the existence of a unique endemic periodic solution, that is, if
ρ (K) < 1, then the disease-free steady state of system (2.5) is globally asymptotically stable, while if ρ (K) > 1, then
system (2.5) has a unique endemic T -periodic solution i∗ ≠ 0. This is the first endemic threshold result for age-structured
periodic epidemic models based on R0 defined by Bacaër and Guernaoui.

We strongly believe that not only for SIS epidemic models but also for SIR and SEIR age-structured periodic epidemic
models, our method might be applied and so the endemic threshold principle will be established under most general
conditions by using R0 defined by Bacaër and Guernaoui.

On the other hand, the reader should note that Hethcote [12] studied the non-structured SIS model with periodic
coefficients and showed that the disease-free steady state is globally asymptotically stable in the subcritical case, while
there is a unique positive periodic solution in the supercritical case, which is globally asymptotically stable. However, this
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(a) J (t) =
 100
0 I (t, a) da versus time t for R0 ≃ 0.973365 < 1. (b) j (t) =

 100
0 i (t, a) da versus time t for ρ (K) ≃ 1.04627 > 1.

Fig. 3. Behavior of absolutely decaying (a) but relatively growing (b) infected population for r = −0.016387 < 0, R0 ≃ 0.973365 < 1 and
ρ (K) ≃ 1.04627 > 1.

simple dichotomy is only partially true for periodic SIR models. The global stability may be lost when R0 > 1 because there
may exist subharmonic solutions [33]. In such a case, themain problem is to understand for which class of models the global
stability holds.

For our age-dependent case, the global stability of the endemic periodic solution i∗ for ρ (K) > 1 has been left as an open
problem. The corresponding global stability result obtained in [28] is limited to the case of vertically transmitted diseases
(the proportion ε of newborn offspring of infective parents who are themselves infective is positive). This implies that their
stability result cannot be directly applied to our case. However, on the contrary, if our result can be extended to the case of
vertically transmitted diseases, their result may be applied to show the global stability result. This is also a future task.

In Section 7, we have shown that if the Malthusian parameter r equals zero, then our threshold value ρ (K) equals to
the basic reproduction number R0, while if it is not, then ρ (K) ≠ R0 and this causes possibilities of the relative growth
in the sense of percentage of infected, but absolute decay (or, vice versa) of infected population. This fact suggests us that
in the situation where we estimate the long-time behavior of infected population using a threshold value, we have to pay
attention on the host population growth. For age-dependent, autonomous endemicmodels, the effect of the host population
growth on R0 was considered in [19,20,25], although R0 introduced in [19,20] was not the basic reproduction number, but
the threshold value ρ(K) of the normalized system.
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