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a b s t r a c t

For an analytic function f on the open unit diskD and continuous onD, the Cantor boundary
behavior (CBB) is used to describe the curve f (∂D) that forms infinitely many fractal-
look loops everywhere. The class of analytic functions with the CBB was formulated and
investigated in Dong et al. [6]. In this note, our main objective is to give further discuss of
the criteria of CBB in Dong et al. [6]. We show that the twomajor criteria, the accumulation
of the zeros of f ′(z) near the boundary and the fast mean growth rate of f ′(z) near the
boundary, do not imply each other. Also we make an improvement of another criterion,
which allows us to have more examples of CBB.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

WeuseD to denote the open unit diskwith center z = 0, and let ∂D be its boundary. Let A(D) denote the space of analytic
functions on D and continuous on D. For f ∈ A(D), consider the decomposition C∞ \ f (∂D) =


j≥0 Wj, where the Wj’s are

simply connected components. We say that f ∈ A(D) has the Cantor boundary behavior (CBB) on D if

f −1(∂ f (D)), f −1(∂Wj) ∩ ∂D

are Cantor-type sets in ∂D (i.e., uncountable nowhere dense closed sets of ∂D). The definition implies that for any open arc
I on ∂D, f (I) contains infinitely many loops.

The concept of the Cantor boundary behavior (CBB) for analytic functions was first introduced in [4] and studied in detail
in [6,3,5], it is used to describe some fractal behavior of analytic functions on the unit disk. The original idea comes from
Strichartz’s Cantor set conjecture (see [8]), which was proposed for the Cauchy transform F(z) =


K dHα(w)/(z − w) of

the Hausdorff measure on the Sierpinski gasket K , it was observed that the curve F(∂∆0), where ∆0 is the unbounded
component of C\K , is a fractal curve filled with loops within loops (due to the similarity). The conjecture is proved by Dong
and Lau in [5].

By using some delicate analytic topology arguments, Lau and two of the authors established two criteria for the CBB. The
first criterion concerns the distribution of the zeros of f ′(z) (see Theorem 5.3 of [6]). The second criterion for the CBB (see
[6, Theorem 5.6]) makes use of the well known integral mean spectrum β(λ) of normalized univalent functions on D:

β(λ) = sup
f∈S

lim sup
r→1−

log
 2π

0 |f ′(reiθ )|λdθ


− log(1 − r)


where S denote the class of univalent functions f on D with f (0) = 0 and f ′(0) = 1. The upper estimate of β(λ) was given
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by Pommerenke ([9], [10, p. 178]):

β(λ) ≤ λ −
1
2

+


4λ2

− λ +
1
4

1/2

< 3λ2
+ 7λ3, λ > 0. (1.1)

The exact statement of the two criteria is the following theorem.

Theorem A. Let f ∈ A(D). Then f has the Cantor boundary behavior (CBB) in D, if either one of the following conditions holds:
(i) The set of limit points of Z = {z ∈ D : f ′(z) = 0} equals ∂D; or
(ii) For every interval E ⊆ [0, 2π ] with Lebesgue measure |E| > 0, there exist λ > 0 and η > β(λ), and C > 0, 0 < r0 < 1

(all depend on E) such that
E
|f ′(reiθ )|λdθ ≥

C
(1 − r)η

, r0 < r < 1. (1.2)

In [6], we used the infinite Blaschke product to construct the following example which satisfies (i). Recall that for p > 0,
the Hp-space on D is defined to be the class of analytic functions on D so that ∥f ∥p = supr<1

 1
2π


∂D |f (reiθ )|pdθ

1/p
< ∞.

Example 1. Let θk,m = m/k, m = 1, 2, . . . , k − 1, k = 2, 3, . . ., and let zk,m = (1 − k−s)ei2πθk,m . Since


∞

k=2
k−1

m=1(1 −

|zk,m|) =


∞

k=2(k − 1)k−s < ∞ if s > 2, the Blaschke product

ps(z) =

∞
k=2

k−1
m=1

|zk,m|

zk,m

zk,m − z
1 − zk,mz

converges uniformly for |z| ≤ r < 1 and |ps(z)| ≤ 1 for z ∈ D. For s > 2, we define a subclass Fs of analytic functions in D:

Fs =


f (z) =

 z

0
g(ξ)ps(ξ)dξ : g ∈ H1(D)


.

Then for any f ∈ Fs, f has the Cantor boundary behavior.

Beside the class of examples, it was shown that the complex Weierstrass functions

Wq,β(z) =

∞
n=0

q−nβzq
n

where 0 < β < 1 and q > 1 an integer, satisfy (ii) by Theorem 6.7 in [6], and satisfy (i) by Corollary 6.5 in [6] (see Fig. 1).
We remark that if q is large and β is small, then Wq,β(∂D) can be a space filling curve [1,12,11]. Also, Strichartz’s Cantor set
conjecture for the Cauchy transform F on the Sierpinski gasket was answered positively in [5] by (ii).

For the two main criteria (i) and (ii) of CBB, it is clear that the (i) does not imply (ii) from the example of the Blaschke
product. However it is not so clear whether (ii) will imply (i). In this paper, we first construct a function f ∈ A(D) satisfies
(ii) but not (i).

Theorem 1.1. Let fρ,q(z) =
 z
0 exp


ρ


∞

n=1 q
nwqq

n
dw, z ∈ D. Then fρ,q(z) satisfies (ii) in Theorem A if q ≥ 4; there is a

constant c > 0 such that fρ,q(z) is a Lipschitz function of order 1 − cρ on D if ρ ∈ (0, c−1) and q ≥ 2 an integer. Hence fρ,q(z)
has the Cantor boundary behavior (CBB) on D for ρ ∈ (0, c−1) and q ≥ 4.

Remark 1. To sum up the above discussion and Theorem 1.1, we conclude that the criterions (i) and (ii) of the Cantor
boundary behavior (CBB) for analytic function on D are independent of each other, i.e., there is a function f ∈ A(D) satisfies
the criterion (i) but not (ii), and there is a function g ∈ A(D) satisfies the criterion (ii) and g ′(z) ≠ 0 (i.e., g(z) does not
satisfy (i)). However, the Weierstrass functionsWq,β satisfy both criteria (i) and (ii).

We also want to construct a function f which has the CBB, and satisfies the criterion (i) on subset E of ∂D and not on its
complement ∂D\E. To the end, we need to illustrate another sufficient condition of CBB using the pre-Schwartz derivatives,
i.e., we extend the criterion (i) slightly, and make use of it to provide a new class having CBB.

Theorem 1.2. Let g be analytic in D and continuous on D. Suppose there exists a dense set E of ∂D such that for any eiθ ∈ E,
there exists a sequence zn → eiθ (n → ∞) such that

g ′(zn) = 0 for all n (1.3)

or

lim sup
n→∞

(1 − |zn|2)
g ′′(zn)
g ′(zn)

 > 24. (1.4)

Then g(z) has the Cantor boundary behavior (CBB) on D.
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Fig. 1. The graph ofWq,β (∂D) with q = 10 and β = 0.6, the right is a magnification of the graph at a neighborhood of 1.

We remark that the above theorem is a modification of Theorem 7.2 of [6] by replacing g ′(z) ≠ 0 for all z with the
addition part of g ′(zn) = 0 in (1.3), which allows us to construct more examples.

Theorem 1.3. Let an ↗ +∞ as n → ∞, and the positive integer sequence {bn} satisfy bn − bn−1 ≥ can(n ≥ 1) for some
constant c > 0. Let s ≥ 0 an integer, B(w) = eiθ zs

N
j=1

|zj|
zj

zj−w

1−zjw
and

gρ,q(z) =

 z

0
B(w) exp


ρ

∞
n=1

anwqbn


dw

where N is finite or infinity, zj ∈ D and zj ≠ 0 for all j, and
N

j=1(1 − |zj|) < ∞. Then gρ,q(z) has the Cantor boundary
behavior (CBB) on D for small ρ > 0.

Remark 2. Let N = ∞ and Z be the zero set of the infinite Blaschke product B(z), it is easy to see that the set of the limit
point of Z has to lie on ∂D, hence there is at least a point ξ on ∂D to be a limit point of Z. For any subset E of ∂D, by using
the method of Example 1, we can construct a B(z) such that the set of the limit points of Z equals exactly E, hence B(z) has
an extension analytically in ∂D \ E (see [2]).

2. Estimate of integral means

It is known that the growth rate of the integralmean of |f ′(z)| plays an important role in the theory of univalent functions.
In [6], the authors used this to establish a criterion for the function f having the Cantor boundary behavior: the fast mean
growth rate of |f ′(z)|λ near boundary as in (1.2), i.e., it is faster than that (the integral mean spectrum β(λ)) of the univalent
function. To prove Theorem 1.1, we need to estimate the mean growth rate of

fρ,q(z) =

 z

0
exp


ρ

∞
n=1

qnwqq
n

dw, z ∈ D (2.1)

where ρ > 0 is a small constant, and q ≥ 2 an integer.

Proposition 2.1. Let fρ,q(z) be defined by (2.1) with q ≥ 4, then for any interval [a, b] ⊂ [0, 2π ] with b − a ≠ 0, there exist
λ0, C > 0 and 0 < r0 < 1 (depending only on the interval [a, b]) such that b

a
|f ′

ρ,q(re
iθ )|λdθ ≥

C
(1 − r)ρκλ

, 0 < λ < λ0, r0 < r < 1 (2.2)

where κ > 0 is an absolute constant.
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Proof. Let u(reiθ ) =


∞

n=1 q
nrq

qn
cos(qq

n
θ), it is easy to see

|f ′

ρ,q(re
iθ )|λ =

exp


ρ

∞
n=1

qn(reiθ )q
qn


λ

= exp{ρλu(reiθ )}.

Let integer N0 > 2 such that (b− a)qq
N0

≥ 4π . It follows that there exist constants c, dwith a ≤ c < d ≤ b and s ∈ Z such
that

[cqq
N0

, dqq
N0

] =


2sπ −

π

2
, 2sπ +

3π
2


.

For integer M > N0, we have (d − c)qq
M

≥ (d − c)qq
N0+1

= 2πqq
N0 (q−1)

≥ 16π , and hence there exist cM , dM with
c ≤ cM < dM ≤ d, dM − cM ≥

1
2 (d − c) and k, l ∈ Z, l ≥ k + 3 such that

[cMqq
M
, dMqq

M
] =


2kπ −

π

2
, 2lπ +

3π
2


.

Let cM = c0 < c1 < · · · < cl−k < cl−k+1 = dM such that (ci+1 − ci)qq
M

= 2π for 0 ≤ i ≤ l − k. For each interval [ci, ci+1],
there exist [c ′

i , d
′

i] ⊂ [ci, ci+1] with d′

i − c ′

i =
1
4 (ci+1 − ci) such that

cos(qq
M
θ) ≥

√
2
2

, θ ∈ [c ′

i , d
′

i]. (2.3)

Let r ∈ [1− q−qM , 1− q−qM+1
]. Since (1− q−qM )q

qM
is increasing and (1− q−qM )q

qM
→ 1/e (M → ∞), then there exists

N1 > N0 such that

1/3 < (1 − q−qM )q
qM

< rq
qM

, rq
qM+1

< (1 − q−qM+1
)q

qM+1
< 1/2 (2.4)

for M ≥ N1. This and (2.3) imply that for θ ∈ [c ′

i , d
′

i],

u(reiθ ) ≥

√
2
6

qM + qM+1rq
qM+1

cos(qq
M+1

θ) −


M−1
n=1

+

∞
n=M+2


qnrq

qn

≥

√
2
6

qM + qM+1rq
qM+1

cos(qq
M+1

θ) −
qM − q
q − 1

− I (2.5)

where I =


∞

n=M+2 q
nrq

qn
. It follows from (2.4) that

I = qM+2rq
qM+2 ∞

n=M+2

q(n−M−2)rq
qn

−qq
M+2

≤
1
2
qM+2rq

qM+2
−qq

M+1 ∞
n=M+2

q(n−M−2)rq
qn

−qq
M+2

.

Let β = qq
M+2

, noting that βqn−1
− 1 ≥ βqn

− 1 ≥ (βq
− 1)n for n ≥ 2, we have

qq
M+2+n

− qq
M+2

= qq
M+2

(βqn−1
− 1) ≥ (qq

M+3
− qq

M+2
)n.

Obviously, the above inequality also holds for n = 0, 1. Thus

I ≤
1
2
qM+2rq

qM+2
−qq

M+1 ∞
n=0

qn(rq
qM+3

−qq
M+2

)n =
1
2
qM+2 rq

qM+2
−qq

M+1

1 − qrqq
M+3

−qqM+2 .

In view of qq
M+2

− qq
M+1

≥ qq
M+1

qq
M+1

and qq
M+3

− qq
M+2

≥ qq
M+1

qq
M+1

, we have

I ≤
1
2
qM+2 rq

qM+1
qq

M+1

1 − qrqq
M+1 qqM+1 ≤

1
2
qM+2

 1
2

qqM+1

1 − q
 1
2

qqM+1 ≤
qM+2

2(2qqM+1
− q)

<
1

q − 1

for largeM ≥ N2 ≥ N1. By (2.5),

u(reiθ ) ≥

√
2
6

−
1

q − 1


qM + qM+1rq

qM+1
cos(qq

M+1
θ),
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hence for q ≥ 7, d′
i

c′i

exp

ρλu(reiθ )


dθ ≥ exp


ρλ

√
2 − 1
6

qM
 d′

i

c′i

exp{ρλqM+1rq
qM+1

cos(qq
M+1

θ)}dθ.

Since (d′

i − c ′

i )q
qM+1

=
1
4 (ci+1 − ci)qq

M+1
=

π
2 q

qM (q−1)
≥

π
2 q

qM
≥

π
2 2

2M
≥ 128π for M ≥ N0 > 2, we can find

[c ′′

i , d′′

i ] ⊂ [c ′

i , d′

i] and positive integers s, hwith d′′

i − c ′′

i ≥ (d′

i − c ′

i )/2 and h ≥ s + 31 satisfying

[c ′′

i q
qM+1

, d′′

i q
qM+1

] =


2sπ −

π

2
, 2hπ +

3π
2


.

Let Ei = {θ ∈ [c ′′

i , d
′′

i ] : cos(qq
M+1

θ) > 0}. It follows that the Lebesgue measure of Ei is |Ei| = (d′′

i − c ′′

i )/2 ≥ (d′

i − c ′

i )/4 =

(ci+1 − ci)/16. Hence d′
i

c′i

exp{ρλqM+1rq
qM+1

cos(qq
M+1

θ)}dθ ≥


Ei
dθ ≥ |Ei| =

1
16

(ci+1 − ci),

by summing, we have b

a
|f ′

ρ,q(re
iθ )|λdθ ≥

l−k
i=0

 d′
i

c′i

exp

ρλu(reiθ )


dθ ≥

d − c
32

exp


ρλ

√
2 − 1
6

qM


. (2.6)

Noting that the inequality (2.6) holds for all M ≥ N2 and 1 − q−qM
≤ r < 1 − q−qM+1

. Now we take r0 = 1 − q−qN2+1

and C = (d − c)/32. Then for any r ∈ (r0, 1) close to 1, we can find aM > N2 such that 1 − q−qM
≤ r < 1 − q−qM+1

, which
implies qM ≥

1
q log q log

1
1−r . Hence (2.6) gives that for q ≥ 7, b

a
|f ′

ρ,q(re
iθ )|λdθ ≥

d−c
32 exp


ρλ

√
2−1

6q log q log 1
1−r


=

C
(1−r)κρλ ,

where κ =

√
2−1

6q log q > 0.

For the cases q = 4, 5, 6, we only need to take cos(qq
M
θ) ≥ 1−ε, θ ∈ [c ′

i , d
′

i] in (2.3) and take 1
e −ε < (1−q−qM )q

qM
<

rq
qM

in (2.4), by using some small modifications, we complete the rest of the proof. �

To prove Theorem 1.1, we need

Hardy–Littlewood Theorem ([7, Theorem 5.1]). For an analytic function h in D, it has a continuous extension to D and has
Lipschitz order 0 < α < 1 on ∂D if and only if

h′(z) = O


1
(1 − r)1−α


, r = |z| → 1.

Proof of Theorem 1.1. From Lemma 7.3 of [6], there exists a constant c > 0 such that ∞
n=1

qnwqq
n
 ≤ c log

1
1 − |w|

.

It follows from Hardy–Littlewood Theorem that fρ,q(z) is a Lipschitz function of order 1 − cρ on D if ρ ∈ (0, c−1) and
q ≥ 2 an integer. By (1.1), we see that for λ sufficiently small, β(λ) < 3λ2

+ 7λ3 < ρκλ, thus the fρ,q(z) satisfies (ii) by
Proposition 2.1 and taking η = ρκλ. �

3. A new criterion for CBB and examples

In this section, we consider another criterion for CBB, it is an improvement of (i) slightly, the criterion allows us to have
more examples having CBB. The following lemma is the crux to prove criteria (i) and (ii) of the CBB [6, Propositions 4.1 and
4.3].

Lemma 3.1 ([6]). Let f ∈ A(D) and suppose there is a non-degenerated arc I ⊂ ∂D such that

f (I) ⊂ ∂ f (D) or f (I) ⊂ ∂Wj (3.1)

for a connected component Wj of the complement of f (∂D). Then there exists a non-degenerated sub-arc J ⊂ I and a Jordan
domain D ⊂ D such that J ⊂ ∂D and f is univalent in D.
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Lemma 3.2. Let f (z) be analytic in D. Suppose that there exists a simply connected domain D ⊂ D such that f (z) is univalent in
D. Then

(1 − |z|2)
 f ′′(z)
f ′(z)

 ≤ 24, z ∈ D.

The proof of this lemma can be find in the proof of Theorem 7.2 in [6].

Proof of Theorem 1.2. We only need to show that g−1(∂g(D)) (or g−1(∂Wj)) does not contain any sub-arc of ∂D. Suppose
otherwise, there exists an arc I such that g(I) ⊂ ∂g(D) (or g(I) ⊂ ∂Wj). By Lemma 3.1, there exists a non-degenerated
sub-arc I ′ of I , and a Jordan domain D ⊂ D with I ′ ⊂ ∂D such that g(z) is univalent in D. This and Lemma 3.2 give

g ′(z) ≠ 0 and (1 − |z|2)
g ′′(z)
g ′(z)

 ≤ 24, z ∈ D,

which contradict the assumptions (1.3)–(1.4). �

By applying Lemma 6.6 (with s = 1) of [6], we have:

Lemma 3.3. Let f (z) =


∞

n=1 z
qn with integer q ≥ 2. Then there exist c > 0 such that

f (r) ≤ c log
1

(1 − r)
,

1
2

< r < 1.

Lemma 3.4. Let f (z) =


∞

n=1 anz
qbn where q ≥ 2 is an integer and an ↗ ∞ as n → ∞, and {bn} is a positive integer sequence

with c ′(bn − bn−1) ≥ an(n ≥ 1) for some constant c ′. Then there exists c > 0 such that

f (r) ≤ c log
1

(1 − r)
,

1
2

< r < 1.

Proof. For any integer n ≥ 1 and 1
2 < r < 1, we have

anrq
bn

≤ c ′(bn − bn−1)rq
bn

< c ′(rq
bn−1+1

+ · · · + rq
bn−1

+ rq
bn

).

By Lemma 3.3, we conclude
∞
n=1

anrq
bn

≤ c ′

∞
n=1

rq
n

≤ c log
1

(1 − r)
. �

Proof of Theorem 1.3. Let c > 0 be in Lemma 3.4. It follows from Hardy–Littlewood Theorem that gρ,q(z) has Lipschitz
order 1 − cρ at the boundary for ρ ∈ (0, c−1), hence gρ,q(z) ∈ A(D).

Nowwe find a dense subset E of ∂D such that (1.3) or (1.4) in Theorem1.2 is satisfied. For k ≥ 3 andm = 0, 1, 2, . . . , qbk−
1, let θk,m = 2πmq−bk . Then E := {eiθk,m} is dense on ∂D. Let Z = {z ∈ D : g ′

ρ,q(z) = 0}, it is easy to see that Z is the set of
zero points of B(z), i.e., Z = {zj : j = 1, 2, . . .} if s = 0, or Z = {zj : j = 1, 2, . . .}


{z0 = 0} if s ≠ 0.

We take a η0 = eiθk,m ∈ E, if η0 is a limit point of Z, then there exists zjn ∈ D such that

g ′

ρ,q(zjn) = 0 and zjn → η0. (3.2)

If η0 is not a limit point of Z, then there exists δ > 0 such that dist(η0, Z) = 2δ. Let rl = 1 − q−bk+l (l = 1, 2 · · ·) and

ξl = rlη0, it is easy to see that there exist l0 > 0 such that |ξl − η0| < δ and rq
bk+l

l ≥
1
3 for l > l0. Hence |ξl − zj| ≥ δ for

l > l0 and zj ∈ Z since |η0 − zj| ≥ dist(η0, Z) = 2δ, which implies

(1 − |ξl|
2)

B′(ξl)

B(ξl)

 ≤
s
δ

+

N
j=1

(1 − r2l )(1 − |zj|2)
|1 − zjξl||ξl − zj|

≤
s
δ

+
4
δ

N
j=1

(1 − |zj|).

Thus for l > l0, we have

(1 − |ξl|
2)

g ′′
ρ,q(ξl)

g ′
ρ,q(ξl)

 = (1 − r2l )


ρ

∞
n=1

anqbn(rleiθk,m)q
bn

rleiθk,m
+

B′(ξl)

B(ξl)


≥ (1 − r2l )ρ


∞
n=k

anqbn r
qbn
l −

k−1
n=1

anqbn


−
s
δ

−
4
δ

N
j=1

(1 − |zj|).
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With a similar proof of Lemma 3.4, we have

k−1
n=1

anqbn ≤ c ′

bk−1
n=0

qn ≤ c ′qbk−1
∞
n=0

q−n
≤ c ′

qbk

q − 1
.

This and the fact rq
bk+l

l ≥
1
3 give that for large l,

(1 − |ξl|
2)

g ′′
ρ,q(ξl)

g ′
ρ,q(ξl)

 ≥ ρq−bk+l


ak+lqbk+l

3
− c ′

qbk

q − 1


−

s
δ

−
4
δ

N
j=1

(1 − |zj|)

≥ ρ
ak+l

4
−

s
δ

−
4
δ

N
j=1

(1 − |zj|).

It follows from
N

j=1(1 − |zj|) < ∞ and an → ∞ that

(1 − |ξl|
2)

g ′′
ρ,q(ξl)

g ′
ρ,q(ξl)

 → ∞, ξl → eiθk,m as l → ∞. (3.3)

(3.2) and (3.3) show that gρ,q(z) satisfies the conditions of Theorem 1.2, hence has the Cantor boundary behavior on D. �
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