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In this paper, we investigate the global regularity of 2D generalized MHD equa-
tions, in which the dissipation term and magnetic diffusion term are ν(−Δ)αu and
η(−Δ)βb respectively. Let (u0, b0) ∈ Hs with s � 2, it is showed that the smooth
solution (u(x, t), b(x, t)) is globally regular for the case 0 � α � 1

2 , α + β > 3
2 .

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following 2D generalized magnetohydrodynamic (GMHD) equations⎧⎪⎨⎪⎩
ut + νΛ2αu + u · ∇u = −∇p + b · ∇b,

bt + ηΛ2βb + u · ∇b = b · ∇u,

∇ · u = ∇ · b = 0,
(1.1)

where α � 0, β � 0, ν � 0 and η � 0 are real parameters, and u is the velocity of the flow, b is the magnetic
field, p is the scalar pressure, Λ = (−Δ) 1

2 is defined in terms of Fourier transform by

Λ̂f(ξ) = |ξ|f̂(ξ).

If α = β = 1, (1.1) is the viscous MHD equations, and the global well-posedness of classical solution is
well-known [7]. If ν = η = 0, (1.1) is the inviscid magnetohydrodynamic equations.

We know that the 2D Euler equation is globally well-posed for smooth initial data. But for the 2D inviscid
MHD equations, the global well-posedness of classical solution is still a big open problem. So the GMHD
equations have attracted much interest of many mathematicians and have motivated a large number of
research papers concerning various generalizations and improvements [9–12,15,17]. People pay attention to
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how the parameters ν, η, α, β influence the global regularity of the GMHD equations. It is well-known that
the d-dimensional GMHD equations (1.1) with ν > 0 and η > 0 have a unique global classical solution for
every initial data (u0, b0) ∈ Hs with s � max{2α, 2β} if α � 1

2 + d
4 and β � 1

2 + d
4 [10]. An improved

result by Wu [12] was established by reducing the requirement for α and β and the dissipation in (1.1) by
a logarithmic factor. It is showed that the system is globally regular as long as the following conditions
α � 1

2 + d
4 , β > 0, α+β � 1+ d

2 are satisfied. As a special consequence, smooth solutions of the 2D GMHD
equations with α � 1, β > 0, α + β � 2 are global.

However, for the 2D incompressible MHD equations with partial dissipation, the global regularity of the
classical solutions is still a difficult problem. In 2011, Cao and Wu [2] showed an interesting result which
considered the 2D MHD equations of the form⎧⎪⎨⎪⎩

ut + u · ∇u = −p + ν1uxx + ν2uyy + b · ∇b,

bt + u · ∇b = η1bxx + η2byy + b · ∇u,

∇ · u = ∇ · b = 0,
(1.2)

they stated that the classical solutions of Eqs. (1.2) with either ν1 = 0, ν2 = ν > 0, η1 = η > 0 and η2 = 0 or
ν1 = ν > 0, ν2 = 0, η1 = 0 and η2 = η > 0 are globally existed for all time. If ν1 = ν2 = 0 and η1 = η2 > 0,
the MHD equations (1.2) have a global H1 weak solution [2,6]. But the existence of global classical solution
is an open problem. When η1 = η2 = 0 and ν1 = ν2 > 0, it is also unknown for the existence of global
classical solutions.

Recently, Tran, Yu and Zhai [9] obtained the global regularity of 2D GMHD equations (1.2) for the
following three cases: (1) α � 1

2 , β � 1; (2) 0 � α < 1
2 , 2α + β > 2; (3) α � 2, β = 0. Combining them

with the result of [12], we know that if α + β � 2, (1.1) with ν > 0 and η > 0 possesses a global smooth
solution. Note that in this case, the end point α = 0 (ν = 0) and β = 2 is not included and it cannot ensure
the global regularity for the system (1.1).

Motivated by Tran, Yu and Zhai [9], we carried on a thorough investigation on whether the smooth
solutions are global in the case α = 0 and β = 2 for 2D GMHD equations. In fact, the system (1.1) has a
global classical solution for this case. What is more, we find that when α = 0, the condition β = α + β � 2
can be reduced to β > 3

2 . When 0 < α � 1
2 , we also conclude that the system is globally regular provided

that α and β satisfy the relation α + β > 3
2 .

The topic of the global regularity of 2D MHD equations with partial dissipation has attracted much
attention of many excellent scholars. After submission of this paper the authors were informed of the
preprint version of [3,13,14] where the results are closely related to the topic. Moreover, Ref. [3] gives a
more precise result which is, in the case α = 0, the system (1.1) is globally regular as long as β > 1.

To this end, we state our regularity criteria as follows.

Theorem 1.1. Consider the GMHD equations (1.1) in 2D case. Assume (u0, b0) ∈ Hs with s � 2. Then the
system is globally regular for α and β satisfying 0 � α � 1

2 , α + β > 3
2 .

Remark 1.1. In the special case α = 1
2 , β = 1, Ref. [9] showed that Eq. (1.1) is globally regular. However,

the global regularity of (1.1) with 0 � α � 1
2 , α + β = 3

2 is still a difficult problem.

Remark 1.2. To simplify the presentation, we will set ν = η = 1. It is a standard exercise to adjust various
constants to accommodate other values of ν, η, as long as both are positive.

2. Proof of the main result

In this section, we shall prove Theorem 1.1. The key idea here is to apply the standard L2-energy estimates
to carry out the H1, H2 and higher estimates.
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2.1. L2- and H1-energy estimates

We consider the 2D GMHD equations (1.1) with α � 0 and β � 1. It is easy to get the standard L2-energy
estimate. Multiplying the first two equations of (1.1) by u and b, respectively, integrating and adding the
resulting equations together it follows that

‖u‖2
2 + ‖b‖2

2 + 2
t∫

0

∥∥Λαu
∥∥2

2 ds + 2
t∫

0

∥∥Λβb
∥∥2

2 ds = ‖u0‖2
2 + ‖b0‖2

2, (2.1)

where we have used the incompressibility condition ∇ · u = ∇ · b = 0.
As β � 1, we can easily get

b ∈ L2(0, T ;Hβ
(
R

2)) ⇒ ∇b ∈ L2(0, T ;L2(
R

2)).
Let ω = ∇ × u = −∂2u1 + ∂1u2 be the vorticity and j = ∇ × b = −∂2b1 + ∂1b2 be the current density.
Applying ∇× to the first two equations of (1.1) we obtain the governing equations:{

ωt + u · ∇ω = b · ∇j − Λ2αω,

jt + u · ∇j = b · ∇ω + T (∇u,∇b) − Λ2βj.
(2.2)

Here

T (∇u,∇b) = 2∂1b1(∂1u2 + ∂2u1) + 2∂2u2(∂1b2 + ∂2b1).

Multiplying the two equations of (2.2) by ω and j, respectively, integrating and applying the incompress-
ibility condition we obtain

1
2

d
dt

∫
R2

(
ω2 + j2) dx +

∫
R2

(
Λαω

)2 dx +
∫
R2

(
Λβj

)2 dx =
∫
R2

T (∇u,∇b)j dx. (2.3)

According to the Biot–Savart law, we have the representations

∂u

∂xk
= Rk(R× ω); k = 1, 2,

and

∂b

∂xk
= Rk(R× j); k = 1, 2,

where R = (R1, R2), Rk = ∂xk(−Δ)− 1
2 denotes Riesz transformation. For details about the Riesz trans-

formation please refer to [8]. By the boundedness of Riesz operator R in Lp space (1 < p < ∞), we arrive
at

‖∇u‖L2 � C‖ω‖L2 and ‖∇b‖L4 � C‖j‖L4 .

Using Hölder and Young’s inequalities one has∫
R2

T (∇u,∇b)j dx � C‖∇u‖L2‖∇b‖L4‖j‖L4 � C‖ω‖L2‖j‖2− 1
β

L2

∥∥Λβj
∥∥ 1

β

L2

� C(ε)‖ω‖
2β

2β−1
2 ‖j‖2

L2 + ε
∥∥Λβj

∥∥2
2 � C(ε)

(
‖ω‖2

L2 + 1
)
‖j‖2

L2 + ε
∥∥Λβj

∥∥2
2 ,
L L L
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where we have used the following Gagliardo–Nirenberg inequality

‖j‖L4 � C‖j‖1− 1
2β

L2

∥∥Λβj
∥∥ 1

2β
L2 .

Inserting the above estimate into (2.3), and taking ε small enough so that ε < 1 we have

d
dt

(
‖ω‖2

L2 + ‖j‖2
L2

)
+

∥∥Λαω
∥∥2
L2 +

∥∥Λβj
∥∥2
L2 � C(ε)

(
‖ω‖2

L2 + 1
)
‖j‖2

L2 .

Gronwall’s inequality [5, Appendix B.j] and L2-energy estimate imply that

‖ω‖2
L2 + ‖j‖2

L2 +
t∫

0

∥∥Λαω
∥∥2
L2 ds +

t∫
0

∥∥Λβj
∥∥2
L2 ds �

(
‖ω0‖2

L2 + ‖j0‖2
L2

)
exp

[ t∫
0

‖j‖2
L2 ds

]
< ∞.

2.2. Higher estimates for α = 0

In this case we have β > 3
2 , and the GMHD equations now read⎧⎨⎩

ut + u · ∇u = −∇p + b · ∇b,

bt + u · ∇b = b · ∇u− Λ2βb,

∇ · u = ∇ · b = 0.
(2.4)

First of all, we estimate bt. Taking the inner product of the second equation of (2.4) with bt and using
Hölder and Young’s inequalities we obtain

‖bt‖2
L2 + 1

2
d
dt

∥∥Λβb
∥∥2
L2 �

∫
R2

|u · ∇b · bt| dx +
∫
R2

|b · ∇u · bt| dx

� 1
2‖bt‖

2
L2 + 1

2
(
‖u‖2

L4‖∇b‖2
L4 + ‖∇u‖2

L2‖b‖2
L∞

)
.

Application of the following Gagliardo–Nirenberg inequalities

‖f‖L4 � C‖f‖
1
2
L2‖∇f‖

1
2
L2 ,

‖f‖L∞ � C‖f‖1− 1
β

L2

∥∥Λβf
∥∥ 1

β

L2 ,

yields that

‖bt‖2
L2 + d

dt
∥∥Λβb

∥∥2
L2 � C‖u‖L2‖∇u‖L2‖∇b‖L2‖∇j‖L2 + C‖∇u‖2

L2‖b‖
1− 1

β

L2

∥∥Λβb
∥∥ 1

β

L2

� C‖∇j‖L2 + C
∥∥Λβb

∥∥ 1
β

L2 .

By the results of the L2-energy estimate and H1 estimate, we deduce that

∥∥Λβb
∥∥2
L2 +

t∫
0

‖bt‖2
L2 ds �

∥∥Λβb0
∥∥2
L2 + C

t∫
0

∥∥Λβb
∥∥ 1

β

L2 ds+C

t∫
0

‖∇j‖L2 ds < ∞. (2.5)

Now we go back to the equation bt + u · ∇b = b · ∇u − Λ2βb, and using the similar way with the estimate
of bt we get
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∥∥Λ2βb
∥∥2
L2 � ‖bt‖2

L2 + ‖u · ∇b‖2
L2 + ‖b · ∇u‖2

L2 � ‖bt‖2
L2 + C‖∇j‖L2 + C

∥∥Λβb
∥∥ 1

β

L2 .

Recall that j = ∇× b, one can deduce, thanks to (2.5), that

t∫
0

‖∇j‖2
Ḣ2β−2 ds �

t∫
0

∥∥Λ2βb
∥∥2
L2 ds

�
t∫

0

‖bt‖2
L2 ds + C

t∫
0

‖∇j‖L2 ds + C

t∫
0

∥∥Λβb
∥∥ 1

β

L2 ds < ∞. (2.6)

Since β > 3
2 , by Sobolev embedding theorem, it is easily to see

∇j ∈ L2(0, T ;H2β−2(
R

2)) ↪→ L2(0, T ;L∞(
R

2)).
Secondly, we estimate ω. From the first equation of (2.4), we have the vorticity equation ωt+u ·∇ω = b ·∇j.
Multiplying both sides of it by p|ω|p−2ω and integrating both sides over R2, it follows, by Hölder inequality,
that

d
dt‖ω‖

p
Lp + p

∫
R2

u · ∇ω · |ω|p−2
ω dx � p‖b · ∇j‖Lp‖ω‖p−1

Lp � p‖b‖L∞‖∇j‖Lp‖ω‖p−1
Lp .

Note that p
∫
R2 u · ∇ω · |ω|p−2

ω dx = 0. Now let p → ∞, we infer that

‖ω‖L∞ � ‖ω0‖L∞ +
t∫

0

‖b‖L∞‖∇j‖L∞ ds < ∞.

This leads to

ω ∈ L∞(
0, T ;L∞(

R
2)).

Lastly, according to the classical BKM-type blow-up criterion [1] which is the MHD system stays regular
beyond T provided that

∫ T

0 (‖ω‖L∞ + ‖j‖L∞) dt < ∞, the proof of the case α = 0 is thus completed.

2.3. Higher estimates for 0 < α � 1
2 , α + β > 3

2

In this case, we can easily get β > 1. Firstly, we estimate ‖ω‖Lp . Multiplying both sides of the first
equation of (2.2) by p|ω|p−2ω and integrating both sides over R

2, it follows that

d
dt‖ω‖

p
Lp + p

∫
R2

Λ2αω · |ω|p−2
ω dx � p‖b · ∇j‖Lp‖ω‖p−1

Lp .

For the dissipation term, we know by the property of Riesz potential that
∫
R2 Λ

2αω · |ω|p−2
ω dx � 0. For

the details on it see [4]. Thus, we have

‖ω‖Lp � ‖ω0‖Lp +
t∫
‖b · ∇j‖Lp ds. (2.7)
0
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By the Gagliardo–Nirenberg inequality, one has the following estimate

‖b · ∇j‖Lp � C‖b‖L∞‖∇j‖Lp � C‖b‖
β

1+β

L2

∥∥Λβj
∥∥ 1

1+β

L2 ‖j‖
2β−3
2β−1+ 2

(2β−1)p
L2

∥∥Λ2β−1j
∥∥ 2(p−1)

(2β−1)p
L2 , (2.8)

where p satisfies p > 1
α . So, inserting (2.8) into (2.7) and applying with L2 and H1 estimates and (2.6), it

can be derived that

‖ω‖Lp � ‖ω0‖Lp + C

t∫
0

‖b‖
β

1+β

L2

∥∥Λβj
∥∥ 1

1+β

L2 ‖j‖
2β−3
2β−1+ 2

(2β−1)p
L2

∥∥Λ2β−1j
∥∥ 2(p−1)

(2β−1)p
L2 ds

� ‖ω0‖Lp + C

t∫
0

∥∥Λβj
∥∥ 1

1+β

L2

∥∥Λ2β−1j
∥∥ 2(p−1)

(2β−1)p
L2 ds

� ‖ω0‖Lp + C

t∫
0

(∥∥Λβj
∥∥2
L2 +

∥∥Λ2βb
∥∥ 4(p−1)(1+β)

(2β−1)(2β+1)p
L2

)
ds < ∞.

Note that as long as p > 1
α , we have 4(p−1)(1+β)

(2β−1)(2β+1)p � 2.
Secondly, we derive the estimates of ‖ω‖H1 and ‖j‖H1 . We differentiate Eqs. (2.2) with respect to xi over

R
2, then multiply the resulting equations by ∂xi

ω and ∂xi
j for i = 1, 2, integrate with respect to x over R

2

and sum them up. It follows that

1
2

d
dt

(
‖∇ω‖2

L2 + ‖∇j‖2
L2

)
+
∥∥Λα∇ω

∥∥2
L2 +

∥∥Λβ∇j
∥∥2
L2

�
∫

|∇u||∇ω|2 dx +
∫

|∇b||∇j||∇ω| dx +
∫

|∇u||∇j|2 dx

+
∫

|∇b||∇ω||∇j| dx +
∫ ∣∣∇2u

∣∣|∇b||∇j| dx +
∫

|∇u|
∣∣∇2b

∣∣|∇j| dx

= I1 + I2 + I3 + I4 + I5 + I6. (2.9)

It is easy to see that the estimates of I4 and I5 are the same as I2 while I6 is the same as I3. Therefore, it
suffices to estimate I1, I2, I3.

Hölder, Young and Gagliardo–Nirenberg inequalities together give

I1 � ‖∇u‖Lp‖∇ω‖2
L2q � C‖ω‖Lp‖∇ω‖

2(αp−1)
αp

L2

∥∥Λα∇ω
∥∥ 2

αp

L2 � C(ε)‖∇ω‖2
L2 + ε

∥∥Λα∇ω
∥∥2
L2 ,

where p and q satisfy 1
p + 1

q = 1 and p > 1
α .

Arguing similarly as the estimate of I1, thanks to the L2 and H1 estimates, one has

I2 � ‖∇b‖L∞‖∇j‖L2‖∇ω‖L2 � C‖∇b‖1− 1
β

L2

∥∥Λβ∇b
∥∥ 1

β

L2

(
‖∇ω‖2

L2 + ‖∇j‖2
L2

)
� C

∥∥Λβ∇b
∥∥ 1

β

L2

(
‖∇ω‖2

L2 + ‖∇j‖2
L2

)
where use has been made of the following Gagliardo–Nirenberg inequality

‖∇b‖L∞ � C‖∇b‖1− 1
β

L2

∥∥Λβ∇b
∥∥ 1

β

L2 .

The estimate of I3 can also be obtained by Hölder, Young and Sobolev embedding inequalities
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I3 � ‖∇u‖L2‖∇j‖2
L4 � C‖∇u‖L2‖∇j‖

2β−1
β

L2

∥∥Λβ∇j
∥∥ 1

β

L2 � C(ε)‖∇j‖2
L2 + ε

∥∥Λβ∇j
∥∥2
L2 .

Combining the above estimates into (2.9), and taking ε small enough we get

1
2

d
dt

(
‖∇ω‖2

L2 + ‖∇j‖2
L2

)
+

∥∥Λα∇ω
∥∥2
L2 +

∥∥Λβ∇j
∥∥2
L2 � C(ε)

∥∥Λβ∇b
∥∥ 1

β

L2

(
‖∇ω‖2

L2 + ‖∇j‖2
L2

)
.

Gronwall’s inequality and H1 estimate imply that

‖∇ω‖2
L2 + ‖∇j‖2

L2 +
t∫

0

∥∥Λα∇ω
∥∥2
L2 ds +

t∫
0

∥∥Λβ∇j
∥∥2
L2 ds � C

(
‖∇ω0‖2

L2 + ‖∇j0‖2
L2

)
.

Thus, we arrive at

ω ∈ L∞(
0, T ;H1(

R
2)) ∩ L2(0, T ;Hα+1(

R
2)),

j ∈ L∞(
0, T ;H1(

R
2)) ∩ L2(0, T ;Hβ+1(

R
2)).

In the end, by the embedding relation Hs(R2) ↪→ L∞(R2) for s > 1, we can get ω ∈ L2(0, T ;L∞(R2)), j ∈
L2(0, T ;L∞(R2)), and combining the BKM-type blow-up criterion [1], this completes the proof. Obviously,
the fact H1(R2) ↪→ BMO(R2) and the blow-up criterion [16] can also give the proof. �
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