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It is well-known that the equality

LG � LH = span{Lg: g ∈ G−H}SOT

holds for G an i.c.c. group and H a subgroup in G, where LG and LH are the
corresponding group von Neumann algebras and LG � LH is the set {x ∈ LG:
ELH

(x) = 0} with ELH
the conditional expectation defined from LG onto LH .

Inspired by this, it is natural to ask whether the equality

N �A = span{u: u is unitary in N �A}SOT

holds for N a type II1 factor and A a von Neumann subalgebra of N . In this paper,
we give an affirmative answer to this question for the case A a type I von Neumann
algebra.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, all Hilbert spaces discussed are complex and separable. Let (N, τ) be a finite
von Neumann algebra with a faithful normal normalized trace τ and A be a von Neumann subalgebra
of N . Then the trace τ induces an inner product 〈·,·〉 on N which is defined by 〈x, y〉 = τ(y∗x), ∀x, y ∈ N .
Denote by L2(N) (resp. L2(A)) the completion of N (resp. A) with respect to the inner product, then
L2(A) is a subspace of L2(N). Let eA denote the projection from L2(N) onto L2(A). The trace-preserving
conditional expectation EA of N onto A is defined to be the restriction eA|N . By [2], EA has the following
properties:
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(1) eA|N = EA is a norm reducing map from N onto A with EA(1) = 1;
(2) the equality EA(axb) = aEA(x)b holds for all x ∈ N and a, b ∈ A;
(3) τ(xEA(y)) = τ(EA(x)EA(y)) = τ(EA(x)y) for all x, y ∈ N ;
(4) eAxeA = EA(x)eA = eAEA(x) for all x ∈ N .

Let G be a (countable) discrete i.c.c. group and denote by l2(G) the Hilbert space of square-summable
sequences. Given every g in G, the operator Lg is defined by (Lgx)(h) = x(g−1h), for every x in l2(G) and
h in G. This is a unitary operator. Let LG be the von Neumann algebra generated by {Lg: g ∈ G}. It is
well-known that LG is a type II1 factor. For a subgroup H in G, define

LG � LH �
{
x ∈ LG: ELH

(x) = 0
}
.

Thus we obtain that

LG � LH = span{Lg: g ∈ G−H}SOT.

Inspired by this, it is natural to ask whether the equality

N �A = span{u: u is unitary in N �A}SOT

holds for N a type II1 factor and A a von Neumann subalgebra of N . In this paper, we give an affirmative
answer to this question for the case A a type I von Neumann algebra in Theorem 2.6.

In [1], A. Ioana, J. Peterson and S. Popa proved a series of rigidity results for amalgamated free prod-
uct II1 factors, which can be viewed as von Neumann algebra versions of the “subgroup theorems” and
“isomorphism theorems” for amalgamated free product groups in Bass–Serre theory. They introduced the
concept “bounded homogeneous orthonormal basis” of M over B, where (M, τ) is a separable finite von Neu-
mann algebra and B ⊂ M is a von Neumann subalgebra. In the current paper, our result indicates that it
is possible to choose unitary elements to form a bounded homogeneous orthonormal basis with respect to a
type I von Neumann subalgebra of M .

2. Proofs

In this paper, the matrix representations of operators will be used frequently. We briefly recall the relation-
ship between conditional expectations with respect to matrix representations of operators. Let e1, . . . , en ∈ N

be mutually equivalent orthogonal projections such that
∑n

i=1 ei = 1, where 1 is the identity of N . Then
for every x ∈ N , we can express x in the form

x =

⎛⎜⎝ x11 · · · x1n
...

. . .
...

xn1 · · · xnn

⎞⎟⎠ ran e1
...

ran en

and there exists a ∗-isomorphism ϕ from N onto Mn(Ne1), where Ne1 is the restriction of e1Ne1 on ran e1
and denote by Mn(Ne1) the set n-by-n matrices with entries in Ne1 . On the other hand, let τ be a faithful
normal normalized trace on N , and the trace τn on Mn(N) is defined by τn(x) = 1

n (
∑n

i=1 τ(xii)), where x

in Mn(N) is of the form

x =

⎛⎜⎝ x11 · · · x1n
...

. . .
...

⎞⎟⎠

xn1 · · · xnn
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and xij is in N for i, j = 1, . . . , n. We observe that τn is a faithful normal normalized trace. For a von Neu-
mann subalgebra A in N , there exist conditional expectations EA from N onto A and EMn(A) from Mn(N)
onto Mn(A). Given fixed i0 and j0, let xi0j0 denote again the operator in Mn(N) with all entries 0 but the
(i0, j0) entry xi0j0 . By the fact that EMn(A) is Mn(A)-modular, the equality

EMn(A)
(
xi0j0

)
= EMn(A)

(
ei0xi0j0ej0

)
= ei0EMn(A)

(
xi0j0

)
ej0

ensures that all but the (i0, j0) entry of EMn(A)(xi0j0) are 0, where ei is the diagonal projection with all
entries 0 except the (i, i) one being the identity of N . Therefore xi0j0 is in Mn(N) �Mn(A) if and only if
the (i0, j0) entry of xi0j0 is in N �A.

In what follows, N will always denote a von Neumann algebra. Every subalgebra of N we consider here is
self-adjoint, weakly closed and contains the unit 1 of N . For a subset S ⊆ N , denote by U (S ) the unitary
operators in S .

Lemma 2.1. Let N be a von Neumann algebra and

Mn =
{
x: x ∈ Mn(N), xii = 0, i = 1, . . . , n

}
,

then Mn = span{u: u ∈ U (Mn)}.

Proof. For each x in Mn, we can write x in the form

x =

⎛⎜⎜⎜⎝
x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xn1 xn2 · · · xnn

⎞⎟⎟⎟⎠
n×n

,

where xij is in N and xii = 0, for i, j = 1, . . . , n. Without loss of generality, we may assume xi0j0 
= 0,
i0 < j0 and all other entries 0. Thus we can write x in the form of block matrix

x =
(
X11 X12
X21 X22

)
,

where X12 is a k-by-k matrix for some k � n− 1 with xi0j0 on the main diagonal of X12.
Note that xi0j0 =

∑4
i=1 λiui for some ui ∈ U (N) and λi ∈ C. For the sake of simplicity, we can write X12

in the form

xi0j0 ⊕ 0(k−1) =
4∑

i=1

λi

2
(
ui ⊕ v(k−1) + ui ⊕ (−v)(k−1)),

where v is unitary in N . Write ũi = ui ⊕ v(k−1) and ûi = ui ⊕ (−v)(k−1), then x can be written in the form

x =
4∑

i=1

λi

2

((
0 ũi

IX21 0

)
+

(
0 ûi

−IX21 0

))
,

where IX21 is the identity of Mn−k(N).
By a similar method, every x in Mn can be written as a linear combination of finitely many unitary

operators. Thus we finish the proof. �
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Lemma 2.2. If N is a von Neumann algebra, A ⊆ N is a von Neumann subalgebra and N � A =
span{u: u ∈ U (N �A)}SOT, then

Mn(N �A) = span
{
u: u ∈ U

(
Mn(N �A)

)}SOT
.

Proof. For each x ∈ N � A, there exists a sequence {xn}n∈Λ in N � A, such that xn
SOT−−−→ x, xn =∑kn

i=1 λni
uni

, uni
∈ U (N � A), λni

∈ C. Without loss of generality and for the sake of simplicity, we may
assume

x̃ =

⎛⎜⎜⎝
x 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎞⎟⎟⎠ , x̃n =

⎛⎜⎜⎝
xn 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎞⎟⎟⎠ .

Note that x can be moved to the (i, j) entry by multiplying ui on the left and uj on the right, where ui

(resp. uj) is the elementary matrix obtained by swapping row 1 (resp. column 1) and row i (resp. column j)
of the identity matrix for 1 � i, j � n.

Then the result x̃ ∈ span{u: u ∈ U (N �A)}SOT follows from the two relations

x̃n
SOT−−−→ x̃,

x̃n =
kn∑
i=1

λni

2

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝

uni

v
. . .

v

⎞⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝
uni

−v
. . .

−v

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ ,

where v is a unitary operator in U (N �A). �
Lemma 2.3. If N is a type II1 factor with a faithful normal normalized trace τ and A ⊆ N is a diffuse
abelian von Neumann subalgebra, then

N �A = span
{
u: u ∈ U (N �A)

}
.

Proof. Since N is a type II1 factor, there exist four equivalent mutually orthogonal projections
{ei}1�i�4 ⊆ A, such that

∑4
i=1 ei = 1. Denote by M the reduced von Neumann algebra e1Ne1. Then

there exists a ∗-isomorphism ϕ from N onto M4(M) so that ϕ(A) =
⊕4

i=1 Ai, where Ai is a diffuse abelian
von Neumann subalgebra in M . For the sake of simplicity, we assume N = M4(M), A =

⊕4
i=1 Ai.

Denote M4 = {(xij)1�i,j�4 ∈ N : xii = 0 for 1 � i � 4}, then

M4 = span
{
u: u ∈ U (M4)

}
following from Lemma 2.1. Thus we only need to prove

4⊕
i=1

M �Ai ⊆ span
{
u: u ∈ U (N �A)

}
, (2.1)

since M4 ⊆ N �A.



394 R. Shi, X. Zhou / J. Math. Anal. Appl. 416 (2014) 390–401
Consider the matrix

x̃ =

⎛⎜⎜⎝
x1 0 0 0
0 x2 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ,

where x1 = x∗
1 ∈ M � A1, x2 = x∗

2 ∈ M � A2, ‖x1‖ < 1, ‖x2‖ < 1. Since for each y ∈ N , we have
y = λ1y1 + λ2y2, where yi = y∗i , λi ∈ C, ‖yi‖ < 1, for 1 � i � 2. Let

ũ1 =

⎛⎜⎜⎝
x1 0

√
1 − x2

1 0
0 x2 0

√
1 − x2

2
0 −

√
1 − x2

2 0 x2
−
√

1 − x2
1 0 x1 0

⎞⎟⎟⎠ ,

ũ2 =

⎛⎜⎜⎝
x1 0

√
1 − x2

1 0
0 x2 0

√
1 − x2

2
0

√
1 − x2

2 0 −x2√
1 − x2

1 0 −x1 0

⎞⎟⎟⎠ ,

ũ3 =

⎛⎜⎜⎝
0 0

√
1 − x2

1 0
0 0 0

√
1 − x2

2
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ,

then we obtain that

x̃ = 1
2 ũ1 + 1

2 ũ2 − ũ3. (2.2)

Notice that ũ1, ũ2 are unitary operators in N � A and ũ3 belongs to M4, then (2.2) and Lemma 2.1 allow
us to conclude that

x̃ ∈ span
{
u: u ∈ U (N �A)

}
.

Similarly, we can also show that

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 x3 0
0 0 0 x4

⎞⎟⎟⎠
is a linear combination of finitely many unitary operators in N � A, where x3 ∈ M � A3, x4 ∈ M � A4,
thus we finish the proof of (2.1). �
Lemma 2.4. If N is a type II1 factor with a faithful normal normalized trace τ and A ⊆ N is an atomic
abelian von Neumann subalgebra, then

N �A = span
{
u: u ∈ U (N �A)

}SOT
.
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Proof. We now consider four cases respectively.
(i) A = C1.
Since N is a type II1 factor, there exist two equivalent mutually orthogonal projections p and q in N such

that p + q = 1. Denote by M the reduced von Neumann algebra pNp with a faithful normal normalized
trace τM . Then there exists a ∗-isomorphism ϕ from N onto M2(M) so that ϕ(A) = Cp(2). If we write
Ñ = M2(M), Ã = ϕ(A), then we obtain

Ñ � Ã =
{
x̃ ∈ Ñ : τM (x11 + x22) = 0, x̃ = (xij)1�i,j�2

}
.

Note that (
x11 x12
x21 x22

)
=

(
x11 + x22 0

0 0

)
+

(
−x22 0

0 x22

)
+

(
0 x12
x21 0

)
. (2.3)

For each x22 ∈ M , x22 =
∑4

i=1 λiui, where u1, . . . , u4 are unitary operators in M so that

(
−x22 0

0 x22

)
=

4∑
i=1

λi

(
−ui 0
0 ui

)
.

Since
(

−ui 0
0 ui

)
∈ Ñ � Ã, we have

(
−x22 0

0 x22

)
∈ span

{
u: u ∈ U (Ñ � Ã )

}
. (2.4)

Denote

M2 =
{(

0 x12
x21 0

)
: x12, x21 ∈ M

}
.

Since M2 ⊆ Ñ � Ã, by Lemma 2.1 we obtain

M2 ⊆ span
{
u: u ∈ U (Ñ � Ã )

}
. (2.5)

For x ∈ M and τM (x) = 0, we may assume x = x∗, ‖x‖ < 1, since

x = x + x∗

2 + i
x− x∗

2i and τM

(
x + x∗

2

)
= τM

(
x− x∗

2i

)
= 0.

Let

x̃ =
(
x 0
0 0

)
,

ũ1 =
(

x
√

1 − x2

−
√

1 − x2 x

)
, ũ2 =

(
x

√
1 − x2

√
1 − x2 −x

)
, ũ3 =

(
0

√
1 − x2

0 0

)
,

then we have

x̃ = 1
2 ũ1 + 1

2 ũ2 − ũ3. (2.6)

Observe that ũ1, ũ2 are both unitary in Ñ � Ã and ũ3 ∈ M2.
Hence Ñ � Ã = span{u: u ∈ U (Ñ � Ã )} follows from (2.3), (2.4), (2.5) and (2.6).
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(ii) A = Cp + Cq, where p and q are mutually orthogonal projections in N with sum 1.
Each x ∈ N �A can be written as

x =
(
x11 x12
x21 x22

)
with respect to the decomposition 1 = p+q, where x11 ∈ p(N�A)p, x12 ∈ pNq, x21 ∈ qNp, x22 ∈ q(N�A)q.
By (i), we obtain that

pNp� Cp = span
{
u: u ∈ U (pNp� Cp)

}
,

qNq � Cq = span
{
u: u ∈ U (qNq � Cq)

}
,

therefore (
x11 0
0 x22

)
∈ span

{
u: u ∈ U (N �A)

}
.

We only need to prove (
0 x12
x21 0

)
∈ span

{
u: u ∈ U (N �A)

}
. (2.7)

If τ(p) is rational, then we assume

τ(p)
τ(q) = m

n
, for some m,n ∈ N

+.

Let {pi}1�i�m and {qj}1�j�n be two families of mutually orthogonal projections in N such that p1 + p2 +
· · · + pm = p, q1 + q2 + · · · + qn = q and τ(pi) = τ(qj), for all 1 � i � m, 1 � j � n. Denote M = p1Np1
with a faithful normal normalized trace τM , then there exists a ∗-isomorphism ϕ from N onto Mm+n(M)
so that ϕ(A) = Cp

(m)
1 ⊕ Cp

(n)
1 . Denote Ñ = ϕ(N), Ã = ϕ(A),

N0 =
{(

0 x12
x21 0

)
: x12 ∈ pNq, x21 ∈ qNp

}
,

Mm+n =
{
x̃ ∈ Mm+n(M): xii = 0, for 1 � i � m + n

}
.

Note that

Ñ � Ã =
{(

xij

)
1�i,j�m+n

∈ Ñ :
m∑
i=1

τM
(
xii

)
= 0,

m+n∑
i=m+1

τM
(
xii

)
= 0

}
,

then ϕ(N0) ⊆ Mm+n ⊆ Ñ � Ã. Then applying Lemma 2.1 to Mm+n, we obtain that

Mm+n = span
{
u: u ∈ U (Mm+n)

}
,

so that

ϕ
(
N0

)
⊆ span

{
u: u ∈ U (Ñ � Ã )

}
,

thus (2.7) holds.
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If τ(p) is irrational, then let {pn}n∈Λ, {qn}n∈Λ be two families of increasing subprojections of p and q

respectively such that τ(pn) → τ(p), τ(qn) → τ(q) and for all n ∈ Λ, both τ(pn) and τ(qn) are rational.
Thus for n ∈ Λ, x ∈ N , we have

pnxqn
SOT−−−→ pxq.

Next we show that

pnxqn ∈ span
{
u: u ∈ U (N �A)

}
. (2.8)

For each n ∈ Λ, suppose

τ(pn)
τ(qn) = kn

ln
with kn, ln ∈ N

+.

Let {pni
}1�i�kn

and {qnj
}1�j�ln be two families of mutually orthogonal equivalent projections in N such

that pn1 + pn2 + · · ·+ pnkn
= pn, qn1 + qn2 + · · · + qnln

= qn. Then there exists a ∗-isomorphism ϕ from N

onto ϕ(N) such that

ϕ
((
pn + qn

)
N
(
pn + qn

))
= Mkn+ln

(
pn1Npn1

)
and ϕ|(1−pn−qn)N(1−pn−qn) is the identity map. Denote

Nn0 =
{(

0 x

y 0

)
: x ∈ pnNqn, y ∈ qnNpn

}
,

N1 =
(
(p− pn)N(p− pn)

)
�
(
(p− pn)A(p− pn)

)
,

N2 =
(
(q − qn)N(q − qn)

)
�
(
(q − qn)A(q − qn)

)
,

Mkn+ln =
{
{xij}1�i,j�kn+ln ∈ Mkn+ln

(
pn1Npn1

)
: xii = 0, for 1 � i � kn + ln

}
.

By Lemma 2.1 and Case (i), we have that each operator in

Mkn+ln ⊕N1 ⊕N2

can be written as a linear combination of finitely many unitary operators in this set. Note that

ϕ
(
Nn0

)
⊆ Mkn+ln and Mkn+ln ⊕N1 ⊕N2 ⊆ ϕ(N) � ϕ(A),

so that

ϕ
(
Nn0

)
⊕N1 ⊕N2 ⊆ span

{
u: u ∈ U

(
ϕ(N) � ϕ(A)

)}
,

thus (2.8) holds.
(iii) A =

∑n
i=1 Cpi, where {pi}1�i�n is a family of mutually orthogonal projections in N with sum 1.

Each x ∈ N �A can be written as

x =

⎛⎜⎜⎜⎝
x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...
xn1 xn2 · · · xnn

⎞⎟⎟⎟⎠
with respect to the decomposition 1 =

∑
pi, where xii ∈ piNpi �Cpi, xij ∈ piNpj , for 1 � i 
= j � n.
1�i�n
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For 1 � i < j � n, denote

Pij =
⊕

k �=i,j; 1�k�n

pkNpk � Cpk,

Nij =
(
pi + pj

)
(N �A)

(
pi + pj

)
,

then

Pij = span
{
u: u ∈ U (Pij)

}
, Nij = span

{
u: u ∈ U (Nij)

}SOT

following from Case (i) and Case (ii), therefore

Nij ⊕ Pij = span
{
u: u ∈ U (Nij ⊕ Pij)

}SOT
.

(iv) A =
∑∞

i=1 Cpi, where {pi}∞i=1 is a family of mutually orthogonal projections in A with sum 1.
Denote

qi =
i∑

k=1

pk,

Ni = qi(N �A)qi,

Pi =
⊕

i+1�k<∞
pkNpk � Cpk,

then the strong-operator closure of
⋃∞

i=1 Ni is N �A. By Case (i) and Case (iii), we have

Ni ⊕ Pi ⊆ span
{
u: u ∈ U (N �A)

}SOT
.

Thus we finish the proof. �
Lemma 2.5. If N is a type II1 factor and A ⊆ N is an abelian von Neumann subalgebra, then N � A =
span{u: u ∈ U (N �A)}SOT.

Proof. Since A is an abelian von Neumann algebra, there exist two mutually orthogonal projections p, q ∈ A

with sum 1 such that pAp is a diffuse abelian von Neumann algebra with unit p and qAq is an atomic abelian
von Neumann algebra with unit q. Each x ∈ N �A can be written as

x =
(
x11 x12
x21 x22

)
with respect to the decomposition 1 = p+q, where x11 ∈ p(N�A)p, x12 ∈ pNq, x21 ∈ qNp, x22 ∈ q(N�A)q.

Denote

N0 =
{(

0 x12
x21 0

)
: x12 ∈ pNq, x21 ∈ qNp

}
.

By Lemma 2.3 and Lemma 2.4, we only need to prove

N0 ⊆ span
{
u: u ∈ U (N �A)

}SOT
.
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If τ(p) is rational, then idea of the proof is the same as that used in Case (ii) for τ(p) rational in
Lemma 2.4.

If τ(p) is irrational, then let {pn}n∈Λ and {qn}n∈Λ be two families of increasing subprojections of p and q

respectively such that τ(pn) → τ(p), τ(qn) → τ(q) and for all n ∈ Λ, both τ(pn) and τ(qn) are rational.
Then for n ∈ Λ, x ∈ N , we have

pnxqn
SOT−−−→ pxq.

Next we show that

pnxqn ∈ span
{
u: u ∈ U (N �A)

}
. (2.9)

For each n ∈ Λ, suppose

τ(pn)
τ(qn) = kn

ln
with kn, ln ∈ N

+.

Let {pni
}1�i�kn

and {qnj
}1�j�ln be two families of mutually orthogonal equivalent projections in N such

that pn1 + pn2 + · · ·+ pnkn
= pn, qn1 + qn2 + · · · + qnln

= qn. Then there exists a ∗-isomorphism ϕ from N

onto ϕ(N) such that

ϕ
((
pn + qn

)
N
(
pn + qn

))
= Mkn+ln

(
pn1Npn1

)
and ϕ|(1−pn−qn)N(1−pn−qn) is the identity map. Denote

Nn0 =
{(

0 x

y 0

)
: x ∈ pnNqn, y ∈ qnNpn

}
,

N1 =
(
(p− pn)N(p− pn)

)
�
(
(p− pn)A(p− pn)

)
,

N2 =
(
(q − qn)N(q − qn)

)
�
(
(q − qn)A(q − qn)

)
,

Mkn+ln =
{
{xij}1�i,j�kn+ln ∈ Mkn+ln

(
pn1Npn1

)
: xii = 0, for 1 � i � kn + ln

}
.

By Lemma 2.1, we have

Mkn+ln = span
{
u: u ∈ U (Mkn+ln)

}
.

By Lemma 2.3 and Lemma 2.4, there is a unitary operator v ∈ N1 ⊕N2. Note that

ϕ
(
Nn0

)
⊆ Mkn+ln and Mkn+ln ⊕ v ⊆ ϕ(N) � ϕ(A),

so that

ϕ
(
Nn0

)
⊕ v ⊆ span

{
u: u ∈ U

(
ϕ(N) � ϕ(A)

)}
,

thus (2.9) holds. �
Theorem 2.6. If N is a type II1 factor and A ⊆ N is a type I von Neumann subalgebra, then N � A =
span{u: u ∈ U (N �A)}SOT.
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Proof. Since A is a type I von Neumann algebra, there exists a family of mutually orthogonal central
projections {pi}i∈Λ ⊆ A with sum 1 such that

piApi ∼= Mki
(Ai),

where for each i ∈ Λ, Ai is an abelian von Neumann subalgebra and ki is some positive integer. So we
assume

A =
⊕
i∈Λ

Mki
(Ai),

piNpj = Mki×kj
(Nij),

where Nij = ei1Nej1 , {ein}1�n�ki
is a family of mutually orthogonal equivalent subprojections of pi with

sum pi.
For each i, j ∈ Λ, i < j, denote

Pij =
⊕

k∈Λ, k �=i,j

pk(N �A)pk,

Ñij =
(
pi + pj

)
(N �A)

(
pi + pj

)
,

N̂ij =
{(

x1 x2
x3 x4

)
: x1 ∈ Nii �Ai, x2 ∈ Nij , x3 ∈ Nji, x4 ∈ Njj �Aj

}
,

S̃ij =
{(

0 X2
X3 0

)
: X2 ∈ piNpj , X3 ∈ pjNpi

}
,

Ŝij =
{(

X1 0
0 X4

)
: X1 ∈ pi(N �A)pi, X4 ∈ pj(N �A)pj

}
.

By Lemma 2.2 and Lemma 2.5, we have

pk(N �A)pk = span
{
u: u ∈ U

(
pk(N �A)pk

)}SOT
, (2.10)

so that

Ŝij = span
{
u: u ∈ U (Ŝij)

}SOT
.

Next we show

S̃ij ⊆ span
{
u: u ∈ U

(
Ñij

)}SOT
. (2.11)

For each x = {xkl}1�k,l�ki+kj
∈ S̃ij , we have(

0 xst

xts 0

)
∈ N̂ij ,

for 1 � s � ki, ki + 1 � t � ki + kj . By Lemma 2.5, we have

N̂ij = span
{
u: u ∈ U

(
N̂ij

)}SOT

and



R. Shi, X. Zhou / J. Math. Anal. Appl. 416 (2014) 390–401 401
(Nii �Ai)(ki−1) = span
{
u: u ∈ U

(
(Nii �Ai)(ki−1)

)}SOT
,

so that each operator in

N̂ij ⊕ (Nii �Ai)(ki−1) ⊕ (Njj �Aj)(kj−1)

can be approximated in the strong-operator topology by a linear combination of finitely many unitary
operators in this set. Then relation (2.11) holds since

N̂ij ⊕ (Nii �Ai)(ki−1) ⊕ (Njj �Aj)(kj−1) ⊆ Ñij .

Thus we have

Ñij = span
{
u: u ∈ U

(
Ñij

)}SOT
.

By (2.10), we have

Pij = span
{
u: u ∈ U (Pij)

}SOT
,

so that

Ñij ⊕ Pij = span
{
u: u ∈ U

(
Ñij ⊕ Pij

)}SOT
.

Thus, we finish the proof of this theorem. �
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