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Consider the following Schrédinger—Poisson system

—Au+ Vi(z)u + ¢(x)u = [u[P"lu, == (y,2) € R? xR,
—A¢ =u?, lim  ¢(z) =0,

|| =400

(SP)

where V) = A + ﬁ with A > 0, y = (z1,22) € R? and |y| = /2?2 + z2. When
a € [0,8) and max{2, 24} < p < 5, the existence and a priori estimate of
positive solutions of problem (SP) are established in suitable weighted Sobolev

space. Moreover, the asymptotic behavior of the solutions as A — 0 is also discussed.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study the following type of Schrédinger—Poisson equations

—Au+ V(z)u+ ¢(z)u = [ul’ ",

—A¢ = u?, lim ¢(z) =0, == (x1,22,2) € R3,

|z]|—+o00

where p € (2,5), and the potential function V' is of the form

(V) a(z) = A+ ﬁ7 A0, a€l0,8),and |y| = \/a? + 23

Problem (1.1) arises in the study of the coupled Schrédinger—Poisson system:
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e — AP + o) = f (Y1),
—A¢ = [y, lim ¢(z) =0, zeR’

|z|—+o00

(1.2)

where f(|¢)1 = [P~ + woth, wo > 0,2 < p < 5 and 1) : R? x R — C. Motivated by [7], we look for a
solution of (1.2) with the form:

(@, t) = u(x)e!M@TD () >0, n(z) € R/20Z, w > wo.
Then, u satisfies

—Au+ (w—wp + |Vn(9c)|2)u + é(z)u = |uPu,
ulAn(z) + 2VuVn =0,
—Ap =u?, lim ¢(zx) =0, z¢€R3.

|| —+o0
Furthermore, similar to [6,8] we let u(x) = u(y, z) = u(|y|, z) and

arctan(xze/x1), if x1 >0,

arctan(zo/x1) +m, if 21 <0,

me) =
@) w/2, ifxy =0and x5 >0,

—7/2, ifx; =0and 25 <0,

it is easy to see that n(x) € C*(R3\ T_), where T_ := {(z1,22,2) € R3: 27 = 0, 22 < 0}. By a simple
calculation we know that
1

An(z) =0, Vn(z) - Vu(z) = 0, ‘Vn(a:)} = PR for x € R3\ T_.

These show that u(|y|, z) is actually a nonnegative solution of (1.1) with @ = 2 and A = w—wy. Furthermore,
¥ (z) solves (1.2) with angular momentum:

M) = Re/iq/ix AV dr = —/uQx A Vo(z)dz = —(0,0, [u]7.).

R3 R3

Problem (1.1) has been studied under various conditions on the potential V(z) and the power p. For
example, if V(z) = constant, that is @« = 0 in (V'), the non-existence of nontrivial solutions of (1.1) for
p ¢ (1,5) was proved in [12] by a Pohozaev type identity, a radially symmetric positive solution was
obtained in [10,13] for p € [3,5), etc. It is known that a nontrivial weak solution of (1.1) can be obtained by
searching for a nonzero critical point of the variational functional associated to problem (1.1). Usually, the
weak limit of a bounded Palais—Smale, (PS) in short, sequence of the functional is actually a weak solution
of (1.1), but it may be a trivial solution unless the functional satisfies (PS) condition, that is, any (PS)
sequence has a strongly convergent subsequence. However, if there is no some further conditions on V), such
as (1.3) below, it seems hard to verify the (PS) condition, even difficult to have the boundedness of a (PS)
sequence. In this paper, instead of trying to prove the (PS) condition, we adopt a trick used in [16], which
is essentially a version of the concentration-compactness principle due to [22], to show directly that the
weak limit of a (PS) sequence is indeed a nontrivial solution. But, this trick seems not working for the (PS)
sequence simply obtained by the Mountain Pass Theorem because of the nonlocal term ¢(z)u in (1.1).
To overcome this difficult, based on the Deformation Lemma (cf. [24, Lemma 2.3]) we try to construct a
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special (PS) sequence which is nonnegative and such that ¢(x) is bounded in D?(R3). Our approach also
provides a simple way of getting a nonnegative (PS) sequence, see Lemma 2.6, which may be useful in
certain situations. Note that in [5,9,11,16] the authors studied the single stationary Schrodinger equation,
that is, taking ¢(z) = 0 in the first equation of (1.1), in this case it is not necessary to seek a nonnegative
(PS) sequence, see e.g. [5,16]. In this paper, we are concerned with the Schrodinger—Poisson system (1.1)
under the condition (V) with o > 0. We point out that our results cover the case of & = 0 (i.e. constant
potential). Moreover, we give also a priori estimate for solutions of (1.1), see Lemma 4.4, and get also a
classical solution (except for |y| = 0) to (1.1) with A =0, a € (0,8) and max{2, 2%} < p < 5.

For problem (1.1) with a = 0 in (V), existence and nonexistence results were established by Ruiz in [21],
he proved that (1.1) has always a positive radial solution if p € (2,5) and does not admit any nontrivial
solution if p < 2. A ground state for (1.1) with p € (2,5) was proved in [3]. The existence of non-radially
symmetric solutions was shown in [14] and multiple solutions for (1.1) were obtained in [2,10].

If the potential V is not a constant, problem (1.1) has been studied in [3] for p € (3,5) and [26] for
p € (2, 3]. For more general nonlinearities, we refer the reader to the papers [1,4,20,23,25], etc. To ensure that
the variational functional associated to problem (1.1) satisfies the (PS) condition, the following conditions
are assumed in [3,20]

V(z) K Ve = l‘uln inf V(z), (1.3)
2V (z) + (VV(z),2) >0 ae z€R%. (1.4)

It is clear that our potential V' does not satisfy the above conditions. So, we cannot use the same methods
as that of [3,26] to deal with problem (1.1). Without condition (1.4), it seems difficult even showing that
a (PS) sequence is bounded, specially for p € (2,3). Motivated by [6], here we try to find a bounded and
nonnegative (PS) sequence directly from the well-known Deformation Lemma [24, Lemma 2.3].

Before stating our main results, we introduce some notations, definitions and recall some properties of
the solution of the second equation (Poisson equation) in (1.1). For a > 0 and x = (y,2) € R? x R, define

B= {u € D2 (R?): u(z) = u(lyl, =) and Hi/ % dz < oo}, (1.5)

and DV2(R3) = {u € L5(R3): |Vu| € L3(R?)}. For A > 0, we denote

H:{UGEZ /\/u2dac<oo}.
R3

Clearly H C E, H C H*(R®) and H is a Hilbert space, its scalar product and norm are given by

(u,v)g = /Vqu—l—V)\(x)uvdx and ||ul|% = (u,u) s, (1.6)

R3

respectively, where V) (z) = A 4+ ﬁ

Throughout this paper, we denote the standard norms of H*(R?) and LP(R3) (1 < p < +o0) by || - ||
and | - |,, respectively. We observe that (1.6) implies that || - |z is an equivalent norm of || - || if & = 0.

By Lemma 2.1 of [21], we know that —A¢ = u? has a unique solution in D*?(R?) with the form of

2 2
|u (y)| dy, for any u € L% (R?’), (1.7)
r—y

o) = oula) = [
J
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and there is a constant C > 0, independent of ¢, such that
Vo (@), < Clullys, /¢u(9€)u2 dz < Cluljy/s. (1.8)
3

For A > 0 and uw € H, we can define the variational functional associated to problem (1.1) as follows:

I(u) = 1/\Vu| + Vi(z)u? dz + ~ /¢u u dx—]%/hdp“ dz. (1.9)

R3 R3

Since (1.8), I, is well defined on H and I, € C'(H,R) with

(I3 (w), /Vqu+V,\( )uvdx+/¢u uvdx7/|u\p uvdx (1.10)

R3

for all v € H with A > 0 and p € (1,5). Furthermore, it is known that a nontrivial weak solution of (1.1)
corresponds to a nonzero critical point of the functional I in H if A > 0.
In this paper, we want to establish existence results for problem (1.1) for both A > 0 and A = 0.
However, if A\ = 0, then H = E. In this case, (1.7) (1.8) are not always true for u € E. Therefore, the
integrals [s [ul” dz, [5s ¢u(z)u? do and [os ¢y (@)uv dz may not be well defined for u,v € E.

To this end, we set
T={zeR* |y|=0} where |y| = /22 +23. (1.11)

Then, by using the results for A > 0 and an approximation procedure (A — 0), see Section 4, we can get a
solution u € E of (1.1) with A = 0 in following sense

/Vthp—i— -
A lyl

1 _
—updx +/¢u(m)u<p dr = /|u|p Yupdz, for ¢ € C° (R*\T). (1.12)
R3 R3

Note that [p, ﬁwp dr may be not integrable for u € E and ¢ € C{°(R?), this is why we take ¢ €
Cse(R3\ T) in (1.12) instead of ¢ € C§°(R?). So, it is reasonable for us to define a weak solution for (1.1)
as follows.

Definition 1.1. u € E \ {0} is said to be a weak solution of (1.1) with A > 0 if ¢,, € DV?(R3) and u satisfies

/[Vquo—i— <| B —|—>\>u4 dx—l—/gbu ugodx—/|u\p updz, (1.13)
RS R3

for all o € C°(R3\ 7).

We mention that the above definition also enables us to get a classical solution. In fact, if v € E and
bu € DV2(R3) satisfy (1.13), by using our Lemmas 4.2 and 4.3, as well as Theorems 8.10 and 9.19 in [15],
we can prove that u € C%(R3 \ T'), that is, u is a classical solution of (1.1), see Theorem 3.1 in Section 3.

For the single Schrédinger equation

—Au—&-ﬁ = f(u), z=(z1,79,...,2x) ERY, N >3 (1.14)
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with |y| = \/Eﬁzﬁl_ixi, i < N, the authors of paper [5] proved that (1.14) has a nontrivial solution in
HYRYN) if a =2, N > i > 2 and f(¢) is supposed to have some kinds of double powers behavior which
ensure that F(u) = [, f(s)ds is well defined in L*(RY) for u € DY*(RY). In [5], the authors used a
variational method to seek first a nontrivial solution of (1.14) in DY2(R¥), then proved this solution is
also in L2(RY). Formally, (1.14) is nothing but the first equation of problem (1.1) with A = 0, N = 3 and
¢(z) = 0. However, even for f(u) = |[u[P~1u with p € (2,5), F(u) is not well defined in D»?(RY), then the
method and results of [5] do not work for our problem. So, when A = 0 it seems difficult to have a good
working space which can be directly used to solve (1.1). In this paper, we prove first that (1.1) has always
a solution uy in H'(R3) for each A > 0, then show that {u,} (as a sequence of \) is bounded in E. As
mentioned above we can finally use an approximation process to get a weak solution of (1.1) for A = 0 in
the sense of (1.12).
The main results of this paper can be stated now as follows:

Theorem 1.1. Let o € [0,8), max{2, 2£2} < p < 5 and let condition (V) be satisfied. Then, problem (1.1)
has at least a positive solution uy € HNC?*(R3\T) for every A > 0. Furthermore, if X € (0,1], there exists
C > 0 which is independent of X € (0,1] such that the solution uy satisfies

|Vuy|3 + /qbuxu?\ dx < C.
R3

Theorem 1.2. For A =0, let a € [0,8) and max{2, 2£%} < p < 5. Then, problem (1.1) has at least a positive
solution u € ENC?(R3\ T) in the sense of (1.12).

2. Bounded nonnegative (PS) sequence

In this section, A > 0 is always assumed. Our aim is to know how the functional I, defined in (1.9) has
always a bounded nonnegative (PS) sequence at some level ¢ > 0 in H. As mentioned in the introduction,
the authors in [6] developed an approach to get a bounded (PS) sequence for the single equation (1.14)
with certain nonlinearities. By improving some techniques used in [6], we are able to obtain a bounded
nonnegative (PS) sequence for (1.1), the nonnegativity of the (PS) sequence helps us to estimate the related
term caused by the nonlocal term ¢(z)u, which leads to a nonzero weak limit of the (PS) sequence. Let us
recall first a deformation lemma from [24].

Lemma 2.1. (See [2/, Lemma 2.5].) Let X be a Banach space, p € C*(X,R), S C X, c € R, £,§ > 0 such
that for any u € ¢~ ([c — 2¢, ¢+ 2¢]) N Sas: @' (u) = 8¢/§. Then there exists n € C([0,1] x X, X) such that:

(t,u) =u, ift=0 oru g o ([c — 2e,c+ 2¢]) N Sas.
(1,5 N S) C 9%, where p°*° = {u € X: ¢(u) < c+e}.
(t,-) is a homeomorphism of X, for any t € [0,1].

(i)
(if)
(iif)

)

(iv

€ S 3 3

(n(-,u)) is non increasing, for any u € X.
Now, we give some lemmas, by which Lemma 2.1 can be used to get a desirable (PS) sequence.

Lemma 2.2. Letp € (1,5) and A > 0 in (1.6). If ur,us € H and ||ui||lg < M, ||uz|lg < M for some M > 0,
then there exists a positive constant C := C(M,p, ) such that,

117 (u1) = I'(u2) ||y < C(llur — wallg + lur —uall3)- (2.1)
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Proof. By (1.10) and (1.6),

(I'(w2) — T'uz), ), = (ur — uzs iz + / (Guy i — uyuz)th da — / (lur P~ ey — [P~ Veur ) d,

R3 R3

hence (2.1) is proved if we have that

‘/(|U1|plul - |U2|p71U2)¢ dx
]RB

< Olluy — ug|a |l a, (2.2)

[ (G = busiaps| < s = valln -+ = walf) 1 23
R3

Indeed, using Taylor’s formula and Hélder inequality as well as Minkovski inequality, we see that there is a
function 6 with 0 < 6 < 1 such that

+1
< plur = uslpsr[Ylp1]0ur + (L= Ouz|) )

‘/(|U1|p_1ul - |U2|p_1u2)¢ dx
RS

+1
< p(Jualpsr + Juzlpsr)” Jur — uglpia[Plpsa

< p(QM)p—Hlul - U2|p+1|¢|p+1,

hence (2.2) is obtained. To prove (2.3), we let v = ugy — uy, it follows from (1.7) that

/(%2“2 — uyu)de = Ji + Jo + Jz + Ju + Js, (2.4)
R3

where

ne [ PO 4y, g [ e

dx dy,
( |~y ( |~y
R3xR3 R3 <R3
n= [ d@v@ 4o [ i g
|z -yl |z —y]
R3 xR3 R3 xR3
Jy=2 uﬂwv@ﬁwﬂw@ﬁdx@L

ol |z — y|

Now, we estimate J; to J5 by using the following Hardy—Littlewood—Sobolev inequality [19, Theorem 4.3]

\ [/ f(x)lx—ydh(y)dxdy‘ < O(N,d,p)|flylhls.

RN RN

where p,r > 1 and 0 < d < N with % + 441 =2 fe LP(RY) and h € L"(RY), the sharp constant
C(N,d,p), independent of f and h.
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Take N = 3 and d = 1, then take p,r suitably in the above inequality, we see that

[l < Cllollglela, 12l < Clolglulallvle, 15 < Cllullllvllallv]
[ Jal < Cllualflollzllell, 5] < ClluallallvllZ ¢l

These estimates and (2.4) imply that (2.3) holds. Thus, Lemma 2.2 is proved. O
Before giving our next lemma, we recall some basic properties of ¢, (z) given by (1.7). Let
ug = ug(v) = t*u(tr) fort >0 and x € R,
then u(z) = (u¢)1 (x) = (u1)i(x) and

V|3 = t3|Vul3, lug|h) = t*P 73 |ulp for 1 < p < oo, (2.5)

/qbutuf dx:t3/¢uu2 dz, /“t do = tH+° Wda: (2.6)
R3 R3 R3

Lemma 2.3. If a € [0,8) and max{2, 232} < p < 5, then there exist p > 0, § > 0, e € H with e > 0 and
llellzr > p such that:

Proof. (i) Since H — LP(R?) for 2 < p < 6, this conclusion is a straightforward consequence of the definition
of I.
(ii) For t > 0 and uw € H \ {0}, by (2.5), (2.6) and the definition of I, we see that

3 At tita u? 21 .
I(uy) = 5|Vu|§ —| 12 + 5 | e de + — /gzﬁu u?dr — P |u|§il. (2.7)
RS

Since a € [0,8), p > max{2, 22}, we see I(u;) — —o0 as t — +o0. Hence, for each u € H \ {0}, there is a
t. > 0 large enough such that (ii) holds with e = u;,. Moreover, we may assume that e > 0, otherwise, just
replace e by |e|. O

For each A > 0 and e given by Lemma 2.3, define

c:=cy = inf max Iy(u), 2.8
. veI uevy([0,1]) /\( ) ( )

where I' := {v € C([0,1]; H): v(0) =0, (1) = e}. Clearly, ¢ > 0 by Lemma 2.3. Let {¢,} C (0,+00) be a
sequence such that ¢, — 1 as n — +o00, then by (2.5) it is easy to show that
er, = t2e(tyr) — e in H, as n — +oo. (2.9)

n

Since I € C1(H), it follows from Lemma 2.3 (ii) that there is ¢ > 0 small enough such that I(u) < 0 for all
u € B(e). Again using (2.9), there exists to € (0,1) such that

e :=t%e(tx) € B.(e) for all t € (to,1). (2.10)

For this tg € (0,1), similar to [6] we have
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Lemma 2.4. Let to be given by (2.10). Then for all t € (to,1), we have

c=inf max I(u)
vET ue~([0,1])

where ¢ and I' are defined in (2.8), uy = t*u(tz).
Proof. The proof is the same as that of Lemma 11 in [6]. O

By Lemma 2.4, we know that for any s € (to, 1) there exists ;s € I" such that

3
uegaéil])f(us) <c+(1-5°). (2.11)
For s € (to, 1), we define the set
Us := {ue'ys([(), 1]): I(u) 2 c— (1—53)}, (2.12)

then, (2.8) and the definition of Uy imply that Us # 0 for s € (g, 1).

Lemma 2.5. If o € [0,8) and max{2, ”‘Tﬁ} < p < 5, then for ty given by (2.10) there exist t* € (tg,1) and

M = 2(0(23)2()25?) + (24150_22_)((3)’;:112(1 such that

l|ul|3; + /¢uu2 dr < M for allu € U, with s € (t*, 1).

R3

Proof. Let u € Uy and note that u(z) = (us)1(x), it follows from (2.5), (2.6) and the definition (1.9) that

1 1 A 1 1 1 u2
I(us) — I(u) = 5(1 — s_3> Vs |3 + 5(1 — ;)|us|§ + 5(1 _ Sl+a> |y|sa da
R3

1 1 1 1 .
+7 (1 — 83> /d)usug da — | (1 - S2p_1>u5|§;jl. (2.13)
R3

For u € U, (2.11) and (2.12) imply that

I(us) — I(u) < 2(1—s*), fors € (to,1). (2.14)

By calculation, this and (2.13) show that, for any u € Uk,

$20+2 _ 3
2+ el
2 g3 — Us |2 2 w3t _ o |y|a p+ 1 s2p+2 _ g2p—1 Us p+1
1 2
- §|Vus|2 gf)uqu dr < 2s°. (2.15)
To simplify (2.15), we need to use the following facts:
52— 3 —s?
= -1 f >0,
$3—1 245+ 1 ors
52 o 83+a 827(1 _ 83 s _ 1 +a )
g(s) = e 2, 3 and g(s)=g¢g(1)=-1 ifa=2.
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a+2 2pta (1 2p—1

(1+a) € ) 14«

p> implies tha
1-— 51 > to and

1) Hence, there is §; > 0 small enough such that

1 2
o(s) > 0 3* @) _ p;‘)‘ for all s € (1—6y,1).
Let
2p+2 53 83 _ S4—2p
h(s) = ST i S for s € (0,1),
then
) 2p—1 (2p —1)s72P — 352 — (2p — 4)s372P
lim h(s) = and A’
My ) =7 = (=17 |
_ 2p—1 -2
h/(s) s—1 _( p ;(p ) <0 ifp>2.

This shows that there is do > 0 small enough and 1 — §3 > ¢y such that

o0 —
h'(s) <0 and h(s)> HI{I h(s) = L for all s € (1 —62,1) and p > 2.
s—1—
For p =2, h(s )ET:L so we see that

-1
h(s) > 3 for all s € (1 —d2,1) and p > 2

So, for s € (t*,1) with t* = 1 — min{dy, d2}, it follows from (2.15) that

A 2p+a [ u? 1 2p—1 ;1 1
pluf = P [ o TSt - 1wl - [ owede <250
R3

ly|* p+1l 3
That is,
1 +1 3 (A 21 2 1 2
—m|us|£+1 > o1 <§|Us|2 + §|Vus|2 +t1 Gu,ug dx
R3
pta / & (2.16)
a2p-1) Iyl" 2p— 17 '
For u € U, by (2.11) it gives that
Ao 1 2 1 2 pt1 3
§|u3|2—|—§|Vu3|2+Z G, us dz | ‘a —m|us|p+1<c+(1—s )- (2.17)
R3

Hence, it follows from (2.16) and (2.17) that

2p 2—a 2p 4( 1 9 1/ 9
2 4 2| Vug|2 4 - Do U dz
2p— 3 2p— 7
< 1-— < 1
c+ 2p—13 c+ +'2p—1

<c+2 ifp>2ands<l1.
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This implies that, if 5 > p > max{2, 22} and s € (t*,1)

A 1 c+2 Qp—l

and

1 _c+p-1)
4yl T 2p-2—-a
3

for a € [0, 8).

So, using (2.5) and (2.6), it follows from (2.18) that

A 1 1 (c+2)2p—-1)
§S|u|§ + §S3|Vu\§ + Z53/¢uu2 dx < w
3

Since s € (t*,1), s > s> > t*% and st > *17 for a € [0, 8), those and p > max{2, QTH} imply that

2(c+2)2p—1)  4(c+2)(2p—1)

2.19
-7 @p-z-apme (249

lull3, + / b dr <
RS

2(c+2)(2p—1)
(p—2)t*3

4(c+2)(2p—1)
+ (2]9 2 a)zt)*lJru' [

and Lemma 2.5 is proved by taking M =
Note that M given by the above lemma depends on A, since ¢ depends on A by the definition of I. The
following lemma is used to get a bounded (PS) sequence. In this lemma, the constant M can be chosen

independent of X if A € (0, 1].

Lemma 2.6. Let a € [0,8), max{2, 22} < p < 5 and ¢ be given by (2.8). Then there exists a bounded
nonnegative sequence {u,} C H such that

I(up) = ¢ >0, I'(up) =0 asn— +oo. (2.20)

Moreover, if A € (0,1] there exists M > 0 which is independent of X € (0,1] such that

Jually + / o e <

Proof. For t € (t*,1) with ¢* given in Lemma 2.5, let
Wy = {|u]: we U}, U, defined in (2.12), (2.21)

and then for v € Wy, by (2.19), (2.7) and (2.11) we have that

A 1 —tlte [oy? 21
(1—t3)|Vu\§+§(1—t)|u|§+T Wal P /qsuu dac—7| P
R3

A 1 1 1—2P71 (1 [ 1

3 2 2 2 t p+1

<(1-t )(§“|2 + §|Vu|2 + Z/¢uu dx) T @1 (5 PE dz — Pt |ut|p+1>
R3 R3
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_ t2p— 1

A 1 1 1
3 2 2 2
< (1-t¢ )(§|u|2+ §|Vu|2+ Z/qbuu da:) + 1
R3

(c+2)(2p—-1) _1y c+1
< (1—1ﬁ‘°’)(2]7_w+ (L= o

On the other hand, similar to (2.14) we know that

I(u) —I(u) <2(1—¢*) -0 ast—1".

Hence,

limsup |I(u¢) — I(u)| = 0.

t—1"ueW,

For M > 0 given by Lemma 2.5, we define

S = {|u| u € H and ||u\|?{+/¢uu2dx < M},
R3

Ss = {u: u € H and dist(u,S) <48}, € (0,1).

421

(2.22)

(2.23)

Clearly, ||v||g < VM + 1 for all v € Ss. Then, by Lemma 2.2, there is a constant K := K (M) such that

17 () — I'(U)HH, < Kllu—v|g for all u,v € Ss, (2.24)
and since I € C*(H,R), there exists Cs > 0 such that
[I(u) = I(v)| < Csllu—v||g for all u,v € S;. (2.25)
For any m € N and M given by Lemma 2.5, let
1 Cs+1
A = s u € H, 2 /u2d<M—dI —cl < ) 2.26
{ls e, Jully + [ oo < ar+ % and 100) - < S (2.20)
R3
We claim that A, # 0.
Indeed, for any m > 1, since (2.22) we can find t¢,, € (t*,1) such that
1—t¢ 3<L and I(u) < I(u )—i—L for all u € W,
™ 32m ST Bom -
Then it follows from (2.11) and (2.12) that
07L<I(u)<c+L for all u € W, (2.27)
32m - ST 16m - '

By the definition of W, _, Lemma 2.5 implies that

Jully + [ uide <M. for allue W,

R3

This and (2.27) show that Wy, C A,,, that is A, # 0.
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“+ o0

m=1>

Next, we claim that there are infinitely many elements in {A,,} which we still simply denote by A,,

(m=1,2,...), such that for each m > 1, there is u,, € A,, with

1+ K

T (um) ||y, < VIR K is given by (2.24). (2.28)

Then, to prove Lemma 2.6 we need only to show the above claim. By contradiction, if the claim is false,
then there must be a number m € N with m > max{g;,4} such that

1+ K
vm’

By the above discussion we know that W, C A,,. For any u € W;,_, the definition of W, _ and Lemma 2.5
show that [[ul|3, + [ps duu® do < M and W;,, C S. Hence,

| (w)| ;> for all m > m and u € A,,. (2.29)

1 Cs+1
thcSm{ueH: ‘I(u)—c|<%}CSﬂ{u€H: [I(u) —¢| < NG }cAm,

where (2.27) is used. Then

Sﬁ{ueH: [1(u) —¢| < Cf/%l};ﬁ@.

§ = 55—, then & = —= < § <1, since m > max{g;,4}. So,

Let € = m, 5 = Um

1
16m?
Sos = o = dus we H and dist(u, §) < ——
w=S L =quwu and dist(u, T

By the definitions of S and A,,, we see that

Cs+1
Sm{ueH: [T(u) — | < N }C/lm.

Hence, for any u € SN{u € H: [I(u) — | < %} C Ay, we have

1+ K
vm’

For any v € Sﬁ N{u € H: |I(u) — c| < g}, there exists up € S such that

| (w)| = for all m > m. (2.30)

1

This and (2.25) show that

CS 1 OS CS + 1
Sgo-t—7—=< :
vm ~ 8m * vm vm
Hence, ugp € SN{u € H: [I(u) —¢| < %} Then, it follows from (2.24), (2.30) and (2.31) that, for

: 1
UES\/%Q{UEH. [I(u) —c| < g1,
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1 @) = 1) = I (o) + I'(wo) |
2 [ (o)l = (17 (0) = I'(wo) |
1+ K
> e = Kluo ~ vl
S 1+ K K 1 1

> A m T

Applying Lemma 2.1 with X = H, ¢ = I, we know that there is a homeomorphism 7(t,-) : [0,1] x H — H
such that

. 1
n(t,u) = u, 1ft00ru¢S¢1mﬂ{u€H: |I(u)c}<8m}; (2.32)
1 1
<c— —— : —c| < — 3 .
I(n(l,u)) <c Tom foruGSﬁ{uGH [T(u) — | < Sm}’ (2.33)
I(n(t,u)) < I(u), foranyue€ H. (2.34)

Let £(w) :=n(1,u) and F(t) = &(|w,. (t)]) € C([0,1], H). By m > m > max{g-,4}, ¢ > g, then {0,e} ¢
1m N{u € H: |[I(u) — | < &}, since I(e) < 0 and |I(e) — c| = ¢+ |I(e)] > ¢ where e is given
by Lemma 2.3. With this observation and (2.32) we see that (0) = &(|ye,,(0)]) = £(0) = n(1,0) = 0,
¥(1) = &(Jm,,. (1)]) = €(e) = n(1,e) = e. Hence, ¥ € I', with I" defined in (2.8). For each m > m, let

um € 7([0, 1]) be such that

I(§(|um|)): max I(§(|u|)) = max I(v)

u€Yt,, [0,1] v€X([0,1]

WV

c. (2.35)

Since um, € Y¢,,[0,1], |um| € |74,,10,1]] = {|ul: w € ¥,,[0,1]}. We are ready to get a contradiction in both
of the following two cases.

Case A. If |uy,| € |74,,[0,1]] \ Us,,, then (2.34) and the definition of U;,, imply that
I(E(Juml)) = I(n(L, [um])) < I(um) <c— (1-12) <,
which contradicts (2.35).

Case B. If |uy,| € U,,, then by (2.21) |up| € Wy, and (2.27) implies that |[I(|um,|) — ¢ < . Moreover,
wmllFr + Jzs Pupn tin® dr <M by Lemma 2.5. Hence lum| € SN{ue H: [I(u) —¢| <
from (2.33) that

16m}, and it follows

1
I m I(n(1,|uml)) <c— — ,
(€)= L1 ) < e 1o <
this is a contradiction to (2.35). O
3. Existence for A > 0: Proof of Theorem 1.1

Motivated by [5], we prove Theorem 1.1 by a result due to Solimini [22], which is a version of so called
concentration-compactness principle. To state this result, we introduce first the operator T, ¢ and its basic
properties. Let s > 0, N > 3 and ¢ € RY be fixed, for any u € LY(RY), g € (1,+00), we define

N-—-2

Tseu(z) 2 T(s,Ou(z) =52 u(s 'z +¢), VreRV. (3.1)
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Clearly, T(s,&)u € LI(RY) if u € LY(RY) and T'(s, &) is also well defined on Hilbert space DV2(RY) with
scalar product

(u,v) = /Vqu dz, for u,v € D2 (RN), (3.2)
RN

since T'(s,&)u € DV2(RY) if u € DV2(RY). Tt is not difficult to see that the linear operators

u € 2" (]RN) — T(S,f)u c 2 (RN) and w e DY2 (RN) — T(S,f)u c D42 (]RN)

are isometric, where 2* = 1\2,—]_\72 Moreover, we have that
T, =T(s™" —sf), T Ty =T(sp, &/ +m), (3.3)
_a(N=2)
VTseuld =|Vul3,  [Toeuld=s""""="|ulf. (3.4)

For N >3,k € [2,N) and z € RY | in this section we denote by
r=(y,2) eRFxRN"F  ie yecRF zecRVNF

7= (y,0) € RE x RN=k 2 = (0,2) € R* x RV=F. Similarly, z,, = (yn,2n) € R¥ x RN 7% 7, = (y,,,0) €
RF x RN—F,

Lemma 3.1. (See [5, Proposition 22].) Let {n,} C RN be such that lim,_,« |n,| = 0o and fix R > 0. Then
for any m € N\ {0,1} there exists N, € N such that for any n > N, one can find a sequence of unit
orthogonal matrices {g; }*.; € O(N) satisfying the condition

Br(9inm) N Br(gjnm) =0, fori# j.

Lemma 3.2. (See [5, Proposition 11].) Let q¢ € (1,00) and {s,} C (0,00), {&,} € RY be such that s, 2
s#0, &, 2> & Then

T, &, Un - seu  weakly in LY (RN),
if up = u weakly in LY(RN).

Lemma 3.3. Let {s,} C (0,00), {&,} C RN be such that s, 2 sg # 0, &, 2 & If v, v weakly in
DY2(RY), then

T, ¢, Un gTs()éfu weakly in D12 (RN).
Proof. For any ¢ € C5°(RY), by (3.2) we get that

<Ts_nl,ovna §0> = <Um TsmOSO) = <7)an80,090> + <Uansn,0§0 - TSO,0<P>~ (3-5)

Since

lim V(T 00 — Top090) |2 = lim /|VTSmo<p|2dx+/|VTSO,0<p|2dm
RN RN

=2 lim | VT, opVTs, 0pdr =0,

n—0o0
RN
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we have
(Vn; T, 090 = Tso.09) < [VUnl2|V(Ts, 00 = Tap 09)], ™ 0. (3.6)
By Tsy.0p € C(RY) and v, = v weakly in D»2(RY), we have
(Vn; Tog,00) 2 (0, Tsp00) = (T2 'ov, ). (3.7)
It follows from (3.5) to (3.7) that
<Ts:f01)n, @) <TS;}Ov, ¢), for any p € C§° (RN). (3.8)

On the other hand, for any 1y € DV2(RY) and any € > 0, there exists ¢ € C§°(RY) such that [V (¢ —¢)|s < €
and

<Tsin%0””’w —p) < |V(Tsj07)") |2|V(1/1 - ‘P)|2 = |VU”|2|V(1/) - 90){2’
this and (3.8) imply that
<TS:L1,0vm g0> L <TS;}OU, <p>, for any ¢ € D2 (RN). O

Lemma 3.4. (See [22, Theorem 1].) If {u,} C DY2(RY) is bounded, then, up to a subsequence, either
wy, 2 0 in L2 (RN) or there exist {s,,} C (0,00) and {&,} C RN such that

T, e.un —u#0  weakly in L* (RN).
Let
DY (RY) 2{u e D (RY): u(w) = u(y. ) = u(lyl.2) }.
we see that DI2(RY) ¢ DY2(RY) is a closed set, hence D}2(R¥) is a Hilbert space with scalar product
s (3.2). Based on Lemmas 3.1 to 3.4, we have the following lemma which ensures us to get a nontrivial

solution for (1.1) without proving the (PS) condition.

Lemma 3.5. If {u,} C DY3(RY) is bounded and there exist {s,} C (0,+00) and {x,} C RN with z,, =
(Yn> 2n) € RF x RN7F such that

T (S, )t —u # 0 weakly in L (RY). (3.9)
Then
Up = T(8n,0)w,, v #0 weakly in D}*(RY),

where w, = T(1, Z,)uy, and z, = (0, z,). Moreover, if {u,} is also bounded in LY(RYN) for some 1 < q < 2%,
then, there exists a constant | > 0 such that s, > 1 for all n.

Proof. The proof of this lemma is almost the same as that of Lemma 23 in [5]. But for the sake of com-
pleteness, we give its proof.
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Since {u,,} is bounded in DL2(RY), by the definition of T} ¢ we see that {v,,} is also bounded in D!-?(RY).
Then there is v € D2(RY) such that

Up, = T(8n, 0)w, v weakly in D;’Q (RN).

We claim that v # 0. Otherwise, if v = 0, then it leads to a contradiction in the following two cases. For
Xy, = (Yn, 2n), we recall that

G = (yn,0) ERF x RN=F 2, =(0,2,) € RF x RV =¥,

Case A. If {5,7,} C R¥ is bounded. Then, there is 5o = (y0,0) € R* x RV=* such that s,%, > o and
from (3.3) we have

L : 2* N
Tlv_sngnTsnvgnwn = TL_Sn'gnTSTuxnun 4117_'!30/” 7é 0 m L (R )7

where we used the assumption (3.9) and Lemma 3.2. On the other hand, since v = 0, it follows from (3.3)
that

T =55, Tsp 5 Wn = T, oWn = vp =0 inD"? (RN)7
then we get a contradiction.
Case B. If [s,§n| — +00. We claim that there is also a contradiction. Indeed, since u # 0, there exist

2 C RN, |02] # 0 and £ > 0 such that u > k or u < —k a.e. in £2. So we can choose R > 0 such that
|Br N 2] > 0 and

>FL|BRQQ| > 0.

’/Tsn,gnw’ﬂXBRﬂde s ‘/UXBRﬂde
RN RN

But,

Tgnvgnwn = T{" ngl,ov” = Tlvsngnvn'

nsYn

Then,

‘/Tsm?}nwnXBRﬁde </|Tsm§/nwn|dx: / || da
RN Br

BR(sngn)
< CR{ / |Un

1
2% >
dx} .
BRr(8nn)

This implies
inf / lon|?" daz > € > 0.
n
Br(snfn)

Since |$p¥n| — +00, by Lemma 3.1 we know that, for any m € N, there exist n,, € N and {¢;}; C O(N)
such that
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2 dx

m
/lunF* dzz/lvnlz* de >y / fon
RN RN 4

=L Br(gi(snin))

=m / lon | dz > me  for n > ny,

BR(Sn'gn)

where we used (3.4) and v(y,z) = v(|y|,z). Let m — oo, then |up|ex = +oo, which contradicts that
{u,} € L*" is bounded.

Now we can choose ¢ € C5°(RY) satisfying Jan vodx # 0. Take R > 0 such that suppy C Bg. Since
u € DV2(RN) — T(s,&)u € DV2(RY) is isometric, we know that {7, ow,} is also bounded in D'?(Bg),

hence in L?(Bg), then T, ow, — v in L?*(Bg). Thus,

/Tsmowngodx: /Tsmown@dx% /vapdaﬂ: /vgodx;éo.
Br

RN Br RN

On the other hand, since 1 < ¢ < 2* and % — % >0,

.
< |¢loo| Br| T | Ts, 0wnlra(Br)

‘ / Ts”,Own(p dx
RN

N

=2 g=1
* |@loo| Brl @ sup |uglqg.
n

Salz

<s

Therefore, if lim,,_,~ s, = 0, we obtain a contradiction. This implies that there exists [ > 0 such that
inf, s, >, since s, > 0 for all n. O

Lemma 3.6. Let u € DV2(RYN) \ {0} be a nonnegative function, and K C RY be a closed set with zero
measure. Then there exists ¢ € C5°(RN \ K) with ¢ > 0 such that Jan VuVedz > 0.

Proof. Since K C R is closed and u # 0, we can choose a ball B CC RY \ K, and a nonnegative function
f e C5e(B) C Cg°(RN\ K) such that [y wf dx > 0. Otherwise, u(z) = 0 a.e. in z € RV \ K, and it follows
from |K| = 0 that u(z) = 0 a.e. in x € R, which contradicts u # 0 in DV2(R"). Then the problem

{ —Av=f, z€B,
v=0, z€0JB
has a nontrivial solution ¢ > 0 on B and ¢ € C§°(B). Setting
¢, weB,
Y= N
0, zeRY\B.
Hence,
/Vquadx:/ufdx>O. O
RN RN

Based on Lemmas 3.5 and 3.6, we prove now the following theorem, which is important in proving our

main Theorems 1.1 and 1.2.
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Theorem 3.1. Let {u,} C E be a nonnegative sequence such that

lunlle + / Gu,up dx < C,  and for any ¢ € C3°(R*\ T, there holds

1
/{Vuano + (W + )\n> unga} dx + /¢un (X)uppdr = /un”go dx + o(1), (3.10)
R3 Y R3 RS

where a > 0, p € (2,5) and A, = 0 with \,, 2 \g < +00. If {u,} does not converge to 0 in L°(R3), then
there exist {Z,} = {(0,2,)} C R? x R and a nonnegative function w € E \ {0} such that

n .
wy =Tz, up —w weakly in E,

and, for any ¢ € C°(R3\ T),

/|:va<,0+ ( e —|—/\o)w<p] dx—l—/qﬁw wgadx—/wpgadx (3.11)
R3

R3
Moreover, |w||g + [gs pww? dz < C and w € C*(R*\ T).

Proof. If {u,,} C E does not converge to 0 in L5(R?), by Lemma 3.4 with N = 3, there exist {s,,} C (0, +00)
and {r,} C R® with z,, = (yn, 2n) € R? x R such that

T, wptin —u#0 weakly in L°(R?). (3.12)
Let
Z, = (0,2,) € R x R, Wy, =T 5, un = T(1, Zp)un (). (3.13)
By (3.12) and Lemma 3.5 with N = 3, we have
v =T, ow, v #0, weakly in D}?(R?), (3.14)

where v is nonnegative. And we claim that s, > [ > 0 for all n € N. Indeed, since —A¢,,, = uZ, we easily

conclude

/|un|3dz:/v¢unVund:c and /¢>unuid:c: /|V¢un|2dzz:.

R3 R3 R3 R3

By applying Holder inequality, we deduce that

2/|un|3dx</|Vun|2da?+/|v¢un|2dx:/|Vun|2dx+/¢unuida:<0.
R3 RS RS RS RS

So, taking N = 3 and ¢ = 3 in Lemma 3.5, we know that there is [ > 0 such that s,, > [ for all n € N.

Step 1. There exists L > [ > 0 such that s,, < L for n € N large.
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Recalling the definition of T in (1.11), we have |T| = 0. Since v > 0, by Lemma 3.6, there exists a
nonnegative function ¢, € C§°(R3 \ T') such that

/Vvapl dx > 0.

R3

It follows from (3.13) and (3.14) that

/V(Tsmgnun)Vg@l dz — /VvVgol dz > 0. (3.15)

1

Noting that Ts_n%gncpl(x) = 82p1(Spx — $pZy), then Ts . o1(z) € C(R3\ T). Taking p = T, 1Zn<p1( )
n (3.10), we see that

1
/mwﬂfg%m+/v%Wﬂéwg+QmwT)%Eé¢Mx
nsy~n nsy~n y « ny»~n
3 3

/uﬁTSnlzn v1dz + o(1).

Rf}
It follows from u,, > 0 and \,, > 0 that
/VunV( g ¢1) dz /upTS 1Z 1 dx + o(1).
R3 R3

That is,

/V(Tsmgnun)V@l dz < sn? /(Tsn,znun)p<ﬁ1 dr + o(1)

R3 R3

p—>5
<05 / (T, 2 1)’ d + o(1)

supp @1

-5
< Cs,:T|Tsmgnun|g +0o(1) for2<p<5b
Csn |Vun|2 o(1), by (3.1).

Since {uy} is bounded in E, if s,, — 00, it follows that

lim sup/V(Tsmgnun)Vgo dx <0,

n—oo
R3

which contradicts (3.15).

Step 2. {w,} is a bounded sequence in E such that, for any ¢ € C§°(R?\ T),

1
/[anVgo—i— <|y°‘ + An )wngo} dac+/¢w wngodx—/wn pdx + o(1). (3.16)
R3 R3
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By the properties of T, ¢ in (3.4), we have

T Un|2 |Un|2
V(T z,un)|, = [Vun2, —=——dzx = [ —— dx,
VTl =V Ok I
R3
hence, ||w,||% = |1z, unll% = ||unl|% and {w,} is bounded in E. By the properties of 7} z, in (3.3) and

¢y in (1.7), it is easy to see that

/gbununTi;ngodx: /Tl,gn(qﬁunun)cpdx: /qﬁwnwn@d%
R3 R3

R3

1 1
/[VUHVTf’glncp + (|y|0‘ + /\n> unTl_yglncp] dr = /{anVgo + (|y|‘1 + )\n> wngo} dx,
]RS

R3
and
/uﬁTf’;ngodx = /wﬁcp dx.
R3 R3

Hence, (3.10) implies that (3.16) holds.

Step 3. w, ~w # 0 in E and w(x) > 0 a.e. in x € R3.
By Step 1, there exists sg € [l, L] such that, passing to a subsequence, s,, == sg. Then, it follows from
(3.14) and Lemma 3.3 that

w, =T, gvn ET%’OU #0 weakly in D1?(R?). (3.17)

By Step 2, there exists w € E such that, passing to a subsequence, w,, — w weakly in E. Since E C DL2(R3),

we have (D}2(R?))* C E*. Hence, w,, — w weakly in D}2(R?). So, it follows from (3.17) that w = T+ qv Z 0
s0

and w(z) > 0 a.e. in x € R3, since v > 0 in (3.14).

Step 4. ¢, € DV2(R3) and (3.11) holds.

For each n € N, [Vou, |3 = [os w, w2 dx = [4s by, up dz, hence, [ps ¢u,uZ de < C implies that {¢pq, }
is bounded in D}2(R?). So, there exists ¢ € D2(R?) such that ¢, — ¢ weakly in D}-2(R3), that is

/quangp dr 2 /V(;SVQD dx, for any ¢ € Cy° (RS). (3.18)
R3 R3

On the other hand, for any ¢ € C§°(R?), we have

/ngangadx = /wigpdaj and /wigpdaz 2 /w2<pdx. (3.19)

R3 R3 R3 R3

It follows from (3.18) and (3.19) that

/V¢vg0 dr = /w2<p dx for any ¢ € C§° (R3).

R3 R3
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So, ¢ is a solution of —A¢ = w? in the sense of distribution. Since w € E C L°(R?), ¢, (x = Jos T = y) dy €
W23(R?) by Theorem 9.9 in [15], hence ¢,, satisfies —Ag,, = w? in the sense of dlstrlbutlon (Theorem 6.21
in [19]). By uniqueness, we have ¢, = ¢ € D}?(R3). It follows from (3.18) that

Gw, — ¢ weakly in DL?(R?).

Then (see (3.18) in Step 3 of the proof of Theorem 1.1 in [17] for the details), for any ¢ € C§°(R?), we have

/¢wn($)wn@d$ s /éw(m)wg@dm.
R3 R3

For each bounded domain 2 C R? and ¢ € (1,6), it follows from (3.18) and the compactness of Sobolev
embedding that w,, 2 w strongly in L9(£2). Hence, for any ¢ € C§°(R3\ T),

1
/[anV<p+ (| B +)\n>wn4 dr 2~ /[VU)VQO-F (| E +)\0>w90] dz
R3 R3

and

Hence, (3.16) implies that (3.11) holds.

Step 5. ||w]| g + [zs Pww? dz < C.
By Step 3, we have w, — w weakly in E, and Step 4 implies that

/ puw’dr = |V, |3 and ¢y, ¢, weakly in D?(R?),

and the lower semi-continuity of norm implies that
lw|lg < hm 1nf lwnl &,

and

2 _ 2< . . 2: . . 2
[ uu de = V6, < limint Vo, 3 = limint [ 60,02 do.
3

R3

Hence, we know from (3.13) that
|lwle + /¢ww2 dx < liminf{|wn||E + /qbwnwi da:}
n——+o0o
R3 R3
= liminf{|un||E + /gbunui dx} < C.
n—-+oo
R3

Step 6. w(z) € C*(R*\ 7).
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Since \g > 0 and w(x) > 0 for a.e. x € R3, it follows from (3.11) that, for any nonnegative function
veC®R3\T),

/VwVv do < /wpvdac. (3.20)
R3 R?

Then, Lemma 4.2 in Section 4 implies that (3.20) holds also for any nonnegative function v € H(R?).
Note that, for any nonnegative function ¢ € C§°(R?) and any nonnegative piecewise smooth function h on
[0, +00), h(w)p € H'(R3). Take v = h(w)y in (3.20), then we see that (4.7) in Section 4 holds with u = w
and N = 3. Hence, by Lemma 4.3, we have w € L®(R?). Let 2 CC R®\ T be a bounded domain with
smooth boundary, then ﬁ is a smooth function in 2 and w € WH2(£2) is a weak solution of

—Aw(z) = f(z), =€, (3.21)

where f(z) = [w[P~ w(z) — ¢ (z)w(z) — (Ao + ﬁ)w(m) Since w, ¢y, € WH2(2) and w € L*°(£2), we have

f(xz) € Wh2(£2). By using Theorem 8.10 in [15], we get w € W 2(£2). Then, Sobolev imbedding theorem

loc

implies that w € 01/4(9), hence ¢, (z) € 02’1/4(0) since ¢, () is a weak solution of —A¢(z) = w?(z) in

loc loc
DY2(92). Tt follows that f(z) € Cllo/f(()). By applying Theorem 9.19 in [15] to (3.21), we have w € Cl20’61/4((2).
Sow e C*R3*\T). O

Proof of Theorem 1.1. Let {u,} C H be the bounded nonnegative (PS) sequence obtained by Lemma 2.6,
then there exists C' > 0, which is independent of X if A € (0, 1], such that

| ||% +/¢unun2 dr <C and wu,(r) =0 ae. inzeR3 (3.22)
R3

Hence,

unll% + /qbunu,f dx < C, un(z) =0 ae. inz R
R3

Moreover, (2.20) implies that (3.10) holds with A\, = A > 0.
If {u,} does not converge to 0 in Lé(R3), by Theorem 3.1 there exist {Z,} = {(0,2,)} CR? xR and a
nonnegative function w € E '\ {0} such that

wy, =11 5, Up Mw  weakly in E, (3.23)

1
/{Vngo + (y—|a + /\)wga} dx +/¢w(x)wg0dm = /wpgodm for any ¢ € C§° (R3 \T),
R3 R3 R3

i.e., w is a weak solution of (1.1) in E. Moreover, w € C?(R3\ T') and

[l e +/¢ww2 dr < C. (3.24)
R3
Now, we claim that w € H. In fact, by (3.3) and (3.23), we know that |w,||g = [|un|lg and ||Jw, || g is

bounded, so there exists w* € H such that

wy, = w* weakly in H and  w,(r) %> w*(z), a.e. inz € R3. (3.25)
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On the other hand, (3.23) implies that
wy(z) 25 w(z), ae. inz e R

This and (3.25) show that w = w* € H. Moreover, if A € (0, 1], Lemma 2.6 shows that there exists M > 0

independent of A € (0, 1] such that (3.22) holds with C' = M, then (3.24) holds with C' = M. Hence, to

complete the proof of Theorem 1.1, we only need to prove that {u,} cannot converge to 0 in L%(R3). For
€ (2,6), by Holder inequality we have

2 6 2 6
/|un‘rdx = / [wn| @ |un| @ do < |uys |un|g/
R3 R3

where ¢ = ¢ > 1, ¢ = -4 = 45 > 1. Hence, if u, >+ 0 in L6(R?), then u, + 0 in L"(R?) for
x

r qg—1 —2
r € (2,6), this and (1.8) imply that [s ¢u, (#)un? dz 2 0. Therefore, by (2.20) we have that, for p € (2,5),

but, this is impossible since ¢ > 0. O
4. Existence for A = 0: Proof of Theorem 1.2

In order to prove our Theorem 1.2, we need some further lemmas.

Lemma 4.1. Let N > 3 and 2 be a domain (bounded or unbounded) in RN, let I' C £ be a closed Manifold
with codim I’ = k > 2. Then C§°(2\ I') is dense in HZ(£2).

Proof. For cach u € HL(2)NCse(2\T')" and § € C5°(2\ I'), we have

(u, @) i) = 0. (4.1)

Since C§°(£2\ I') is dense in H}(2\ I'), it follows that

(u, V) a(oy) =0 for any ¢ € Hy(2\ ). (4.2)

It is true that C$°(£2\ I') is dense in Hg(£2) if C°(2\ I')* N HL(2) = {0}. Hence, we only need to show
that (4.1) holds for all ¢ € C§°(2) as follows.

For any ¢ € C§°(£2), let 29 = suppy. If 2o NI = 0, then ¢ € C°(2\ I') and (4.1) holds with
@ = . Otherwise, 2o N I" # B, setting Iy = 29 N I', and taking d > 0 small enough such that I; :=
{z € 2: dist(x, ) < d} C £2. Let

diSt(Z,FQd) T G ng
I/Jd(.’E) = d
1, =ze€ 9 \ 134,

then 1g(z) € C%1(02) and [[¢allcor (o) < é. Let @q := o(1 —1y), we have piy € HY(2\ T') and pg4 €
H}(I34). Tt follows from (4.2) that
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<u730>H1 = <U7<Pd + @wd>H1 = <u730d>H1 + <u7¢¢d>H1

= (U, pa) i < vl (rya) Pl o (ran)- (4.3)
By the definition of ¢4, we have
al2(rey = / ¢ dr < 4 @l7 () [ T3a] 4220, (4.4)
I'sq
1
Vodiarg = [ VeaPde < Clielagirul (14 )
I'3q
codim I'=k k2
< Cd" < C, since k > 2. (4.5)
So, |I’3q| 2=%; 0 implies that
[ ull 1 () 2% 0. (4.6)

It follows from (4.3) to (4.6) that (4.1) holds for all ¢ € C§°(£2). O

Lemma 4.2. Under the same assumptions as Lemma J.1, then {¢ € HF(2\ I'): o(z) = 0} is dense in
{e € Hy(£2): ¢(x) > 0}.

Proof. Lemma 4.1 shows that for any u(x) € HJ(£2), there exist {¢p,(z)} C C§°(£2\ I') such that
||g0n — UHHl(Q) 25 0.

This lemma is proved if we have

which is clear by using the following two facts,

0< | (lgw| - [u))|? = / (onl? + Jul? — 2ln]lu] dz
(93

< /(¢i+u2 — 20,u) dz = |, — ul3 20,
(9]

0 [lenl = ullfyne = [ (Flenll® + Vhel]* = 2Vl Vi) d
2

:/|V(Sﬁn*U)|2dw+4/V¢iVU7+V@;Vu+dx"—>O,
17} 2

here and in what follows, we always mean that
wh(z) = max{0,w(z)} and w (z)=min{0,w(x)}

for any function w(z) on R3. O
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Lemma 4.3. (See Lemma 3.2 of [18].) Let N >3, p € (1, X£2) and let u € D*2(RV)\ {0} be a nonnegative

function such that

/VuV(h(u)Lp) dx</|u|p_1uh(u)<,0dm, (4.7)

RN

holds for any nonnegative ¢ € C§*(RY) and any nonnegative piecewise smooth function h on [0, +00) with
h' € L*®(R). Then, u € L¥(RY) and there exist C; > 0 and Cy > 0, which depend only on N and p, such
that

[u|oo < C1 (1 + |u gf)\ub*.

Lemma 4.4. For p > 2, let (u,$) € HY(R3) N LPTL(R3) x DY2(R3) be a nontrivial nonnegative weak solution
of the following problem

—Au + z)u < |ulPu, >0, z € R?,
{ po(z)u < |u| p (4.8)

—A¢p=u?, xcR
Then
[uloo > N2<p172)-

Proof. By assumption, (u,¢) € HY(R?) N LPTHR3) x DY2(R3) is a weak solution of (4.8), then, for any
nonnegative function v € H'(R3) N LPT1(R3), we have

/Vqudx—i—,u/d)(x)uvdx—/|u|p_1uvdx <0, (4.9)
R3 R3 R3
/Vd)Vv dx = /u2v dx. (4.10)
R3 R3

For ¢ > 0, adding ¢ [; u?v da to both sides of (4.9), and using (4.10) we know that, for any v € H*(R?) N
P+l (R3),

/Vqualx—l—/[cu2 - |u|p_1u]vdx—|—,u/¢>(x)uvdx < c/ngSVvdx. (4.11)
R3 R3 R3 R3

For the above ¢ > 0, taking € > 0 small, we set

wi(z) = (u(x) — chp(x) — 6)+ and (2 = {z € 2: wi(x) > 0}. (4.12)

It is easy to see that u(x) 2= % ) and #(xr) = 0 ae. z € R? then wy € H'(R?) N LPTH(R3) and

u(x)| g, > cp(x) > 0. Taking v(z) = wy(z) in (4.11), we see that
/Vqu1 dx + /[ch — |u|p71u]w1 dr < c/ VoVw dx. (4.13)
@ @ e

However, for all z € 27 we have cu? — |u|P~1u > 0 if ¢ = 6?72 with ¢ = |u|oo. Then, let ¢ = §7=2 and (4.13)

implies that
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/Vqul dr — c/ VoVw, dx <0,
Ql Ql

that is,

/V(u — 6P72¢)Vwy do = /|Vw1|2 dz = 0. (4.14)
21 2,

Hence, either |£2;| = 0 or w1|n, = constant, this means that u(z) < 0?7 2¢(x) + € a.e. x € R3. For € — 0,
we have

u(z) < P ?¢(x), a.e. inz e R3. (4.15)

To prove that |u|. > u2<P1*2>, we let v = w in (4.9), it follows that
/ |Vu|? da + u/¢(x)u2 dx — /u”+1 dx <0,
R3 R3 R3
that is,
o [o@lufdo < [ fupt d.
R3 R3
This and (4.15) show that
/(up_2 — ,u(52_p)u3 dr > 0.
R3

Hence, =2 > pé?~P by p > 2. On the other hand, by u # 0 we know that § > 0. Then |ulo, = § >
1
um, O

Proof of Theorem 1.2. By Theorem 1.1, we know that, for each A € (0,1), problem (1.1) has nonnegative
solution uy € H \ {0} such that [|ux|p + [zs du,ui dz < M and (3.10) holds with u, = uy and A, = X.
Since uy > 0, it follows from (3.10) that

/VuAVgodx + /g{)uk(x)uypdx < /uicpdm for all ¢ € C°(R*\ T), ¢ > 0.
R3 R3 R3

This and Lemma 4.2 show that, for all v € H*(R?) with v > 0,

/VUAVvdx—i—/(i)uA(x)u)\vdx < /u’j\vdx, (4.16)
R3

R3 R3

this means (4.8) holds with u = uy and g = 1. Hence, Lemma 4.4 gives that

[ur]loo =1 forall A > 0. (4.17)
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Meanwhile, for any nonnegative function ¢ € C§°(R3) and any nonnegative piecewise smooth function h on
[0, +00), we see that h(uy)p € H'(R?). Let v = h(uy)p in (4.16), it follows that (4.7) holds with u = uy
and N = 3. Hence, by Lemma 4.3, we have

|u,\|oo < Cl(l + |u,\|gjz)|u>\|6. (4.18)

So, (4.17) and (4.18) imply that uy does not converge to 0 in LS(R?) as A — 0, then Theorem 3.1 shows
that there exists a nonnegative function v € E, u # 0, such that,

/Vchp + % dr + /q&u(m)ugodx = /upgodx, for all ¢ € C§°(R*\ T).
y «
3 R3 R3

Moreover, u € C*(R3\ T). O
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