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Consider the following Schrödinger–Poisson system

(SP)

⎧⎨
⎩

−Δu + Vλ(x)u + φ(x)u = |u|p−1u, x = (y, z) ∈ R2 × R,

−Δφ = u2, lim
|x|→+∞

φ(x) = 0,

where Vλ = λ + 1
|y|α with λ � 0, y = (x1, x2) ∈ R2 and |y| =

√
x2

1 + x2
2. When

α ∈ [0, 8) and max{2, 2+α
2 } < p < 5, the existence and a priori estimate of

positive solutions of problem (SP) are established in suitable weighted Sobolev
space. Moreover, the asymptotic behavior of the solutions as λ → 0 is also discussed.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study the following type of Schrödinger–Poisson equations

⎧⎨
⎩

−Δu + V (x)u + φ(x)u = |u|p−1u,

−Δφ = u2, lim
|x|→+∞

φ(x) = 0, x = (x1, x2, z) ∈ R3,
(1.1)

where p ∈ (2, 5), and the potential function V is of the form

(V ) Vλ(x) = λ + 1
|y|α , λ � 0, α ∈ [0, 8), and |y| =

√
x2

1 + x2
2.

Problem (1.1) arises in the study of the coupled Schrödinger–Poisson system:
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⎧⎨
⎩

iψt − Δψ + φ(x)ψ = f
(
|ψ|

)
ψ,

−Δφ = |ψ|2, lim
|x|→+∞

φ(x) = 0, x ∈ R3,
(1.2)

where f(|ψ|)ψ = |ψ|p−1ψ + ω0ψ, ω0 > 0, 2 < p < 5 and ψ : R3 × R → C. Motivated by [7], we look for a
solution of (1.2) with the form:

ψ(x, t) = u(x)ei(η(x)+ωt), u(x) � 0, η(x) ∈ R/2πZ, ω � ω0.

Then, u satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Δu +
(
ω − ω0 +

∣∣∇η(x)
∣∣2)u + φ(x)u = |u|p−1u,

uΔη(x) + 2∇u∇η = 0,

−Δφ = u2, lim
|x|→+∞

φ(x) = 0, x ∈ R3.

Furthermore, similar to [6,8] we let u(x) = u(y, z) = u(|y|, z) and

η(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

arctan(x2/x1), if x1 > 0,

arctan(x2/x1) + π, if x1 < 0,

π/2, if x1 = 0 and x2 > 0,

−π/2, if x1 = 0 and x2 < 0,

it is easy to see that η(x) ∈ C2(R3 \ T−), where T− := {(x1, x2, z) ∈ R3: x1 = 0, x2 � 0}. By a simple
calculation we know that

Δη(x) = 0, ∇η(x) · ∇u(x) = 0,
∣∣∇η(x)

∣∣ = 1
|y|2 , for x ∈ R3 \ T−.

These show that u(|y|, z) is actually a nonnegative solution of (1.1) with α = 2 and λ = ω−ω0. Furthermore,
ψ(x) solves (1.2) with angular momentum:

M(ψ) = Re
∫
R3

iψ̄x ∧∇ψ dx = −
∫
R3

u2x ∧∇v(x) dx = −
(
0, 0, |u|2L2

)
.

Problem (1.1) has been studied under various conditions on the potential V (x) and the power p. For
example, if V (x) = constant, that is α = 0 in (V ), the non-existence of nontrivial solutions of (1.1) for
p /∈ (1, 5) was proved in [12] by a Pohozaev type identity, a radially symmetric positive solution was
obtained in [10,13] for p ∈ [3, 5), etc. It is known that a nontrivial weak solution of (1.1) can be obtained by
searching for a nonzero critical point of the variational functional associated to problem (1.1). Usually, the
weak limit of a bounded Palais–Smale, (PS) in short, sequence of the functional is actually a weak solution
of (1.1), but it may be a trivial solution unless the functional satisfies (PS) condition, that is, any (PS)
sequence has a strongly convergent subsequence. However, if there is no some further conditions on Vλ, such
as (1.3) below, it seems hard to verify the (PS) condition, even difficult to have the boundedness of a (PS)
sequence. In this paper, instead of trying to prove the (PS) condition, we adopt a trick used in [16], which
is essentially a version of the concentration-compactness principle due to [22], to show directly that the
weak limit of a (PS) sequence is indeed a nontrivial solution. But, this trick seems not working for the (PS)
sequence simply obtained by the Mountain Pass Theorem because of the nonlocal term φ(x)u in (1.1).
To overcome this difficult, based on the Deformation Lemma (cf. [24, Lemma 2.3]) we try to construct a
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special (PS) sequence which is nonnegative and such that φ(x) is bounded in D1,2(R3). Our approach also
provides a simple way of getting a nonnegative (PS) sequence, see Lemma 2.6, which may be useful in
certain situations. Note that in [5,9,11,16] the authors studied the single stationary Schrödinger equation,
that is, taking φ(x) = 0 in the first equation of (1.1), in this case it is not necessary to seek a nonnegative
(PS) sequence, see e.g. [5,16]. In this paper, we are concerned with the Schrödinger–Poisson system (1.1)
under the condition (V ) with α > 0. We point out that our results cover the case of α = 0 (i.e. constant
potential). Moreover, we give also a priori estimate for solutions of (1.1), see Lemma 4.4, and get also a
classical solution (except for |y| = 0) to (1.1) with λ = 0, α ∈ (0, 8) and max{2, 2+α

2 } < p < 5.
For problem (1.1) with α = 0 in (V ), existence and nonexistence results were established by Ruiz in [21],

he proved that (1.1) has always a positive radial solution if p ∈ (2, 5) and does not admit any nontrivial
solution if p � 2. A ground state for (1.1) with p ∈ (2, 5) was proved in [3]. The existence of non-radially
symmetric solutions was shown in [14] and multiple solutions for (1.1) were obtained in [2,10].

If the potential V is not a constant, problem (1.1) has been studied in [3] for p ∈ (3, 5) and [26] for
p ∈ (2, 3]. For more general nonlinearities, we refer the reader to the papers [1,4,20,23,25], etc. To ensure that
the variational functional associated to problem (1.1) satisfies the (PS) condition, the following conditions
are assumed in [3,26]

V (x) � V∞ = lim inf
|x|→∞

V (x), (1.3)

2V (x) +
(
∇V (x), x

)
� 0 a.e. x ∈ R3. (1.4)

It is clear that our potential V does not satisfy the above conditions. So, we cannot use the same methods
as that of [3,26] to deal with problem (1.1). Without condition (1.4), it seems difficult even showing that
a (PS) sequence is bounded, specially for p ∈ (2, 3). Motivated by [6], here we try to find a bounded and
nonnegative (PS) sequence directly from the well-known Deformation Lemma [24, Lemma 2.3].

Before stating our main results, we introduce some notations, definitions and recall some properties of
the solution of the second equation (Poisson equation) in (1.1). For α � 0 and x = (y, z) ∈ R2 × R, define

E =
{
u ∈ D1,2(R3): u(x) = u

(
|y|, z

)
and

∫
R3

u2

|y|α dx < ∞
}
, (1.5)

and D1,2(R3) = {u ∈ L6(R3): |∇u| ∈ L2(R3)}. For λ > 0, we denote

H =
{
u ∈ E: λ

∫
R3

u2 dx < ∞
}
.

Clearly H ⊂ E, H ⊂ H1(R3) and H is a Hilbert space, its scalar product and norm are given by

〈u, v〉H =
∫
R3

∇u∇v + Vλ(x)uv dx and ‖u‖2
H = 〈u, u〉H , (1.6)

respectively, where Vλ(x) = λ + 1
|y|α .

Throughout this paper, we denote the standard norms of H1(R3) and Lp(R3) (1 � p � +∞) by ‖ · ‖
and | · |p, respectively. We observe that (1.6) implies that ‖ · ‖H is an equivalent norm of ‖ · ‖ if α = 0.

By Lemma 2.1 of [21], we know that −Δφ = u2 has a unique solution in D1,2(R3) with the form of

φ(x) := φu(x) =
∫

u2(y)
|x− y| dy, for any u ∈ L

12
5
(
R3), (1.7)
R3
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and there is a constant C > 0, independent of φ, such that

∣∣∇φu(x)
∣∣
2 � C|u|212/5,

∫
R3

φu(x)u2 dx � C|u|412/5. (1.8)

For λ > 0 and u ∈ H, we can define the variational functional associated to problem (1.1) as follows:

Iλ(u) = 1
2

∫
R3

|∇u|2 + Vλ(x)u2 dx + 1
4

∫
R3

φu(x)u2 dx− 1
p + 1

∫
R3

|u|p+1
dx. (1.9)

Since (1.8), Iλ is well defined on H and Iλ ∈ C1(H,R) with

(
I ′λ(u), v

)
=

∫
R3

∇u∇v + Vλ(x)uv dx +
∫
R3

φu(x)uv dx−
∫
R3

|u|p−1
uv dx (1.10)

for all v ∈ H with λ > 0 and p ∈ (1, 5). Furthermore, it is known that a nontrivial weak solution of (1.1)
corresponds to a nonzero critical point of the functional I in H if λ > 0.

In this paper, we want to establish existence results for problem (1.1) for both λ > 0 and λ = 0.
However, if λ = 0, then H = E. In this case, (1.7) (1.8) are not always true for u ∈ E. Therefore, the

integrals
∫
R3 |u|p dx,

∫
R3 φu(x)u2 dx and

∫
R3 φu(x)uv dx may not be well defined for u, v ∈ E.

To this end, we set

T =
{
x ∈ R3: |y| = 0

}
where |y| =

√
x2

1 + x2
2. (1.11)

Then, by using the results for λ > 0 and an approximation procedure (λ → 0), see Section 4, we can get a
solution u ∈ E of (1.1) with λ = 0 in following sense

∫
R3

∇u∇ϕ + 1
|y|αuϕdx +

∫
R3

φu(x)uϕdx =
∫
R3

|u|p−1
uϕdx, for ϕ ∈ C∞

0
(
R3 \ T

)
. (1.12)

Note that
∫
R3

1
|y|αuϕdx may be not integrable for u ∈ E and ϕ ∈ C∞

0 (R3), this is why we take ϕ ∈
C∞

0 (R3 \ T ) in (1.12) instead of ϕ ∈ C∞
0 (R3). So, it is reasonable for us to define a weak solution for (1.1)

as follows.

Definition 1.1. u ∈ E \ {0} is said to be a weak solution of (1.1) with λ � 0 if φu ∈ D1,2(R3) and u satisfies

∫
R3

[
∇u∇ϕ +

(
1

|y|α + λ

)
uϕ

]
dx +

∫
R3

φu(x)uϕdx =
∫
R3

|u|p−1
uϕdx, (1.13)

for all ϕ ∈ C∞
0 (R3 \ T ).

We mention that the above definition also enables us to get a classical solution. In fact, if u ∈ E and
φu ∈ D1,2(R3) satisfy (1.13), by using our Lemmas 4.2 and 4.3, as well as Theorems 8.10 and 9.19 in [15],
we can prove that u ∈ C2(R3 \ T ), that is, u is a classical solution of (1.1), see Theorem 3.1 in Section 3.

For the single Schrödinger equation

−Δu + u
α

= f(u), x = (x1, x2, . . . , xN ) ∈ RN , N � 3 (1.14)
|y|
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with |y| =
√
ΣN+1−i

k=1 x2
k, i < N , the authors of paper [5] proved that (1.14) has a nontrivial solution in

H1(RN ) if α = 2, N > i � 2 and f(t) is supposed to have some kinds of double powers behavior which
ensure that F (u) =

∫ u

0 f(s) ds is well defined in L1(RN ) for u ∈ D1,2(RN ). In [5], the authors used a
variational method to seek first a nontrivial solution of (1.14) in D1,2(RN ), then proved this solution is
also in L2(RN ). Formally, (1.14) is nothing but the first equation of problem (1.1) with λ = 0, N = 3 and
φ(x) ≡ 0. However, even for f(u) = |u|p−1u with p ∈ (2, 5), F (u) is not well defined in D1,2(RN ), then the
method and results of [5] do not work for our problem. So, when λ = 0 it seems difficult to have a good
working space which can be directly used to solve (1.1). In this paper, we prove first that (1.1) has always
a solution uλ in H1(R3) for each λ > 0, then show that {uλ} (as a sequence of λ) is bounded in E. As
mentioned above we can finally use an approximation process to get a weak solution of (1.1) for λ = 0 in
the sense of (1.12).

The main results of this paper can be stated now as follows:

Theorem 1.1. Let α ∈ [0, 8), max{2, 2+α
2 } < p < 5 and let condition (V ) be satisfied. Then, problem (1.1)

has at least a positive solution uλ ∈ H ∩C2(R3 \ T ) for every λ > 0. Furthermore, if λ ∈ (0, 1], there exists
C > 0 which is independent of λ ∈ (0, 1] such that the solution uλ satisfies

|∇uλ|22 +
∫
R3

φuλ
u2
λ dx < C.

Theorem 1.2. For λ = 0, let α ∈ [0, 8) and max{2, 2+α
2 } < p < 5. Then, problem (1.1) has at least a positive

solution u ∈ E ∩ C2(R3 \ T ) in the sense of (1.12).

2. Bounded nonnegative (PS) sequence

In this section, λ > 0 is always assumed. Our aim is to know how the functional Iλ defined in (1.9) has
always a bounded nonnegative (PS) sequence at some level c > 0 in H. As mentioned in the introduction,
the authors in [6] developed an approach to get a bounded (PS) sequence for the single equation (1.14)
with certain nonlinearities. By improving some techniques used in [6], we are able to obtain a bounded
nonnegative (PS) sequence for (1.1), the nonnegativity of the (PS) sequence helps us to estimate the related
term caused by the nonlocal term φ(x)u, which leads to a nonzero weak limit of the (PS) sequence. Let us
recall first a deformation lemma from [24].

Lemma 2.1. (See [24, Lemma 2.3].) Let X be a Banach space, ϕ ∈ C1(X,R), S ⊂ X, c ∈ R, ε, δ > 0 such
that for any u ∈ ϕ−1([c− 2ε, c + 2ε]) ∩ S2δ: ϕ′(u) � 8ε/δ. Then there exists η ∈ C([0, 1] ×X,X) such that:

(i) η(t, u) = u, if t = 0 or u /∈ ϕ−1([c− 2ε, c + 2ε]) ∩ S2δ.
(ii) η(1, ϕc+ε ∩ S) ⊂ ϕc−ε, where ϕc±ε = {u ∈ X: ϕ(u) � c± ε}.
(iii) η(t, ·) is a homeomorphism of X, for any t ∈ [0, 1].
(iv) ϕ(η(·, u)) is non increasing, for any u ∈ X.

Now, we give some lemmas, by which Lemma 2.1 can be used to get a desirable (PS) sequence.

Lemma 2.2. Let p ∈ (1, 5) and λ > 0 in (1.6). If u1, u2 ∈ H and ‖u1‖H � M , ‖u2‖H � M for some M > 0,
then there exists a positive constant C := C(M,p, λ) such that,

∥∥I ′(u1) − I ′(u2)
∥∥
H′ � C

(
‖u1 − u2‖H + ‖u1 − u2‖3

H

)
. (2.1)
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Proof. By (1.10) and (1.6),

〈
I ′(u1) − I ′(u2), ψ

〉
H

= 〈u1 − u2, ψ〉H +
∫
R3

(φu1u1 − φu2u2)ψ dx−
∫
R3

(
|u1|p−1

u1 − |u1|p−1
u1

)
ψ dx,

hence (2.1) is proved if we have that

∣∣∣∣
∫
R3

(
|u1|p−1

u1 − |u2|p−1
u2

)
ψ dx

∣∣∣∣ � C‖u1 − u2‖H‖ψ‖H , (2.2)

∣∣∣∣
∫
R3

(φu1u1 − φu2u2)ψ dx

∣∣∣∣ � C
(
‖u1 − u2‖H + ‖u1 − u2‖3

H

)
‖ψ‖H . (2.3)

Indeed, using Taylor’s formula and Hölder inequality as well as Minkovski inequality, we see that there is a
function θ with 0 < θ < 1 such that

∣∣∣∣
∫
R3

(
|u1|p−1

u1 − |u2|p−1
u2

)
ψ dx

∣∣∣∣ � p|u1 − u2|p+1|ψ|p+1
∣∣θu1 + (1 − θ)u2

∣∣p+1
p+1

� p
(
|u1|p+1 + |u2|p+1

)p+1|u1 − u2|p+1|ψ|p+1

� p(2M)p+1|u1 − u2|p+1|ψ|p+1,

hence (2.2) is obtained. To prove (2.3), we let υ = u2 − u1, it follows from (1.7) that

∫
R3

(φu2u2 − φu1u1)ψ dx = J1 + J2 + J3 + J4 + J5, (2.4)

where

J1 =
∫

R3×R3

υ2(y)υ(x)ψ(x)
|x− y| dx dy, J2 =

∫
R3×R3

υ2(y)u1(x)ψ(x)
|x− y| dx dy,

J3 =
∫

R3×R3

u2
1(y)υ(x)ψ(x)

|x− y| dx dy, J4 = 2
∫

R3×R3

u1(y)u1(x)υ(y)ψ(x)
|x− y| dx dy,

J5 = 2
∫

R3×R3

u1(y)υ(y)υ(x)ψ(x)
|x− y| dx dy.

Now, we estimate J1 to J5 by using the following Hardy–Littlewood–Sobolev inequality [19, Theorem 4.3]

∣∣∣∣
∫
RN

∫
RN

f(x)|x− y|−dh(y) dx dy
∣∣∣∣ � C(N, d, p)|f |p|h|r,

where p, r > 1 and 0 < d < N with 1
p + d

N + 1
r = 2, f ∈ Lp(RN ) and h ∈ Lr(RN ), the sharp constant

C(N, d, p), independent of f and h.
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Take N = 3 and d = 1, then take p, r suitably in the above inequality, we see that

|J1| � C‖υ‖3
H‖ψ‖H , |J2| � C‖υ‖2

H‖u1‖H‖ψ‖H , |J3| � C‖u1‖2
H‖υ‖H‖ψ‖H ,

|J4| � C‖u1‖2
H‖υ‖H‖ψ‖H , |J5| � C‖u1‖H‖υ‖2

H‖ψ‖H .

These estimates and (2.4) imply that (2.3) holds. Thus, Lemma 2.2 is proved. �
Before giving our next lemma, we recall some basic properties of φu(x) given by (1.7). Let

ut := ut(x) = t2u(tx) for t > 0 and x ∈ R3,

then u(x) = (ut) 1
t
(x) = (u 1

t
)t(x) and

|∇ut|22 = t3|∇u|22, |ut|pp = t2p−3|u|pp for 1 � p < ∞, (2.5)∫
R3

φut
u2
t dx = t3

∫
R3

φuu
2 dx,

∫
R3

u2
t

|y|α dx = t1+α

∫
R3

u2

|y|α dx. (2.6)

Lemma 2.3. If α ∈ [0, 8) and max{2, α+2
2 } < p < 5, then there exist ρ > 0, δ > 0, e ∈ H with e � 0 and

‖e‖H > ρ such that:

(i) I(u) � δ, for all u ∈ H with ‖u‖H = ρ.
(ii) I(e) < I(0) = 0.

Proof. (i) Since H ↪→ Lp(R3) for 2 � p < 6, this conclusion is a straightforward consequence of the definition
of I.

(ii) For t > 0 and u ∈ H \ {0}, by (2.5), (2.6) and the definition of I, we see that

I(ut) = t3

2 |∇u|22 + λt

2 |u|22 + t1+α

2

∫
R3

u2

|y|α dx + t3

4

∫
R3

φu(x)u2 dx− t2p−1

p + 1 |u|
p+1
p+1. (2.7)

Since α ∈ [0, 8), p > max{2, α+2
2 }, we see I(ut) → −∞ as t → +∞. Hence, for each u ∈ H \ {0}, there is a

t∗ > 0 large enough such that (ii) holds with e = ut∗ . Moreover, we may assume that e � 0, otherwise, just
replace e by |e|. �

For each λ > 0 and e given by Lemma 2.3, define

c := cλ = inf
γ∈Γ

max
u∈γ([0,1])

Iλ(u), (2.8)

where Γ := {γ ∈ C([0, 1];H): γ(0) = 0, γ(1) = e}. Clearly, c > 0 by Lemma 2.3. Let {tn} ⊂ (0,+∞) be a
sequence such that tn → 1 as n → +∞, then by (2.5) it is easy to show that

etn := t2ne(tnx) → e in H, as n → +∞. (2.9)

Since I ∈ C1(H), it follows from Lemma 2.3 (ii) that there is ε > 0 small enough such that I(u) < 0 for all
u ∈ Bε(e). Again using (2.9), there exists t0 ∈ (0, 1) such that

et := t2e(tx) ∈ Bε(e) for all t ∈ (t0, 1). (2.10)

For this t0 ∈ (0, 1), similar to [6] we have
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Lemma 2.4. Let t0 be given by (2.10). Then for all t ∈ (t0, 1), we have

c = inf
γ∈Γ

max
u∈γ([0,1])

I(ut)

where c and Γ are defined in (2.8), ut = t2u(tx).

Proof. The proof is the same as that of Lemma 11 in [6]. �
By Lemma 2.4, we know that for any s ∈ (t0, 1) there exists γs ∈ Γ such that

max
u∈γs([0,1])

I(us) � c +
(
1 − s3). (2.11)

For s ∈ (t0, 1), we define the set

Us :=
{
u ∈ γs

(
[0, 1]

)
: I(u) � c−

(
1 − s3)}, (2.12)

then, (2.8) and the definition of Us imply that Us 
= ∅ for s ∈ (t0, 1).

Lemma 2.5. If α ∈ [0, 8) and max{2, α+2
2 } < p < 5, then for t0 given by (2.10) there exist t∗ ∈ (t0, 1) and

M = 2(c+2)(2p−1)
(p−2)t∗3 + 4(c+2)(2p−1)

(2p−2−α)t∗1+α such that

‖u‖2
H +

∫
R3

φuu
2 dx < M for all u ∈ Us with s ∈

(
t∗, 1

)
.

Proof. Let u ∈ Us and note that u(x) = (us) 1
s
(x), it follows from (2.5), (2.6) and the definition (1.9) that

I(us) − I(u) = 1
2

(
1 − 1

s3

)
|∇us|22 + λ

2

(
1 − 1

s

)
|us|22 + 1

2

(
1 − 1

s1+α

)∫
R3

u2
s

|y|α dx

+ 1
4

(
1 − 1

s3

)∫
R3

φus
u2
s dx− 1

p + 1

(
1 − 1

s2p−1

)
|us|p+1

p+1. (2.13)

For u ∈ Us, (2.11) and (2.12) imply that

I(us) − I(u) � 2
(
1 − s3), for s ∈ (t0, 1). (2.14)

By calculation, this and (2.13) show that, for any u ∈ Us,

λ

2
s2 − s3

s3 − 1 |us|22 + 1
2
s2 − s3+α

s3+α − sα

∫
R3

u2
s

|y|α dx + 1
p + 1

s2p+2 − s3

s2p+2 − s2p−1 |us|p+1
p+1

− 1
2 |∇us|22 −

1
4

∫
R3

φus
u2
s dx � 2s3. (2.15)

To simplify (2.15), we need to use the following facts:

s2 − s3

s3 − 1 = −s2

s2 + s + 1 � −1 for s � 0,

g(s) � s2 − s3+α

= s2−α − s3
s→1−−−−−→ −1 + α

, and g(s) ≡ g(1) = −1 if α = 2.

s3+α − sα s3 − 1 3
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p > α+2
2 implies that 2p−1

1+α > 1 and ε0 := 2p+α
2(1+α) ∈ (1, 2p−1

1+α ). Hence, there is δ1 > 0 small enough such that
1 − δ1 > t0 and

g(s) � −ε0(1 + α)
3 = 2p + α

6 for all s ∈ (1 − δ1, 1).

Let

h(s) = s2p+2 − s3

s2p+2 − s2p−1 = s3 − s4−2p

s3 − 1 for s ∈ (0, 1),

then

lim
s→1−

h(s) = 2p− 1
3 and h′(s) = (2p− 1)s6−2p − 3s2 − (2p− 4)s3−2p

(s3 − 1)2 ,

h′(s) s→1−−−−−→ − (2p− 1)(p− 2)
3 < 0 if p > 2.

This shows that there is δ2 > 0 small enough and 1 − δ2 > t0 such that

h′(s) < 0 and h(s) � lim
s→1−

h(s) = 2p− 1
3 for all s ∈ (1 − δ2, 1) and p > 2.

For p = 2, h(s) ≡ 2p−1
3 = 1, so we see that

h(s) � 2p− 1
3 for all s ∈ (1 − δ2, 1) and p � 2.

So, for s ∈ (t∗, 1) with t∗ = 1 − min{δ1, δ2}, it follows from (2.15) that

−λ

2 |us|22 −
2p + α

12

∫
R3

u2
s

|y|α dx + 1
p + 1

2p− 1
3 |us|p+1

p+1 −
1
2 |∇us|22 −

1
4

∫
R3

φus
u2
s dx � 2s3.

That is,

− 1
p + 1 |us|p+1

p+1 � − 3
2p− 1

(
λ

2 |us|22 + 1
2 |∇us|22 + 1

4

∫
R3

φus
u2
s dx

)

− 2p + α

4(2p− 1)

∫
R3

u2
s

|y|α dx− 6
2p− 1s

3. (2.16)

For u ∈ Us, by (2.11) it gives that
(
λ

2 |us|22 + 1
2 |∇us|22 + 1

4

∫
R3

φus
u2
s dx

)
+ 1

2

∫
R3

u2
s

|y|α dx− 1
p + 1 |us|p+1

p+1 � c +
(
1 − s3). (2.17)

Hence, it follows from (2.16) and (2.17) that

2p− 2 − α

4(2p− 1)

∫
R3

u2
s

|y|α dx + 2p− 4
2p− 1

(
λ

2 |us|22 + 1
2 |∇us|22 + 1

4

∫
R3

φus
u2
s dx

)

� c + 1 − 2p− 7
2p− 1s

3 � c + 1 +
∣∣∣∣2p− 7
2p− 1

∣∣∣∣
� c + 2 if p > 2 and s < 1.
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This implies that, if 5 > p > max{2, α+2
2 } and s ∈ (t∗, 1)

λ

2 |us|22 + 1
2 |∇us|22 + 1

4

∫
R3

φus
u2
s dx � (c + 2)(2p− 1)

2(p− 2) , (2.18)

and

1
4

∫
R3

u2
s

|y|α dx � (c + 2)(2p− 1)
2p− 2 − α

for α ∈ [0, 8).

So, using (2.5) and (2.6), it follows from (2.18) that

λ

2 s|u|
2
2 + 1

2s
3|∇u|22 + 1

4s
3
∫
R3

φuu
2 dx � (c + 2)(2p− 1)

2(p− 2) .

Since s ∈ (t∗, 1), s � s3 � t∗3 and s1+α � t∗1+α for α ∈ [0, 8), those and p > max{2, α+2
2 } imply that

‖u‖2
H +

∫
R3

φuu
2 dx � 2(c + 2)(2p− 1)

(p− 2)t∗3 + 4(c + 2)(2p− 1)
(2p− 2 − α)t∗1+α , (2.19)

and Lemma 2.5 is proved by taking M = 2(c+2)(2p−1)
(p−2)t∗3 + 4(c+2)(2p−1)

(2p−2−α)t∗1+α . �
Note that M given by the above lemma depends on λ, since c depends on λ by the definition of I. The

following lemma is used to get a bounded (PS) sequence. In this lemma, the constant M can be chosen
independent of λ if λ ∈ (0, 1].

Lemma 2.6. Let α ∈ [0, 8), max{2, α+2
2 } < p < 5 and c be given by (2.8). Then there exists a bounded

nonnegative sequence {un} ⊂ H such that

I(un) → c > 0, I ′(un) → 0 as n → +∞. (2.20)

Moreover, if λ ∈ (0, 1] there exists M > 0 which is independent of λ ∈ (0, 1] such that

‖un‖2
H +

∫
R3

φun
u2
n dx � M.

Proof. For t ∈ (t∗, 1) with t∗ given in Lemma 2.5, let

Wt =
{
|u|: u ∈ Ut

}
, Ut defined in (2.12), (2.21)

and then for u ∈ Wt, by (2.19), (2.7) and (2.11) we have that

I(u) − I(ut) = 1
2
(
1 − t3

)
|∇u|22 + λ

2 (1 − t)|u|22 + 1 − t1+α

2

∫
R3

u2

|y|α dx + 1 − t3

4

∫
R3

φuu
2 dx− 1 − t2p−1

p + 1 |u|p+1
p+1

�
(
1 − t3

)(λ

2 |u|
2
2 + 1

2 |∇u|22 + 1
4

∫
φuu

2 dx

)
+ 1 − t2p−1

t2p−1

(
1
2

∫
u2
t

|y|α dx− 1
p + 1 |ut|p+1

p+1

)

R3 R3
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�
(
1 − t3

)(λ

2 |u|
2
2 + 1

2 |∇u|22 + 1
4

∫
R3

φuu
2 dx

)
+ 1 − t2p−1

t2p−1 I(ut)

�
(
1 − t3

) (c + 2)(2p− 1)
(2p− 4)t∗3 +

(
1 − t2p−1) c + 1

t∗2p−1

→ 0 as t → 1−.

On the other hand, similar to (2.14) we know that

I(ut) − I(u) � 2
(
1 − t3

)
→ 0 as t → 1−.

Hence,

lim sup
t→1−u∈Wt

∣∣I(ut) − I(u)
∣∣ = 0. (2.22)

For M > 0 given by Lemma 2.5, we define

S =
{
|u|: u ∈ H and ‖u‖2

H +
∫
R3

φuu
2 dx < M

}
,

Sδ =
{
u: u ∈ H and dist(u, S) < δ

}
, δ ∈ (0, 1). (2.23)

Clearly, ‖υ‖H �
√
M + 1 for all υ ∈ Sδ. Then, by Lemma 2.2, there is a constant K := K(M) such that

∥∥I ′(u) − I ′(υ)
∥∥
H′ � K‖u− υ‖H for all u, υ ∈ Sδ, (2.24)

and since I ∈ C1(H,R), there exists CS > 0 such that
∣∣I(u) − I(υ)

∣∣ � CS‖u− υ‖H for all u, υ ∈ Sδ. (2.25)

For any m ∈ N and M given by Lemma 2.5, let

Λm =
{
|u|: u ∈ H, ‖u‖2

H +
∫
R3

φuu
2 dx < M + 1

m
and

∣∣I(u) − c
∣∣ � CS + 1√

m

}
. (2.26)

We claim that Λm 
= ∅.
Indeed, for any m � 1, since (2.22) we can find tm ∈ (t∗, 1) such that

1 − tm
3 <

1
32m and I(u) � I(utm) + 1

32m for all u ∈ Wtm .

Then it follows from (2.11) and (2.12) that

c− 1
32m � I(u) � c + 1

16m for all u ∈ Wtm . (2.27)

By the definition of Wtm , Lemma 2.5 implies that

‖u‖2
H +

∫
R3

φuu
2 dx � M for all u ∈ Wtm .

This and (2.27) show that Wtm ⊂ Λm, that is Λm 
= ∅.
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Next, we claim that there are infinitely many elements in {Λm}+∞
m=1, which we still simply denote by Λm

(m = 1, 2, . . .), such that for each m � 1, there is um ∈ Λm with

∥∥I ′(um)
∥∥
H′ <

1 + K√
m

, K is given by (2.24). (2.28)

Then, to prove Lemma 2.6 we need only to show the above claim. By contradiction, if the claim is false,
then there must be a number m̄ ∈ N with m̄ > max{ 1

8c , 4} such that

∥∥I ′(u)
∥∥
H′ � 1 + K√

m
, for all m > m̄ and u ∈ Λm. (2.29)

By the above discussion we know that Wtm ⊂ Λm. For any u ∈ Wtm , the definition of Wtm and Lemma 2.5
show that ‖u‖2

H +
∫
R3 φuu

2 dx � M and Wtm ⊂ S. Hence,

Wtm ⊂ S ∩
{
u ∈ H:

∣∣I(u) − c
∣∣ < 1

8m

}
⊂ S ∩

{
u ∈ H:

∣∣I(u) − c
∣∣ < CS + 1√

m

}
⊂ Λm,

where (2.27) is used. Then

S ∩
{
u ∈ H:

∣∣I(u) − c
∣∣ < CS + 1√

m

}

= ∅.

Let ε = 1
16m , δ = 1

2
√
m

, then 8ε
δ = 1√

m
< 1

2 < 1, since m̄ > max{ 1
8c , 4}. So,

S2δ = S 1√
m

=
{
u: u ∈ H and dist(u, S) < 1√

m

}
.

By the definitions of S and Λm, we see that

S ∩
{
u ∈ H:

∣∣I(u) − c
∣∣ < CS + 1√

m

}
⊂ Λm.

Hence, for any u ∈ S ∩ {u ∈ H: |I(u) − c| < CS+1√
m

} ⊂ Λm, we have

∥∥I ′(u)
∥∥
H′ � 1 + K√

m
, for all m > m̄. (2.30)

For any υ ∈ S 1√
m

∩ {u ∈ H: |I(u) − c| < 1
8m}, there exists u0 ∈ S such that

‖u0 − υ‖H <
1√
m
. (2.31)

This and (2.25) show that

∣∣I(u0) − c
∣∣ �

∣∣I(υ) − I(u0)
∣∣ +

∣∣I(υ) − c
∣∣

�
∣∣I(υ) − c

∣∣ + CS√
m

� 1
8m + CS√

m
� CS + 1√

m
.

Hence, u0 ∈ S ∩ {u ∈ H: |I(u) − c| < CS+1√
m

}. Then, it follows from (2.24), (2.30) and (2.31) that, for
υ ∈ S 1√ ∩ {u ∈ H: |I(u) − c| < 1 },
m 8m
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∥∥I ′(υ)
∥∥
H′ =

∥∥I ′(υ) − I ′(u0) + I ′(u0)
∥∥
H′

�
∥∥I ′(u0)

∥∥
H′ −

∥∥I ′(υ) − I ′(u0)
∥∥
H′

� 1 + K√
m

−K‖u0 − υ‖H

� 1 + K√
m

−K
1√
m

= 1√
m
.

Applying Lemma 2.1 with X = H, ϕ = I, we know that there is a homeomorphism η(t, ·) : [0, 1] ×H → H

such that

η(t, u) = u, if t = 0 or u /∈ S 1√
m

∩
{
u ∈ H:

∣∣I(u) − c
∣∣ � 1

8m

}
; (2.32)

I
(
η(1, u)

)
� c− 1

16m, for u ∈ S ∩
{
u ∈ H:

∣∣I(u) − c
∣∣ � 1

8m

}
; (2.33)

I
(
η(t, u)

)
� I(u), for any u ∈ H. (2.34)

Let ξ(u) := η(1, u) and γ̄(t) = ξ(|γtm(t)|) ∈ C([0, 1], H). By m > m̄ > max{ 1
8c , 4}, c > 1

8m , then {0, e} �
S 1√

m
∩ {u ∈ H: |I(u) − c| < 1

8m}, since I(e) < 0 and |I(e) − c| = c + |I(e)| > c where e is given
by Lemma 2.3. With this observation and (2.32) we see that γ̄(0) = ξ(|γtm(0)|) = ξ(0) = η(1, 0) = 0,
γ̄(1) = ξ(|γtm(1)|) = ξ(e) = η(1, e) = e. Hence, γ̄ ∈ Γ , with Γ defined in (2.8). For each m � m̄, let
um ∈ γ̄([0, 1]) be such that

I
(
ξ
(
|um|

))
= max

u∈γtm [0,1]
I
(
ξ
(
|u|

))
= max

v∈γ̄[0,1]
I(v) � c. (2.35)

Since um ∈ γtm [0, 1], |um| ∈ |γtm [0, 1]| = {|u|: u ∈ γtm [0, 1]}. We are ready to get a contradiction in both
of the following two cases.

Case A. If |um| ∈ |γtm [0, 1]| \ Utm , then (2.34) and the definition of Utm imply that

I
(
ξ
(
|um|

))
= I

(
η
(
1, |um|

))
� I(um) � c−

(
1 − t3m

)
< c,

which contradicts (2.35).

Case B. If |um| ∈ Utm , then by (2.21) |um| ∈ Wtm and (2.27) implies that |I(|um|) − c| � 1
16m . Moreover,

‖um‖2
H +

∫
R3 φum

um
2 dx � M by Lemma 2.5. Hence |um| ∈ S ∩ {u ∈ H: |I(u) − c| � 1

16m}, and it follows
from (2.33) that

I
(
ξ
(
|um|

))
= I

(
η
(
1, |um|

))
� c− 1

16m < c,

this is a contradiction to (2.35). �
3. Existence for λ > 0: Proof of Theorem 1.1

Motivated by [5], we prove Theorem 1.1 by a result due to Solimini [22], which is a version of so called
concentration-compactness principle. To state this result, we introduce first the operator Ts,ξ and its basic
properties. Let s > 0, N � 3 and ξ ∈ RN be fixed, for any u ∈ Lq(RN ), q ∈ (1,+∞), we define

Ts,ξu(x) � T (s, ξ)u(x) := s−
N−2

2 u
(
s−1x + ξ

)
, ∀x ∈ RN . (3.1)
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Clearly, T (s, ξ)u ∈ Lq(RN ) if u ∈ Lq(RN ) and T (s, ξ) is also well defined on Hilbert space D1,2(RN ) with
scalar product

〈u, v〉 =
∫
RN

∇u∇v dx, for u, v ∈ D1,2(RN
)
, (3.2)

since T (s, ξ)u ∈ D1,2(RN ) if u ∈ D1,2(RN ). It is not difficult to see that the linear operators

u ∈ L2∗(
RN

)
� T (s, ξ)u ∈ L2∗(

RN
)

and u ∈ D1,2(RN
)

� T (s, ξ)u ∈ D1,2(RN
)

are isometric, where 2∗ = 2N
N−2 . Moreover, we have that

T−1
s,ξ = T

(
s−1,−sξ

)
, Ts,ξTμ,η = T (sμ, ξ/μ + η), (3.3)

|∇Ts,ξu|22 = |∇u|22, |Ts,ξu|qq = sN− q(N−2)
2 |u|qq. (3.4)

For N � 3, k ∈ [2, N) and x ∈ RN , in this section we denote by

x = (y, z) ∈ Rk × RN−k, i.e. y ∈ Rk, z ∈ RN−k,

ỹ = (y, 0) ∈ Rk × RN−k, z̃ = (0, z) ∈ Rk × RN−k. Similarly, xn = (yn, zn) ∈ Rk × RN−k, ỹn = (yn, 0) ∈
Rk × RN−k.

Lemma 3.1. (See [5, Proposition 22].) Let {ηn} ⊂ RN be such that limn→∞ |ηn| = ∞ and fix R > 0. Then
for any m ∈ N \ {0, 1} there exists Nm ∈ N such that for any n > Nm one can find a sequence of unit
orthogonal matrices {gi}mi=1 ∈ O(N) satisfying the condition

BR(giηn) ∩BR(gjηn) = ∅, for i 
= j.

Lemma 3.2. (See [5, Proposition 11].) Let q ∈ (1,∞) and {sn} ⊂ (0,∞), {ξn} ⊂ RN be such that sn
n−−→

s 
= 0, ξn n−−→ ξ. Then

Tsn,ξnun
n
⇀Ts,ξu weakly in Lq

(
RN

)
,

if un
n
⇀u weakly in Lq(RN ).

Lemma 3.3. Let {sn} ⊂ (0,∞), {ξn} ⊂ RN be such that sn
n−−→ s0 
= 0, ξn

n−−→ ξ. If vn
n
⇀v weakly in

D1,2(RN ), then

Tsn,ξnvn
n
⇀Ts0,ξv weakly in D1,2(RN

)
.

Proof. For any ϕ ∈ C∞
0 (RN ), by (3.2) we get that

〈
T−1
sn,0vn, ϕ

〉
= 〈vn, Tsn,0ϕ〉 = 〈vn, Ts0,0ϕ〉 + 〈vn, Tsn,0ϕ− Ts0,0ϕ〉. (3.5)

Since

lim
n→∞

∣∣∇(Tsn,0ϕ− Ts0,0ϕ)
∣∣2
2 = lim

n→∞

∫
RN

|∇Tsn,0ϕ|2 dx +
∫
RN

|∇Ts0,0ϕ|2 dx

− 2 lim
n→∞

∫
∇Tsn,0ϕ∇Ts0,0ϕdx = 0,
RN
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we have

〈vn, Tsn,0ϕ− Ts0,0ϕ〉 � |∇vn|2
∣∣∇(Tsn,0ϕ− Ts0,0ϕ)

∣∣
2

n−→ 0. (3.6)

By Ts0,0ϕ ∈ C∞
0 (RN ) and vn

n
⇀v weakly in D1,2(RN ), we have

〈vn, Ts0,0ϕ〉 n−→ 〈v, Ts0,0ϕ〉 =
〈
T−1
s0,0v, ϕ

〉
. (3.7)

It follows from (3.5) to (3.7) that

〈
T−1
sn,0vn, ϕ

〉
n−→

〈
T−1
s0,0v, ϕ

〉
, for any ϕ ∈ C∞

0
(
RN

)
. (3.8)

On the other hand, for any ψ ∈ D1,2(RN ) and any ε > 0, there exists ϕ ∈ C∞
0 (RN ) such that |∇(ψ−ϕ)|2 < ε

and

〈
T−1
sn,0vn, ψ − ϕ

〉
�

∣∣∇(
T−1
sn,0vn

)∣∣
2

∣∣∇(ψ − ϕ)
∣∣
2 = |∇vn|2

∣∣∇(ψ − ϕ)
∣∣
2,

this and (3.8) imply that

〈
T−1
sn,0vn, ϕ

〉
n−→

〈
T−1
s0,0v, ϕ

〉
, for any ϕ ∈ D1,2(RN

)
. �

Lemma 3.4. (See [22, Theorem 1].) If {un} ⊂ D1,2(RN ) is bounded, then, up to a subsequence, either
un

n−−→ 0 in L2∗(RN ) or there exist {sn} ⊂ (0,∞) and {ξn} ⊂ RN such that

Tsn,ξnun
n
⇀u 
= 0 weakly in L2∗(

RN
)
.

Let

D1,2
s

(
RN

)�=
{
u ∈ D1,2(RN

)
: u(x) = u(y, z) = u

(
|y|, z

)}
,

we see that D1,2
s (RN ) ⊂ D1,2(RN ) is a closed set, hence D1,2

s (RN ) is a Hilbert space with scalar product
as (3.2). Based on Lemmas 3.1 to 3.4, we have the following lemma which ensures us to get a nontrivial
solution for (1.1) without proving the (PS) condition.

Lemma 3.5. If {un} ⊂ D1,2
s (RN ) is bounded and there exist {sn} ⊂ (0,+∞) and {xn} ⊂ RN with xn =

(yn, zn) ∈ Rk × RN−k such that

T (sn, xn)un
n
⇀u 
= 0 weakly in L2∗(

RN
)
. (3.9)

Then

vn = T (sn, 0)wn
n
⇀v 
≡ 0 weakly in D1,2

s

(
RN

)
,

where wn = T (1, z̃n)un and z̃n = (0, zn). Moreover, if {un} is also bounded in Lq(RN ) for some 1 < q < 2∗,
then, there exists a constant l > 0 such that sn > l for all n.

Proof. The proof of this lemma is almost the same as that of Lemma 23 in [5]. But for the sake of com-
pleteness, we give its proof.
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Since {un} is bounded in D1,2
s (RN ), by the definition of Ts,ξ we see that {vn} is also bounded in D1,2

s (RN ).
Then there is v ∈ D1,2

s (RN ) such that

vn = T (sn, 0)wn
n
⇀v weakly in D1,2

s

(
RN

)
.

We claim that v 
≡ 0. Otherwise, if v ≡ 0, then it leads to a contradiction in the following two cases. For
xn = (yn, zn), we recall that

ỹn = (yn, 0) ∈ Rk × RN−k, z̃n = (0, zn) ∈ Rk × RN−k.

Case A. If {snỹn} ⊂ RN is bounded. Then, there is ỹ0 = (y0, 0) ∈ Rk × RN−k such that snỹn
n−→ ỹ0 and

from (3.3) we have

T1,−snỹn
Tsn,ỹn

wn = T1,−snỹn
Tsn,xn

un
n
⇀T1,−ỹ0u 
= 0 in L2∗(

RN
)
,

where we used the assumption (3.9) and Lemma 3.2. On the other hand, since v ≡ 0, it follows from (3.3)
that

T1,−snỹn
Tsn,ỹn

wn = Tsn,0wn = vn
n
⇀ 0 in D1,2(RN

)
,

then we get a contradiction.

Case B. If |snỹn| → +∞. We claim that there is also a contradiction. Indeed, since u 
≡ 0, there exist
Ω ⊂ RN , |Ω| 
= 0 and κ > 0 such that u > κ or u < −κ a.e. in Ω. So we can choose R > 0 such that
|BR ∩Ω| > 0 and

∣∣∣∣
∫
RN

Tsn,ỹn
wnχBR∩Ω dx

∣∣∣∣ n−→
∣∣∣∣
∫
RN

uχBR∩Ω dx

∣∣∣∣ � κ|BR ∩Ω| > 0.

But,

Tsn,ỹn
wn = Tsn,ỹn

Ts−1
n ,0vn = T1,snỹn

vn.

Then,
∣∣∣∣
∫
RN

Tsn,ỹn
wnχBR∩Ω dx

∣∣∣∣ �
∫
BR

|Tsn,ỹn
wn| dx =

∫
BR(snỹn)

|vn| dx

� CR

{ ∫
BR(snỹn)

|vn|2
∗
dx

} 1
2∗

.

This implies

inf
n

∫
BR(snỹn)

|vn|2
∗
dx > ε > 0.

Since |snỹn| → +∞, by Lemma 3.1 we know that, for any m ∈ N, there exist nm ∈ N and {gi}mi=1 ⊂ O(N)
such that
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∫
RN

|un|2
∗
dx =

∫
RN

|vn|2
∗
dx �

m∑
i=1

∫
BR(gi(snỹn))

|vn|2
∗
dx

= m

∫
BR(snỹn)

|vn|2
∗
dx > mε for n > nm,

where we used (3.4) and v(y, z) = v(|y|, z). Let m → ∞, then |un|2∗ n−→ +∞, which contradicts that
{un} ⊂ L2∗ is bounded.

Now we can choose ϕ ∈ C∞
0 (RN ) satisfying

∫
RN vϕ dx 
= 0. Take R > 0 such that suppϕ ⊂ BR. Since

u ∈ D1,2(RN ) → T (s, ξ)u ∈ D1,2(RN ) is isometric, we know that {Tλn,0wn} is also bounded in D1,2(BR),
hence in L2(BR), then Tsn,0wn ⇀ v in L2(BR). Thus,

∫
RN

Tsn,0wnϕdx =
∫
BR

Tsn,0wnϕdx →
∫
BR

vϕ dx =
∫
RN

vϕ dx 
= 0.

On the other hand, since 1 < q < 2∗ and N
q − N−2

2 > 0,

∣∣∣∣
∫
RN

Tsn,0wnϕdx

∣∣∣∣ � |ϕ|∞|BR|
q−1
q |Tsn,0wn|Lq(BR)

� s
N
q −N−2

2
n |ϕ|∞|BR|

q−1
q sup

n
|un|q.

Therefore, if limn→∞ sn = 0, we obtain a contradiction. This implies that there exists l > 0 such that
infn sn > l, since sn > 0 for all n. �
Lemma 3.6. Let u ∈ D1,2(RN ) \ {0} be a nonnegative function, and K ⊂ RN be a closed set with zero
measure. Then there exists ϕ ∈ C∞

0 (RN \K) with ϕ � 0 such that
∫
RN ∇u∇ϕdx > 0.

Proof. Since K ⊂ RN is closed and u 
≡ 0, we can choose a ball B ⊂⊂ RN \K, and a nonnegative function
f ∈ C∞

0 (B) ⊂ C∞
0 (RN \K) such that

∫
RN uf dx > 0. Otherwise, u(x) = 0 a.e. in x ∈ RN \K, and it follows

from |K| = 0 that u(x) = 0 a.e. in x ∈ RN , which contradicts u 
≡ 0 in D1,2(RN ). Then the problem

{−Δv = f, x ∈ B,

v = 0, x ∈ ∂B

has a nontrivial solution ϕ̃ � 0 on B and ϕ̃ ∈ C∞
0 (B). Setting

ϕ =
{
ϕ̃, x ∈ B,

0, x ∈ RN \B.

Hence,

∫
RN

∇u∇ϕdx =
∫
RN

uf dx > 0. �

Based on Lemmas 3.5 and 3.6, we prove now the following theorem, which is important in proving our
main Theorems 1.1 and 1.2.
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Theorem 3.1. Let {un} ⊂ E be a nonnegative sequence such that

‖un‖E +
∫
R3

φun
u2
n dx � C, and for any ϕ ∈ C∞

0
(
R3 \ T

)
, there holds

∫
R3

[
∇un∇ϕ +

(
1

|y|α + λn

)
unϕ

]
dx +

∫
R3

φun
(x)unϕdx =

∫
R3

un
pϕdx + o(1), (3.10)

where α � 0, p ∈ (2, 5) and λn � 0 with λn
n−−→ λ0 < +∞. If {un} does not converge to 0 in L6(R3), then

there exist {z̃n} = {(0, zn)} ⊂ R2 × R and a nonnegative function w ∈ E \ {0} such that

wn = T1,z̃nun
n
⇀w weakly in E,

and, for any ϕ ∈ C∞
0 (R3 \ T ),

∫
R3

[
∇w∇ϕ +

(
1

|y|α + λ0

)
wϕ

]
dx +

∫
R3

φw(x)wϕdx =
∫
R3

wpϕdx. (3.11)

Moreover, ‖w‖E +
∫
R3 φww

2 dx � C and w ∈ C2(R3 \ T ).

Proof. If {un} ⊂ E does not converge to 0 in L6(R3), by Lemma 3.4 with N = 3, there exist {sn} ⊂ (0,+∞)
and {xn} ⊂ R3 with xn = (yn, zn) ∈ R2 × R such that

Tsn,xn
un

n
⇀u 
= 0 weakly in L6(R3). (3.12)

Let

z̃n = (0, zn) ∈ R2 × R1, wn = T1,z̃nun = T (1, z̃n)un(x). (3.13)

By (3.12) and Lemma 3.5 with N = 3, we have

vn = Tsn,0wn
n
⇀v 
≡ 0, weakly in D1,2

s

(
R3), (3.14)

where v is nonnegative. And we claim that sn > l > 0 for all n ∈ N. Indeed, since −Δφun
= u2

n, we easily
conclude

∫
R3

|un|3 dx =
∫
R3

∇φun
∇un dx and

∫
R3

φun
u2
n dx =

∫
R3

|∇φun
|2 dx.

By applying Hölder inequality, we deduce that

2
∫
R3

|un|3 dx �
∫
R3

|∇un|2 dx +
∫
R3

|∇φun
|2 dx =

∫
R3

|∇un|2 dx +
∫
R3

φun
u2
n dx � C.

So, taking N = 3 and q = 3 in Lemma 3.5, we know that there is l > 0 such that sn > l for all n ∈ N.

Step 1. There exists L > l > 0 such that sn < L for n ∈ N large.
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Recalling the definition of T in (1.11), we have |T | = 0. Since v � 0, by Lemma 3.6, there exists a
nonnegative function ϕ1 ∈ C∞

0 (R3 \ T ) such that
∫
R3

∇v∇ϕ1 dx > 0.

It follows from (3.13) and (3.14) that
∫
R3

∇(Tsn,z̃nun)∇ϕ1 dx →
∫
R3

∇v∇ϕ1 dx > 0. (3.15)

Noting that T−1
sn,z̃n

ϕ1(x) = s
1
2
nϕ1(snx − snz̃n), then T−1

sn,z̃n
ϕ1(x) ∈ C∞

0 (R3 \ T ). Taking ϕ = T−1
sn,z̃n

ϕ1(x)
in (3.10), we see that

∫
R3

φun
unT

−1
sn,z̃n

ϕ1 dx +
∫
R3

∇un∇
(
T−1
sn,z̃n

ϕ1
)

+
(
λn + 1

|y|α
)
unT

−1
sn,z̃n

ϕ1 dx

=
∫
R3

up
nT

−1
sn,z̃n

ϕ1 dx + o(1).

It follows from un � 0 and λn � 0 that∫
R3

∇un∇
(
T−1
sn,z̃n

ϕ1
)
dx �

∫
R3

up
nT

−1
sn,z̃n

ϕ1 dx + o(1).

That is,
∫
R3

∇(Tsn,z̃nun)∇ϕ1 dx � s
p−5
2

n

∫
R3

(Tsn,z̃nun)pϕ1 dx + o(1)

� Cs
p−5
2

n

∫
supp ϕ1

(Tsn,z̃nun)p dx + o(1)

� Cs
p−5
2

n |Tsn,z̃nun|p6 + o(1) for 2 < p < 5

� Cs
p−5
2

n |∇un|p2 + o(1), by (3.1).

Since {un} is bounded in E, if sn → ∞, it follows that

lim sup
n→∞

∫
R3

∇(Tsn,z̃nun)∇ϕdx � 0,

which contradicts (3.15).

Step 2. {wn} is a bounded sequence in E such that, for any ϕ ∈ C∞
0 (R3 \ T ),

∫ [
∇wn∇ϕ +

(
1

|y|α + λn

)
wnϕ

]
dx +

∫
φwn

(x)wnϕdx =
∫

wn
pϕdx + o(1). (3.16)
R3 R3 R3
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By the properties of Ts,ξ in (3.4), we have

∣∣∇(T1,z̃nun)
∣∣
2 = |∇un|2,

∫
R3

|T1,z̃nun|2
|y|α dx =

∫
R3

|un|2
|y|α dx,

hence, ‖wn‖2
E = ‖T1,z̃nun‖2

E = ‖un‖2
E and {wn} is bounded in E. By the properties of T1,z̃n in (3.3) and

φu in (1.7), it is easy to see that

∫
R3

φun
unT

−1
1,z̃nϕdx =

∫
R3

T1,z̃n(φun
un)ϕdx =

∫
R3

φwn
wnϕdx,

∫
R3

[
∇un∇T−1

1,z̃nϕ +
(

1
|y|α + λn

)
unT

−1
1,z̃nϕ

]
dx =

∫
R3

[
∇wn∇ϕ +

(
1

|y|α + λn

)
wnϕ

]
dx,

and
∫
R3

up
nT

−1
1,z̃nϕdx =

∫
R3

wp
nϕdx.

Hence, (3.10) implies that (3.16) holds.

Step 3. wn
n
⇀w 
≡ 0 in E and w(x) � 0 a.e. in x ∈ R3.

By Step 1, there exists s0 ∈ [l, L] such that, passing to a subsequence, sn n−→ s0. Then, it follows from
(3.14) and Lemma 3.3 that

wn = T−1
sn,0vn

n
⇀T 1

s0
,0v 
≡ 0 weakly in D1,2

s

(
R3). (3.17)

By Step 2, there exists w ∈ E such that, passing to a subsequence, wn
n
⇀w weakly in E. Since E ⊂ D1,2

s (R3),
we have (D1,2

s (R3))∗ ⊂ E∗. Hence, wn
n
⇀w weakly in D1,2

s (R3). So, it follows from (3.17) that w = T 1
s0

,0v 
≡ 0
and w(x) � 0 a.e. in x ∈ R3, since v � 0 in (3.14).

Step 4. φw ∈ D1,2(R3) and (3.11) holds.
For each n ∈ N, |∇φwn

|22 =
∫
R3 φwn

w2
n dx =

∫
R3 φun

u2
n dx, hence,

∫
R3 φun

u2
n dx < C implies that {φwn

}
is bounded in D1,2

s (R3). So, there exists φ ∈ D1,2
s (R3) such that φwn

n
⇀φ weakly in D1,2

s (R3), that is

∫
R3

∇φwn
∇ϕdx n−→

∫
R3

∇φ∇ϕdx, for any ϕ ∈ C∞
0
(
R3). (3.18)

On the other hand, for any ϕ ∈ C∞
0 (R3), we have

∫
R3

∇φwn
∇ϕdx =

∫
R3

w2
nϕdx and

∫
R3

w2
nϕdx n−→

∫
R3

w2ϕdx. (3.19)

It follows from (3.18) and (3.19) that

∫
∇φ∇ϕdx =

∫
w2ϕdx for any ϕ ∈ C∞

0
(
R3).
R3 R3
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So, φ is a solution of −Δφ = w2 in the sense of distribution. Since w ∈ E ⊂ L6(R3), φw(x) =
∫
R3

w2(y)
|x−y| dy ∈

W 2,3(R3) by Theorem 9.9 in [15], hence φw satisfies −Δφw = w2 in the sense of distribution (Theorem 6.21
in [19]). By uniqueness, we have φw = φ ∈ D1,2

s (R3). It follows from (3.18) that

φwn

n
⇀φw weakly in D1,2

s

(
R3).

Then (see (3.18) in Step 3 of the proof of Theorem 1.1 in [17] for the details), for any ϕ ∈ C∞
0 (R3), we have

∫
R3

φwn
(x)wnϕdx n−→

∫
R3

φw(x)wϕdx.

For each bounded domain Ω ⊂ R3 and q ∈ (1, 6), it follows from (3.18) and the compactness of Sobolev
embedding that wn

n−→ w strongly in Lq(Ω). Hence, for any ϕ ∈ C∞
0 (R3 \ T ),

∫
R3

[
∇wn∇ϕ +

(
1

|y|α + λn

)
wnϕ

]
dx n−→

∫
R3

[
∇w∇ϕ +

(
1

|y|α + λ0

)
wϕ

]
dx

and ∫
R3

wp
nϕdx n−→

∫
R3

wpϕdx.

Hence, (3.16) implies that (3.11) holds.

Step 5. ‖w‖E +
∫
R3 φww

2 dx < C.
By Step 3, we have wn

n
⇀w weakly in E, and Step 4 implies that

∫
R3

φww
2 dx = |∇φw|22 and φwn

n
⇀φw weakly in D1,2(R3),

and the lower semi-continuity of norm implies that

‖w‖E � lim inf
n→+∞

‖wn‖E ,

and ∫
R3

φww
2 dx = |∇φw|22 � lim inf

n→+∞
|∇φwn

|22 = lim inf
n→+∞

∫
R3

φwn
w2

n dx.

Hence, we know from (3.13) that

‖w‖E +
∫
R3

φww
2 dx � lim inf

n→+∞

{
‖wn‖E +

∫
R3

φwn
w2

n dx

}

= lim inf
n→+∞

{
‖un‖E +

∫
R3

φun
u2
n dx

}
� C.

Step 6. w(x) ∈ C2(R3 \ T ).
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Since λ0 � 0 and w(x) � 0 for a.e. x ∈ R3, it follows from (3.11) that, for any nonnegative function
v ∈ C∞(R3 \ T ),

∫
R3

∇w∇v dx �
∫
R3

wpv dx. (3.20)

Then, Lemma 4.2 in Section 4 implies that (3.20) holds also for any nonnegative function v ∈ H1(R3).
Note that, for any nonnegative function ϕ ∈ C∞

0 (R3) and any nonnegative piecewise smooth function h on
[0,+∞), h(w)ϕ ∈ H1(R3). Take v = h(w)ϕ in (3.20), then we see that (4.7) in Section 4 holds with u = w

and N = 3. Hence, by Lemma 4.3, we have w ∈ L∞(R3). Let Ω ⊂⊂ R3 \ T be a bounded domain with
smooth boundary, then 1

|y| is a smooth function in Ω and w ∈ W 1,2(Ω) is a weak solution of

−Δw(x) = f(x), x ∈ Ω, (3.21)

where f(x) = |w|p−1w(x) − φw(x)w(x) − (λ0 + 1
|y| )w(x). Since w, φw ∈ W 1,2(Ω) and w ∈ L∞(Ω), we have

f(x) ∈ W 1,2(Ω). By using Theorem 8.10 in [15], we get w ∈ W 3,2
loc (Ω). Then, Sobolev imbedding theorem

implies that w ∈ C
1/4
loc (Ω), hence φw(x) ∈ C

2,1/4
loc (Ω) since φw(x) is a weak solution of −Δφ(x) = w2(x) in

D1,2(Ω). It follows that f(x) ∈ C
1/4
loc (Ω). By applying Theorem 9.19 in [15] to (3.21), we have w ∈ C

2,1/4
loc (Ω).

So w ∈ C2(R3 \ T ). �
Proof of Theorem 1.1. Let {un} ⊂ H be the bounded nonnegative (PS) sequence obtained by Lemma 2.6,
then there exists C > 0, which is independent of λ if λ ∈ (0, 1], such that

‖un‖2
H +

∫
R3

φun
un

2 dx � C and un(x) � 0 a.e. in x ∈ R3. (3.22)

Hence,

‖un‖2
E +

∫
R3

φun
un

2 dx � C, un(x) � 0 a.e. in x ∈ R3.

Moreover, (2.20) implies that (3.10) holds with λn ≡ λ > 0.
If {un} does not converge to 0 in L6(R3), by Theorem 3.1 there exist {z̃n} = {(0, zn)} ⊂ R2 × R and a

nonnegative function w ∈ E \ {0} such that

wn = T1,z̃nun
n
⇀w weakly in E, (3.23)∫

R3

[
∇w∇ϕ +

(
1

|y|α + λ

)
wϕ

]
dx +

∫
R3

φw(x)wϕdx =
∫
R3

wpϕdx for any ϕ ∈ C∞
0
(
R3 \ T

)
,

i.e., w is a weak solution of (1.1) in E. Moreover, w ∈ C2(R3 \ T ) and

‖w‖E +
∫
R3

φww
2 dx � C. (3.24)

Now, we claim that w ∈ H. In fact, by (3.3) and (3.23), we know that ‖wn‖H = ‖un‖H and ‖wn‖H is
bounded, so there exists w∗ ∈ H such that

wn
n
⇀w∗ weakly in H and wn(x) n−→ w∗(x), a.e. in x ∈ R3. (3.25)
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On the other hand, (3.23) implies that

wn(x) n−→ w(x), a.e. in x ∈ R3.

This and (3.25) show that w = w∗ ∈ H. Moreover, if λ ∈ (0, 1], Lemma 2.6 shows that there exists M > 0
independent of λ ∈ (0, 1] such that (3.22) holds with C = M , then (3.24) holds with C = M . Hence, to
complete the proof of Theorem 1.1, we only need to prove that {un} cannot converge to 0 in L6(R3). For
r ∈ (2, 6), by Hölder inequality we have

∫
R3

|un|r dx =
∫
R3

|un|
2
q |un|

6
q′ dx � |un|

2
q

2 |un|
6
q′
6

where q = 4
6−r > 1, q′ = q

q−1 = 4
r−2 > 1. Hence, if un

n−→ 0 in L6(R3), then un
n−→ 0 in Lr(R3) for

r ∈ (2, 6), this and (1.8) imply that
∫
R3 φun

(x)un
2 dx n−→ 0. Therefore, by (2.20) we have that, for p ∈ (2, 5),

c = lim
n→∞

[
I(un) − 1

2I
′(un)un

]

= lim
n→∞

[
−1

4

∫
R3

φun
(x)un

2 dx + p− 3
2(p + 1)

∫
R3

|un|p+1 dx

]
= 0,

but, this is impossible since c > 0. �
4. Existence for λ = 0: Proof of Theorem 1.2

In order to prove our Theorem 1.2, we need some further lemmas.

Lemma 4.1. Let N � 3 and Ω be a domain (bounded or unbounded) in RN , let Γ ⊂ Ω be a closed Manifold
with codim Γ = k � 2. Then C∞

0 (Ω \ Γ ) is dense in H1
0 (Ω).

Proof. For each u ∈ H1
0 (Ω) ∩ C∞

0 (Ω \ Γ )⊥ and ϕ̃ ∈ C∞
0 (Ω \ Γ ), we have

〈u, ϕ̃〉H1
0 (Ω) = 0. (4.1)

Since C∞
0 (Ω \ Γ ) is dense in H1

0 (Ω \ Γ ), it follows that

〈u, ψ〉H1
0 (Ω) = 0 for any ψ ∈ H1

0 (Ω \ Γ ). (4.2)

It is true that C∞
0 (Ω \ Γ ) is dense in H1

0 (Ω) if C∞
0 (Ω \ Γ )⊥ ∩H1

0 (Ω) = {0}. Hence, we only need to show
that (4.1) holds for all ϕ̃ ∈ C∞

0 (Ω) as follows.
For any ϕ ∈ C∞

0 (Ω), let Ω0 = suppϕ. If Ω0 ∩ Γ = ∅, then ϕ ∈ C∞
0 (Ω \ Γ ) and (4.1) holds with

ϕ̃ = ϕ. Otherwise, Ω0 ∩ Γ 
= ∅, setting Γ0 = Ω0 ∩ Γ , and taking d > 0 small enough such that Γd :=
{x ∈ Ω: dist(x, Γ0) < d} ⊂ Ω. Let

ψd(x) :=
{

dist(x,Γ2d)
d , x ∈ Γ3d,

1, x ∈ Ω \ Γ3d,

then ψd(x) ∈ C0,1(Ω) and ‖ψd‖C0,1(Ω) � 1
d . Let ϕd := ϕ(1 − ψd), we have ϕψd ∈ H1

0 (Ω \ Γ ) and ϕd ∈
H1

0 (Γ3d). It follows from (4.2) that



434 Y. Jiang, H.-S. Zhou / J. Math. Anal. Appl. 417 (2014) 411–438
〈u, ϕ〉H1 = 〈u, ϕd + ϕψd〉H1 = 〈u, ϕd〉H1 + 〈u, ϕψd〉H1

= 〈u, ϕd〉H1 � ‖u‖H1(Γ3d)‖ϕd‖H1(Γ3d). (4.3)

By the definition of ϕd, we have

|ϕd|2L2(Γ3d) =
∫
Γ3d

ϕ2
d dx � 4|ϕ|2L∞(Ω)|Γ3d| d→0−−−→ 0, (4.4)

|∇ϕd|2L2(Γ3d) =
∫
Γ3d

|∇ϕd|2 dx � C‖ϕ‖2
C1(Ω)|Γ3d|

(
1 + 1

d2

)

codim Γ=k
� Cdk−2 � C, since k � 2. (4.5)

So, |Γ3d| d→0−−−→ 0 implies that

‖u‖H1(Γ3d)
d→0−−−→ 0. (4.6)

It follows from (4.3) to (4.6) that (4.1) holds for all ϕ̃ ∈ C∞
0 (Ω). �

Lemma 4.2. Under the same assumptions as Lemma 4.1, then {ϕ ∈ H1
0 (Ω \ Γ ): ϕ(x) � 0} is dense in

{ϕ ∈ H1
0 (Ω): ϕ(x) � 0}.

Proof. Lemma 4.1 shows that for any u(x) ∈ H1
0 (Ω), there exist {ϕn(x)} ⊂ C∞

0 (Ω \ Γ ) such that

‖ϕn − u‖H1(Ω)
n−→ 0.

This lemma is proved if we have

∥∥|ϕn| − |u|
∥∥
H1(Ω)

n−→ 0,

which is clear by using the following two facts,

0 �
∣∣(|ϕn| − |u|

)∣∣2
2 =

∫
Ω

|ϕn|2 + |u|2 − 2|ϕn||u| dx

�
∫
Ω

(
ϕ2
n + u2 − 2ϕnu

)
dx = |ϕn − u|22 n−→ 0,

0 �
∥∥|ϕn| − |u|

∥∥2
D1,2 =

∫
Ω

(∣∣∇|ϕn|
∣∣2 +

∣∣∇|u|
∣∣2 − 2∇|ϕn|∇|u|

)
dx

=
∫
Ω

∣∣∇(ϕn − u)
∣∣2 dx + 4

∫
Ω

∇ϕ+
n∇u− + ∇ϕ−

n∇u+ dx n−→ 0,

here and in what follows, we always mean that

w+(x) = max
{
0, w(x)

}
and w−(x) = min

{
0, w(x)

}
for any function w(x) on R3. �
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Lemma 4.3. (See Lemma 3.2 of [18].) Let N � 3, p ∈ (1, N+2
N−2 ) and let u ∈ D1,2(RN ) \ {0} be a nonnegative

function such that
∫
RN

∇u∇
(
h(u)ϕ

)
dx �

∫
RN

|u|p−1uh(u)ϕdx, (4.7)

holds for any nonnegative ϕ ∈ C∞
0 (RN ) and any nonnegative piecewise smooth function h on [0,+∞) with

h′ ∈ L∞(R). Then, u ∈ L∞(RN ) and there exist C1 > 0 and C2 > 0, which depend only on N and p, such
that

|u|∞ � C1
(
1 + |u|C2

2∗
)
|u|2∗ .

Lemma 4.4. For p > 2, let (u, φ) ∈ H1(R3)∩Lp+1(R3)×D1,2(R3) be a nontrivial nonnegative weak solution
of the following problem

{
−Δu + μφ(x)u � |u|p−1u, μ > 0, x ∈ R3,

−Δφ = u2, x ∈ R3.
(4.8)

Then

|u|∞ > μ
1

2(p−2) .

Proof. By assumption, (u, φ) ∈ H1(R3) ∩ Lp+1(R3) × D1,2(R3) is a weak solution of (4.8), then, for any
nonnegative function v ∈ H1(R3) ∩ Lp+1(R3), we have

∫
R3

∇u∇v dx + μ

∫
R3

φ(x)uv dx−
∫
R3

|u|p−1uv dx � 0, (4.9)

∫
R3

∇φ∇v dx =
∫
R3

u2v dx. (4.10)

For c > 0, adding c
∫
R3 u

2v dx to both sides of (4.9), and using (4.10) we know that, for any v ∈ H1(R3) ∩
Lp+1(R3),

∫
R3

∇u∇v dx +
∫
R3

[
cu2 − |u|p−1u

]
v dx + μ

∫
R3

φ(x)uv dx � c

∫
R3

∇φ∇v dx. (4.11)

For the above c > 0, taking ε > 0 small, we set

w1(x) =
(
u(x) − cφ(x) − ε

)+ and Ω1 =
{
x ∈ Ω: w1(x) > 0

}
. (4.12)

It is easy to see that u(x) |x|→+∞−−−−−−→ 0 and φ(x) � 0 a.e. x ∈ R3, then w1 ∈ H1(R3) ∩ Lp+1(R3) and
u(x)|Ω1 > cφ(x) > 0. Taking v(x) = w1(x) in (4.11), we see that

∫
Ω1

∇u∇w1 dx +
∫
Ω1

[
cu2 − |u|p−1u

]
w1 dx � c

∫
Ω1

∇φ∇w1 dx. (4.13)

However, for all x ∈ Ω1 we have cu2 − |u|p−1u � 0 if c = δp−2 with δ = |u|∞. Then, let c = δp−2 and (4.13)
implies that
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∫
Ω1

∇u∇w1 dx− c

∫
Ω1

∇φ∇w1 dx � 0,

that is,

∫
Ω1

∇
(
u− δp−2φ

)
∇w1 dx =

∫
Ω1

|∇w1|2 dx = 0. (4.14)

Hence, either |Ω1| = 0 or w1|Ω1 ≡ constant, this means that u(x) � δp−2φ(x) + ε a.e. x ∈ R3. For ε → 0,
we have

u(x) � δp−2φ(x), a.e. in x ∈ R3. (4.15)

To prove that |u|∞ > μ
1

2(p−2) , we let v = u in (4.9), it follows that

∫
R3

|∇u|2 dx + μ

∫
R3

φ(x)u2 dx−
∫
R3

up+1 dx � 0,

that is,

μ

∫
R3

φ(x)|u|2 dx �
∫
R3

|u|p+1 dx.

This and (4.15) show that

∫
R3

(
up−2 − μδ2−p

)
u3 dx � 0.

Hence, δp−2 � μδ2−p by p > 2. On the other hand, by u 
≡ 0 we know that δ > 0. Then |u|∞ = δ �
μ

1
2(p−2) . �

Proof of Theorem 1.2. By Theorem 1.1, we know that, for each λ ∈ (0, 1), problem (1.1) has nonnegative
solution uλ ∈ H \ {0} such that ‖uλ‖E +

∫
R3 φuλ

u2
λ dx � M and (3.10) holds with un = uλ and λn = λ.

Since uλ � 0, it follows from (3.10) that

∫
R3

∇uλ∇ϕdx +
∫
R3

φuλ
(x)uλϕdx �

∫
R3

up
λϕdx for all ϕ ∈ C∞

0
(
R3 \ T

)
, ϕ � 0.

This and Lemma 4.2 show that, for all v ∈ H1(R3) with v � 0,

∫
R3

∇uλ∇v dx +
∫
R3

φuλ
(x)uλv dx �

∫
R3

up
λv dx, (4.16)

this means (4.8) holds with u = uλ and μ = 1. Hence, Lemma 4.4 gives that

|uλ|∞ � 1 for all λ > 0. (4.17)



Y. Jiang, H.-S. Zhou / J. Math. Anal. Appl. 417 (2014) 411–438 437
Meanwhile, for any nonnegative function ϕ ∈ C∞
0 (R3) and any nonnegative piecewise smooth function h on

[0,+∞), we see that h(uλ)ϕ ∈ H1(R3). Let v = h(uλ)ϕ in (4.16), it follows that (4.7) holds with u = uλ

and N = 3. Hence, by Lemma 4.3, we have

|uλ|∞ � C1
(
1 + |uλ|C2

6
)
|uλ|6. (4.18)

So, (4.17) and (4.18) imply that uλ does not converge to 0 in L6(R3) as λ → 0, then Theorem 3.1 shows
that there exists a nonnegative function u ∈ E, u 
≡ 0, such that,

∫
R3

∇u∇ϕ + uϕ

|y|α dx +
∫
R3

φu(x)uϕdx =
∫
R3

upϕdx, for all ϕ ∈ C∞
0
(
R3 \ T

)
.

Moreover, u ∈ C2(R3 \ T ). �
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