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We establish the Mehler–Heine type formulae for orthonormal polynomials with 
respect to generalized Freud weights. Using this type of asymptotics, we can give 
estimates of the value at the origin of these polynomials and of all their derivatives 
as well as the asymptotic behavior of the corresponding zeros.
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1. Introduction

The theory of orthogonal polynomials is a major topic in Approximation Theory. Since the nineteenth 
century they have been studied widely, especially when they are orthogonal with respect to a standard 
inner product, i.e., an inner product (· , ·) defined in a pre-Hilbert space H containing the space of the 
polynomials P such that (xf, g) = (f, xg), for all f, g ∈ H. A very important case of this type of inner 
products refers to the ones generated by means of weight functions. Thus, if we consider W (x) a weight 
function on an interval I ⊆ R, then we can construct an inner product as

(f, g) =
∫
I

f(x)g(x)W (x)dx, where f, g ∈ L2
W :=

{
f :

∫
I

f2(x)W (x)dx < ∞
}
.
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In this paper, we consider the exponential weights Wα(x) = exp(−c|x|α), α > 1, on the real line where 
c > 0 is a normalization constant. The orthogonal polynomials with respect to the inner product

(f, g) =
∫
R

f(x)g(x)W 2
α(x)dx,

are so-called Freud orthogonal polynomials. The literature on this topic has been very wide since the sixties 
when G. Freud started to study these weights, though it is mandatory to cite two very nice and deep 
books: one by A.L. Levin and D.S. Lubinsky [6] and the other one by E.B. Saff and V. Totik [9]. About the 
asymptotics of the corresponding orthogonal polynomials, the first results correspond to the cases α = 4
with c = 1/2 [8] and α = 6 with c = 1/12 [10]. Later, using the powerful Riemann–Hilbert method, several 
authors have given precise asymptotic results (see the survey [13] and the references therein).

From now on, we choose c = 1, i.e.

Wα(x) = exp
(
−|x|α

)
, α > 1. (1)

We denote by (pn)n the sequence of orthonormal polynomials with respect to W 2
α(x), pn(x) = γnx

n + . . . , 
with γn > 0. These weights can be generalized considering Wα,m(x) = xm exp(−|x|α) with α > 1 and 
m ∈ N ∪ {0}. Thus, the functions

W 2
α,m(x) = x2m exp

(
−2|x|α

)
, α > 1, m ∈ N ∪ {0}, (2)

are weights on the real line. We denote by (p[m]
n )n the sequence of orthonormal polynomials with respect 

to (2), p[m]
n (x) = γ

[m]
n xn + . . . , with γ[m]

n > 0. Clearly, when m = 0 we have the Freud polynomials, i.e., 
p
[0]
n = pn, for all n. Thus, the polynomials p[m]

n are so-called generalized Freud orthonormal polynomials. 
These polynomials belong to a wider class of weights on the real line given by x2m exp(−Q(x)) with Q
belonging to the class F(C2+) (see [6] to get more information about this and other classes). In more 
general frameworks, asymptotic properties of these polynomials have been obtained, for example, in [6] or 
in [14] using powerful techniques.

The main aim of this paper is to establish the Mehler–Heine type asymptotics of the sequence (p[m]
n )n, 

and as an immediate consequence we deduce the asymptotic behavior of the corresponding zeros. Besides, 
this formula also permits to obtain asymptotic estimates of (p[m]

n )(j)(0) with j = 0, . . . , n.
The structure of the paper is the following. In Section 2, we establish the Mehler–Heine type formulae 

for the sequence (pn)n on compact subsets of the complex plane. In addition, we obtain estimates for 
(pn)(j)(0), j = 0, . . . , n, when n → ∞. In Section 3, we give our main result about the Mehler–Heine 
asymptotics of the generalized Freud orthonormal polynomials and their consequences on the asymptotic 
behavior of (p[m]

n )(j)(0) and on the zeros of this family of orthogonal polynomials.
Throughout the paper we use the notation xn � yn, when n → ∞, meaning limn→∞ xn/yn = 1.

2. Freud orthonormal polynomials

As we have commented in the Introduction, in this section we will establish the Mehler–Heine type 
asymptotics of the polynomials pn. Thus, we have

Theorem 1. Let (pn)n be the sequence of Freud orthonormal polynomials with respect to the weight function 
W 2

α(x) defined by (1). Then, the polynomials pn satisfy the following Mehler–Heine type formulae

lim (−1)na1/2
2n p2n

(
z

)
=

√
2 cos z,
n→∞ b2n π
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lim
n→∞

(−1)na1/2
2n+1p2n+1

(
z

b2n+1

)
=

√
2
π

sin z,

both uniformly on compact subsets of C, where

an = (cαn)1/α and bn = α

α− 1
n

an
, (3)

with

cα =
√
π

2
Γ (α/2)

Γ ((α + 1)/2) . (4)

Note that, for each n, an is the well-known n-th Mhaskar–Rakhmanov–Saff number. This number is 
defined as the positive solution of an integral equation, and for the weight (1) it can be computed explicitly 
obtaining the value given by (3)–(4) (see, for example, [2, Proposition 10.1.1] or the seminal paper [7]). 
For general exponential weights, the constant bn was introduced in [2, Eq. (1.2.2)]. This constant plays an 
important role in Melher–Heine type asymptotics as well as in polynomial approximation with exponential 
weights.

To prove this result we use the asymptotic formulae for the polynomials pn obtained by Kriecherbauer and 
McLaughlin in [5] using a Riemann–Hilbert method. In that asymptotic behavior there appears a function, 
namely Ψα. Next, we show some properties of that function which play an important role in the proof of 
Theorem 1.

Lemma 1. Let Ω = {z ∈ C; Re z > 0, z /∈ [1, ∞)} and the function Ψα : Ω → C defined by

Ψα(z) := α

π
zα−1

1/z∫
1

uα−1
√
u2 − 1

du,

where we take the principal branch of the logarithm function and α > 1. Then, the following properties are 
satisfied:

(a) Ψα is a holomorphic function on Ω, namely Ψα ∈ H(Ω).
(b) Ψα has a continuous extension to (D(0, 1) ∩ {Re z ≥ 0}) ∪ {1}.
(c)

∫ z

0 Ψα(y)dy =
∫ z

1 Ψα(y)dy + 1/2, z ∈ (D(0, 1) ∩ {Re z ≥ 0}) ∪ {1}.
(d)

∫ z

0 Ψα(y)dy = Ψα(0)z + O(zmin{α,3}), z → 0.

Proof. (a) Fixed z ∈ Ω, let γ : [0, 1] → C be a complex function defined by

γ(t) := γz(t) = 1 + t

(
1
z
− 1

)
, t ∈ [0, 1].

Hence

Ψα(z) = α

π
zα−1

(
1
z
− 1

) 1∫
0

g(t, z)dt

where

g(t, z) = γ(t)α−1√
2

.

γ(t) − 1
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To prove that Ψα ∈ H(Ω), it suffices to show that G(z) =
∫ 1
0 g(t, z)dt ∈ H(Ω), because zα−1 ∈ H(Ω).

First, we define the function Gε(z) for any ε > 0 as

Gε(z) :=
1∫

ε

g(t, z)dt,

which verifies the following properties:
i) Fixed t ∈ [ε, 1], g(t, z) ∈ H(Ω) because if z ∈ Ω, then 1/z /∈ (0, 1], Re (1/z) > 0, and the function √
u2 − 1 is holomorphic on C \ (iR ∪ [−1, 1]).
ii) Gε(z) is a continuous function on Ω. To check this, it can be used Lebesgue’s dominated convergence 

theorem since |g(t, z)| ≤ M ∈ L1([ε, 1]) for z ∈ K, where K is an arbitrary compact subset of Ω.
iii) Applying Morera’s Theorem, Gε(z) is holomorphic on Ω. Indeed, let Δ be a closed triangle in Ω. 

Then, using Fubini’s Theorem and the fact that g(t, z) ∈ H(Ω), we get

∫
∂Δ

Gε(z)dz =
1∫

ε

( ∫
∂Δ

g(t, z)dz
)
dt = 0.

Now, to establish that the function G(z) ∈ H(Ω) we are going to prove that limε→0 Gε(z) = G(z), 
uniformly on compact subsets of Ω.

Let K be a fixed compact set in Ω. Using Lebesgue’s dominated convergence theorem again, we have

sup
z∈K

∣∣Gε(z) −G(z)
∣∣ ≤ 1∫

0

sup
z∈K

{∣∣g(t, z)∣∣}∣∣χ[ε,1](t) − 1
∣∣dt → 0, ε → 0,

since |g(t, z)| ≤ Ct−1/2 ∈ L1([0, 1]) for all z ∈ K, where C is a positive constant which depends only on K.
(b) Performing a change of variable in the integral which appears in the definition of Ψα, the restriction 

of this function to (0, 1) takes the form

Ψα(x) = α

π

1∫
x

tα−1
√
t2 − x2

dt.

Next, handling the above integral we get another useful expression for the function Ψα. Let x ∈ (0, 1), 
then

π

α
Ψα(x) =

1∫
x

tα−2√
1 − x2

t2

dt = xα−1
1∫

x

s−α
(
1 − s2)−1/2

ds

= xα−1 lim
ε→0

1−ε∫
x

s−α
(
1 − s2)−1/2

ds = xα−1 lim
ε→0

1−ε∫
x

s−α
∞∑

n=0

(
−1/2
n

)
(−1)ns2nds

= xα−1 lim
ε→0

∞∑
n=0

(
−1/2
n

)
(−1)n (1 − ε)2n−α+1

2n− α + 1 −
∞∑

n=0

(
−1/2
n

)
(−1)nx2n

2n− α + 1

= xα−1
∞∑(

−1/2
n

)
(−1)n

2n− α + 1 −
∞∑(

−1/2
n

)
(−1)nx2n

2n− α + 1 ,

n=0 n=0
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where the last two equalities hold because the radius of convergence of the series is equal to 1 and the series 
converges at x = 1.

Now, we consider the function

F (z) = zα−1
∞∑

n=0

(
−1/2
n

)
(−1)n

2n− α + 1 −
∞∑

n=0

(
−1/2
n

)
(−1)nz2n

2n− α + 1 ,

which is analytic on D(0, 1) \ (−1, 0]. So, taking into account that Ψα ∈ H(Ω), the analytic continuation 
principle yields

Ψα(z) = α

π
F (z), z ∈ D(0, 1) ∩Ω,

that is, for z ∈ D(0, 1) ∩ {Re z > 0}, we have obtained

Ψα(z) = Azα−1 − α

π

∞∑
n=0

(
−1/2
n

)
(−1)nz2n

2n− α + 1 , (5)

where A = α
π

∑∞
n=0

(−1/2
n

) (−1)n
2n−α+1 . Thus, we can extend the definition of the function Ψα to (D(0, 1) ∩{Re z ≥

0}) ∪ {1} being

Ψα(0) := α

π

1
α− 1 . (6)

(c) Since F (z) is holomorphic on D(0, 1) \ (−1, 0] and continuous at z = 0 and z = 1, it can be deduced 
that ∫

[0,1]∪[1,z]∪[z,0]

F (u) du = 0,

and therefore, for all z ∈ D(0, 1) ∩ {Re z ≥ 0}, we have∫
[0,1]∪[1,z]∪[z,0]

Ψα(u) du = 0.

To conclude, it suffices to observe that applying Fubini’s Theorem we get

1∫
0

Ψα(x) dx = α

π

1∫
0

tα−1

( t∫
0

1√
t2 − x2

dx

)
dt = α

2

1∫
0

tα−1dt = 1/2.

(d) Considering the expression of Ψα(z) given by (5) and since the series which appears converges uni-
formly on compact subsets of D(0, 1), we obtain

z∫
0

Ψα(u) du =
z∫

0

(
Auα−1 − α

π

1
1 − α

− α

π

∞∑
n=1

(
−1/2
n

)
(−1)nu2n

2n− α + 1

)
du

= A
zα

α
+ Ψα(0)z − α

π

∞∑
n=1

(
−1/2
n

)
(−1)nz2n+1

(2n− α + 1)(2n + 1) ,

and the result follows. �
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Proof of Theorem 1. Taking into account the symmetries

pn(−z) = (−1)npn(z), pn(z̄) = pn(z),

we only need to prove the Mehler–Heine type formulae in the first quadrant of the complex plane, that is 
in {z ∈ C; Re z ≥ 0, Im z ≥ 0}.

In [5, Theorem 1.16], the authors give the strong asymptotics of polynomials orthogonal with respect to 
the Freud weights w̃α = exp(−kα|x|α) where kα = 2cα, with α > 0.

Denoting by p̃n(z) the orthonormal polynomials with respect to the weight function w̃α, it can be obtained 
that the relation between the two families of orthonormal polynomials p̃n and pn is

n1/2αp̃n
(
n1/αz

)
= a1/2

n pn(anz).

Then, from Theorem 1.16(v) it follows that given α > 1, there exists a δ0 > 0 such that for all 0 < δ ≤ δ0
and for z ∈ Dδ = {z; |z| ≤ δ, Re z ≥ 0, Im z ≥ 0} the following asymptotic estimation for the polynomials pn
holds:

a1/2
n pn(anz) =

√
2
π

exp
(
aαnz

α
)
(1 − z)−1/4(1 + z)−1/4

×
{

cos
(
nπ

z∫
1

Ψα(y)dy + 1
2 arcsin z

)(
1 + o(1)

)

+ sin
(
nπ

z∫
1

Ψα(y) dy − 1
2 arcsin z

)
o(1)

}
, n → ∞, (7)

where Ψα is the function defined in Lemma 1 and the error terms on the right-hand side are uniform in 
z ∈ Dδ.

Next, we consider a fixed compact set K in the first quadrant of C and M = MK a constant such that 
|z| ≤ M for all z ∈ K. Writing

z = anbnw,

it follows that

|anw| =
∣∣∣∣ zbn

∣∣∣∣ ≤ M

bn
−→ 0, n → ∞,

|w| =
∣∣∣∣ z

anbn

∣∣∣∣ ≤ M(α− 1)
αn

−→ 0, n → ∞. (8)

Thus, if z ∈ K we can assure that |w| ≤ δ0 < 1 for n large enough.
Hence, from (7) and Lemma 1(c), we obtain

a1/2
n pn

(
z

bn

)
=

√
2
π

exp
(
aαnw

α
)
(1 − w)−1/4(1 + w)−1/4

×
{

cos
(
nπ

w∫
0

Ψα(y)dy − n
π

2 + 1
2 arcsinw

)(
1 + o(1)

)

+ sin
(
nπ

w∫
Ψα(y) dy − n

π

2 − 1
2 arcsinw

)
o(1)

}
, n → ∞.
0
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Besides, using the asymptotic estimates:

exp
(
aαnw

α
)

= 1 + O
(
(anw)α

)
= 1 + O(anw), anw → 0,

(1 − w)−1/4(1 + w)−1/4 = 1 + O
(
w2), w → 0,

1
2 arcsinw = 1

2w + O
(
w3), w → 0,

and Lemma 1(d), we have

a1/2
n pn

(
z

bn

)
=

√
2
π

(
1 + o(1)

)(
1 + O

(
w2))

×
{

cos
(
nπΨα(0)w + O

(
nwmin{α,3})− n

π

2 + o(1)
)(

1 + o(1)
)

+ sin
(
nπΨα(0)w + O

(
nwmin{α,3})− n

π

2 + o(1)
)
o(1)

}
, n → ∞.

Now, since α > 1, from (8) we get O(nwmin{α,3}) = o(1), and from (6), we have

nπΨα(0)w = anbnw = z,

so we obtain

a1/2
n pn

(
z

bn

)
=

√
2
π

(
1 + o(1)

){
cos

(
z − n

π

2 + o(1)
)

+
[
cos

(
z − n

π

2 + o(1)
)

+ sin
(
z − n

π

2 + o(1)
)]

o(1)
}
, n → ∞.

Finally, observe that since the functions sine and cosine are bounded on any compact set K ⊂ C, the 
following relations

cos
(
z − n

π

2 + o(1)
)

= cos
(
z − n

π

2

)
+ o(1), n → ∞,

sin
(
z − n

π

2 + o(1)
)

= sin
(
z − n

π

2

)
+ o(1), n → ∞,

hold. Thus,

a1/2
n pn

(
z

bn

)
=

√
2
π

(
1 + o(1)

)[
cos

(
z − n

π

2

)
+ o(1)

]

=
√

2
π

cos
(
z − n

π

2

)
+ o(1), n → ∞,

and the proof is concluded. �
Remark 1. This result in a more general setting was obtained by Ganzburg for compact subsets of R (see 
[2, Theorem 8.3.2]).

Next, we claim that a more general version of Theorem 1 can be deduced using Cauchy’s integral formula.
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Corollary 1. Let (pn)n be the sequence of Freud orthonormal polynomials with respect to the weight function 
W 2

α(x) defined by (1). Then, the polynomials pn satisfy the following Mehler–Heine type formulae

lim
n→∞

(−1)na1/2
2n p2n

(
z

b2n+j

)
=

√
2
π

cos z, (9)

and

lim
n→∞

(−1)na1/2
2n+1p2n+1

(
z

b2n+j

)
=

√
2
π

sin z, (10)

both uniformly on compact subsets of C and for every j ∈ Z.

Proof. In a more general setting, we will prove that if (fn)n is a sequence of holomorphic functions on C
and (bn)n is a sequence of complex numbers satisfying limn→∞

bn
bn+j

= 1 for every integer j ∈ Z such that 
(fn(z/bn))n converges to a function f uniformly on compact subsets of C, then

lim
n→∞

fn

(
z

bn+j

)
= f(z)

uniformly on compact subsets of C for every integer j ∈ Z.
Indeed, fixed an integer j and K a compact subset of C, there exist constants Cj > 1 and R > 0 such 

that | bn
bn+j

| ≤ Cj for all n and K ⊂ D(0, R). Define Fn(z) := fn(z/bn), then by Cauchy’s integral formula 
we have

fn

(
z

bn+j

)
− fn

(
z

bn

)
= Fn

(
zbn
bn+j

)
− Fn(z)

= 1
2πi

∫
∂D(0,2CjR)

Fn(w)
(

1
w − zbn/bn+j

− 1
w − z

)
dw,

for all z ∈ K. We can observe that

|w − z| ≥ |w| − |z| > 2CjR− CjR = CjR > R,

|w − zbn/bn+j | ≥ |w| − |z||bn/bn+j | > 2CjR− CjR = CjR > R,

and since Fn converges uniformly on compact subsets of C, we deduce that there exists a constant Aj > 0
such that sup{|Fn(w)|; |w| = 2CjR} ≤ Aj for all n. Thus,

sup
z∈K

∣∣∣∣fn( z

bn+j

)
− fn

(
z

bn

)∣∣∣∣ ≤ 2CjAj |bn/bn+j − 1|

and the result follows. �
As a consequence of Theorem 1 we can deduce nice results about asymptotic behavior of Freud orthonor-

mal polynomials pn at the origin.

Proposition 1. Let (pn)n be the sequence of Freud orthonormal polynomials with respect to the weight function 
W 2

α(x) defined by (1). We have:
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(a) Derivatives of pn at z = 0.

p
(2k)
2n (0) � (−1)n+k

√
2
π
a
−1/2
2n b2k2n, n → ∞

p
(2k+1)
2n+1 (0) � (−1)n+k

√
2
π
a
−1/2
2n+1b

2k+1
2n+1, n → ∞

with k = 0, . . . , n.
(b)

lim
n→∞

np2
2n(0)

K2n(0, 0) = lim
n→∞

np2
2n(0)

K2n−2(0, 0) = lim
n→∞

np2
2n(0)

K2n+1(0, 0) = α− 1
α

, (11)

where Kn(x, y) are the kernel polynomials associated with the polynomials pn.

Proof. (a) From Theorem 1 and using the Taylor series for the polynomials p2n at the point z = 0, we have

(−1)na1/2
2n

2n∑
k=0

p
(k)
2n (0)
k!bk2n

zk →
√

2
π

∞∑
k=0

(−1)k

(2k)! z
2k,

uniformly on compact subsets of C, which proves the result for the even case. The odd case can be established 
in the same way.

(b) Using the Stolz–Cesàro criterion we get,

lim
n→∞

K2n(0, 0)
n1−1/α = lim

n→∞
p2
2n(0)

n1−1/α( (α−1)/α
n + O(n−2))

= lim
n→∞

n1/αp2
2n(0)

α−1
α + O(n−1)

= α

α− 1
2
π

(2cα)−1/α.

To conclude, it is sufficient to observe that by (a)

lim
n→∞

p2
2n−2(0)
p2
2n(0) = 1,

and K2n+1(0, 0) = K2n(0, 0) by the symmetry of Freud polynomials pn.
Then, the equalities in (11) follow. �

3. Mehler–Heine type asymptotics for generalized Freud orthonormal polynomials

Now, we consider the weight functions on the real line

W 2
α,m(x) = x2m exp

(
−2|x|α

)
, α > 1, m ∈ N ∪ {0}.

As we have commented in the Introduction, we denote by (p[m]
n )n the sequence of orthonormal polynomials 

with respect to the inner product

(f, g) =
∫

f(x)g(x)W 2
α,m(x)dx.
R
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The leading coefficient of p[m]
n is γ[m]

n > 0, and we also use the notation K [m]
n (x, y) for the corresponding 

kernel polynomials.
To reach our objective, i.e. the Mehler–Heine formulae for these polynomials, we need to establish a 

previous result where we give a relation between the sequences of orthonormal polynomials (p[m+1]
n )n and 

(p[m]
n )n.

Lemma 2. For m ≥ 0, we have,

xp
[m+1]
n−1 (x) =

γ
[m+1]
n−1

γ
[m]
n

[
p[m]
n (x) − p

[m]
n (0)

K
[m]
n−1(0, 0)

K
[m]
n−1(x, 0)

]
, n ≥ 1. (12)

Moreover, (
γ

[m]
n

γ
[m+1]
n−1

)2

= 1 + (p[m]
n (0))2

K
[m]
n−1(0, 0)

= K
[m]
n (0, 0)

K
[m]
n−1(0, 0)

. (13)

Proof. We use a technique already considered in other frameworks (see, for example, [1, Lemma 2.1] or 
[3, Lemma 3]). Expanding xp[m+1]

n−1 (x) in terms of the polynomials p[m]
n :

xp
[m+1]
n−1 (x) =

n∑
j=0

αjp
[m]
j (x).

If j = 1, . . . , n − 1, the orthonormality properties of p[m]
n and p[m+1]

n yield

αj =
∫
R

xp
[m+1]
n−1 (x)p[m]

j (x)W 2
α,m(x)dx

=
∫
R

p
[m+1]
n−1 (x)

p
[m]
j (x) − p

[m]
j (0)

x
W 2

α,m+1(x)dx + p
[m]
j (0)

∫
R

xp
[m+1]
n−1 (x)W 2

α,m(x)dx

= p
[m]
j (0)

∫
R

xp
[m+1]
n−1 (x)W 2

α,m(x)dx.

For j = 0, we obtain the same expression because p[m]
0 (x) is a constant.

Therefore

xp
[m+1]
n−1 (x) =

γ
[m+1]
n−1

γ
[m]
n

p[m]
n (x) +

(∫
R

xp
[m+1]
n−1 (x)W 2

α,m(x)dx
)
K

[m]
n−1(x, 0).

Evaluating the above expression at x = 0, we get∫
R

xp
[m+1]
n−1 (x)W 2

α,m(x)dx = −
γ

[m+1]
n−1

γ
[m]
n

p
[m]
n (0)

K
[m]
n−1(0, 0)

,

and so, (12) holds.
To prove (13), it is enough to integrate (12) multiplied by p[m]

n−2(x)W 2
α,m+1(x), and to apply the well-known 

Christoffel–Darboux formula

K [m]
n (x, y) :=

n∑
p
[m]
k (x)p[m]

k (y) = γ
[m]
n

[m]
p
[m]
n+1(x)p[m]

n (y) − p
[m]
n (x)p[m]

n+1(y)
x− y

. � (14)

k=0 γn+1
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Now, we are ready to establish our main result for the polynomials p[m]
n . We will use the Bessel functions Jν

of the first kind and order ν, ν > −1, defined by

Jν(z) =
∞∑

n=0

(−1)n

n!Γ (n + ν + 1)

(
z

2

)2n+ν

, z ∈ C.

We also claim that z−νJν(z) is an entire function which does not vanish at the origin.

Theorem 2. Let (p[m]
n )n be the sequence of generalized Freud orthonormal polynomials with respect to the 

weight function W 2
α,m(x) defined by (2). Then,

lim
n→∞

(−1)n a
1/2
2n
bm2n

p
[m]
2n

(
z

b2n+j

)
= z−(m−1/2)Jm−1/2(z), (15)

and

lim
n→∞

(−1)n
a
1/2
2n+1
bm2n

p
[m]
2n+1

(
z

b2n+j

)
= zz−(m+1/2)Jm+1/2(z), (16)

both uniformly on compact subsets of C, and for every j ∈ Z.

Proof. We are going to use the principle of mathematical induction to prove the result. For m = 0, the poly-
nomials p[0]

n are the Freud orthonormal polynomials. Therefore, the Mehler–Heine type formulae (15)–(16)
are the ones (9)–(10) established in Corollary 1 taking into account the following identities√

2
π

sin z = z1/2J1/2(z),
√

2
π

cos z = z1/2J−1/2(z).

We assume that (15)–(16) are true for a nonnegative integer m fixed and then we will show that they are 
also true for m + 1.

Even case. Because of the symmetry of generalized Freud polynomials we have from (13), γ[m+1]
2n = γ

[m]
2n+1, 

and evaluating (12) at z/b2n+j we obtain

(−1)na1/2
2n

bm+1
2n

p
[m+1]
2n

(
z

b2n+j

)
= (−1)na1/2

2n
bm2n

b2n+j

b2n

γ
[m+1]
2n

γ
[m]
2n+1

z−1p
[m]
2n+1

(
z

b2n+j

)
.

Thus, it is enough to apply that limn→∞
bn

bn+j
= 1 and the induction hypothesis to complete the process for 

this case.
Odd case. Evaluating (12) at z/b2n+j and applying the Christoffel–Darboux formula (14) we get

(−1)na1/2
2n+1

bm2n+1b2n+j
p
[m+1]
2n+1

(
z

b2n+j

)
=

(−1)na1/2
2n+1

bm2n+1
z−1 γ

[m+1]
2n+1

γ
[m]
2n+2

×
[
p
[m]
2n+2

(
z

b2n+j

)
+

γ
[m]
2n+1

γ
[m]
2n+2

(p[m]
2n+2(0))2

K
[m]
2n (0, 0)

b2n+j

z
p
[m]
2n+1

(
z

b2n+j

)]
. (17)

Next, we analyze the asymptotic behavior of the coefficients which appear on the right-hand side of the 
above expression.
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First, from the induction hypothesis for p[m]
2n and since z−νJν(z)|z=0 = 1

2νΓ (ν+1) , we obtain the asymptotic 

behavior of (p[m]
2n (0))2 when n tends to infinity

(
p
[m]
2n (0)

)2 � b2m2n
22m−1a2nΓ 2(m + 1/2) =

(
α

α− 1

)2m 2(2cα)− 2m+1
α

Γ 2(m + 1/2)n
2m− 2m+1

α . (18)

Now, using (18) and the Stolz–Cesàro criterion, we deduce

lim
n→∞

K
[m]
2n (0, 0)

n(2m+1)(α−1
α )

= lim
n→∞

(p[m]
2n (0))2

n(2m+1)(α−1
α )( (2m+1)(α−1)/α

n + O(n−2))

=
(

α

α− 1

)2m+1 2(2cα)− 2m+1
α

(2m + 1)Γ 2(m + 1/2) .

From this asymptotic behavior for K [m]
2n (0, 0) and (18), we get

lim
n→∞

n(p[m]
2n (0))2

K
[m]
2n (0, 0)

= lim
n→∞

n(p[m]
2n (0))2

K
[m]
2n−2(0, 0)

= lim
n→∞

n(p[m]
2n (0))2

K
[m]
2n−1(0, 0)

= (2m + 1)α− 1
α

, (19)

which is obviously the analog of (11) for the generalized Freud orthonormal polynomials. Furthermore, 
applying (19) in (13) we have

lim
n→∞

γ
[m]
2n+2

γ
[m+1]
2n+1

= 1. (20)

We only need to give an estimate for the coefficient γ
[m]
2n+1

γ
[m]
2n+2

. For m = 0, this asymptotic behavior is known. 
For example, in [9, p. 365] we can find it for the orthogonal polynomials with respect to the weight function 
exp(−2cα|x|α) with α > 1 and cα given in (4). Thus, from this result we can deduce that

lim
n→∞

n−1/α γ2n+1

γ2n+2
= 2(1−α)/αc1/αα .

Moreover, for m ≥ 1, using again the symmetry of the generalized Freud polynomials, it follows from (13)
that γ[m]

2n+2 = γ
[m−1]
2n+3 . Then, taking into account (20) we have

γ
[m]
2n+1

γ
[m]
2n+2

=
γ

[m]
2n+1

γ
[m−1]
2n+2

γ
[m−1]
2n+2

γ
[m−1]
2n+3

�
γ

[m−1]
2n+2

γ
[m−1]
2n+3

.

Applying this process repeatedly, we get

γ
[m]
2n+1

γ
[m]
2n+2

� γ2n+m+1

γ2n+m+2
,

and therefore

lim
n→∞

n−1/α γ
[m]
2n+1
[m] = 2(1−α)/αc1/αα . (21)
γ2n+2
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To conclude the proof, we take limits in (17). Thus, using the definition of an and bn given by (3), the 
asymptotic estimates given in (19), (20), (21), the induction hypothesis and the relation satisfied by the 
Bessel functions (see [11, §1.71])

Jν−1(z) + Jν+1(z) = 2νz−1Jν(z),

we obtain

lim
n→∞

(−1)na1/2
2n+1

bm+1
2n+1

p
[m+1]
2n+1

(
z

b2n+j

)
= −z−(m+1/2)Jm−1/2(z) + (2m + 1)z−(m+3/2)Jm+1/2(z)

= zz−(m+3/2)Jm+3/2(z),

uniformly on compact subsets of C.
So, we have completed the induction process for the odd case. �

Remark 2. We want to highlight the strong influence of m on the Mehler–Heine asymptotics. For m = 0, i.e. 
for Freud orthonormal polynomials with respect to any weight function of the type exp(−2|x|α), α > 1, we 
obtain the same formulae. However, this type of asymptotics changes in a nice way when we introduce the 
factor x2m on the weight, then the order of the Bessel function varies according to m. Thus, the asymptotic 
behavior of the corresponding zeros also changes, as it is shown in Corollary 3 and later comments.

From the previous theorem, we deduce the asymptotic behavior of the derivatives of the generalized 
Freud orthonormal polynomials p[m]

n at the origin.

Corollary 2. For m ≥ 0, we have the following estimates for the derivatives of p[m]
n at x = 0, when n tends 

to infinity,

(
p
[m]
2n

)(2k)(0) � (−1)n+k

22k+m−1/2Γ (m + k + 1/2)
(2k)!
k! a

−1/2
2n bm+2k

2n ,

(
p
[m]
2n+1

)(2k+1)(0) � (−1)n+k

22k+m+1/2Γ (m + k + 3/2)
(2k + 1)!

k! a
−1/2
2n+1b

m+2k+1
2n+1 ,

with k = 0, . . . , n.

Theorem 2 has also another straightforward consequence about the zeros of the polynomials p[m]
n . Since 

these polynomials are orthonormal with respect to a standard inner product, all their zeros are simple and 
lie on the real line. Applying Hurwitz’s Theorem [11, p. 22] in Theorem 2, we deduce a limit relation between 
these zeros and the ones of the Bessel functions.

Corollary 3. Let x[m]
n,i be the i-th positive zero of p[m]

n with i = 1, . . . , [n/2] arranged in an increasing order, 
i.e. x[m]

n,i < x
[m]
n,i+1. Then, for m ≥ 0 and α > 1, we have

b2nx
[m]
2n,i = jm−1/2,i

(
1 + o(1)

)
, n → ∞,

b2n+1x
[m]
2n+1,i = jm+1/2,i

(
1 + o(1)

)
, n → ∞,

where jν,i denotes the i-th positive zero of the Bessel function Jν, and bn is given in (3).
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Clearly, the sequence (bn)n, which involves the Mhaskar–Rakhmanov–Saff numbers, plays a very im-
portant role in the asymptotic behavior of these generalized Freud orthonormal polynomials and of their 
zeros as it has been shown in Theorem 2 and Corollary 3. But, it seems convenient to give in detail the 
asymptotics of the zero x[m]

n,i , for i fixed, in terms of powers of n. In the case m = 0, very sharp estimates 
for the zeros of those orthogonal polynomials in terms of the zeros of the Airy function Ai were obtained 
in [5]. For m ≥ 0 and α > 1, we deduce from Corollary 3

x
[m]
n,i = α− 1

α
c1/αα n−α−1

α jm+(−1)s/2,i
(
1 + o(1)

)
, n → ∞,

where

s =
{

1, n even;
0, n odd, (22)

and cα is given in (4).
We can also get the following estimate of the distance between two consecutive zeros x[m]

n,i−1 and x[m]
n,i , for 

2 ≤ i ≤ [n/2], in terms of the Mhaskar–Rakhmanov–Saff numbers an given by (3):

x
[m]
n,i − x

[m]
n,i−1 = α− 1

α

an
n

(jm+(−1)s/2,i − jm+(−1)s/2,i−1)
(
1 + o(1)

)
, n → ∞,

where s is given by (22). Using the properties of the Bessel functions (see [12], for example), we can 
simplify the above result getting the following expression for the distance between consecutive zeros of 
Freud orthogonal polynomials

x
[0]
n,i − x

[0]
n,i−1 = (α− 1)π

α

an
n

(
1 + o(1)

)
, n → ∞.

The above relation also holds for m = 1 and n even, but in any other case we have jm+(−1)s/2,i −
jm+(−1)s/2,i−1 > π, with limi→∞(jm+(−1)s/2,i − jm+(−1)s/2,i−1) = π.

Note that for m = 0 and W being a more general weight function, the spacing of the zeros has been 
studied in [6]. In addition, we want to remark that for m ≥ 1, properties about the zeros of these polynomials 
have already been studied in [4] in a more general framework. Thus, the above results should be compared 
with Theorem 2.2 in that paper, and it can be noticed that we obtain more precise results in our case.
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