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We give an algorithm for deciding whether a planar polynomial differential system 
has a first integral which factorizes as a product of defining polynomials of curves 
with only one place at infinity. In the affirmative case, our algorithm computes a 
minimal first integral. In addition, we solve the Poincaré problem for the class of 
systems which admit a polynomial first integral as above in the sense that the degree 
of the minimal first integral can be computed from the reduction of singularities of 
the corresponding vector field.
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1. Introduction

In this paper we are concerned with planar polynomial differential systems. One of the main open 
problems in their qualitative theory is to characterize the integrable ones. The importance of the first 
integral is in its level sets: such a function H whereas it is defined determines the phase portrait of the 
system, because the level sets H = h give the expression of the solution curves laying on the domain of 
definition of H. Notice that when a differential equation admits a first integral, its study can be reduced 
in one dimension. In addition, Prelle and Singer [46], using methods of differential algebra, showed that if 
a polynomial vector field has an elementary first integral, then it can be computed using Darboux theory 
of integrability [24], and Singer [49] proved that if it has a Liouvillian first integral, then it has integrating 
factors given by Darbouxian functions [20]. Consequently, given a planar differential system, it is important 
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to know whether it has a first integral and compute it if possible. We shall consider complex systems since, 
even in the real case, invariant curves must be considered over the complex field.

The existence of a rational first integral H = f/g is a very desirable condition for the mentioned systems 
that guarantees that every invariant curve is algebraic and can be obtained from some equation of type 
λf + μg = 0, with (λ : μ) ∈ CP1, CP1 being the complex projective line. According to Poincaré [45], an 
element (λ : μ) is a remarkable value of H if λf + μg is a reducible polynomial in C[x, y]. The curves in its 
factorization are called remarkable curves. There are finitely many remarkable values for a given rational 
first integral H [15] and the corresponding curves appear to be very important in the phase portrait [28]. 
Algebraic integrability has also interest for other reasons. For instance, it is connected with the center 
problem for quadratic vector fields [47,16,40,41] and with problems related to solutions of Einstein’s field 
equations in general relativity [36].

Prestigious mathematicians as Darboux [23], Poincaré [44,45], Painlevé [42] and Autonne [5] were in-
terested in algebraic integrability. Very interesting problems along this line are the so-called Poincaré and 
Painlevé problems. The first one consists of obtaining an upper bound of the degree n of the first integral 
depending only on the degree of the polynomial differential system. It is well-known that such a bound 
does not exist in general [39]. However in certain cases a solution is known, for example when the singu-
larities are non-degenerated [45], when the singularities are of nodal type [14] or when the reduction of the 
system has only one non-invariant exceptional divisor [32]. Sometimes the problem is stated as bounding 
the degree n from the knowledge of the system and not only from its degree. Many other related results 
are known (including higher dimension) [11,8,52,50,51,53,43,25,29,13,30]. Painlevé question, posed in [42], 
asks for recognizing the genus of the general solution of a system as above. Again, Ref. [39] gives a negative 
answer but, in certain cases and mixing the ideas of Poincaré and Painlevé, the degree of the first integral 
can be bounded by using the mentioned genus [32].

Darboux gave a lower bound on the number of invariant integral algebraic curves of a system as above 
that ensures the existence of a first integral. A close result was proved by Jouanolou [38,21] to guarantee 
that the system has a rational first integral and that if one has enough reduced invariant curves, then the 
rational first integral can be computed (see Theorem 4). Furthermore, Ref. [29] provides an algorithm to 
decide about the existence of a rational first integral (and to compute it in the affirmative case) assuming 
that one has a well-suited set of k reduced invariant curves, where k is the number of dicritical divisors 
appearing in the reduction of the vector field [48]. Similar results to the above mentioned have been adapted 
and extended for vector fields in other varieties [37,38,7,34,22].

As a particular case of algebraically integrable systems, one can consider those admitting a polynomial 
first integral. To the best of our knowledge, there is no characterization for these systems. In this paper, 
we shall consider the subfamily F, formed by planar polynomial differential systems with a polynomial first 
integral which factorizes as a product of curves with only one place at infinity. These curves are a wide class 
of plane curves characterized by the fact that they meet a certain line (the line at infinity) in a unique point 
where the curve is reduced and unibranch. They have been rather studied, being [1–3] the most classical 
papers, present interesting properties and have been used recently in different contexts [9,10,26,27,31].

We consider the reduction of singularities [48] of the projective vector field attached to a planar polynomial 
differential system. This reduction is obtained after finitely many point blowing-ups of the successively 
obtained vector fields and determines a configuration of infinitely near points of the complex projective 
plane. Our paper contains two main results. The first one is Corollary 2, where we solve the Poincaré problem 
for the polynomial differential systems of the family F in the sense that the degree n of the polynomial first 
integral of a system in F can be computed from its reduction of singularities. In fact, we do not need the 
complete configuration of infinitely near points as can be seen in the statement. Moreover, n can be bounded
only from the structure (proximity graph) of this reduction. The second main result is an algorithm that 
decides whether a planar polynomial differential system belongs to the family F and, in the affirmative case, 
provides a minimal polynomial first integral. We name these first integrals well-behaved at infinity (WAI). 
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The reduction process and certain linear systems related with the above mentioned configuration are our 
main tools. It is worthwhile to add that our algorithm only performs simple linear algebra computations 
once the reduction is obtained. The algorithm obtains firstly the irreducible factors of the polynomial first 
integral and, afterwards, determines the exponents for them. We show two different ways of performing this 
last step which give rise to what we call Algorithm 1 and Algorithm 2.

We consider families F as above since the behavior near the infinity of curves with only one place at 
infinity provides a lot of information about them. This helps us to prove our result. We do not discard that 
similar results can be obtained for other families of vector fields given by curves with a good local-global 
behavior.

Our supporting language comes from the algebraic geometry but non-linear ordinary differential equations 
have interest in practically every science, therefore we feel that it is worthwhile to simplify it as much as 
possible and provide easy-to-understand explanations for our above mentioned tools. So, Sections 3, 4 and 5
are devoted to provide the reader with information and worked examples on projective vector fields, its 
reduction procedure and linear systems. This material is not new but we think that, as presented below, it 
can be read by a wide audience and will make easy to understand our last section, where our main results 
are proved.

Section 2 supplies some preliminaries where we define some concepts we shall need, such as first integral, 
curve with only one place at infinity, WAI polynomial first integral or projective vector field. Section 6 is 
devoted to explain the intimate relation between planar differential systems which admit a rational first 
integral and the pencil of curves that this first integral defines. The information we give can be completed 
in [33] and is essential for our main section which is Section 7. Here we state a prove our main theorem, 
Theorem 3, whose proof is supported in several previous results given in that section and provides a number 
of properties that must satisfy a differential system laying in the family F. These properties are determined 
by the reduction of singularities of the system and justify Corollary 2 and Algorithm 1. We conclude by 
noting that Algorithm 2 shows that the before alluded classical results by Darboux and Jouanolou help us 
to decide about algebraic integrability avoiding the use of some properties of F. An illustrative example, 
complementing the mentioned algorithms, is also given at the end of this last section.

2. WAI polynomial first integrals of planar polynomial vector fields

Along this paper, X will be the complex planar polynomial differential system given by

ẋ = p(x, y), ẏ = q(x, y), (1)

where p, q ∈ C[x, y], C being the complex field. Let d = max{deg p, deg q} be the degree of the system X. 
We shall also use X to denote the vector field X = p ∂

∂x + q ∂
∂y .

A non-constant C1-function H = H(x, y) is a first integral of X if H is constant on the solutions of the 
system. That is, if it satisfies the equation

XH = p
∂H

∂x
+ q

∂H

∂y
= 0,

whereas H is defined.
An invariant algebraic curve of X is an algebraic curve Cf , with local equation f = 0, f ∈ C[x, y], such 

that

Xf = p
∂f

∂x
+ q

∂f

∂y
= kf,

where k ∈ C[x, y]. The polynomial k is the cofactor of Cf . It has degree at most d − 1.
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Consider the complex projective plane CP2 and homogeneous coordinates (X : Y : Z). Set L : {Z = 0}
the line at infinity. We say that an algebraic curve C : {F = 0}, with F ∈ C[X, Y, Z] homogeneous, has 
only one place at infinity if C ∩ L is a unique point P and C is reduced and unibranch (i.e., analytically 
irreducible) at P . It is easy to find examples of this type of curves and global information for them can be 
obtained from local information around its singularity [1–3].

In this paper we denote by N the set of natural numbers 1, 2, 3, . . . . A polynomial function H(x, y) of 
degree n ∈ N is named to be well-behaved at infinity (WAI for short) if it can be written as

H =
r∏

i=1
fni
i , (2)

where r, ni ∈ N and fi are polynomials in C[x, y] of degree di ∈ N such that each curve given by the 
projectivization Fi(X, Y, Z) = Zdifi(X/Z, Y/Z) of fi has only one place at infinity.

We shall mainly use the projective version of the system X into CP2, thus we shall work with homogeneous 
coordinates X, Y, Z. The vector field X in these coordinates reads as

X = P
∂

∂X
+ Q

∂

∂Y
, (3)

where P (X, Y, Z) = Zdp(X/Z, Y/Z) and Q(X, Y, Z) = Zdq(X/Z, Y/Z) are the respective projectivizations 
of p and q. After embedding X into CP2, (2) becomes

H̄(X,Y, Z) = H(X/Z, Y/Z) =
∏r

i=1 Fi(X,Y, Z)ni

Zn
,

where, for each i, Fi(X, Y, Z) stands for the projectivization of fi. The main aim of this work is to provide 
computable steps for discerning whether the system X has a (minimal) WAI polynomial first integral or 
not. In the affirmative case, our computations allow us to obtain the mentioned first integral. We recall that 
a polynomial first integral H of X is minimal whenever any other polynomial first integral has degree at 
least the degree of H.

Later on we shall deal with singular points of the embedding of our vector field X into CP2 and the 
so-called reduction of its singularities. These concepts are summarized in the following two sections.

3. Polynomial vector fields in CPCPCP2

Let A, B, and C be homogeneous polynomials of degree d +1 in the complex variables X, Y , and Z. We 
say that the homogeneous 1-form

Ω = AdX + BdY + CdZ

of degree d + 1 is projective if XA + Y B + ZC = 0. That is, if there exist three homogeneous polynomials 
P , Q, and R of degree d such that

A = ZQ− Y R, B = XR− ZP, C = Y P −XQ.

Then we can write

Ω = P (Y dZ − ZdY ) + Q(ZdX −XdZ) + R(XdY − Y dX). (4)

Usually in the literature Ω is called a Pfaff algebraic form of CP2; see [38] for more details. The triple 
(P, Q, R) can be thought of as a homogeneous polynomial vector field in CP2 of degree d, more specifically
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X = P
∂

∂X
+ Q

∂

∂Y
+ R

∂

∂Z
,

where X, Y and Z denote homogeneous coordinates of CP2.
Let F ∈ C[X, Y, Z] be a homogeneous polynomial. The curve F = 0 in CP2 is invariant under the flow 

of the vector field X if

XF = P
∂F

∂X
+ Q

∂F

∂Y
+ R

∂F

∂Z
= KF, (5)

for some homogeneous polynomial K ∈ C[X, Y, Z] of degree d − 1, called the cofactor of F .
The singular points of a projective 1-form Ω of degree d +1 or of its associated homogeneous polynomial 

vector field X of degree d are those points satisfying the following system of equations:

ZQ− Y R = 0, XR− ZP = 0, Y P −XQ = 0. (6)

We devote the remaining of this section to relate affine and projective vector fields. The polynomial 
differential system (1) of degree d is equivalent to the 1-form

p(x, y)dy − q(x, y)dx,

which can be extended to CP2 as the projective 1-form of degree d + 1

Zd+2
(
p

(
X

Z
,
Y

Z

)
Y dZ − ZdY

Z2 − q

(
X

Z
,
Y

Z

)
XdZ − ZdX

Z2

)
, (7)

where we have replaced (x, y) by (X/Z, Y/Z). We define P (X, Y, Z) = Zdp(X/Z, Y/Z) and Q(X, Y, Z) =
Zdq(X/Z, Y/Z). Then (7) becomes

P (X,Y, Z)(Y dZ − ZdY ) + Q(X,Y, Z)(ZdX −XdZ).

In short, the vector field attached to the polynomial differential system (1) is extended to the homogeneous 
polynomial vector field of degree d in CP2 X = P ∂

∂X + Q ∂
∂Y . This vector field is called the complex 

projectivization of System (1) or of the vector field X.
We notice that the third component R in the complex projectivization is identically zero. Consequently,

the line at infinity Z = 0 is a solution of the projective vector field.
From the equalities in (6), we note that the singular points of the complex projectivization of System (1)

must satisfy the following equations

ZQ(X,Y, Z) = 0, ZP (X,Y, Z) = 0, Y P (X,Y, Z) −XQ(X,Y, Z) = 0.

The third equation and the line Z = 0 determine the singular points at infinity. Setting Z = 1, the singular 
points which are not at infinity are obtained from the equality P = Q = 0.

If f(x, y) = 0 is the local equation of an invariant algebraic curve of degree n ∈ N of System (1) with 
cofactor k(x, y), then F (X, Y, Z) = Znf(X/Z, Y/Z) = 0 is an invariant algebraic curve of the vector field 
in (3) with cofactor K(X, Y, Z) = Zd−1k(X/Z, Y/Z).

To end this section we show the behavior of X and K when we take local coordinates in the local chart 
determined by Z = 1. The same procedure can be done for X = 1 and Y = 1. Let F = 0 be an invariant 
algebraic curve of degree n of the vector field defined by (4) with cofactor K. Applying Euler’s Theorem for 
homogeneous functions and regarding (5), we can prove that f(x, y) = F (X, Y, 1) = 0 is an equation of an 
invariant algebraic curve of the restriction of Ω to the affine plane:
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(P (x, y, 1) − xR(x, y, 1)) dy − (Q(x, y, 1) − yR(x, y, 1)) dx.

We notice that this 1-form has degree d +1 and the cofactor of f(x, y) = 0 is k(x, y) = K(x, y, 1) −nR(x, y, 1). 
It has degree at most d whenever Z = 0 is not invariant. We notice that the line Z = 0 is invariant if and 
only if Z|R.

4. Reduction of singularities

The main technique to perform the desingularization or the reduction of singular points (of curves or 
planar vector fields) is the blowing-up (see [12,48,24,4]). The reduction theorem for planar vector fields 
was proved by Seidenberg [48]. Roughly speaking, the blow-up technique transforms, through a change of 
variables that is not a diffeomorphism, a singularity into a line. Then, for studying the original singular 
point, one considers the new singular points that appear on this line and that will be, probably, simpler. If 
some of these new singular points are degenerate, the process is repeated. This iterative process of reduction 
of singularities is finite. Let us describe it.

4.1. The blow-up technique

Let M be a complex manifold of dimension two. Blowing-up a point P in the manifold M consists on 
replacing P by a projective line CP1 considered as the set of limit directions at P . Let TPM be the tangent 
space of M at P and EP the complex projective line given by the projectivization of TPM with quotient 
map [ ] : TPM \{0} → EP . The blown-up manifold, denoted by BlP (M), is the set (M \{P}) ∪EP endowed 
with structure of complex manifold of dimension 2 obtained as follows: for each local chart of M at P , 
(U, ϕ), ϕ = (x, y) : U → C2, such that ϕ(P ) = (x(P ), y(P )) = 0, the pairs (Ui, ϕi), i = 1, 2, will be two 
local charts of BlP (M) defined as ϕi : V P

i → C2, with

V P
1 = (U \ x−1(0)) ∪ (EP \ Ker (dx)P ),

V P
2 = (U \ y−1(0)) ∪ (EP \ Ker (dy)P ),

and

ϕ1 =
(
x,

y

x

)
in U \ x−1(0) and ϕ1

([
α

∂

∂x
+ β

∂

∂y

])
=

(
0, β

α

)
otherwise,

ϕ2 =
(
x

y
, y

)
in U \ y−1(0) and ϕ2

([
α

∂

∂x
+ β

∂

∂y

])
=

(
α

β
, 0
)

otherwise.

The projection map πP : Blp(M) → M , usually named blow-up of P in M , is defined in local coor-
dinates in the following form. If (x, t = y/x) (respectively, (s = x/y, y)) are the local coordinates in V P

1
(respectively, V P

2 ), then πP (x, t) = (x, xt) (respectively, πP (s, y) = (sy, y)). The projective line EP is the 
exceptional divisor of the blow-up and is defined, as a submanifold of BlP (M), by the local equation x = 0
(respectively, y = 0) in the chart (V P

1 , ϕ1) (respectively, (V P
2 , ϕ2)). The restriction of πP to BlP (M) \ EP

is a biholomorphism onto M \ {P}. Moreover, the equality π−1
P (P ) = EP holds.

4.2. Reduction of singularities

Consider the polynomial vector field in C2 X = p ∂
∂x + q ∂

∂y . Suppose that it has an isolated singularity at 
the origin O and consider its associated differential 1-form ω = p(x, y)dy−q(x, y)dx. Let ωm = pm(x, y)dy−
qm(x, y)dx be the first non-zero jet of ω at O, where pm(x, y) and qm(x, y) are homogeneous polynomials 
of degree m. The integer number m is called the multiplicity of X at O.
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Consider the blown-up manifold BlO(C2), the projection πO : Bl0(C2) → C2 and the charts (V O
i , ϕi), 

i = 1, 2, defined as before. In the chart (V O
1 , ϕ1 = (x, t)), we define the total transform by πO of the 

differential 1-form ω in V O
1 as

ω∗|V O
1

:= xm [(α(1, t) + xβ(x, t))dx + x(pm(1, t) + xγ(x, t))dt] , (8)

where

α(x, y) := ypm(x, y) − xqm(x, y) (9)

is the so-called characteristic polynomial and

γ(x, y) := 1
xm

[p(x, xy) − pm(x, xy)] , β(x, y) := yγ(x, y) − 1
xm

[q(x, xy) − qm(x, xy)] .

The total transform by πO of ω in V O
2 is defined similarly.

Notice that ω∗|V O
1

is divisible by xm+1 if and only if α(x, y) ≡ 0. If this holds, we define the strict 
transform by πO of ω in V O

1 as

ω̃|V O
1

:=
ω∗|V O

1

xm+1 = β(x, t)dx + (pm(1, t) + xγ(x, t)) dt.

Clearly, pm(x, y) is not identically zero in this case and, therefore, at any point of EO ∩ V O
1 where β(x, t)

does not vanish, the leaves of ω̃|V O
1

are transverse to EO. An analogous situation happens for the chart V O
2 .

When α(x, y) �≡ 0, we define the strict transform by πO of ω in V O
1 as

ω̃|V O
1

:= (α(1, t) + xβ(x, t)) dx + x (pm(1, t) + xγ(x, t)) dt.

It is easy to deduce that the singular points of ω̃ that belong to EO are isolated and moreover that the local 
curve given by EO at O is invariant by the vector field defined by ω̃|V O

1
. As above, we can define ω̃|V O

2
in

an analogous way.
The differential 1-forms ω̃|V O

i
, i = 1, 2, define a holomorphic vector field in BlO(C2) denoted by ω̃. 

Furthermore, given a holomorphic vector field X in any two-dimensional complex manifold M and given 
any point P ∈ M , restricting to a local chart and applying the above arguments a holomorphic vector field 
X̃ in BlP (M) is defined; we call it the strict transform of X by πP . The above facts give rise to the following 
definition, which uses the previous notation.

Definition 1. Let O ∈ C2 be an isolated singularity of a polynomial vector field X = p ∂
∂x + q ∂

∂y in C2. The 
point O is called a dicritical singularity if the polynomial α in (9) is identically zero. Moreover, O is called 
a simple singularity whenever X has multiplicity 1 at O and the matrix

( ∂p1
∂x

∂p1
∂y

∂q1
∂x

∂q1
∂y

)

has eigenvalues λ1, λ2 satisfying either λ1λ2 �= 0 and λ1
λ2

/∈ Q+, or λ1λ2 = 0 and λ2
1 + λ2

2 �= 0. Furthermore, 
an ordinary singularity is a singularity that is not simple. We remark that a dicritical singularity is ordinary. 
Finally, we say that a holomorphic vector field X in a two-dimensional complex manifold M has a dicritical 
(respectively, simple, ordinary) singularity at P ∈ M if its restriction to a local chart at P has a dicritical 
(respectively, simple, ordinary) singularity at the corresponding point in C2.
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By Equality (8), the following characterization of non-dicritical singularities holds:

Proposition 1. A singularity P of a holomorphic vector field X in a two-dimensional complex manifold M
is non-dicritical if and only if the exceptional divisor of the blown-up manifold BlP (M) is invariant by the 
strict transform of X in BlP (M).

Generically speaking, simple singularities P of holomorphic vector fields X cannot be reduced by blow-ups, 
that is, the strict transform of X in BlP (M), where P is a simple singularity, may have simple singularities 
at the points of the exceptional divisor EP . By a classical result of Seidenberg [48] (see also [6] for a modern 
treatment) the remaining singularities of such vector fields can be eliminated or reduced to simple ones:

Theorem 1. Let X be a holomorphic vector field in a two-dimensional complex manifold M with isolated 
singularities. Then there exists a finite sequence of blow-ups such that the strict transform of X in the last 
obtained complex manifold has no ordinary singularities.

Let P be a point in a two-dimensional complex manifold M . The exceptional divisor EP produced by 
blowing up P is called the first infinitesimal neighborhood of P . By induction, if i > 0, then the points 
in the i-th infinitesimal neighborhood of P are the points in the first infinitesimal neighborhood of some 
point in the (i − 1)-th infinitesimal neighborhood of P . A point Q in some infinitesimal neighborhood of P
is called to be proximate to P if Q belongs to the strict transform of EP (see Section 5 for a definition of 
strict transform of a curve). Also Q is a satellite point if it is proximate to two points; that is, if it is the 
intersection point of the strict transforms of two exceptional divisors. Non-satellite points are named free.

Points in the i-th infinitesimal neighborhood of P , for some i > 0, are said to be infinitely near to P . 
These points admit a natural ordering that we shall use in this paper and call “to be infinitely near to”, 
where a point R precedes Q if and only if Q is infinitely near to R. Note that we agree that a point is 
infinitely near to itself.

A configuration of infinitely near points of M (or, simply, a configuration) is a finite set

C = {Q0, . . . , Qn},

such that Q0 ∈ X0 = M and Qi ∈ BlQi−1(Xi−1) =: Xi

πQi−1−→ Xi−1, for 1 ≤ i ≤ n, where we have denoted 
by BlQi−1(Xi−1) the blown-up manifold corresponding to blow-up Qi−1 in Xi−1.

The Hasse diagram of C with respect to the above alluded order relation is a union of rooted trees whose 
set of vertices is bijective with C. We join with a dotted edge those vertices corresponding with points P
and Q of C such that Q is proximate to P but Q is not in the first infinitesimal neighborhood of P . The 
obtained labeled graph, denoted ΓC, is called the proximity graph of C.

Example 1 below shows the reduction of a singular point of a vector field and its proximity graph.

Definition 2. The singular configuration of a holomorphic vector field X in a two-dimensional complex 
manifold M , denoted by S(X ), is the union S(X ) := ∪PSP (X ), where P runs over the set of ordinary 
singularities of X and SP (X ) denotes the set of points Q infinitely near to P such that the strict transform 
of X has an ordinary singularity at Q. The proximity graph ΓS(X ) is called the singular graph of X .

Definition 3. Let X be a holomorphic vector field in a two-dimensional complex manifold M . The dicritical 
configuration of X is the set D(X ) of points P ∈ S(X ) such that there exists a point Q ∈ S(X ) that is 
infinitely near to P and is a dicritical singularity of the strict transform of X in the blown-up manifold to 
which Q belongs. These dicritical singularities Q in D(X ) will be called infinitely near dicritical singularities 
of X .
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Example 1. Consider the homogeneous polynomial vector field X in CP2 defined by

2XZ4 dX + 5Y 4Z dY −
(
5Y 5 + 2X2Z3) dZ.

Its singularities are the points P = (1 : 0 : 0) and Q = (0 : 0 : 1).
Take affine coordinates y = Y

X and z = Z
X in the chart defined by X �= 0, where the point P has 

coordinates (y, z) = (0, 0). The differential form in these coordinates is ω1 := 5y4z dy − (5y5 + 2z3) dz. 
X has an ordinary singularity at P . Consider the blow-up πP : X1 := BlP (CP2) → CP2 and coordinates 
(y1 = y, z1 = z/y) in the chart V P

1 . Then, the strict transform of ω in V P
1 is

ω̃1|V P
1

= −2z4
1 dy1 − (5y3

1 + 2y1z
3
1) dz1.

The unique ordinary singularity of the vector field defined by ω̃1|V P
1

is P1 := (y1, z1) = (0, 0). It belongs to 
the exceptional divisor EP , whose local equation is y1 = 0. Moreover, taking local coordinates in the chart 
V P

2 , it is easy to see that the unique point of EP that is not in V P
1 is not a singularity of X̃ .

Now we consider the blow-up πP1 : X2 := BlP1(X1) → X1 and affine coordinates (y2 = y1, z2 = z1/y1) in 
the chart V P1

1 . The strict transform of ω1 in V P1
1 is

ω̃1|V P1
1

= (−5z2 − 4y2z
4
2) dy2 + (−5y2 − 2y2

2z
3
2) dz2.

The unique singularity in EP1 ∩ V P1
1 of the strict transform of X is P ′

2 := (0, 0); it is straightforward to 
check that it is a simple singularity.

Taking coordinates (y2 = y1/z1, z2 = z1) in V P1
2 , we get

ω̃1|V P1
2

= −2z2
2 dy2 +

(
−5y3

2 − 4y2z2
)
dz2.

Then, the strict transform of X has an ordinary singularity at the unique point P2 ∈ EP1 \ V P1
1 , whose 

coordinates in V P1
2 are (0, 0). Since the local equation of the strict transform of EP in V P1

2 is y2 = 0, it 
holds {P2} = EP1 ∩ EP and, therefore, P2 is a satellite point that is proximate to P1 and P .

Next, we have to perform the blow-up πP2 : X3 := BlP2(X2) → X2 and

ω̃1|
V

P ′
2

1
=

(
−5y3z3 − 6z2

3
)
dy3 +

(
−5y2

3 − 4y3z3
)
dz3,

in local coordinates (y3 = y2, z3 = z2/y2). The unique singularity of the strict transform of X in EP2 ∩ V P2
1

is P3 := (0, 0), that belongs to the strict transform of EP1 ∩ EP2 (notice that the local equation of EP1 in 
V P2

1 is z3 = 0). It is an ordinary singularity. It is straightforward to verify that the unique point in EP2 \V P2
1

is a simple singularity.
Considering now the blow-up πP3 : X4 := BlP3(X3) → X3 and local coordinates (y4 = y3, z4 = z3/y3) at 

V P3
1 we have that

ω̃1|V P3
1

= (−10z4 − 10z2
4) dy4 + (−5y4 − 4y4z4) dz4.

There are two new singularities at EP3 ∩ V P3
1 which are R := (0, 0) and P4 = (0, −1). The point R is a 

simple singularity and, applying the change of coordinates y′4 = y4, z′4 = z4 + 1, it holds that

ω̃1|V P3
1

=
(
10z′4 − 10z′ 24

)
dy′4 + (−y′4 − 4y′4z′4) dz′4,

and therefore P4 is an ordinary singularity. Moreover, it is easy to check that the unique point in EP3 \V P3
1

is a simple singularity.
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Table 1
Reduction of the singularity at Q.

Chart System of coordinates Differential form

Z �= 0 (x = X/Z, y = Y/Z) at Q 2x dx + 5y4 dy

V Q
2 (x1 = x/y, y1 = y) at Q1 2x1y1 dx1 + (2x2

1 + 5y3
1) dy1

V Q1
2 (x2 = x1/y1, y2 = y1) at Q2 2x2y2 dx2 + (4x2

2 + 5y2) dy2

V Q2
1 (x3 = x2, y3 = y2/x2) at Q3 (6x3y3 + 5y2

3) dx3 + (4x2
3 + 5x3y3) dy3

Fig. 1. Proximity graph of S(X ).

Now, for i ∈ {4, 5, . . . , 12} we consider the blow-up πPi
: Xi+1 := BlPi

(Xi) → Xi, the coordinates 
(y′i+1 := y′i, z

′
i+1 := z′i/y

′
i) at V Pi

1 and Pi+1 := (0, 0) ∈ EPi
∩ V Pi

1 . It is easy to check that the strict 
transform of X in Xi+1 has multiplicity 1 at Pi+1. Its unique singularity in EPi

is Pi+1. It is ordinary, and 
non-dicritical whenever i ≤ 11. Moreover,

ω̃1|V P12
1

= [z′13 − 42(y′13)9(z′13)2] dy′13 + [−y′13 − 4(y′13)10z′13] dz′13,

and, then, P13 is a dicritical singular point. The strict transform of X in X13 has not ordinary singularities 
in EP13 .

Now we consider coordinates x = X
Z and y = Y

Z in the chart defined by Z �= 0, where the point Q has 
coordinates (x, y) = (0, 0). The differential form that defines the restriction of X is

ω2 := 2x dy + 5y4 dy.

Q is an ordinary singularity of X and its reduction process is described in Table 1. The first column indicates 
the chart where each point (proper or infinitely near) of SQ(X ) is located. The second column corresponds 
to the system of local coordinates that we consider and the corresponding points. The last column shows 
the differential 1-forms that define the strict transforms of X at every point. Notice that Q3 belongs to 
the strict transform of EQ1 and therefore Q3 is proximate to Q1. Observe also that Q, Q1, Q2 and Q3 are 
non-dicritical points.

With the above notation, we have S(X ) = {P, Q} ∪ {Pi}13
i=1 ∪ {Qi}3

i=1 and D(X ) = {P} ∪ {Pi}13
i=1. 

Fig. 1 shows the proximity graph of the configuration S(X ). �
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5. Linear systems

5.1. Linear systems associated with clusters

Along this section we consider the complex projective plane CP2 and fix homogeneous coordinates X, Y, Z.

Definition 4. A linear system on CP2 is the set of algebraic curves given by a linear subspace of Cm[X, Y, Z] ∪
{0} for some natural number m > 0, where Cm[X, Y, Z] denotes the set of homogeneous polynomials of 
degree m in the variables X, Y, Z. If the dimension (as a projective space) of a linear system is 1, then it is 
called a pencil.

Definition 5. A cluster of infinitely near points (or, simply, a cluster) of CP2 is a pair (C, m) where C =
(Q0, . . . , Qh) is a configuration of infinitely near points of CP2 and m = (m0, . . . , mh) ∈ Nn.

Our next step is to define linear systems on CP2 given by a pair formed by a cluster C and a positive 
integer. To this purpose, for each Qi ∈ C, let us denote by 
(Qi) the cardinality of the set {Qj ∈ C |
Qi is infinitely near to Qj}.

Definition 6. Consider a cluster K = (C, m), an algebraic curve C in CP2, and a point Qk ∈ C. Assume 

(Qk) = 1, that is Qk is only infinitely near to itself. Take a local chart at Qk with local coordinates (x, y)
and let f(x, y) = 0 be a local equation of C. We define the virtual transform of C at Qk with respect to 
the cluster K (denoted by CK

Qk
) as the (local) curve defined by f(x, y) = 0. Moreover, we say that C passes 

virtually through Qk with respect to K if the multiplicity of CK
Qk

at Qk (that is, the degree of the first 
non-zero jet of f(x, y)), denoted by mQk

(CK
Qk

), is greater than or equal to mk.
Suppose now that 
(Qk) > 1. Let Qj ∈ C be such that Qk is in the first infinitesimal neighborhood of 

Qj and assume inductively that C passes virtually through Qj with respect to K. Take local coordinates 
(x, y) at Qj and let f(x, y) = 0 be a local equation of CK

Qj
. We can write Qk = (0, λ) ∈ V

Qj

1 (respectively, 
Qk = (λ, 0) ∈ V

Qj

2 ) in local coordinates (x, t = y/x) (respectively, (s = x/y, y)). Then we define the virtual 
transform of C at Qk with respect to the cluster K as the (local) curve defined by x−mjf (x, x(t + λ)) = 0
(respectively, x−mjf ((s + λ)y, y) = 0). We denote it by CK

Qk
. The above equations define also what we call 

virtual transform (centered at Qk) of C at the chart V Qj

1 (respectively, V Qj

2 ). Moreover, we say that C
passes virtually through Qk with respect to K if the multiplicity of CK

Qk
at Qk, denoted by mQk

(CK
Qk

), is 
greater than or equal to mk. Finally, the curve C passes virtually through K if it passes virtually through 
Qi with respect to K for all Qi ∈ K.

The strict transform C̃ of an algebraic curve C in a manifold obtained by a sequence of point blowing-ups 
is the global curve given by the virtual transform through the cluster of points and multiplicities defined by 
the curve. Note the analogy with the similar definition given in Section 4.2.

Definition 7. Given a positive integer m and a cluster K = (C, m) of CP2, the linear system determined by 
m and K, denoted by Lm(K) or Lm(C, m), is the linear system on CP2 given by those curves defined by 
polynomials in Cm[X, Y, Z] ∪ {0} that pass virtually through K.

Example 2. Consider the points P = (0 : 0 : 1) and Q = (1 : 0 : 1) of CP2, whose coordinates in the chart 
defined by Z �= 0 are (x = X

Z = 0, y = Y
Z = 0) and (x = 1, y = 0), respectively. Consider also the following 

infinitely near to P points: P1 = (0, 3) ∈ V P
1 and P2 = (1, 0) ∈ V P1

2 , with the notations of Section 4.1.
Consider the cluster K = (C, m), where C = {Q, P, P1, P2} and m = (2, 2, 1, 1). Let us compute the linear 

system L3(K). To do that, consider an arbitrary projective curve C ∈ L3(K) defined by a homogeneous
polynomial of degree 3 with undetermined coefficients:
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aX3 + bX2Y + cX2Z + dXY 2 + eXY Z + fXZ2 + gY 3 + hY 2Z + iY Z2 + kZ3,

whose expression in the chart Z �= 0 is

ax3 + bx2y + cx2 + dxy2 + exy + fx + gy3 + hy2 + iy + k.

On the one hand, since the multiplicity of C at P must be greater than or equal to 2, it follows that 
f = i = k = 0. On the other hand, the multiplicity of C at Q must be greater than or equal to 2, so the 
coefficients of the monomials of degree less than 2 of

c(1 + x)2 + a(1 + x)3 + e(1 + x)y + b(1 + x)2y + hy2 + d(1 + x)y2 + gy3

are equal to 0; that is, a = c = 0 and b = −e.
The local equation defining the virtual transform of C at P1, CK

P1
, is

3e + 9h + (9d− 3e + 27g)x1 + (e + 6h)y1 + (6d− e + 27g)x1y1 + hy2
1 + (d + 9g)x1y

2
1 + gx1y

3
1 = 0

in the coordinates (x1 = x, y1 = y/x). Therefore, since the multiplicity of CK
P1

at P1 must be greater than 
or equal to 1, we get e = −3h. Finally, the local equation of the virtual transform of C at P2 with respect 
to K is

3h + (9d + 27g + 9h)x2 + hy2 + (6d + 27g + 3h)x2y2 + (d + 9g)x2y
2
2 + gx2y

3
2 = 0,

where x2 = x1/y1 and y2 = y1. Thus CK
P2

passes virtually through P2 with respect to K if and only if h = 0.
As a consequence, L3(K) is the projective space generated by curves given by the monomials XY 2 and 

Y 3; that is, the curves in L3(K) are those defined by an equation of the type Y 2L = 0, where L = αX+βY , 
for some (α, β) ∈ C2 \ {(0, 0)}. �
5.2. Cluster of base points of a linear system

Let n be a positive integer and L a linear system on CP2 such that L is given by PV , where 
V = 〈F1, F2, . . . , Fs〉 is the linear space over C spanned by linearly independent polynomials F1, F2, . . . , Fs ∈
Cn[X, Y, Z]. Assume that F1, F2, . . . , Fs have no common factor. Then, there exists a configuration of (in-
finitely near) points of CP2, BP(L), and a finite set of linear subspaces Hi � CPs−1, 1 ≤ i ≤ t, such that 
the strict transforms of the curves with equations

α1F1(X,Y, Z) + α2F2(X,Y, Z) + · · · + αsFs(X,Y, Z) = 0,

(α1, α2, . . . , αs) ∈ CPs−1 \
⋃t

i=1 Hi (which, in the sequel, we call generic curves of L) have the same 
multiplicities at every point Q ∈ BP(L) (denoted by multQ(L)) and have empty intersection at the manifold 
obtained by blowing-up the points in BP(L). Notice that, if L is a pencil, then 

⋃t
i=1 Hi is a finite set.

Definition 8. The cluster (BP(L), m), with BP(L) as it was defined above and m = (multQ(L))Q∈BP(L), is 
the cluster of base points of L.

Example 3. Let L be the linear system on CP2 defined by the curves αF (X, Y, Z) + βZ5 = 0, where 
F (X, Y, Z) := X2Z3 +Y 5 and (α, β) ∈ C2 \{(0, 0)}. It is easy to check that the configuration of base points 
BP(L) coincides with the configuration D(X ) of Example 1.

Table 2 shows the local expressions of the successive strict transforms of the generic elements of the 
linear system. Then the cluster of base points of L is (D(X ), (3, 2, 112)), where 112 means a sequence of 
12 ones. �
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Table 2
Base points of L. We note that 5 ≤ i ≤ 13 and α �= 0.

Chart System of coordinates Strict transform of a generic curve

X �= 0 (y = Y/X, z = Z/X) at P α(z3 + y5) + βz5

V P
1 (y1 = y, z1 = z/y) at P1 α(y2

1 + z3
1) + βy2

1z
5
1

V P1
2 (y2 = y1/z1, z2 = z1) at P2 α(z2 + y2

2) + βy2
2z

5
2

V P2
1 (y3 = y2, z3 = z2/y2) at P3 α(y3 + z3) + βy6

3z
5
3

V P3
1 (y4 = y3, z4 = z3/y3 + 1) at P4 αz4 + βy10

4 (z4 − 1)5

V
Pi−1
1 (yi = yi−1, zi = zi−1/yi−1) at Pi αzi + βy14−i

i (ziyi−4
i − 1)5

6. Resolution of a pencil and infinitely near dicritical points

In this section, we shall briefly describe the resolution process of a pencil of curves in CP2 and compare 
it with the reduction of singularities of the vector field X whose invariant curves are given by the pencil 
(that is, the quotient of two different curves of the pencil provides a rational first integral of X ). Additional 
information can be found in [33].

Consider a pencil L given by P〈F1, F2〉, where F1, F2 are polynomials in Cn[X, Y, Z] (for some positive 
integer n) without common components. Let P be any point in BP(L). As in Definition 6, take local 
coordinates (x, y) at P and consider the virtual transforms of the elements in L with respect to the cluster 
(C, (mQ)Q∈C), where C := {Q ∈ BP(L) | Q �= P and Q is infinitely near to P} and mQ := multQ(L) for 
every Q. These virtual transforms will be given by polynomials

αf1(x, y) + βf2(x, y)

= D(x, y)
(
αf

(r)
1 (x, y) + βf

(r)
2 (x, y)

)
+ αf

(>mP )
1 (x, y) + βf

(>mP )
2 (x, y),

where mP := multP (L), f (j)
i (respectively, f (>j)

i ) denotes the j-th jet of fi (respectively, fi− f
(j)
i ), i = 1, 2, 

j ∈ N, D(x, y) is the greatest common divisor of f (mP )
1 and f (mP )

2 , and r := mP−d, where d = deg(D). Notice 
that, except for finitely many elements (α : β) ∈ CP1, the above expression defines the strict transform of a 
generic element of L. The virtual transforms in the chart V P

1 (with local coordinates (x1 := x, y1 := y/x)) 
of the elements in L on the manifold obtained after blowing-up P are defined by

D(1, y1)
(
αf

(r)
1 (1, y1) + βf

(r)
2 (1, y1)

)
+ x1

(
αf

(mP +1)
1 (1, y1) + βf

(mP +1)
2 (1, y1) + · · ·

)
. (10)

A similar expression is obtained in the chart V P
2 . The points in BP(L) ∩ V P

1 have the form (0, ξ), ξ being 
a root of the polynomial D(1, t).

Definition 9. With the above notations, a point P in BP(L) is said to be dicritical with respect to L if 
r > 0.

Remark 1. From the expression (10), it is clear that P is dicritical whenever it is a maximal point of BP(L)
with respect to the ordering “to be infinitely near to” (because D(x, y) = 1 in this case).

Let X be the manifold obtained after blowing-up the points in BP(L) and let P ∈ X. Let S be that 
point of BP(L) ∩CP2 such that P is proximate to S. Assume without loss of generality that S = (0 : 0 : 1). 
Performing changes of coordinates in the successive blowing-ups as described in Section 4.1, we obtain a 
system of coordinates (x, y) at P and polynomials g1(x, y), g2(x, y) such that αg1(x, y) + βg2(x, y) = 0, 
(α : β) ∈ CP1, are the equations at P = (0, 0) of the virtual transforms of the elements in L with respect to 
the cluster of base points of L. Notice that g1 and g2 do not vanish simultaneously at (0, 0).

As a consequence of the above paragraph, the assignment P �→ (g1(0, 0) : g2(0, 0)) defines a holomorphic 
map ϕ : X → CP1 that extends to X the rational map
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φ : CP2 · · · → CP1

given by φ : S �→ (F1(S) : F2(S)) (eliminating its indeterminacies); that is, φ ◦ π = ϕ, where π : X → CP2

is the before alluded composition of blowing-ups.

Proposition 2. With the above notations, consider a point P ∈ BP(L). The following statements are equiv-
alent:

(a) P is not dicritical with respect to L.
(b) The strict transform on X of the exceptional divisor EP , also denoted EP , is a component of the virtual 

transform of some curve in L with respect to the cluster of base points of L.
(c) EP is a component of some fiber of the holomorphic map ϕ : X → CP1 that the pair (F1, F2) defines.
(d) multP (L) =

∑
Q multQ(L), where the sum is taken over the set of proximate to P points in D(X ).

Proof. P is not a dicritical point with respect to L if and only if (f (r)
1 (1, y1), f (r)

2 (1, y1)) = (a, b) ∈ C2 \
{(0, 0)}. By Equality (10), this happens if and only if EP is a component of the virtual transform (with 
respect to the cluster of base points of L) of the curve defined by bF1(X, Y, Z) − aF2(X, Y, Z) = 0. This 
shows the equivalence between (a) and (b).

The equivalence between (b) and (c) is clear because the fibers of ϕ are just the curves in X defined by 
the virtual transforms of the elements in L with respect to the cluster of base points of L.

To end the proof, we can assume (performing a change of variables if necessary) that x does not divide 
D(x, y). Then P is non-dicritical with respect to L if and only if D(1, y1) =

∏q
i=1(y1−ξi)di , where q, di ∈ N, 

ξi ∈ C, 1 ≤ i ≤ q, ξi �= ξj if i �= j, and 
∑q

i=1 di = mP . This is equivalent to say that the strict transform 
of a generic curve of L meets EP at q different points Ri (with local coordinates (0, ξi)), 1 ≤ i ≤ q, and 
mP =

∑q
i=1 di, where di is the intersection multiplicity at Ri of the just mentioned strict transform and 

EP . Taking into account that the points of BP(L) belonging to the intersection of the strict transforms of 
a generic curve and EP are proximate to P , it holds that the equivalence between (a) and (d) follows from 
Noether Formula [12, Theorem 3.3.1], which is showed later in (11). �

For a pencil L as at the beginning of the section, consider the vector field XL in CP2 whose invariant curves 
are given by the pencil. This vector field is defined by the homogeneous 1-form (in projective coordinates) 
ΩL := AdX + BdY + ZdZ, where (A, B, C) = (A′, B′, C ′)/ gcd(A′, B′, C ′) and

A′ := F2
∂F1

∂X
− F1

∂F2

∂X
, B′ := F2

∂F1

∂Y
− F1

∂F2

∂Y
, C ′ := F2

∂F1

∂Z
− F1

∂F2

∂Z
.

Now set x, y local coordinates at an open neighborhood V of a point P in a two-dimensional complex 
manifold M , and f, g holomorphic functions in V . Consider the local pencil Γ of curves in V defined by 
equations αf +βg = 0, where (α : β) runs over CP1. Its associated vector field in V is defined by the 1-form 
ωΓ := a(x, y)dx + b(x, y)dy, where (a(x, y), b(x, y)) := (ā(x, y), ̄b(x, y))/ gcd(ā, ̄b) and ā(x, y) = g ∂f

∂x − f ∂g
∂x , 

b̄(x, y) := g ∂f
∂y − f ∂g

∂y . It is not difficult to verify that the local vector fields defined by the pencils given 
by the restrictions of F1 and F2 to the corresponding affine charts patch together to give rise to the global
vector field XL.

Lemma 1. With the above notations, let Γ be a local pencil at a point P ∈ M . Then, the operations on Γ
“blowing-up” and “taking associated 1-forms” commute. More specifically, let π the blow-up of P in M and 
consider strict transforms with respect to π. If Γ̃ is the local pencil at an open neighborhood of Q ∈ EP

spanned by the strict transforms of two generic elements of Γ, then ωΓ̃ = ω̃Γ, where ω̃Γ denotes the strict 
transform of ωΓ.
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Proof. Assume that f and g are generic elements of Γ. Take local coordinates x′, y′ at V P
1 . On the one 

hand, it holds

ωΓ̃ = ω̄Γ̃
gcd(a′, b′) ,

where ω̄Γ̃ = a′(x′, y′)dx + b′(x′, y′)dy, a′(x′, y′) = g̃ ∂f̃
∂x′ − f̃ ∂g̃

∂x′ and b′(x′, y′) := g̃ ∂f̃
∂y′ − f̃ ∂g̃

∂y′ , f̃ and g̃ being 
the strict transforms of f and g at V 1

P . On the other hand, the strict transform of ωΓ in V 1
P is

ω̃Γ = ω∗
Γ

gcd(ā, b̄)
,

where

ā(x′, y′) := g(x′, x′y′)∂f
∂x

(x′, x′y′) − f(x′, x′y′)∂g
∂x

(x′, x′y′)

+ y′
(
g(x′, x′y′)∂f

∂y
(x′, x′y′) − f(x′, x′y′)∂g

∂y
(x′, x′y′)

)
,

b̄(x′, y′) := g(x′, x′y′)∂f
∂y

(x′, x′y′) − f(x′, x′y′)∂g
∂y

(x′, x′y′),

ω∗
Γ = ā(x′, y′)dx′ + b̄(x′, y′)dy′.

Let h(x, y) be a polynomial whose multiplicity at (0, 0) is m and write h(x′, x′y′) = (x′)mh̃(x′, y′). 
The following identities hold: ∂h

∂x (x′, x′y′) = ∂(h(x′,x′y′))
∂x′ − y′ ∂h∂y (x′, x′y′) and ∂h

∂y (x′, x′y′) = x′ ∂(h̃(x′,x′y′))
∂y′ . 

Setting s the multiplicity of the curves defined by f and g at P , the above identities allow us to prove that 
ω∗

Γ = (x′)2sω̄Γ̃ and so our result holds since it suffices to take reduced forms. �
Proposition 3. Let L be a pencil as at the beginning of this section and let P be a base point of L. Then, 
P is dicritical with respect to L if and only if P is an infinitely near dicritical singularity of XL.

Proof. Let f be a polynomial in the local variables x, y at P defining the strict transform at P of a generic 
element of L. Let m be the multiplicity of f at P .

Assume that P is dicritical with respect to L and take a polynomial g defining the strict transform of an 
element of L different from that given by f . Then the initial forms f (m) and g(m) of f and g are linearly 
independent. Consider the local vector field ωL that the pencil determines at P as defined above Lemma 1. 
Set

ā(x, y)dx + b̄(x, y)dy = h(x, y) · ωL

and h(i) the initial form of h. Following the notations of Section 4.2, we get

h(i)(x, y)α(x, y) = y

(
∂f (m)

∂y
g(m) − f (m) ∂g

(m)

∂y

)
+ x

(
∂f (m)

∂x
g(m) − f (m) ∂g

(m)

∂x

)

=
(
x
∂f (m)

∂x
+ y

∂f (m)

∂y

)
g(m) −

(
x
∂g(m)

∂x
+ y

∂g(m)

∂y

)
f (m)

= mf (m)g(m) −mf (m)g(m) = 0,

which, by Lemma 1, proves that P is an infinitely near dicritical singularity of XL.
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To finish our proof, suppose that P is not dicritical with respect to L. Then there exists an element of 
L whose strict transform at P is defined by an equation g(x, y) = 0 such that the multiplicity of g at P is 
n > m. Now, by repeating the same computation as before, it happens that

h(i)(x, y)α(x, y) = mf (m)g(n) − nf (m)g(n) = (m− n)f (m)g(n) �= 0.

Hence P is not an infinitely near dicritical singularity of XL. �
As a consequence of the above proposition, the following result holds.

Corollary 1. Let L be a pencil given by two homogeneous polynomials of the same degree without common 
components. Then BP(L) = D(XL).

7. Main results

7.1. The main theorem. Poincaré problem and Algorithm 1

In this section, unless otherwise stated, we shall assume that the vector field X has a WAI polynomial 
first integral and, as before, we shall denote by X the complex projectivization of X. The existence of a 
WAI polynomial first integral implies that of a minimal one H, that will be what we always consider.

Keep the notations as in Section 2. The rational function H̄ is an equivalent datum to the pencil PX :=
P〈Fn1

1 Fn2
2 · · ·Fnr

r , Zn〉 and, by [29, Lemma 1], Ln(BPX ) = PX , where BPX denotes the cluster of base 
points of PX . This means that one can compute the first integral H from the integer number n and the 
cluster BPX . We shall show that the dicritical configuration D(X ) determines both data.

Next theorem is our first step. To prove it we shall use the Bézout–Noether Formula (see [35, Corol-
lary I.7.8] and [12, Theorem 3.3.1]) which, for two algebraic curves C1 and C2 on CP2, states that

degC1 degC2 =
∑
Q

IQ(C1, C2) =
∑
P

mP (C̃1)mP (C̃2), (11)

where C̃1 and C̃2 stand for the strict transforms of C1 and C2 in some manifold obtained by blowing-up, 
Q (respectively, P ) runs over the set C1 ∩C2 (respectively, of infinitely near points to some Q as above, P , 
such that P ∈ C̃1 ∩ C̃2) and IQ(C1, C2) denotes the intersection multiplicity at Q of C1 and C2. In addition, 
we consider a system of multiplicities m(C, C′) attached with any pair of configurations of infinitely near 
points C and C′ of CP2 such that C ⊆ C′. This is defined as m(C, C′) := (mQ)Q∈C′ , where mQ = 1 if Q is a 
maximal point of C, mQ = 0 if Q ∈ C′ \ C and mQ =

∑
P mP otherwise, the sum running over the set of 

points P ∈ C such that P is proximate to Q. Finally, set

Fr(C) := {P ∈ C | P is a free point}

and, for each P ∈ C, define

CP := {Q ∈ C | P is infinitely near to Q}.

Theorem 2. With the notations as in Section 2, let X be a polynomial vector field having a WAI polynomial 
first integral H =

∏r
i=1 f

ni
i and X its complex projectivization. Then:

(1) The configurations of infinitely near points D(X ) and BP(PX ) coincide.
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(2) D(X ) has exactly r maximal points with respect to the ordering “to be infinitely near to”, which we denote 
by R1, R2, . . . , Rr. Moreover, these maximal points are the unique infinitely near dicritical singularities 
of X .

(3) The set Fr(D(X )) has exactly r maximal elements and, for each i ∈ {1, 2, . . . , r}, each point Ri is 
infinitely near to one of these maximal elements, which we denote by Mi.

(4) For each i ∈ {1, 2, . . . , r}, set m
(
D(X )Mi , D(X )

)
= (hi

Q) the above defined system of multiplicities. 
Then, up to reordering of {1, 2, . . . , r}, D(X )Mi is the set of points in D(X ) through which the strict 
transforms of the curve Ci, defined by Fi = 0, pass. Moreover, for all Q ∈ D(X )Mi , it holds that 
multQ(C̃i) = hi

Q and the degrees di of the curves Ci satisfy

di =
∑

Q∈D(X )Mi∩L̃

hi
Q, (12)

where D(X )Mi ∩ L̃ is the set of points in D(X )Mi through which the strict transforms of the line of 
infinity pass.

Proof. Statement (1) follows from Corollary 1. We claim that the fact that we consider H minimal proves 
the following statements:

(1) gcd(n1, n2, . . . , nr) = 1.
(2) Either r = 1 (and n1 = 1), or r ≥ 2 and there exists i ∈ {2, 3, . . . , r} such that fi − λf1 /∈ C for all 

λ ∈ C.

Indeed, δ := gcd(n1, n2, . . . , nr) �= 1 implies that H1/δ is also a first integral, which is a contradiction with 
the mentioned minimality of the first integral. To show (2), assume that r ≥ 2 and, for all i ∈ {2, 3, . . . , r}, 
fi = λif1 + αi for some λi, αi ∈ C; then H = T (f1), where T (t) := tn1

∏r
i=2(λit + αi)ni ; so f1 is a first 

integral, which is also a contradiction.
Now consider the pencils Pi := P〈Fi, Zdi〉, 1 ≤ i ≤ r. From a careful reading of the statement and proof 

of [10, Lemma 1], we deduce the following facts:
(i) Each configuration BP(Pi) is contained into BP(PX ) and has exactly 1 maximal point, which we 

denote by Ni. Moreover, Ni �= Nj for i �= j.
(ii) BP(PX ) = ∪r

i=1Ci, where Ci = BP(Pi) ∪ {Qi,1, Qi,2, . . . , Qi,ki
}, Qi,1 belongs to the first infinitesimal 

neighborhood of Ni and Qi,j belongs to the first infinitesimal neighborhood of Qi,j−1 for 2 ≤ j ≤ ki.
(iii) The maximal point with respect to the proximity relation of Ci, 1 ≤ i ≤ r, through which the strict 

transform of Ci passes is the maximal free point of Ci (that we denote by Mi).
(iv) Let π : X → CP2 be the composition of the blow-ups of the points of the configuration D(X ) and 

let φ : CP2 · · · → CP1 be the rational map defined by H̄ (see the paragraph above Proposition 2). The 
exceptional divisors EP (with P ∈ D(X )) are mapped by ϕ = φ ◦ π to a point of CP1 with the exception of 
the divisors in the set {EQi,ki

}ri=1, whose images are CP1.
For 1 ≤ i ≤ r, the composition of the blow-ups of the points in BP(Pi) provides an embedded 

resolution of the branch of Ci at infinity and the strict transform of Ci passes through Ni. Therefore 
Mi ∈ {Qi,1, Qi,2, . . . Qi,ki

} by our above assertion (iii). This implies that Mi �= Mj if �= j. Then it is clear 
that the set of points in D(X ) through which the strict transforms of the curve Ci pass is D(X )Mi , with 
multiplicity hi

Q for all Q ∈ D(X )Mi and so (3) and the first statement in (4) are proved.
On the one hand, defining Ri := Qi,ki

, 1 ≤ i ≤ r, it holds that R1, R2, . . . , Rr are the maximal elements 
of D(X ). On the other hand, {ϕ−1(λ)}λ∈CP1 is the set of invariant curves of the strict transform of X at the 
manifold X obtained after blowing-up the points in D(X ) (see [33], for instance). This means, by (iv), that 
the unique exceptional divisors in X that are not invariant by the strict transform of X are ERi

, 1 ≤ i ≤ r. 
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Then, by Proposition 1, the points Ri, 1 ≤ i ≤ r, are the unique infinitely near dicritical singularities of X . 
This proves (2).

Finally, Bézout–Noether Formula for the curves Ci and the line at infinity proves Equality (12), which 
concludes our proof. �

We next introduce some equalities that will be useful later on. For X as in Theorem 2 and with the same 
notation, set rP := mP (PX ), for P ∈ D(X ). The first equation below follows from Bézout–Noether Formula 
(11) for two generic curves of PX . It relates the degree n of the curves in PX (that is, the degree of the 
rational first integral of X ) and the multiplicities rP above defined:

n2 =
∑

P∈D(X )

r2
P . (13)

The same formula with respect to a generic curve of PX and Ci, 1 ≤ i ≤ r, gives rise to

n di =
∑

P∈D(X )

hi
P · rP . (14)

Applying again the same formula (11) to a generic curve of PX and the line of infinity L, we get

n =
∑

P∈D(X )∩L̃

rP . (15)

Finally, let us define N (X ) as the set of non-maximal points of the dicritical configuration D(X ).
For any Q ∈ N (X ) and as a consequence of item (2) of Theorem 2 and Proposition 2, we have

rQ =
∑
P

rP , (16)

where the sum runs over the points P in D(X ) which are proximate to Q.
By [10, Lemma 1] it holds that the strict transform of a generic element of the pencil PX at each free 

maximal point Mi has a local equation of the type αuai + βt�i , where u = 0 (respectively, t = 0) is a local 
equation of the strict transform of Ci at Mi (respectively, the exceptional divisor), ai and 
i being natural 
numbers. Then, straightforward computations involving Equality (16) show that rRi

= gcd(ai, 
i) and, as a 
consequence, the following result happens.

Lemma 2. The greatest common divisor gcd({rP | P ∈ D(X )}) equals one.

Let N be the cardinality of D(X ). We introduce the non-degenerated symmetric bilinear pairing over the 
vector space RN+1, 〈·〉 : RN+1×RN+1 → R such that if a = (a0; (aP )P∈D(X )), b = (b0; (bP )P∈D(X )) ∈ RN+1, 
then

〈a,b〉 := a0b0 −
∑

P∈D(X )

aP bP . (17)

For P ∈ D(X ), set

eP := (0; (mP
Q)Q∈D(X )),

where mP
Q equals −1 (respectively, 1, 0) if Q = P (respectively, Q is proximate to P , otherwise). It is not 

difficult to check that
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〈eP , eP 〉 < 0 and 〈eP , eQ〉 ∈ {0, 1} for all P,Q ∈ D(X ) such that P �= Q.

In addition, Equalities (14) and (16) mean that the vector 
(
n; (rP )P∈D(X )

)
∈ RN+1 belongs to the orthogonal 

complement (with respect to the above defined bilinear pair) of the subspace of RN+1 spanned by the 
set

S :=
{
ci := (di; (hi

P )P∈D(X ))
}r

i=1 ∪ {eQ}Q∈N (X ) . (18)

Notice that the cardinality of S is N .
In the sequel and for any tuple m = (m0, (mP )P∈D(X )) ∈ NN+1, we shall write L(m) instead of 

Lm0(D(X ), (mP )P∈D(X )). Using this notation, we state the following result:

Lemma 3. Let Q ∈ D(X ) and m =
(
m0, (mP )P∈D(X )

)
∈ NN+1. Then L(m) ⊆ L(m + eQ).

Proof. Consider the clusters K :=
(
D(X ), (mP )P∈D(X )

)
and K′ :=

(
D(X ), (m′

P )P∈D(X )
)
, where m′

P =
mP − 1 if P = Q; m′

P = mP + 1 if P is proximate to Q; and m′
P = mP otherwise. Let x, y be local 

coordinates at a point T ∈ D(X ) in the first infinitesimal neighborhood of Q and let f(x, y) = 0 be the 
local equation of the virtual transform at T of a curve C in L(m) with respect to the cluster K. Then, the 
virtual transform at T of C with respect to K′ is xf(x, y), where x = 0 is assumed to be the equation of EQ. 
Moreover, it is clear that the new factor x increases in one unit the multiplicity of the virtual transform at 
any point proximate to Q and different from T . Therefore C belongs to L(m + eQ). �

With notations as before, set

r :=
(
n; (rP )P∈D(X )

)
. (19)

The following properties are key facts for our main results. The first one is [29, Lemma 1] and is stated 
without proof.

Lemma 4. L(r) = PX .

Lemma 5. Let C be a curve in CP2. Then, C is invariant by X if and only if 〈r, c〉 = 0, where c = (d :=
degC; (multP (C̃))P∈D(X )).

Proof. Without loss of generality we can assume that C is reduced and irreducible. Let π : X → CP2

be the composition of blowing-ups of the points in BP(PX ). Statement (1) of Theorem 2 shows that 
BP(PX ) = D(X ). So, C is an invariant curve of X if and only if it is a component of some curve in the 
pencil PX , that is, if and only if the strict transform C̃ on X does not meet the strict transform of a generic 
curve D of the pencil (see the paragraph below Remark 1). This concludes our statement because it is 
equivalent to Bézout–Noether Formula for the curves C and D over the points in D(X ). �
Lemma 6. The set S ⊆ RN+1 defined in (18) is linearly independent.

Proof. Reasoning by contradiction, assume that S is linearly dependent. This means that there exist two 
disjoint subsets I1 and I2 of the set {1, 2, . . . , r}, two disjoint subsets J1 and J2 of the set N (X ) and positive 
integers αi, βQ, i ∈ I1 ∪ I2, Q ∈ J1 ∪ J2 such that

∑
αici +

∑
βQeQ =

∑
αici +

∑
βQeQ. (20)
i∈I1 Q∈J1 i∈I2 Q∈J2
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Taking coordinates (x0; (xP )P∈D(X )), Equality (13) proves that the vector r defined in (19) spans a genera-
trix G of the cone C of RN+1 defined by the equation 

∑
P∈D(X ) x

2
P = x2

0. Moreover, nx0−
∑

P∈D(X ) rPxP = 0
is an equation of the hyperplane H tangent to C which contains G. Eqs. (14) and (16) show that S is con-
tained in H and, therefore, 

∑
P∈D(X ) y

2
P ≥ y0 for any y = (y0; (yP )P∈D(X )) in the span of S. In addition, 

the equality happens if and only if y belongs to G. In other words, 〈y, y〉 ≤ 0 for every y belonging to the 
span of S, and equality holds if and only if y is a multiple of the vector r.

Let d be the vector given by the left (or the right) hand side of Equality (20). The above paragraph 
shows that 〈d, d〉 ≤ 0. Moreover, from Equality (20) we deduce that

〈d,d〉 =
〈∑

i∈I1

αici,
∑
i∈I2

αici

〉
+
〈∑

i∈I1

αici,
∑
Q∈J2

βQeQ

〉

+
〈∑

i∈I2

αici,
∑
Q∈J1

βQeQ

〉
+
〈 ∑

Q∈J1

βQeQ,
∑
Q∈J2

βQeQ

〉
,

which allows us to deduce that

〈d,d〉 = 0. (21)

Indeed, this is a consequence of the following inequalities that hold for 1 ≤ i, j ≤ r, i �= j and P, Q ∈ D(X ), 
P �= Q: 〈ci, cj〉 = didj −

∑
Q∈D(X ) h

i
Qh

j
Q ≥ 0 which happens by Bézout–Noether Formula; 〈ci, eP 〉 =

hi
P −

∑
Q hi

Q ≥ 0, where Q runs over the set of proximate to P points in D(X ) [12, Theorem 4.2.2]; and 
〈eP , eQ〉 ≥ 0.

As a consequence of Equality (21), d is a multiple of r and therefore, following the notations of Lemma 3, 
L(d) = L(νr) for some positive integer ν. Applying Lemma 3 to both sides of Equality (20), it holds that

L
(∑

i∈I1

αici

)
⊆ L(νr) and L

(∑
i∈I2

αici

)
⊆ L(νr).

In particular, the curves D1 and D2 defined, respectively, by H1 :=
∏

i∈I1
Fαi
i = 0 and H2 :=

∏
i∈I2

Fαi
i = 0, 

belong to the linear system L(νr).
Let G be the set of monomials of degree ν in two variables, T1 and T2, and consider the linear system T

spanned by the set

{G(H1, H2) | G ∈ G}.

Recall that L(r) = PX by Lemma 4. It is clear that a curve defined by an equation F (X, Y, Z) = 0 belongs 
to T if and only if F = G1G2 · · ·Gν , where each Gi(X, Y, Z) = 0 defines a curve in the pencil PX = L(r). 
To end our proof, we shall prove that T = L(νr), which provides the desired contradiction because then the 
curves D1 and D2 belong to T ; that is, each one is a product of polynomials defining curves in the pencil 
PX and this cannot happen since the curves defined by F1, F2, . . . , Fr are components of the same curve of 
the pencil.

We conclude by proving the just alluded equality. T ⊆ L(νr) is obvious. Now, reasoning by contradiction, 
assume that T � L(νr). The set Δ of generic elements in L(νr) which are not in T is infinite because the 
generic elements of L(νr) are determined by the vectors in the complementary of a linear subvariety of 
CPs−1, where s is the dimension of L(νr) (see Section 5.2). Applying Bézout–Noether Formula (11) to any 
element D ∈ Δ and a generic element G of the pencil PX we get
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deg(D) deg(G) −
∑

P∈D̃∩G̃

multP (D̃)multP (G̃)

≤ deg(D) deg(G) −
∑

P∈D(X )

multP (D̃)multP (G̃) = ν

(
n2 −

∑
P∈D(X )

r2
P

)
= ν〈r, r〉 = 0.

This implies that D \ {D(X ) ∩ CP2} does not meet G. Since this happens for all generic element G of PX , 
the irreducible components of D must be irreducible components of non-generic elements of PX . This is a 
contradiction because Δ is infinite and the set of non-generic curves in PX is finite. So T = L(νr) and our 
proof is completed. �
Proposition 4. The vector r generates the orthogonal complement of S in RN+1 with respect to the bilinear 
form 〈·,·〉.

Proof. Lemma 6 and the fact that N is the cardinality of S prove that the orthogonal complement of S in 
RN+1 has dimension 1. Then the result follows from Equalities (14), (15) and (16). �

Next we state our main theorem, which justifies the forthcoming Corollary 2 and Algorithm 1. Corol-
lary 2 states that the Poincaré problem can be solved for the family of vector fields X that admit a WAI 
polynomial first integral in the sense that the degree of the first integral can be obtained from the reduction 
of singularities of X. Algorithm 1 decides whether a vector field X has a WAI polynomial first integral or 
not, and computes a minimal one in the affirmative case.

Theorem 3. Let X be a planar polynomial vector field having a WAI polynomial first integral. Consider its 
complex projectivization X and the corresponding dicritical configuration D(X ). Let R1, R2 . . . , Rr be the 
maximal points of D(X ) and set Fr(D(X )) = {P ∈ D(X ) | P is free}. Then the following statements hold:

(a) The line at infinity is invariant by X and contains the points in D(X ) ∩ P2.
(b) R1, R2 . . . , Rr are the unique infinitely near dicritical singularities of X .
(c) The set MFr(D(X )) of maximal elements in Fr(D(X )) has cardinality r.
(d) Let MFr(D(X )) = {M1, M2, . . . , Mr}. Then for each i, 1 ≤ i ≤ r, there exists an invariant by X curve 

Ci in the linear system Ldi
(D(X ), m(D(X )Mi , D(X ))), where m(D(X )Mi , D(X )) := (hi

P )P∈D(X ) and 
di :=

∑
P∈D(X )∩L̃ hi

P , such that multP (C̃i) = hi
P .

(e) The set S = {ci}ri=1 ∪ {eQ}Q∈N (X ) ⊆ RN+1 introduced in (18) is linearly independent.
(f) Let R = (n−; (r−P )P∈D(X )) be the vector with non-negative integral components that generates the or-

thogonal complement, with respect to the bilinear pair 〈·,·〉 defined in (17), of the vector space that S
spans in RN+1 and such that n− > 0 and gcd(n−; (r−P )P∈D(X )) = 1. Then R = r, r = (n; (rP )P∈D(X ))
being the vector defined in (19). Moreover, n =

∑
P∈D(X )∩L̃ rP , n2 =

∑
P∈D(X ) r

2
P and there exist 

non-negative integers ni > 0, 1 ≤ i ≤ r, and bP , P ∈ N (X ), such that

r =
r∑

i=1
nici +

∑
P∈N (X )

bP eP . (22)

(g) If r ≥ 2 then, for each i such that 1 ≤ i ≤ r, Ci is the unique curve in the linear system 
Ldi

(
D(X ),m(D(X )Mi ,D(X ))

)
. If r = 1 then c1 = r.

(h) Let fi(x, y) = 0 be an equation of the affine curve defined by Ci, 1 ≤ i ≤ r. Then, 
∏r

i=1 f
ni
i is a minimal 

WAI polynomial first integral of the vector field X.
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Proof. Items (a)–(f), except Equality (22), follow from the preceding paragraphs in this section. Notice 
that Proposition 4 and Lemma 2 prove the equality R = r in item (f). Let us show that Equality (22)
holds.

Assume that H =
∏r

i=1 f
ni
i is a WAI polynomial first integral which, as usual, we pick minimal and let us 

prove the above equality. Consider the matrix P = (pP,Q)P,Q∈D(X ) such that pP,Q equals −1 (respectively, 
1, 0) if P = Q (respectively, P is proximate to Q, otherwise). Then, by [12, Theorem 4.5.2], the components 
of the vector

(bP )P∈D(X ) := P−1 (rP − multP (D))P∈D(X )

given by the global curve D defined by 
∏r

i=1 F
ni
i , Fi being the projectivization of fi, are non-negative 

because D passes virtually through the cluster (D(X ), (rP )P∈D(X )). With the above information, set w the 
vector in RN+1 given by

w :=
r∑

i=1
nici +

∑
P∈D(X )

bPeP .

The equality w = r holds because P is the change of basis matrix between the basis {eP}P∈D(X ) of 
RN and the canonical one. Finally, the equalities 〈r, r〉 = 0, 〈r, ci〉 = 0, 1 ≤ i ≤ r and the inequalities 
〈r, eP 〉 ≥ 0, P ∈ D(X ), prove, by Part (d) of Proposition 2, that bP = 0 whenever P is an infinitely near 
dicritical singularity. This finishes the proof of Equality (22).

Now we prove item (g). Reasoning as in the paragraph below (20) one can show the inequalities 
〈ci, ci〉 ≤ 0, 1 ≤ i ≤ r, and also that 〈ci, ci〉 = 0 if and only if the vector ci is a multiple of r. In 
case r ≥ 2, the vector ci cannot be a multiple of r because multRj

(C̃i) = 0 if i �= j and all the components 
of r are different from 0. Then 〈ci, ci〉 < 0 and, therefore, d2

i <
∑

P∈D(X ) multP (C̃i)2. As a consequence, 
if Ci is not the unique curve in the linear system Ldi

(D(X ), m(D(X )Mi , D(X ))), we get a contradiction 
by applying Bézout–Noether Formula for two generic curves of that system. Therefore (g) is proved when 
r ≥ 2. The result for r = 1 holds by [9, Theorem 1].

To conclude our proof, it only remains to show that item (h) is true. Firstly, by Lemma 4, PX = L(r). 
Now, on the one hand, the curve defined by 

∏r
i=1 Fi(X, Y, Z)ni belongs to the pencil PX = L(r) in virtue 

of Equality (22) and Lemma 3. On the other hand, setting l = (1; (multP (L̃))P∈D(X )), we have 〈r, l〉 = 0
by Equality (15). So the non-reduced curve defined by Zn belongs also to the pencil PX by Lemma 5. 
Therefore 

∏r
i=1 Fi(X, Y, Z)ni and Zn span the pencil and thus H =

∏r
i=1 f

ni
i is a WAI polynomial first 

integral. Notice that H is minimal because, otherwise, gcd(n1, n2, . . . , nr) > 1, which contradicts the fact 
that the components of r have no common factor.

We finish by explaining that the curves Ci have only one place at infinity. In fact, they have only one 
intersection point with the line at infinity (by items (d), (e) and Bézout–Noether Formula) and only one 
analytic branch at this point (by [12, Theorem 3.5.3]). �
Corollary 2. Let X be a planar polynomial vector field as in Theorem 3. Then:

(1) The degree n and the exponents ni of the (minimal) WAI polynomial first integral of X can be computed 
from the proximity graph of the dicritical configuration D(X ) and the number of points in D(X ) through 
which the strict transform of the infinity line passes.

(2) The proximity graph of D(X ) determines a bound for the degree of the (minimal) WAI polynomial first 
integral.

Proof. Our first statement follows from items (f) and (h) of Theorem 3 and item (4) of Theorem 2. With 
respect to our second statement, it can be proved from the fact that the line at infinity only can go through 
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some points in the first block of consecutive free points in D(X ). So it suffices to consider the maximum of 
the degrees that can be computed as in statement (1) for those finitely many possibilities. �

Next, we state the algorithm mentioned before Theorem 3, which will be followed by an example that 
explains how it works.

Algorithm 1.

• Input: An arbitrary polynomial vector field X.
• Output: Either a minimal WAI polynomial first integral of X, or 0 (in case X has no first integral of 

this type).

(1) Compute the dicritical configuration D(X ) of the complex projectivization X of X. To do it, we need 
to perform the reduction of singularities of X.

(2) Let r be the number of maximal points of D(X ). If either Fr(D(X )) has not r maximal elements or 
item (e) of Theorem 3 is not satisfied, then return 0.

(3) Consider the linear systems defined in item (g) of Theorem 3 and compute an equation fi = 0 for the 
unique curve Ci, 1 ≤ i ≤ r, there defined.

(4) Compute the vector R in item (f) of Theorem 3. If R does not satisfy the equalities in that item, then 
return 0. Let K :=

∏r
i=1 f

ni
i be the polynomial in item (h) of Theorem 3, whose exponents are given 

by the vector R. Check whether K is a first integral of X. If the answer is positive, then return K. 
Otherwise return 0.

Example 4. Consider the polynomial vector field X defined by the following differential form:

(10x7 − 9x6 + 6x5y + 9x4y − 6x3y + 6x2y2 + 2xy2)dx + (2x6 − x4 + 6x3y − x2y + 4y2)dy.

Taking projective coordinates X, Y, Z and considering x and y as affine coordinates in the chart Z �= 0, X is 
extended to its complex projectivization X defined by the homogeneous 1-form ω = A dX +B dY +C dZ, 
where

A = 10X7Z − 9X6Z2 + 6X5Y Z2 + 9X4Y Z3 − 6X3Y Z4 + 6X2Y 2Z4 + 2XY 2Z5,

B = 2X6Z2 −X4Z4 + 6X3Y Z4 −X2Y Z5 + 4Y 2Z6,

C = −10X8 + 9X7Z − 8X6Y Z − 9X5Y Z2 + 7X4Y Z3

− 12X3Y 2Z3 −X2Y 2Z4 − 4Y 3Z5.

Applying the algorithm of reduction of singularities we obtain that the singular configuration of X is 
S(X ) = {Pi}28

i=0 ∪ {Q0, Q1}, where the involved infinitely near points are those described in Table 3.
The dicritical infinitely near singularities of X are P13, P23 and P28. Therefore the configuration D(X ) is 

{Pi}28
i=0. We have depicted the proximity graph of this configuration in Fig. 2.

With the notations as above, r = 3, R1 = M1 = P13, R2 = M2 = P23 and R3 = M3 = P28. Notice 
that D(X ) ∩ L̃ = {P0, P1}. The three first rows of the following matrix are, respectively, the vectors c1, c2
and c3, and the remaining ones are the vectors {eQ}Q∈N (X ):
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Table 3
The configuration S(X ).

Chart System of coordinates

Y �= 0 (x = X/Y, z = Z/Y ) at P0

V P0
1 (x1 = x, z1 = z/x) at P1

V P1
2 (x2 = x1/z1, z2 = z1) at P2

V P2
1 (x3 = x2, z3 = z2/x2 − 1) at P3

V
Pi−1
1 (xi = xi−1, zi = zi−1/xi−1) at Pi, 4 ≤ i ≤ 13

V P3
1 (x14 = x3, z14 = z3/x3 − 1) at P14

V
Pi−1
1 (xi = xi−1, zi = zi−1/xi−1 − 1) at Pi, 15 ≤ i ≤ 23

V P1
1 (x24 = x1, z24 = z1/x1 − 1) at P24

V
Pi−1
1 (xi = xi−1, zi = zi−1/xi−1) at Pi, 25 ≤ i ≤ 28

Z �= 0; (x′ = X/Z, y′ = Y/Z) at Q0

V Q0
1 (x′

1 = x′, y′
1 = y′/x′) at Q1

Fig. 2. Proximity graph of D(X ).

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 2 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 −1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The set S = {c1, c2, c3} ∪ {eQ}Q∈N (X ) is linearly independent and the orthogonal complement, with 
respect to the bilinear pairing 〈·,·〉, of the linear space that S spans is generated by

R = (10; 6, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2).
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Applying Corollary 2, if X has a WAI polynomial first integral, then its degree (that of a minimal one) 
is 10. Moreover, the linear system L(c1) (respectively, L(c2), L(c3)) has a unique curve (that is generic 
for the linear system): that defined by the equation X3 − X2Z + Y Z2 = 0 (respectively, X3 + Y Z2 = 0, 
X2 + Y Z = 0).

It is straightforward to check that R satisfies the two equalities above Eq. (22) in item (f) of Theorem 3
and moreover that

R = c1 + c2 + 2c3.

Therefore, items (d)–(f) of Theorem 3 are satisfied.
The polynomial K in Step (4) of Algorithm 1 is K = (y−x2 +x3)(y+x3)(x2 + y)2. It is straightforward 

to check that this polynomial is a WAI minimal first integral of X. �
7.2. A classical alternative to Step (4) of Algorithm 1

As mentioned in the introduction of this paper, Darboux proved in [23] that if a polynomial vector field 
X (of degree d) has at least 

(
d+1
2
)

+ 1 invariant algebraic curves, then it has a (Darboux) first integral, 
which can be computed using these invariant algebraic curves. In addition Jouanolou proved in [38] that if 
that number is at least 

(
d+1
2
)
+ 2, then the system has a rational first integral. These results were improved 

in [21] (see also [19,17,18]). Next we state Darboux and Jouanolou results adapted to our purposes.

Theorem 4. Suppose that a polynomial system X as in (1) of degree d admits r irreducible invariant algebraic 
curves fi(x, y) = 0 with respective cofactor ki(x, y), 1 ≤ i ≤ r. Then:

(a) There exist λi ∈ C, not all zero, such that

r∑
i=1

λiki(x, y) = 0 (23)

if and only if the function

H = fλ1
1 · · · fλr

p (24)

is a first integral of the system X.
(b) If r =

(
d+1
2
)

+ 1, then there exist λi ∈ C, not all zero, such that 
∑r

i=1 λiki(x, y) = 0.
(c) If r ≥

(
d+1
2
)

+ 2, then X has a rational first integral.

Finding invariant algebraic curves is an important tool in the study of Darboux integrability and a very 
hard problem. Steps (1)–(3) of Algorithm 1 provide r candidates to be invariant curves of X given by 
equations fi = 0, 1 ≤ i ≤ r. Thus, these curves are candidates to determine a Darboux first integral (24). 
After computing their cofactors

ki(x, y) =
P ∂fi

∂x + Q∂fi
∂y

fi
, (25)

we can check whether there exist values λi ∈ N ∪ {0} satisfying Equality (23), since we only need to solve a 
homogeneous linear system of equations. We notice that this linear system has 

(
d+1
2
)

equations, correspond-
ing with the number of monomials of a polynomial of degree d − 1 in two variables, and r unknowns, say 
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the λi. If such values λi exist, then we have succeeded and (24) is a first integral of the system X. Otherwise 
the first integral we are looking for does not exist.

As a consequence, we have designed an alternative algorithm to Algorithm 1. It has the same input an 
output and the same steps (1)–(3).

Algorithm 2.

• Input, Output and Steps (1)–(3) as in Algorithm 1.

(4) Compute the cofactors ki(x, y) corresponding to the curves fi = 0, 1 ≤ i ≤ r, as in (25).
(5) Solve the homogeneous complex linear system of equations 

∑r
i=1 λiki(x, y) = 0, where the unknowns 

are λi, 1 ≤ i ≤ r. If it has a solution λi = ni ∈ N, gcd(n1, n2, . . . , nr) = 1, then return K =
∏r

i=1 f
ni
i . 

Otherwise return 0.

Example 5. Consider the vector field X in Example 4 and the polynomial invariant curves f1 = y−x2 +x3, 
f2 = y + x3 and f3 = x2 + y there computed by using Steps (1)–(3) of Algorithm 1. Now Step (4) of 
Algorithm 2 determines the cofactors: k1 = 2x(−x2−4x3+3x4−5y+3xy), k2 = 2x(3x2−5x3+3x4−y+3xy)
and k3 = x(−2x2 + 9x3 − 6x4 + 6y − 6xy). Finally, solving the linear system in Step (5) of Algorithm 2, 
we get n1 = n2 = 1 and n3 = 2, which are coprime and provide a minimal WAI polynomial first integral 
of X. �
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