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with possible discontinuous coefficients and prove an optimal criterion to get a
quantitative strong maximum principle that we call Uniform Hopf Inequality UHI.

gﬁiyfqgf;dﬁopf Inequality Since the solutions of the singular semilinear problems under consideration are not
BMO and Campanato spaces Lipschitz continuous we carry out a careful study of the regularity of solutions when
Elliptic operator with discontinuous the coefficients of the diffusion matrix are merely in the vmo space and bounded.
coefficients We prove that the gradient of the solution is still p-integrable, in absence of any
Singular problems continuity assumption on the spatial potential coefficient in the singular term. To

this end, the UHI property is used several times. We also apply and improve previous
a priori estimates due to S. Campanato in 1965.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The paper deals with the study of the singular semilinear problem

_a(x)
(SP) = Lu—u—m in Q

u=20 on 0f),
where ) is a regular open domain set of R™, a(z) satisfies, m > 0

a€L>®Q),a>0,a#0, (1.1)
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and L denotes an elliptic second order operator with non-necessarily C'(f2) coefficients. We shall pay
attention meanly to the “case of pure diffusion” in which

Lu = —div(A(z)Vu) (1.2)
with the coefficients of the “coercive” matrix A(x) = (a;;(z));;—; such that
ai; € LOO(Q) Vi,j=1,...,n
(H1) Ja>0,VE=(&,...&) €RY, Zaij(x)&{j > alé]?  ae. in Q.
4,J

Problem (SP) arises in many applied contexts, as for instance, in the study of the boundary layer in Fluid
Mechanics. One of the pioneering works of this type of equations was the 1977 paper by M.G. Crandall,
P.H. Rabinowitz and L. Tartar [13] in which it was mentioned as applied motivations the case of suitable
chemical kinetics (Fulks and Maybee [17]) and the consideration of some similar problems in the context
of signal transmission ([33] and [29]). But there are many other contexts in which problem (SP) turns
to be relevant. To indicate some other different motivation, we mention here the study of the “boundary
layer” flow past a flat plate such as it was considered by H. Blasius [2], in 1908, after the seminal study by
L. Prandlt [36] in 1905. It is well-known that the so-called “Crocco transformations” [14] lead the problem
to the consideration of a suitable class of singular parabolic equations which by different arguments are
reduced to the study of equations of the type

—Wyy + B(n)w, + C(n)w = ? in (0,1)
(Pw) w(1) =0
w’(0) = ¢y,

for suitable coefficients B and C, for some a satisfying (1.1) and Cy € R (see e.g. the expositions made in
the monograph Oleinik and Samoklin [35] or the paper Vajravelu et al. [43]).

In spite of the great relevance of the study of the boundary layer in many problems of engineering,
meteorology, oceanography etc., the intensive mathematical treatment was only successive after a series of
papers by O.A. Oleinik starting in 1952 (see again the exposition made in Oleinik and Samoklin [35]). In
her 1968 paper ([34], see also [25]) she derived the a priori estimate

C(1—n)v/—Lnu(l —n) <w(n) < C(A —n)y/—Lnu(l —n) for any n € (0,1)
for suitable positive constants C, C, p which shows that
w¢ C™'([0,1]).

Since the solution of the problem (SP) is not Lipschitz continuous, it is important to show that it’s
gradient is in some functional space smaller than L?(€2). A related boundary estimate was proved in Gui and
Hua Lin [21] and in [25] for solutions of (SP) when L = —A. We will show that the situation is completely
different when we consider an operator L with variable coefficients. We shall show (see Theorem 3) that
u € WHP(Q), for any p € [1,4+00) assuming furthermore that the coefficients satisfy

a;; € vmo(Q), Vi,j=1,-,n

(see below a full definition).
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The regularity u € W1P(Q) for any p € [1, +00) already improves some previous results in the literature
(see e.g. Diaz, Hernandez and Rakotoson [16], Bougherara, Giacomoni and Hernandez [7], Diaz and Rako-
toson [15], and their references). In fact, under the additional regularity a;; € C%(Q), Vi,7 = 1,--,n we
shall show (Theorem 4.3) that Vu € bmo,(2)", a functional space already used by Campanato [8] under
the name £2"(£2) and which can be obtained through some variations from the BMO space of John and
Nirenberg [27] (see also Chang [10], Chang, Dafni and Stein [11]).

One of our key arguments, in this paper, is a suitable application of the so-called “Uniform Hopf Inequal-
ity” which says that if v is a very weak solution of the linear problem

Lv=f(z) inQ,
{ v=0 on 99, (13)

then there exists a positive constant Cq 1, depending only on €2 and the coefficients of L, such that
v(z) > CQ,Lé(x)/f(y)(S(y) dy a.e x €. (1.4)
Q

Here, d(x) stands for the distance of x € Q to the boundary 9.

This inequality was used by first time in the paper Diaz, Morel and Oswald [32] for the study of a
singular semilinear problem (with L = —A) in which the singular term arises in the right hand side of the
equality. In fact, the detailed proof of the inequality was announced as a separated independent work by
Morel and Oswald [32] but it was unpublished. A proof of it (always with L = —A) was offered in the
paper Brezis and Cabré [4]. The proof is still valid when L = —div(A(x)V-) and the coefficients a;; of A
are in C%1(Q). Here, we shall show that the Uniform Hopf Inequality holds even for the case in which L
has discontinuous coefficients satisfying a;; € C%1(Q,), ai; € L>(£Y), where we assume that  admits a
partition i.e., Q = Q; Uy, with ; CC Q and € contained in a neighborhood of 9§2. We shall also prove
that the condition a;; € C%1(Qp), a;; € L°°(€) is sharp by giving a counter example of it for the case in
which a;; are not continuous in some neighborhood of the boundary.

Sections 4 and 5 will deal with the main regularity results of this paper (first concerning with =1 as
nonlinear term and then, in Section 5, with «~™ as a general case).

2. Notations and preliminaries

We shall consider  an open bounded smooth (say C%! at least) of R™. We recall some spaces (namely
the bounded mean oscillation functions (bmo)) that we shall use later (see e.g. [27,10,11,22,28,38,42], ...).

Definition 1 (Of bmo(R™)). A locally integrable function f on R is said to be in bmo(R"™) if

1 1
S Tal Q/ F) =~ Soldr - sup oo Q/ @) dw = | lomogen) < +00,

0<diam(Q)<1 diam(Q)>1

where the supremum is taken over all cube  C R™ whose sides are parallel to the coordinate axis. diam(Q)
stands for the diameter of @, |@Q| the measure of the cube and fqg the average of f over the cube Q. The
cube can be replaced by a ball.

Definition 2 (Of bmo,.(Q2) and main property). A locally integrable function f on a Lipschitz bounded domain
Q is said to be in bmo,(Q) (r stands for restriction) if
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O<diam(Q)<1

1
sup ue!mm)(mwm+!f@nm_meMm<+mv

where the supremum is taken over all cubes @ C €2 whose sides are parallel to the coordinate axis.
In this case, there exists a function f € bmo(R™) such that

7|, = £ and 1T lomo) < o - 1F lomo, @)-

Definition 3 (Of the Campanato space L>™(2)). A function u € £L>"(Q) if

llull L2y +  sup r" lu — ur\de = [Jul| z2.m(q) < +oo.

xo€ll,r
Q(xo,r)NQ

Here

1

= dz.

" = Qo N0 | v
Q(zo,m)N

Q(zo;7) (resp B(zo;7)) is the cube (resp the ball) of center at g of side (resp radius) rg.

Lemma 2.1 (Equivalence of the two definitions). For a Lipschitz bounded domain Q, one has:
L2(Q) = bmo,(Q),

with equivalent norms.

This theorem is not essential for our purpose (we refer to [39] for its proof).
We shall also use the associated Sobolev space

Wa bmo,(Q) 1= {u Q=R we W) (Q) and Vu € bmor(Q)”}.

As in [42], we also introduce the space.

vmo(Q) := {f € bmo,(2) and lim sup L / |f — fr|dx — 0}.

R—0 <R rh
0 €N B(zg,m)N2

We recall that the Sobolev—Poincaré inequality implies that W1 (Q) < vmo,.(Q). This gives how we can
construct elements vmo.

For a measurable set E in R™ we denote by |E| its Lebesgue measure, and for a measurable function u
from the open bounded set 2 into R™ we define the following auxiliary functions:

1. The distribution function of w. It is a m : R — 0, |2|[, such that

m(t) = meas {z € Q:u(z) >t} = |u>t|
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2. The monotone rearrangement of u (denoted by wu.), is the generalized inverse of m, i.e.
u(s) =inf{t e R:ju>t|<s,}, s€]0,|Q,

u«(0) = ess sup u.
Q

t
1
We also define |u|. = : / |u|«(s)ds for ¢t > 0.
0
The Lorentz spaces LP1(Q)) are defined, for 1 < p < +00, 1 < ¢ < 400, as

12
Pi(Q) = {u : @ — R measurable : / {t%\uh*(t)}q % < +oo},

LP>(Q) = {u : @ — R measurable : sup t%\u|**(t) < —i—oo},
<2

WELP(Q) = {u e W) : |[Vu| € LM(Q)}.
‘We shall also use the usual notation

coLQ) = {u : @ — R measurable , 3K > 0;|u(z) — u(y)| < K|z —y|, for any =,y € Q}

= {u :Q — R:3ue C¥(R™), u restricted to Qis u : |y, = u}

We define the following operator
L* = —div(A*V-); A" is the adjoint matrix of A.

It is well-known that we can define the Green function associated to those operators and Dirichlet boundary
conditions:

Theorem 2.1 (Green function for L* and L). (See [/1,23,44].) There exists a unique function Gp- : § X
Q — R such that

1) Yy €Q, Gr-(-y) € WiL">(Q) and sup [|Gre(,y)|lwa oo 0y < C(Q), satisfying
Yy

[ A@VGL(2.0) Vo o = ol e € WL (@),
Q

2) Gr-(-y) € C(O\{y}) N HY(OQ\B(y,r)), Vr > 0.
3) Yo € C(Q) N HE(Q) such that L*p € C(Q), we have

/GL* (z,y) L p(z) dr = ¢(y).

4) Gr(z,y) = Gr-(y,x), V(z,y) € Q%
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5) Given f € L3(), if u € H}(Q) verifies Lu = f then

u(z) = [ Gr(z,y)f(y)dy.
/

Gy, (resp Gp~) is called the Green kernel associated to L (resp L*) for Dirichlet conditions.

Remark 1. Statement 3) in Theorem 2.1 is due to G. Stampacchia [41]. Here the definition of the Green
kernel is given according to Stampacchia. But, such as it is pointed by this author, this definition is stable
by approximation (his proof relies on the approximation of A). Nevertheless, it is already known that it
holds for measure data problems (here the measure is e.g. the Dirac measure). In this case the problem
stated in 1) has a solution whenever A(z) € L‘X’(Q)"2 (see [37,40,41,44]).

Theorem 2.2 is then a combination of all those properties.

Theorem 2.2 (Comparison of Green kernel). (See [/1].) Suppose we have the following operator defined by
L'y = —div(AY(z)V) such that

A'(@) = (aly ()

with the coercivity condition in all the domain 2,

., allj c C*H(Q),

4]

3" adi(@)¢i¢ = alC2 ¥ e R a > 0

ij=1

and let Gp1 be the Green function associated to L'. Then for any relatively open compact set 9270 of Q) there
exists a constant K; = Kl(QZo) > 0 such that

K{'Goa(z,y) < Gpis(z,y) < KiGre(z,y),  V(z,y) € Vio x Y.
In all this paper, we shall use the notation d(x) = dist(x, 9). We shall also use the following,

Lemma 2.2 (Hardy inequality). (See [15,30].) Let Q be of class C%'. Then, 3¢ > 0 such that Vu € C1(Q)

Q/(ZEB'Y do < CQ/|Vu|2dx.

Moreover, for a > 1, 3C,(2) > 0, such that Vu € C}(£).

) e < Cu(® [ [Vuls = dz.
Q

Q

Lemma 2.3 (Iteration). (See [20,8,12].) Let ®(p) be a non-negative and non-decreasing function. Assume
that for some non-negative constants A, «, 83, ro, B with 8 < «, we have Vr € ]0,7¢[, Vp € ]0, 7|

p «@ 6
< - + .
O(p) <A (7“) ®(r) 4+ Br
Then, there exists ¢ > 0 such that

g
@(p)gc(g) ®(r) + Bp?, VO<p<r<ro.
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3. On the Uniform Hopf Inequality

To solve (SP), our approach will not be based on the notion of sub-solution and super-solution such as it
is done in [24,25], when A(z) = (a;;(x)), ai; € CH*(Q) (smooth). We shall apply the following inequality:

Definition 4 (Uniform Hopf Inequality). We say that the operator L satisfies the Uniform Hopf Inequality
if there exists a constant Cq , > 0 such that for all f € L(Q), the unique solution v € Hj(Q) of
—div(AVv) = f in D/(Q) satisfies

v(z) = Cq,10(z) /f(y)é(y) dy, a.e.x €. (3.1)
Q

The inequality (3.1) still holds for (v, f) which can be approximate pointwise almost everywhere by a
sequence of (vy,, fn) € Hg(Q) x L>(Q2) with the same matrix A.

Inequality (3.1) holds true if the coefficients of the matrix A are Lipschitz as it is shown in

Theorem 3.1. (See [32.6].) Suppose that f € L°(S2), and consider L' the operator given in Theorem 2.2.
Let v be a solution of

L'v=f inQ,
v=20 on 0.

Then

oa) > Co(w) [ Fsw)dy. ac.z e
Q

where C' > 0 is a constant depending on Q and §(x) = dist(x, ).

Remark 2 (On the proof of Theorem 3.1). In the mentioned references, the proofs are given for the Laplacian
operator they can be modified to hold for the case where A = A'. An alternative proof can be given using
the equivalence of Green functions (see [26]).

Our first result wants to point out that if A is only bounded near the boundary but not Lipschitz
continuous then (3.1) may fail to be true.

Theorem 3.2. There exist a smooth open set Q C R?, a matriz A with bounded coefficients, f € L%(Q) and
u € H}(Q) solution of/A(a:)VuV<p dr = /f<p dx (Yo € Hy(Q)), such that the Uniform Hopf Inequality
Q Q

fails to be true.

Proof. Consider Q := {(z,y) € R? such that > 0 and 2% + y* < 1}.
Define the function
x

m — X = Ul(x?y) + U2(xay)7

’U(l‘,y) =

and the following matrix (already used in Meyers [31]).

Az, y) = 1 422 4 o 3xy
Y= 4(z? +y?) 3zy 2?4+ 4y* )
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We have v € H}(Q2). Now, we claim that — div(AVv) = f > 0 on €. Indeed, since

x? + 292
2(22 +42)i
—xy
2(a +y2)1

V’Ul =

then

20 +y°

AV, — 2(3323-;1/ )i

4(a? +y2)

Moreover

9

0 ( 222 + 92 )_2x3+3:1:y2
0x \2022 +y2)1/) 4@ +42)t

0 ( xy ) ~22% — 3ay?
Oy \4(a? + y?)1 42 + 921

Consequently, we have
—div(AVv) =0 in Q. (3.2)

On the other hand, for vs(x,y) = —z, we have

and then
4$2 + y2
AV, = 4(z? +y?)
—3xy
4(x2 + y?)
In a similar way, we have
iv(A i
—le( V’UQ) = W m 2. (33)
Thus, by (3.2)—(3.3) we conclude that
div(AVo) 57 =f>0, in Q.
_div -
(a7 %)

We have f € L3 (Q) since, by using polar coordinates, we have that

/Wy Hdudy < //

T
2

3r cos 9

e dr do
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1
—1
<c/7‘7dr<+oo.
0

Let us calculate inf M

. We observe that since v(zx,y) > 0, then
(@)@ 6(z,y) (@)

>0 a.e. on .

By using polar coordinates again, we get

1
v(z,y) = rcosb <W — 1) .
Then,
0
v(r,0) <Vreos — 0asr\,0.
5(r, 0)
Therefore,

nf v(x,y)

=0. 3.4
(z,v)€Q 6(z,y) (3.4)

Arguing by contradiction, (3.4) infers that the Uniform Hopf Inequality cannot hold in this case. O

We shall assume that

there exists a matrix Al(z) = (ab(z)) , €9, with
0.
(Ha) aj; € C%H(Q), a-coercive i.e. VE € R™ (Al (2)E,€) > al¢]?, Vo e Q,
a}j restricted to €2 coincides with a;;, V4,7 : aij‘ﬂb = a}j.

Here Q = Q, U O, Q, cC Q.

In Q, we shall associate to A' the operator L' = —div (A'(2)V - ). The main result of this section is the
following:

Theorem 3.3. Under the above assumptions (Hy), and (Hy) there exists Cq > 0, such for any f € LY (Q),
the solution u € H}(Q) of (1.3) satisfies for a.e. Yy € Q

u(y) > Co.Ld(y) / F(2)6(x) da (3.5)
Q

For its proof, for 0, CC €, we shall consider the open set Q%,o CC € such that Q, C QZ,@ In addition,
for Q, = Q\Q, we consider its subset Q;),o = O\ 0. We shall need the following lemmas to prove the
inequality (3.5).

Lemma 3.1. Under the same assumptions as in Theorem 3.3, and if le,o is given as above, the constant K;
given in Theorem 2.2, is such that Ky = K1(% o) > 0 and

Ki\Gr«(z,y) > Gpi-(z,y), Yo €, Yy € Voo
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Proof. Let o € WiL™' () and let @ its extension to 2 by zero.
Then, ¢ € WiL™ (). For y € € fixed, let w(z) = K1Gr-(2,y) — G- (z,y), © € Q. Then w €
H'(€, ) and

/A(x)Vw -Vodr =K /A(:c)VGL* (x,y)Vodr — /A(a:)VGLn(x,y)V{de.
Q Q Q

Since A(z) = A'(x) on ©j , thanks to Theorem 2.1, we obtain

/A(m)Vw -Vodr = K1p(y) — / AY(2)VG i+ (z,y)Vedr, forany y € Yy
& Qo

Using again ¢ in the last term and Theorem 2.1

/A(aj)Vw -Vodr = K19(y) — /Al(m)VzGLn (z,y)Vodx
Q Q

= K1¢(y) — ¢(y) = 0.

Thus

)

/ A(x)Vw - Vepdz = 0. (3.6)

Q0
Moreover, its trace verifies that, yow(xz) = 0 on 99, and from Theorem 2.2
w(z) = K1Gr-(z,y) — Gri-(z,y) > 0 for z € 99 .
Consequently, by the maximum principle, w > 0 on Q{,’O. O

Corollary 3.1 (Of Theorem 2.2 and Lemma 3.1). Under the same assumptions as in Theorem 5.3, the
constant K1 > 0 found in Lemma 3.1 satisfies

K\Gp(z,y) = G- (x,y), Yz € Q, Yy € W[’().
Proof. Since 2 = Qé,o U0 and we have shown that Yy € O/ g,
w(z) = K1Gr-(z,y) — G- (z,y) =0, Yz € Q 4,
and w(z) = 0, Yz € Oy, (from Theorem 2.2), thus, w(x) > 0 on Q0 U= 0O

Corollary 3.2 (Lower estimates on the subset ). Let f € L(Y), and let u and v in H{ () satisfy Lu = f
and L'v = f respectively.
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Then, a.e. y €

0= / Gy, 2) f () da,

Q
2) there exists Cq 1 > 0 such that

(y) = /GLl(y,x)f(a?) dx > CQ,L15(y)/f($)5(3?) dz.
Q

Q

In particular,

> Co, / F@)5(x) da > 0. (3.7)

Proof. Let f € L3°(2). Then from Corollary 3.2, for a.e. y € Qy, after integrating over €2, we have
1
u(y) = /GL*(w,y)f(m) dv > 7= /Gu*(%y)f(w) dx = v(y). (3-8)
Q Q

Recalling that the coefficients of L' are Lipschitz continuous, we can apply Theorem 3.1 to obtain that
3Cq, 1+ > 0 such that, for a.e. y € Q,

u(y) > v(y) > Cop16(y) / f@)d(z)dr. O (3.9)
Q

Lemma 3.2 (Lower estimates on Qp near the boundary). Under the same assumptions as in Theorem 5.3,
there exists Cq 1, > 0 such that

u(y) = Ca,ro(y /f r)dz, a.e.y € Q= Q\Q.
Proof. This procedure is inspired by the method of proof used by Brezis—Cabré [7].
Let Ty := 0Q U 0Q, = 99, and introduce the function w € H* () solution of:
L'w = —div(AY(z)Vw) =0 in O,
w=0 on 012,

w=1 on 0.

Since the coefficients of A = A! are Lipschitz continuous on €, then by the Hopf strong maximum principle,
there exists Cg, > 0 such that

w(y) = Co,0(y), Yy € Q. (3.10)

Now, let us set w(y) = [C§, [q, f()d(x) dz] - u(y). By the linearity of operator L' and since f > 0

-1

L'w=|C, /f(x)é(w) dz L'u > 0= L'w in Q,

w\am > w|aQb~
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Thus, thanks to the maximum principle, we obtain w > w on . This means that for all y € €
u(y) > Ch,Co,3(0) [ 1(@)3(a) d. (3.11)
Q
Finally, combining (3.11) with relation (3.9), we get
u(y) > Cd(y)/f(x)é(x) dr, a.e. yeQ. a

Q

4. On the singular problem: the case of u~! as nonlinear term

The Uniform Hopf Inequality (UHI) is very useful to derive regularity results for the singular semilinear
problem

—div(A(z)Vu) = o) in €,
u=0 on 0.

An existence and uniqueness results are also proved in [3,9] for linear operators and in [18,19] for non-linear
operators. The main difference with our results is double. Indeed, firstly our method to prove the positivity of
the solution is different than the above mentioned papers. For instance, in [3] it is obtained by a monotonicity
result, nevertheless our method of proof can be extended to a general operator as Lu = — div(AVu)+BVu+
div(Cu) + apu (as it will be presented in the Nada El Berdan’s thesis). Secondly the additional regularity
that we shall obtain in the following theorem (the term % € H~1(Q) or the results given in Theorem 5.2

below) is not mentioned in the above papers.

Theorem 4.1. Let a € L3°(2),a # 0. Then, there exists a unique solution u € Hj(Q) of (P), such that

i) % eLl (QNHYQ), u>0inQ,

i) /A(x)Vu Vpdr = / “(‘Z)‘p dz, Y € HY(SQ).
Q Q

Proof. Let us start with the uniqueness of w. If w, u satisfy ii) then by the coercivity condition on A and
choosing ¢ = u — u;

1 1
a/|V(u7ﬂ)|2daj < /a(:r) { - } (u—u)dr <0.
U u
Q Q
This implies that, necessarily, u = u. For the existence part, we introduce the following regularized problem:
a
Lu, = —div(A(z)Vu,) = ————  in £,
(= § T T TV T
ue =0 on 0f),

with, € > 0. The weak (variational) formulation for (P.) reads

ar (e, @) = /A(a:)VuE -Vedx = / |Z(z?:0€ dz, Vo € Hj(Q). (4.1)
Q Q
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Using the Schauder fixed point theorem (see e.g. [21]), we get the existence of u.. In addition, if we apply
the weak maximum principle [21], we obtain that u. > 0. The same argument as the used for u ensures that
Us 1s unique.

Estimate on u.: Taking ¢ = u. as test function in (4.1), we can write

au,
aL(uE;uE):/ - dx,

Ue + €

and then

Ue

d
Ues + €

| Vuel[f2(q) < HaHLw/ z < Callal| - (4.2)
Q

Therefore, u. is uniformly bounded in H{ (£2), and then there exists u € HE () such that (for a subsequence)
u. converges to u a.e.

Now, we shall prove that 2 remains in a bounded set of Li,.(9) N H=1(2). By Theorem 2.1 (see also
u
Theorem 9.3 of [41]), we have )

dy a.e. x € €, (4.3)

where GG, is the Green function associated to L as it is defined in Section 1.
Let €' be a relatively compact open set in . Let fo(y) =

a X (y) and consider the following
Ue + €
problem

—Aw(x)=fy inQ
w=0 on 0f).

This problem has a unique solution w in Hg(2) N H2(2). According to the Uniform Hopf Inequality (see
Theorem 3.1), there exist Cq o > 0 such that

w(z) = C’Q,Aé(m)/ o0(y)dy, a.e.x €

Q/

Ue + €

Returning to Theorem 2.1 and to the inequality in Theorem 2.2, then for K = K (') > 0

K K/ A, y)foly) dy /GL<xy>fo<>d

Consequently,
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which yields that — € L},.(9) and u. > 0 a.e. in Q. To prove that < o€ L},.(£2), it is enough to pass to the

limit at (4.4), since from Fatou’s Lemma, we get

a(y)
u(y)

dy, a.e. v €.

+oo > u(z) = CQ7A6(Z')/
Q/

a
In particular, this implies that inf / 0(y) dy > 0. We now have
0<e<er Ue + €
Q/

a a
——— — a.e., on ),
Ue + € e=0 u

and for all ' relatively compact in €2, since 1&%’ d(y) > 0, then (4.4) yields for a.e. z €
y ’

a a a

(z) < —(2) < Cor

< Co a(z) < +oo.

Then, by using the Lebesgue dominated convergence theorem, we obtain

/ ¢ dx—)/ Ly(z)dz, Vi € D(Q).

Ue + 6 e—0

Now, we want to show that

/A(x)Vu~V1/J - /%w v € HY(Q).
Q

Q

For this we observe that 1 () since, Vi) > 0, ¢ € H}(Q)

a 6 belongs to a bounded subset of H~1(Q)N L},

Ue
we have
ar
= A(x)Vue - Vi dz| < C||Vue| r20) VY[ L2(0) < CIVY|L2(0)-
o Q

But, converges to 9 ae. Thus by Fatou’s lemma, we deduce (knowing that || € H(Q) once that

Ue u
) € Hj(2))

a
sup ‘/d}dx < Cq < +00.
YEH] 5 v

Hv"/’HLZ(Q)Zl

This shows that % € H~1(Q) and following the property defined by Brezis-Browder [5], % € LY(9) for
Y € HE(Q) and also
< %,w >H-1 1= / %dl‘, Vzp S H&(Q)
Q
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But Yy € D(Q),
/A(x)Vu-Vz/de - /%z/)dx.
Q Q

So, by density, we have

li n = Jzrx(e)
Jm <~ Lo >=< Loy >, Vi € HE(Q).

Y=

This ends the proof. O

Our next results show that the gradient of the solution is more regular. We start with the study in the
LP(Q)) spaces.

Theorem 4.2. Assume furthermore that operator L satisfies the Uniform Hopf Inequality, 09 is C' and that
a;j € vmo(Y). Then, Vp € [1,00[, u € WHP(Q), and

| llalloe
||u||W01vP(Q) < CQ(A7p>/ a(m)é(x) dmv (45)

for some positive constant CL(A,p).
Proof. Since L satisfies the Uniform Hopf Inequality, there exists a constant Cp > 0 such that we have
llalloo

< <O
ue(x) a(y)d(y)
@ [ o (et o)) ™

, a.e.x € Q.

/ 1 1
Then, if ¢ € Wy (Q) with — =1 — —, ¢ > 0, we then have,
p p

cop [ o,

Q/ ! 5(90)/(%%(12/

+e)(y)
<o lil= [0
o(x)
/ uE —l— 5
x
< Coi / v .
(z)
Q
By using the Hardy inequality, we obtain:
a(z)
0< U(z) de < Co,r(a)[| VY| L (o), (4.6)
ue ()
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for some positive constant Cq 1(a). Therefore, we deduce

belongs to a bounded set of W™1(Q).

Ue + €

From the regularity result applied to the associated linear equation, the unique solution w. of (P;) is in
WLP(Q) (see Simader [40], Auscher—Quafsaoui [1] and Byun [4]) and

[[alloo

a
Viue| e < Coll——||lw-1r0) S Co———c——— < C(Q,a). 4.7

Ue + €

(Notice that

im | i / a(y)d(y) dyl > / a(y)d(y) dy >0
120 | 0<e<ey U + € u(y)
Q Q

which implies the uniform estimates in (4.7).)
Therefore, Vu, is bounded in LP(2)", and since u. converges to u weakly in H} (), thus Vu. converges
weakly to Vu in LP(Q)™. Then

IVullLe @) < T inf [Vue | Lo o)

L Callall
< lim inf ————=— = Cq(a).
e—0 /a(y)5(y) 4 ale)
Y
Ue + €
)

This gives relation (4.5). O

Theorem 4.3. Assume that a;; € CO1(Q), Vi,j and 9Q is CY'. Then the solution satisfying ii) of Theo-
rem 4.1, belongs to Wgbmo,.(2).

Proof. First let us notice that according to Theorem 3.1, the operator L satisfies the Uniform Hopf In-
equality. Therefore the uniform estimates given by (4.6) and Theorem 4.2 hold true. We will prove that
Vu € bmo,(Q)". For this statement, we will partly use some arguments from Campanato [8]. We shall
establish two new a priori estimates:

i) Interior local estimate:

Lemma 4.1. For any open smooth sets g, QVO with Qo C S% and ﬁg C Q, for all 1 < p < oo, there exists a
constant C(p; Qo) such that:

ID?ue || Lo (y) < C(p5 Q).
Proof. Consider ¢ = dist(€2; d) and introduce function 6 be such that:
0o € C§°(S~20), 0<6y<1 and supp Oy C Qo C Q,

M
0o =1 on Qy, |DO‘90|<T, a=(ay,...,an) EN" |la|=a; +...+ a,.
«

(<%}
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Let v = u.0y € H} (ﬁ:)) Then v, verifies the local problem:

. atlo . N~
—div(A(z)Vv,) = — div(A(z)u.Vo Qo,
(P - iv(A(z)Vue) e iv(A(z)uesVlp) in Qg

ve =0 on 3&70.

(190 an

Let F, :=

e te — div(A(x)u: Vo), and let Uy = A(z)Vly. Then F, = ——

support Uy C Qg \ Qo and

+ UpVue + ue diV(Uo),

M —~
I div(Uo)llze + [Uollzee < = = M(0).
52

Therefore, using estimates (4.7)

N 0o
I 0@y < Co@) (1% ey + €000 ) (43)
By the well known Agmon—-Douglis—Nirenberg regularity results we have,
||U6||W2,p(QNO) < CQ(;D)”FEHLP@O)- (4'9)
Since D*v. = D“u. on €y, then relation (4.9) leads finally to
ltellw=s(eu) < Cllve sy < Co@).
As a consequence of Lemma 4.1 one has,

Lemma 4.2. For all p > 1, for all open smooth set Qg relatively compact in ), the sequence us remains in
a bounded set of W2P(Qy). Moreover, the sequence remains in a bounded set of C*(Qp).

Proof. It is a consequence of Lemma 4.1 and the Sobolev embedding,
W2P(Q) = C' (), p>n. O

ii) Estimates in a neighborhood of the boundary: Since we assume that €2 is of class C1', for every x € 99,
we can find, an open neighborhood of = denoted by € 1(z) and a bijection

T QO,l = 9071 — IJr(l),
such that
e O Qo (a)", et (I+(1))" and 7(9QN Q) = T4,

where

It(1):= {x = (z',2,) € R" such that |z| < 1 and z,, > 0}
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and

This means that we can continuously deform the boundary to a hyperplane and that this transformation is
regular. After this transformation the problem (P.) reads

) _aly) )
(P - —div(B(y)Vw,) = w1z in I1(1),

we =0 on I'q,

with B(y) € %! (I+(1)) Ja(y) € L®(I*(1) and V¢ = (C1,- -+, Ca) € R, 30 > 0 such that > by;Gi(j >
2
v[¢|?. On each ball I*(0,r) = I'*(r), more generally, for zq € I+ (1), we set

It (xg,7) = {sc eIt(l): |z —mo| < r}7 I, = {x eIt (r):z, = 0},

I(xg,r) is the ball of radius r centered at xy.
We will construct two Dirichlet problems with constant coefficients such that the sum of the two solutions
of these two problems coincides with w;.

Let us fix 0 < R < 1, 29 € IT(R), R closed to 1. The first problem will be defined without the right-hand
side of 7(P.), and having the same trace of w,, i.e.,

—div(B(zo)Vwl) =0 in I (xg,r),
T(P5)1 : 1
wl =w, on I (xq, 7).
1-R

Here, 0 < r < 5
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Theorem 4.4. (See Campanato [pages 338, 352].) T(Pe)1 admits a positive solution w! with

|Vw?|?dr < cp / |Vw, |2dx < ¢(Q, a) (independent of xo, and 7).

It (zo;r) It (zo3r)
There exists c(v) >0,V 0 < p < r such that
1. IfTrNI(zg,7) =0 then

1 1 g2 p\"t2 1 1 2
IVl = AVl oy < @) (2) 1902 = {02} (1 - (4.10)

2. IfTrRN I(xg,7) # D then

2 p\ "2 2
/ ’Djw; dz < e(v) (;) / ’Djw; de, j=1,...,n—1, (4.11)
It (zo0;p) It (zo;r)
1 n |? P2 1 n ?
/ ‘ana - {ana}p’ < c(v) (—) / ‘ang - {ang}r‘ dx. (4.12)
r
It (zo3p) It (z03p)

Here D; denotes the partial derivative in the zj;-direction, j = 1,...n and {-}, is the average over
I+ <x07p)'

Proof. The problem 7(P.); is identical to the one considered by Campanato [8]. Therefore, his proof can
be reproduced line by line to get (4.10), (this estimate is proven in p. 338 by Campanato [8], see relation
(8.12) for the local estimate, observing in that case I(xq,r) = B(zg;r) C IT(1)).

The second set of relations (4.11) and (4.12), are given in page 352 (Corollary I.11 and Lemma II.11) of
Campanato [8]. O

Now, we construct the second problem as follows:

T(Pe)a := —div(B(w) Vw?) = % +div((B(y) — B(%))Vw.) in I (zg,7),

w? =0 on I (xg,r).
Theorem 4.5. 7(P.)2 admits a unique solution w? € HE (It (z¢;7)) and for all X € [0,n],
V0o < [ @0y + 2 Caln 0,

It (zo;r)
for some ¢ > 0, which depends only on Q.
Proof. This problem is well-posed since the right hand side is in H~1(I"(x,7)) and admits a unique
solution w? € H (It (zg,r)) (by using Lax-Milgram Theorem). Note that we have w. = w! + w?.
Estimate on Vw?: By multiplying 7(P:)2 by w?, we get

= 2
v [ ey [OMDan [56) - B Veovuldy.

We + €
It (zo,r) It (zo,r) I*(zo,r)
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Since w? = we — w! and w! > 0 then w? < w. the Lipschitz continuity condition on B, Cauchy—Schwartz

inequality and Young’s inequality, yield

a(y)w?
|Vw??dy < ¢ / %dy—i— / cr|Vw. . Vw?| dy,
It (zo,r) It (zo,r) It(zo,r)
~ c*r? 2 1 2)2
<c a(y) dy + - [Vw|" dy + 3 [VwZ|” dy.
It (zg,r) It (zo,r) It (zo,r)

Thus
|Vw2|*dy < ¢ / a(y) dy + cr? / |Vw, |2 dy.
It (zo;r) It (zo;r) It (zo;r)
Next, we want to show that
|Vw.|?dz < rreq(N, a). (4.13)
It (zosr)

From relation (4.6) of the proof of Theorem 4.2, we have proved that
Vel Lr (o) < Cal(p,a), Vp € [1,+ool.

2
Lemma 4.3. Let \ € [0,n[. Then, LP(Q2) < L**(Q) provided for p > Fn}\ Moreover, there exists C(Q) > 0
such that

sup [7‘7)\|U|L2(B(z,r)ﬁﬂ)] < C(Q)|vlLe ().
750

Proof. Setting Qo , = B(z,r) N Q, we have

P

7 < Qll7s -

/ jof? dir = > / [0 Xay,, d < 7] 0 90
QNB(z,r) Q

Thus,

sup (> / W2 dz) < @0l O
zo €N QNB(z,r)

Using Lemma 4.3 and relation (4.6), we obtain that
IVuelZ2npem) <7 Cal(n, A a). (4.14)
By applying the homeomorphism function 7, we obtain

VW72 (14 (mgiryy < 7 CalA, a). (4.15)
I+ (zo3r))
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Therefore,
IVW2lZe (14 oy < © / a(y)dy + 1 2Cq(Na). O (4.16)
It (zos5r)

Next, we want prove that for all R < 1

sup  p "||Vwe — {sz}p\\%z(ﬁ(m’p)) < C(R) < o0. (4.17)
Vao eI (R)
Vp>0

—_ 1-R
Let zy € IT(R), we set 0y = 5 with 0 < R < 1. We have two cases to be analyzed:

TN

z e RV

1-R
1st case: p 2> ——

In this case, we have for any x(

<[ —— \Y4 <cg—m———. 4.18
L2(I+(z0;5p)) (1 — R> ” wEHLZ(H(l)) e (1-R)" ( )

—{u.}, |

(zo;7) =10

2nd case: 0 < p < %.Letrbesuch0<p<r<
or TrN I(zo;7r) # 0.
(a) For the first case, [g N I(wg;7) = ), we first write w. = w? + w? and apply estimate (4.10) of
Theorem 4.4 to derive

V. — {Tw.} ‘ <e) (2 >n+2HVw —{Vuw!},

L2(I+(zosp)) (I(zos1))

—i—HVw —{Vuw?} ‘

L2(I(woip))

2

Applying Theorem 4.5 and the decomposition w} = w. — w2,

p TL+2
IVwe = {FwolF 1 (o ) < ) (2) 1900 = {0}l 14

+ 7 M2Co (N, a) + 2 / a(y) dy.

It (zo,r)
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Choosing A=n—1,one has forall0 < p <7

p\"+? n
IVwe = {VwolFa s (o ) < ) () IV = V0 s ) + (@ (4:19)
Applying the iteration Lemma 2.3 (see [8,12]) on (4.13) with
©(p) = [ Vwe = {Vwe}pll72(1+ (0,0
we get
p n
1V = {0} s ) < € (2) IV = (T a1 ) + (0™

Dividing by p”, we obtain

+e(9). (4.20)

_vas (Ve }’ L2(I+(1))

v

(b) For the second case, I'r N I(xg;7r) # B, we need to use relation (4.11) of Theorem 4.4 by
distinguishing the z;-direction, j < n — 1 and x,-direction.

L2 (It (o, p))

For j =1,...,n — 2, since w. = w} + w?, we have
|Djw.|?dr < 2 / |Djwl*dx + 2 / |Djw?*dx (4.21)
It (z05p) It (zo;p) It (z0sp)

Using Theorem 4.4 relation (4.11) and Theorem 4.5, we derive from this last relation that

n+2
/ |Djw:|* < ¢ (g) / |Djwl|?dz + cr™

It (zo;p) I+ (zos5r)
n+2 n+2
<c (B) / |Djw€|2d:v+c(£> / |Djw?2|?dx + cr™. (4.22)
T T
It (zo;r) It (zo;r)

Using again Theorem 4.5 with relation (4.21), we deduce
2 AN 2 n
|Djwe|“dx < ¢ (;) |Djwe|“dx + cr™. (4.23)
I+ (z05p) It (zosr)

This last relation is valid for all 0 < p < r we may appeal the iteration lemma (see [12,39]), to derive

n
/ |Djw.2dz < ¢ (B> / |Djw.*dz + c.p™ (4.24)
r
It (zo;p) I+ (xo;r)
Thus
-n 2 -n 2 1 2
p / ‘Dng — {Djwe}p’ dz < p / |Djwe|* < e / |Djwe| dz + c. (4.25)
It (zosp) It (zo3p) It+(1)

In the x,-direction, we have from Theorem 4.4, relation (4.12) and Theorem 4.5 with A\ = n — 1, for all
O<p<r
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2 2
/ ’ang — {ans}p‘ < / ’an; — {an;}p‘ dr + /

It (zo;p) It (zo;p) It (zo;p)
n+2 2
<c (8) / ‘ang — {an;}r‘ dx + cr”
r
I+ (zo;m)
p n+2 2
<c (—) / ’ang — {ang} ‘ dx. (4.26)
r s
I+ (zo;r)

2
Thus, we may appeal the iteration Lemma 2.3 with ®(p) = / ‘ane — {ang}p‘ dx to derive

It (zo03p)
2 c
p" / ’ans - {ans}p‘ dz < < / |Dyw.|?dx + c. (4.27)
I+ (zo3p) I+(1)

In all the cases, from relations (4.20), (4.25), (4.27), there exists a constant ¢, V0 < p < r, for all zy € I1T(R)

1
Cr_n vaEHi?(H(l)) +c (4.28)

- {vu}, |

<
L2 (It (z03p))
which infer that

Cc

<— < 0.
L2(I*(zoip)) (1= R)™

sup
p>0, mOeH(R)

- {vu}, |,

This ends the proof of (4.17). O

Applying 771 on relation (4.17), we derive that
u. remains in a bounded set of W*'bmo, (T*I (I+(R))) for all R < 1.

In the local estimate, we have proved that Vu. € bmo,. ()", VQo CC £, and in the estimate in a
neighborhood of the boundary 7! (I (R)) = Qo g(x) for all R < 1, we proved that Vu. € bmo,(Q0,z(z))"
with z € 99Q. Collecting both results on local estimates and boundary estimates, we can conclude as in
Campanato (8] that Vu. remains in a bounded set of bmo,(2)™. This implies that u. belongs to a bounded
set of Wi bmo,(Q). This shows that u € Wgbmo,(Q). O

5. Case where the right hand side is a(x)u™"(z), m > 0

In this paragraph, we want to discuss the existence and the regularity of solution for the following
problem

{ Lu = —div(A(x)Vu) = a(x)u™(z) inQ
u=20 on 0N.

As we shall see the regularity of the solution relies not only on the value of m but also on the regularity of
the coefficients of A(x) = (as;(2)), ; the domain is still a Lipschitz one. For an alternative proof see also [3].
More precisely, we want to show:
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Theorem 5.1 (Ezistence). Let a € L(Q2), m > 0, and let A(z) = (ai;(z)), ; be an a-coercive matriz with

bounded coefficients. Then there exists a positive function u € H}. (Q) such that

*

2
1) uwe L), ¢= ?(m +1), [2* is the Sobolev exponent] — € L},.(Q), and

[ lut@rds < co (%) "
Q

+1

2) Y € D(Q), [oA(x)Vu - Vidr = [ al 1(#(;“) dx, and u™>~ € H}(Q). Moreover, /|Vu|2um_1 dr <
u™(x
lallse (m+1Y"
am 2 '

In the special case of 0 < m < 1, then < 6 LY(,6) and u € HE ().

Proof. Let ¢ > 0. Then, there exists a non-negative function u. € H(Q) N L*°(Q) satisfying

/A(z)VuE Vodr = / % de, Vo€ HH Q). (5.1)
Q g

Then, one has the following a priori estimates

+1\?
an < el (m ,
/\v e < 1o (ALY (52)

and there exists Cq > 0, such that

/|ue|qda: < Cq (”ailw) (5.3)
Q

2
with ¢ = E(m + 1), again [2* is the Sobolev exponent].
Indeed, for the first inequality, we choose ¢ = 4" as a test function and we use the coercivity condition
on A to derive that

a/Vu5~Vu;ndx < /A(I)Vu5~Vu?dx: /% < el so-
Q

u* + ¢
Q Q

Therefore,

/‘VUE‘Q m— 1d HaHOO

Consequently,

m1 m+1\° m— m+1)? [lal|so
Q
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m41
While for the second inequality, we shall set v. = u. > and we have

o*

. z 2 N
[ttt [lo as< o fronpar) <cq (L) (mr1)
am 2
Q Q Q

Using the Rellich-Kondrachov compactness, we may assume that there exists v € H{ () such that v > 0
and v.(z) — v(z) a.e. in . Then,

’U5m+1 = u, — v(x) T = u(z), a.e. and v. — v weakly in Hj(Q).

So,

llallse 1\’

By Fatou’s lemma, we have from the estimate (5.5)

7 1
/|u|q dz < Cq (E—J’) <%) . (5.5)
Q

Then we deduce from the Theorem 2.2 that for all open set {2y relatively compact in €2, we have for a.e.
Yy e Q

ue(y) = Chy, / ‘Lif)ii(? dz > 0. (5.6)
o

We know from the Egorov theorem that there is a set B in )y of positive measure on which sup sup u.(y) =
yEB €>0

M is finite. Thus, there is a constant C'(g) > 0 such that Ve > 0

By Fatou’s lemma, we deduce

0< / ) 502y d < C(Q) < +o0. (5.8)

e If 0 < m < 1, we can choose ¢ = u, as a test function and get

/\Vua\ dz < /A (Vue)? —/ alx)ue < ||a||oo/u;_mdx.
uft +¢€
)

This implies that

2*
/\VuE\Q dr < Hac|loo /uifm dx < C(Q,a,a), (since 0<l-m< ?(m + 1))
Q
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This and (5.7) yield that u € H () and that u. converges weakly to u in HZ ().

o If m > 1, then from (5.7) and (5.8), we have

0
Ao = inf /M dx > 0, for some g1 > 0.
e<er ug"(x) + €
Qo

From (5.4) and (5.6), we have

”a”°° /|Vue|2 ey > O™ IA’H/\WE\% (5.9)

We then deduce that

/|Vu€|2da: < Cq, < 400,

Qo

and jointly with the estimate on the L? norm of u., we deduce that u. remains in a bounded set of H}, (€2).
Therefore, since for all ¢ € D(2), we have

lim

e—0 (x) + v
Q

S, _ [ o)

um ()

V Qo CC Q, recalling that uc(y) > Cq Ao > 0, and u. converges weakly to u in HY(Qp) for all Q9 CC Q,
we get the statement 2) of the theorem. O

a(z)
t"™m 4+ ¢
decreasing and the regularity of u. allows at to choose p = u. — u; as a test function whenever u. and ug

are two different solutions. The same remarks holds for © when 0 < m < 1.

is

Remark 3 (The uniqueness of u. and u). The function w. is unique since the mapping t —

Next, we want to study the regularity of the function v = lim u. constructed in Theorem 5.1.

Theorem 5.2 (Regularity). Assume that the operator L satisfies the Uniform Hopf Inequality. Then, the
function v = limu. satisfies

1) uim € L' (% 6) and u(y) 2095(34)/56( Ydz for a.e. y € Q.

Q
2) For allm >1

/\Vu\26m_1dﬂc < Ch lolee
ad
mao /um( ) dx

Q

In particular, u € WhH2(Q;6m~1).

3) Assume that a;; € vmo(2) N L"O(Q) and 0 is Ct, then
a) if 0 <m <1, thenu e WP (Q) for all 1 < p < 400,
b) if 1l <m <2, then u € WOL"Lfl’OO(Q).
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4) Assume that a;; € C%1(Q) and O is CHL. Then, if 0 < m < 1, we have
u € Wy bmo,.(Q).

Proof. By Fatou’s lemma, we have

ad ad

o S .

hén mf/ . g(x) dzx > /—um (x)dz > 0, since a # 0, (5.10)
Q

and u(z) < 400 a.e. On the other hand, since L satisfies the Uniform Hopf Inequality, we get

ad
uft +¢

us(o) > Cadle) [ () dy. (5.11)

Relations (5.10) and (5.11) with the fact that u.(z) converges to u(x) a.e., infers statement 1).
Now combining this last inequality with (5.4), one has, for m > 1,

m—1

5
maCm / 2 () dy /|vu5|25m*1dx<||a||m. (5.12)
Q

m
u>+¢

Thanks to (5.10) and (5.12), we deduce that u. remains in a bounded set of W12(Q;6m1) = {p €
L2(Q;6m~1) /\ch|25m_1 dz < +oo}. Therefore, u. converges weakly to u in W2(Q;6™~1) and from

Q
relation (5.12), we then have

m—1

5
maCl ! /3—m(y) dy /\vu\%m*ldaz < Jlaloo. (5.13)
Q Q

This proves the second statement.

To prove 3.a), let us show that ma+€ € W=LP(Q) with 1 < p < 400. If 0 < m < 1, one has from
uE
’ 1 1
(5.11), by taking ¢ € Wy* (), St = 1, ¢ >0,
0
0< /Ls@d:K Callall o | - de < /idx : (5.14)
ul* +¢€ om §m
Q / a__ Q Q
Y
ul*+¢
Q
1 Lo 1 . .
If 0 <m <1, we have Sm = 55 m < C'Qg, so the Hardy inequality leads to
a 1 [P 2| P /
0 </U?’+E¢d$ < CQ/gde' < CQ g LPI(Q) < CHVSOHWLP’(Q); D > ]_7
Q Q

which implies that

a
m
ut +¢€

< C(p) uniformly in e.
W-12(Q)
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Now, to prove 3.b), let us show that

m
€

2 ¢ W‘le1—1’+°°(Q), with W‘lel—l""‘X’(Q) being the dual of
€
W Lw7(Q).

If 1 < m < 2, we deduce from relation (5.11) and Hardy inequality with weights (see statement 2, section 1)
Vi € CH(Q)

a -m —m
0< [ Zilelde < Ch [ lels iz < Gy [ Vels T da
Q Q

< ColVelrmma@l8 ™ oy 2 —m

according to Didz—Rakotoson ([15], pp. 53-54), 61=™ € Lﬁ"'”x’(ﬂ). Thus,

€W L7 T2(Q).

u* +e¢
Now, we apply the regularity result to u. satisfying — div(A(z)Vu.) = %.
um +¢e
Ifl1<m<?2,
< 1-m .
90l e < ol i g < 00

fo<m<l1, forl<p<+oo,
Vuel|zr (o) < Ca(p) < +oo.

Finally, for statement 4), if a;; € C%1(Q), then u. remains in a bounded set of W!bmo,(Q). Indeed, we

i a a Ue + € Qe
write = . = . We have
ult+e U te ur+e  u.+e

Ue + € 1—
0<as:a~ﬁéllallmus " < Ca.

If 0 < m < 1, since u, remains in a bounded set of Wol’p(Q)7 p > n according to statement 3.a), thus
u. € WyP(Q), ¥p < +oo and satisfies

— div(A(2)Vu.) = - C‘i o (5.15)

with a. remaining in a bounded set of L>°(Q2). Thus, we conclude (following the dmo, () result previously
proved) that the solution u. of (5.15) is in a bounded set of W¢bmo,.(Q). O
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