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We consider some singular second order semilinear problems which include, among 
many other special cases, the boundary layer equations such as they were treated 
by O.A. Oleinik in her pioneering works. We consider diffusion linear operator 
with possible discontinuous coefficients and prove an optimal criterion to get a 
quantitative strong maximum principle that we call Uniform Hopf Inequality UHI. 
Since the solutions of the singular semilinear problems under consideration are not 
Lipschitz continuous we carry out a careful study of the regularity of solutions when 
the coefficients of the diffusion matrix are merely in the vmo space and bounded. 
We prove that the gradient of the solution is still p-integrable, in absence of any 
continuity assumption on the spatial potential coefficient in the singular term. To 
this end, the UHI property is used several times. We also apply and improve previous 
a priori estimates due to S. Campanato in 1965.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The paper deals with the study of the singular semilinear problem

(SP) =

⎧⎨⎩Lu = a(x)
um

in Ω

u = 0 on ∂Ω,

where Ω is a regular open domain set of Rn, a(x) satisfies, m > 0

a ∈ L∞(Ω), a � 0, a �= 0, (1.1)
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and L denotes an elliptic second order operator with non-necessarily C1(Ω) coefficients. We shall pay 
attention meanly to the “case of pure diffusion” in which

Lu = − div(A(x)∇u) (1.2)

with the coefficients of the “coercive” matrix A(x) = (aij(x))nij=1 such that

(H1)

⎧⎪⎨⎪⎩
aij ∈ L∞(Ω) ∀ i, j = 1, . . . , n
∃α > 0, ∀ ξ = (ξ1, . . . ξn) ∈ R

n,
∑
i,j

aij(x)ξiξj � α|ξ|2 a.e. in Ω.

Problem (SP) arises in many applied contexts, as for instance, in the study of the boundary layer in Fluid 
Mechanics. One of the pioneering works of this type of equations was the 1977 paper by M.G. Crandall, 
P.H. Rabinowitz and L. Tartar [13] in which it was mentioned as applied motivations the case of suitable 
chemical kinetics (Fulks and Maybee [17]) and the consideration of some similar problems in the context 
of signal transmission ([33] and [29]). But there are many other contexts in which problem (SP) turns
to be relevant. To indicate some other different motivation, we mention here the study of the “boundary 
layer” flow past a flat plate such as it was considered by H. Blasius [2], in 1908, after the seminal study by 
L. Prandlt [36] in 1905. It is well-known that the so-called “Crocco transformations” [14] lead the problem 
to the consideration of a suitable class of singular parabolic equations which by different arguments are 
reduced to the study of equations of the type

(Pw)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−wηη + B(η)wη + C(η)w = a(η)

w
in (0, 1)

w(1) = 0
w′(0) = c0,

for suitable coefficients B and C, for some a satisfying (1.1) and C0 ∈ R (see e.g. the expositions made in 
the monograph Oleinik and Samoklin [35] or the paper Vajravelu et al. [43]).

In spite of the great relevance of the study of the boundary layer in many problems of engineering, 
meteorology, oceanography etc., the intensive mathematical treatment was only successive after a series of 
papers by O.A. Oleinik starting in 1952 (see again the exposition made in Oleinik and Samoklin [35]). In 
her 1968 paper ([34], see also [25]) she derived the a priori estimate

C(1 − η)
√
−Lnμ(1 − η) � w(η) � C(1 − η)

√
−Lnμ(1 − η) for any η ∈ (0, 1)

for suitable positive constants C, C, μ which shows that

w /∈ C0,1([ 0, 1 ]
)
.

Since the solution of the problem (SP) is not Lipschitz continuous, it is important to show that it’s 
gradient is in some functional space smaller than L2(Ω). A related boundary estimate was proved in Gui and 
Hua Lin [21] and in [25] for solutions of (SP) when L = −Δ. We will show that the situation is completely 
different when we consider an operator L with variable coefficients. We shall show (see Theorem 3) that 
u ∈ W 1,p(Ω), for any p ∈ [1, +∞) assuming furthermore that the coefficients satisfy

aij ∈ vmo(Ω), ∀i, j = 1, ··, n

(see below a full definition).
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The regularity u ∈ W 1,p(Ω) for any p ∈ [1, +∞) already improves some previous results in the literature 
(see e.g. Díaz, Hernández and Rakotoson [16], Bougherara, Giacomoni and Hernández [7], Díaz and Rako-
toson [15], and their references). In fact, under the additional regularity aij ∈ C0,1(Ω), ∀i, j = 1, ··, n we 
shall show (Theorem 4.3) that ∇u ∈ bmor(Ω)n, a functional space already used by Campanato [8] under 
the name L2,n(Ω) and which can be obtained through some variations from the BMO space of John and 
Nirenberg [27] (see also Chang [10], Chang, Dafni and Stein [11]).

One of our key arguments, in this paper, is a suitable application of the so-called “Uniform Hopf Inequal-
ity” which says that if v is a very weak solution of the linear problem{

Lv = f(x) in Ω,

v = 0 on ∂Ω,
(1.3)

then there exists a positive constant CΩ,L, depending only on Ω and the coefficients of L, such that

v(x) � CΩ,Lδ(x)
∫
Ω

f(y)δ(y) dy a.e. x ∈ Ω. (1.4)

Here, δ(x) stands for the distance of x ∈ Ω to the boundary ∂Ω.
This inequality was used by first time in the paper Díaz, Morel and Oswald [32] for the study of a 

singular semilinear problem (with L = −Δ) in which the singular term arises in the right hand side of the 
equality. In fact, the detailed proof of the inequality was announced as a separated independent work by 
Morel and Oswald [32] but it was unpublished. A proof of it (always with L = −Δ) was offered in the 
paper Brezis and Cabré [4]. The proof is still valid when L = − div(A(x)∇·) and the coefficients aij of A
are in C0,1(Ω). Here, we shall show that the Uniform Hopf Inequality holds even for the case in which L
has discontinuous coefficients satisfying aij ∈ C0,1(Ωb), aij ∈ L∞(Ωl), where we assume that Ω admits a 
partition i.e., Ω = Ωl ∪ Ωb, with Ωl ⊂⊂ Ω and Ωb contained in a neighborhood of ∂Ω. We shall also prove 
that the condition aij ∈ C0,1(Ωb), aij ∈ L∞(Ωl) is sharp by giving a counter example of it for the case in 
which aij are not continuous in some neighborhood of the boundary.

Sections 4 and 5 will deal with the main regularity results of this paper (first concerning with u−1 as 
nonlinear term and then, in Section 5, with u−m as a general case).

2. Notations and preliminaries

We shall consider Ω an open bounded smooth (say C0,1 at least) of Rn. We recall some spaces (namely 
the bounded mean oscillation functions (bmo)) that we shall use later (see e.g. [27,10,11,22,28,38,42], . . . ).

Definition 1 (Of bmo(Rn)). A locally integrable function f on R is said to be in bmo(Rn) if

sup
0<diam(Q)<1

1
|Q|

∫
Q

|f(x) − fQ| dx + sup
diam(Q)�1

1
|Q|

∫
Q

|f(x)| dx ≡ ‖f‖bmo(Rn) < +∞,

where the supremum is taken over all cube Q ⊂ R
n whose sides are parallel to the coordinate axis. diam(Q)

stands for the diameter of Q, |Q| the measure of the cube and fQ the average of f over the cube Q. The 
cube can be replaced by a ball.

Definition 2 (Of bmor(Ω) and main property). A locally integrable function f on a Lipschitz bounded domain 
Ω is said to be in bmor(Ω) (r stands for restriction) if
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sup
0<diam(Q)<1

1
|Q|

∫
Q

|f(x) − fQ| dx +
∫
Ω

|f(x)| dx ≡ ‖f‖bmor(Ω) < +∞,

where the supremum is taken over all cubes Q ⊂ Ω whose sides are parallel to the coordinate axis.
In this case, there exists a function f̃ ∈ bmo(Rn) such that

f̃
∣∣∣
Ω

= f and ‖f̃‖bmo(Rn) � cΩ · ‖f‖bmor(Ω).

Definition 3 (Of the Campanato space L2,n(Ω)). A function u ∈ L2,n(Ω) if

‖u‖L2(Ω) + sup
x0∈Ω,r>0

⎡⎢⎣r−n

∫
Q(x0,r)∩Ω

|u− ur|2 dx

⎤⎥⎦
1
2

= ‖u‖L2,n(Ω) < +∞.

Here

ur = 1
|Q(x0, r) ∩ Ω|

∫
Q(x0,r)∩Ω

u(x) dx.

Q(x0; r) (resp B(x0; r)) is the cube (resp the ball) of center at x0 of side (resp radius) r0.

Lemma 2.1 (Equivalence of the two definitions). For a Lipschitz bounded domain Ω, one has:

L2,n(Ω) = bmor(Ω),

with equivalent norms.

This theorem is not essential for our purpose (we refer to [39] for its proof).
We shall also use the associated Sobolev space

W 1
0 bmor(Ω) :=

{
u : Ω → R; u ∈ W 1,1

0 (Ω) and ∇u ∈ bmor(Ω)n
}
.

As in [42], we also introduce the space.

vmo(Ω) :=
{
f ∈ bmor(Ω) and lim

R→0
sup
r�R
x0∈Ω

1
rn

∫
B(x0,r)∩Ω

|f − fr| dx → 0
}
.

We recall that the Sobolev–Poincaré inequality implies that W 1,n(Ω) ↪→ vmoloc(Ω). This gives how we can 
construct elements vmo.

For a measurable set E in Rn we denote by |E| its Lebesgue measure, and for a measurable function u
from the open bounded set Ω into Rn we define the following auxiliary functions:

1. The distribution function of u. It is a m : R → ]0, |Ω|[, such that

m(t) = meas {x ∈ Ω : u(x) > t} = |u > t|.
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2. The monotone rearrangement of u (denoted by u∗), is the generalized inverse of m, i.e.

u∗(s) = inf{t ∈ R : |u > t| � s, }, s ∈ ]0, |Ω|[,
u∗(0) = ess sup

Ω
u.

We also define |u|∗∗ = 1
t

t∫
0

|u|∗(s) ds for t > 0.

The Lorentz spaces Lp,q(Ω) are defined, for 1 � p < +∞, 1 � q < +∞, as

Lp,q(Ω) =
{
u : Ω → R measurable :

|Ω|∫
0

[
t

1
p |u|∗∗(t)

]q dt

t
< +∞

}
,

Lp,∞(Ω) =
{
u : Ω → R measurable : sup

t�|Ω|
t

1
p |u|∗∗(t) < +∞

}
,

W 1
0L

p,q(Ω) =
{
u ∈ W 1,1

0 (Ω) : |∇u| ∈ Lp,q(Ω)
}
.

We shall also use the usual notation

C0,1(Ω) :=
{
u : Ω → R measurable , ∃K > 0; |u(x) − u(y)| � K|x− y|, for any x, y ∈ Ω

}

:=
{
u : Ω → R : ∃ũ ∈ C0,1(Rn), ũ restricted to Ω is u : ũ|Ω = u

}
.

We define the following operator

L∗ = − div(A∗∇·); A∗ is the adjoint matrix of A.

It is well-known that we can define the Green function associated to those operators and Dirichlet boundary 
conditions:

Theorem 2.1 (Green function for L∗ and L). (See [41,23,44].) There exists a unique function GL∗ : Ω ×
Ω −→ R such that

1) ∀y ∈ Ω, GL∗(·, y) ∈ W 1
0L

n′,∞(Ω) and sup
y

‖GL∗(·, y)‖W 1
0 Ln′,∞(Ω) � C(Ω), satisfying

∫
Ω

A(x)∇GL∗(x, y)∇ϕdx = ϕ(y),∀ϕ ∈ W 1
0L

n,1(Ω).

2) GL∗(·, y) ∈ C(Ω\{y}) ∩H1(Ω\B(y, r)), ∀r > 0.
3) ∀ϕ ∈ C(Ω) ∩H1

0 (Ω) such that L∗ϕ ∈ C(Ω), we have∫
Ω

GL∗(x, y)L∗ϕ(x) dx = ϕ(y).

4) GL(x, y) = GL∗(y, x), ∀(x, y) ∈ Ω2.
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5) Given f ∈ L2(Ω), if u ∈ H1
0 (Ω) verifies Lu = f then

u(x) =
∫
Ω

GL(x, y)f(y) dy.

GL (resp GL∗) is called the Green kernel associated to L (resp L∗) for Dirichlet conditions.

Remark 1. Statement 3) in Theorem 2.1 is due to G. Stampacchia [41]. Here the definition of the Green 
kernel is given according to Stampacchia. But, such as it is pointed by this author, this definition is stable 
by approximation (his proof relies on the approximation of A). Nevertheless, it is already known that it 
holds for measure data problems (here the measure is e.g. the Dirac measure). In this case the problem 
stated in 1) has a solution whenever A(x) ∈ L∞(Ω)n2 (see [37,40,41,44]).

Theorem 2.2 is then a combination of all those properties.

Theorem 2.2 (Comparison of Green kernel). (See [41].) Suppose we have the following operator defined by 
L1ϕ = − div(A1(x)∇ϕ) such that

A1(x) =
(
a1
ij(x)

)
i,j

, a1
ij ∈ C0,1(Ω),

with the coercivity condition in all the domain Ω,

n∑
i,j=1

a1
ij(x)ζiζj � α|ζ|2, ∀ζ ∈ R

n, α > 0

and let GL1 be the Green function associated to L1. Then for any relatively open compact set Ω′
�,0 of Ω there 

exists a constant K1 = K1(Ω′
�,0) > 0 such that

K−1
1 G−Δ(x, y) � GL1∗(x, y) � K1GL∗(x, y), ∀(x, y) ∈ Ω′

�,0 × Ω′
�,0.

In all this paper, we shall use the notation δ(x) = dist(x, ∂Ω). We shall also use the following,

Lemma 2.2 (Hardy inequality). (See [15,30].) Let Ω be of class C0,1. Then, ∃c > 0 such that ∀u ∈ C1
c (Ω)∫

Ω

(
|u(x)|
δ(x)

)2

dx � c

∫
Ω

|∇u|2 dx.

Moreover, for a > 1, ∃Ca(Ω) > 0, such that ∀ u ∈ C1
c (Ω).∫

Ω

|u(x)|
δa

dx � Ca(Ω)
∫
Ω

|∇u|δ1−a dx.

Lemma 2.3 (Iteration). (See [20,8,12].) Let Φ(ρ) be a non-negative and non-decreasing function. Assume 
that for some non-negative constants A, α, β, r0, B with β < α, we have ∀ r ∈ ]0, r0[, ∀ρ ∈ ]0, r[

Φ(ρ) � A
(ρ
r

)α
Φ(r) + Brβ .

Then, there exists c > 0 such that

Φ(ρ) � c
(ρ
r

)β
Φ(r) + Bρβ , ∀ 0 < ρ � r � r0.
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3. On the Uniform Hopf Inequality

To solve (SP), our approach will not be based on the notion of sub-solution and super-solution such as it 
is done in [24,25], when A(x) = (aij(x)), aij ∈ C1,α(Ω) (smooth). We shall apply the following inequality:

Definition 4 (Uniform Hopf Inequality). We say that the operator L satisfies the Uniform Hopf Inequality 
if there exists a constant CΩ,L > 0 such that for all f ∈ L∞

+ (Ω), the unique solution v ∈ H1
0 (Ω) of 

− div(A∇v) = f in D′(Ω) satisfies

v(x) � CΩ,Lδ(x)
∫
Ω

f(y)δ(y) dy, a.e. x ∈ Ω. (3.1)

The inequality (3.1) still holds for (v, f) which can be approximate pointwise almost everywhere by a 
sequence of (vn, fn) ∈ H1

0 (Ω) × L∞(Ω) with the same matrix A.

Inequality (3.1) holds true if the coefficients of the matrix A are Lipschitz as it is shown in

Theorem 3.1. (See [32,6].) Suppose that f ∈ L∞
+ (Ω), and consider L1 the operator given in Theorem 2.2. 

Let v be a solution of {
L1v = f in Ω,

v = 0 on ∂Ω.

Then

v(x) � Cδ(x)
∫
Ω

f(y)δ(y) dy, a.e. x ∈ Ω,

where C > 0 is a constant depending on Ω and δ(x) = dist(x, ∂Ω).

Remark 2 (On the proof of Theorem 3.1). In the mentioned references, the proofs are given for the Laplacian 
operator they can be modified to hold for the case where A = A1. An alternative proof can be given using 
the equivalence of Green functions (see [26]).

Our first result wants to point out that if A is only bounded near the boundary but not Lipschitz 
continuous then (3.1) may fail to be true.

Theorem 3.2. There exist a smooth open set Ω ⊂ R
2, a matrix A with bounded coefficients, f ∈ L

3
2 (Ω) and 

u ∈ H1
0 (Ω) solution of 

∫
Ω

A(x)∇u∇ϕ dx =
∫
Ω

fϕ dx (∀ϕ ∈ H1
0 (Ω)), such that the Uniform Hopf Inequality 

fails to be true.

Proof. Consider Ω :=
{
(x, y) ∈ R

2 such that x > 0 and x2 + y2 < 1
}
.

Define the function

v(x, y) = x

(x2 + y2) 1
4
− x := v1(x, y) + v2(x, y),

and the following matrix (already used in Meyers [31]).

A(x, y) := 1
4(x2 + y2)

(
4x2 + y2 3xy

3xy x2 + 4y2

)
.
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We have v ∈ H1
0 (Ω). Now, we claim that − div(A∇v) = f � 0 on Ω. Indeed, since

∇v1 =

⎛⎜⎜⎝
x2 + 2y2

2(x2 + y2) 5
4

−xy

2(x2 + y2) 5
4

⎞⎟⎟⎠ ,

then

A∇v1 =

⎛⎜⎜⎝
2x2 + y2

2(x2 + y2) 5
4

xy

4(x2 + y2) 5
4

⎞⎟⎟⎠ .

Moreover

∂

∂x

(
2x2 + y2

2(x2 + y2) 5
4

)
= −2x3 + 3xy2

4(x2 + y2) 9
4
,

∂

∂y

(
xy

4(x2 + y2) 5
4

)
= 2x3 − 3xy2

4(x2 + y2) 9
4
.

Consequently, we have

− div(A∇v1) = 0 in Ω. (3.2)

On the other hand, for v2(x, y) = −x, we have

∇v2 =
(
−1
0

)
,

and then

A∇v2 =

⎛⎜⎜⎝− 4x2 + y2

4(x2 + y2)
−3xy

4(x2 + y2)

⎞⎟⎟⎠ .

In a similar way, we have

− div(A∇v2) = 3x
4(x2 + y2) in Ω. (3.3)

Thus, by (3.2)–(3.3) we conclude that

− div(A∇v) = 3x
4(x2 + y2) := f � 0, in Ω.

We have f ∈ L
3
2 (Ω) since, by using polar coordinates, we have that

∫
|f(x, y)| 32 dx dy � c

π
2∫
π

1∫ ∣∣∣∣3r cos θ
4r2

∣∣∣∣ 32 r dr dθ

Ω − 2 0



358 N. El Berdan et al. / J. Math. Anal. Appl. 437 (2016) 350–379
� c

1∫
0

r
−1
2 dr < +∞.

Let us calculate inf
(x,y)∈Ω

v(x, y)
δ(x, y) . We observe that since v(x, y) � 0, then

v(x, y)
δ(x, y) � 0 a.e. on Ω.

By using polar coordinates again, we get

v(x, y) = r cos θ
(

1√
r
− 1
)
.

Then,

v(r, θ)
δ(r, θ) �

√
r cos θ −→ 0 as r ↘ 0.

Therefore,

inf
(x,y)∈Ω

v(x, y)
δ(x, y) = 0. (3.4)

Arguing by contradiction, (3.4) infers that the Uniform Hopf Inequality cannot hold in this case. �
We shall assume that

(H2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
there exists a matrix A1(x) =

(
a1
ij(x)

)
i,j
, x ∈ Ω, with⎧⎨⎩a1

ij ∈ C0,1(Ω), α-coercive i.e. ∀ ξ ∈ R
n
(
A1(x)ξ, ξ

)
� α|ξ|2, ∀x ∈ Ω,

a1
ij restricted to Ωb coincides with aij , ∀ i, j : aij

∣∣∣
Ωb

= a1
ij .

Here Ω = Ω� ∪ Ωb, Ω� ⊂⊂ Ω.
In Ω, we shall associate to A1 the operator L1 = − div

(
A1(x)∇ ·

)
. The main result of this section is the 

following:

Theorem 3.3. Under the above assumptions (H1), and (H2) there exists CΩ,L > 0, such for any f ∈ L∞
+ (Ω), 

the solution u ∈ H1
0 (Ω) of (1.3) satisfies for a.e. ∀y ∈ Ω

u(y) � CΩ,Lδ(y)
∫
Ω

f(x)δ(x) dx. (3.5)

For its proof, for Ω� ⊂⊂ Ω, we shall consider the open set Ω′
�,0 ⊂⊂ Ω such that Ω� ⊂ Ω′

�,0. In addition, 
for Ωb = Ω\Ω� we consider its subset Ω′

b,0 = Ω\Ω′
�,0. We shall need the following lemmas to prove the 

inequality (3.5).

Lemma 3.1. Under the same assumptions as in Theorem 3.3, and if Ω′
�,0 is given as above, the constant K1

given in Theorem 2.2, is such that K1 = K1(Ω′
�,0) > 0 and

K1GL∗(x, y) � GL1∗(x, y), ∀x ∈ Ω′
b,0, ∀y ∈ Ω′

�,0.
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Proof. Let ϕ ∈ W 1
0L

n,1(Ω′
b,0) and let ϕ̃ its extension to Ω by zero.

Then, ϕ̃ ∈ W 1
0L

n,1(Ω). For y ∈ Ωl fixed, let w(x) = K1GL∗(x, y) − GL1∗(x, y), x ∈ Ω′
b,0. Then w ∈

H1(Ω′
b,0) and

∫
Ω

A(x)∇w · ∇ϕ̃ dx = K1

∫
Ω

A(x)∇GL∗(x, y)∇ϕ̃ dx−
∫
Ω

A(x)∇GL1∗(x, y)∇ϕ̃ dx.

Since A(x) = A1(x) on Ω′
b,0, thanks to Theorem 2.1, we obtain

∫
Ω

A(x)∇w · ∇ϕ̃ dx = K1ϕ̃(y) −
∫

Ω′
b,0

A1(x)∇GL1∗(x, y)∇ϕdx, for any y ∈ Ω′
�,0

Using again ϕ̃ in the last term and Theorem 2.1

∫
Ω

A(x)∇w · ∇ϕ̃ dx = K1ϕ̃(y) −
∫
Ω

A1(x)∇xGL1∗(x, y)∇ϕ̃ dx

= K1ϕ̃(y) − ϕ̃(y) = 0.

Thus,

∫
Ω′

b,0

A(x)∇w · ∇ϕdx = 0. (3.6)

Moreover, its trace verifies that, γ0w(x) = 0 on ∂Ω, and from Theorem 2.2

w(x) = K1GL∗(x, y) −GL1∗(x, y) � 0 for x ∈ ∂Ω′
�,0.

Consequently, by the maximum principle, w � 0 on Ω′
b,0. �

Corollary 3.1 (Of Theorem 2.2 and Lemma 3.1). Under the same assumptions as in Theorem 3.3, the 
constant K1 > 0 found in Lemma 3.1 satisfies

K1GL∗(x, y) � GL1∗(x, y), ∀x ∈ Ω, ∀y ∈ Ω′
�,0.

Proof. Since Ω = Ω′
b,0 ∪ Ω′

�,0 and we have shown that ∀y ∈ Ω′
�,0,

w(x) = K1GL∗(x, y) −GL1∗(x, y) � 0, ∀x ∈ Ω′
b,0,

and w(x) � 0, ∀x ∈ Ω′
�,0, (from Theorem 2.2), thus, w(x) � 0 on Ω′

b,0 ∪ Ω′
�,0 = Ω. �

Corollary 3.2 (Lower estimates on the subset Ωl). Let f ∈ L∞
+ (Ω), and let u and v in H1

0 (Ω) satisfy Lu = f

and L1v = f respectively.



360 N. El Berdan et al. / J. Math. Anal. Appl. 437 (2016) 350–379
Then, a.e. y ∈ Ω�

1) u(y) � 1
K1

∫
Ω

GL1(y, x)f(x) dx,

2) there exists CΩ,L1 > 0 such that

v(y) =
∫
Ω

GL1(y, x)f(x) dx � CΩ,L1δ(y)
∫
Ω

f(x)δ(x) dx.

In particular,

u(y) � CΩ′
�,0

∫
Ω

f(x)δ(x) dx > 0. (3.7)

Proof. Let f ∈ L∞
+ (Ω). Then from Corollary 3.2, for a.e. y ∈ Ω�, after integrating over Ω, we have

u(y) =
∫
Ω

GL∗(x, y)f(x) dx � 1
K1

∫
Ω

GL1∗(x, y)f(x) dx = v(y). (3.8)

Recalling that the coefficients of L1 are Lipschitz continuous, we can apply Theorem 3.1 to obtain that 
∃CΩ,L1 > 0 such that, for a.e. y ∈ Ω�,

u(y) � v(y) � CΩ,L1δ(y)
∫
Ω

f(x)δ(x) dx. � (3.9)

Lemma 3.2 (Lower estimates on Ωb near the boundary). Under the same assumptions as in Theorem 3.3, 
there exists CΩ,L > 0 such that

u(y) � CΩ,Lδ(y)
∫
Ω

f(x)δ(x) dx, a.e. y ∈ Ωb = Ω\Ω�.

Proof. This procedure is inspired by the method of proof used by Brezis–Cabré [7].
Let Γb := ∂Ω ∪ ∂Ω� = ∂Ωb and introduce the function w ∈ H1(Ω) solution of:⎧⎪⎨⎪⎩

L1w = − div(A1(x)∇w) = 0 in Ωb,

w = 0 on ∂Ω,

w = 1 on ∂Ω�.

Since the coefficients of A = A1 are Lipschitz continuous on Ωb, then by the Hopf strong maximum principle, 
there exists C ′

Ωb
> 0 such that

w(y) � C ′
Ωb
δ(y), ∀y ∈ Ωb. (3.10)

Now, let us set w(y) =
[
C ′

Ωb

∫
Ω f(x)δ(x) dx

]−1
u(y). By the linearity of operator L1 and since f � 0:⎧⎪⎪⎪⎨⎪⎪⎪⎩

L1w =

⎡⎣C ′
Ωb

∫
Ω

f(x)δ(x) dx

⎤⎦−1

L1u � 0 = L1w in Ωb,

w| � w| .
∂Ωb ∂Ωb
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Thus, thanks to the maximum principle, we obtain w � w on Ωb. This means that for all y ∈ Ωb

u(y) � C ′
Ω�
C ′

Ωb
δ(y)

∫
Ω

f(x)δ(x) dx. (3.11)

Finally, combining (3.11) with relation (3.9), we get

u(y) � Cδ(y)
∫
Ω

f(x)δ(x) dx, a.e. y ∈ Ω. �

4. On the singular problem: the case of u−1 as nonlinear term

The Uniform Hopf Inequality (UHI) is very useful to derive regularity results for the singular semilinear 
problem

(P) =

⎧⎨⎩− div(A(x)∇u) = a(x)
u

in Ω,

u = 0 on ∂Ω.

An existence and uniqueness results are also proved in [3,9] for linear operators and in [18,19] for non-linear 
operators. The main difference with our results is double. Indeed, firstly our method to prove the positivity of 
the solution is different than the above mentioned papers. For instance, in [3] it is obtained by a monotonicity 
result, nevertheless our method of proof can be extended to a general operator as Lu = − div(A∇u) +B∇u +
div(Cu) + a0u (as it will be presented in the Nada El Berdan’s thesis). Secondly the additional regularity 

that we shall obtain in the following theorem (the term 
a

u
∈ H−1(Ω) or the results given in Theorem 5.2

below) is not mentioned in the above papers.

Theorem 4.1. Let a ∈ L∞
+ (Ω), a �= 0. Then, there exists a unique solution u ∈ H1

0 (Ω) of (P), such that

i) a

u
∈ L1

loc(Ω) ∩H−1(Ω), u > 0 in Ω,

ii)
∫
Ω

A(x)∇u · ∇ϕ dx =
∫
Ω

a(x)ϕ
u

dx, ∀ϕ ∈ H1
0 (Ω).

Proof. Let us start with the uniqueness of u. If u, ̄u satisfy ii) then by the coercivity condition on A and 
choosing ϕ = u − ū;

α

∫
Ω

|∇(u− ū)|2 dx �
∫
Ω

a(x)
[

1
u
− 1

ū

]
(u− ū) dx � 0.

This implies that, necessarily, u = ū. For the existence part, we introduce the following regularized problem:

(Pε) =

⎧⎨⎩Luε = − div(A(x)∇uε) = a

|uε| + ε
in Ω,

uε = 0 on ∂Ω,

with, ε > 0. The weak (variational) formulation for (Pε) reads

aL(uε, ϕ) :=
∫

A(x)∇uε · ∇ϕdx =
∫

a(x)ϕ
|uε| + ε

dx, ∀ϕ ∈ H1
0 (Ω). (4.1)
Ω Ω
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Using the Schauder fixed point theorem (see e.g. [21]), we get the existence of uε. In addition, if we apply 
the weak maximum principle [21], we obtain that uε � 0. The same argument as the used for u ensures that 
uε is unique.

Estimate on uε: Taking ϕ = uε as test function in (4.1), we can write

aL(uε, uε) =
∫
Ω

auε

uε + ε
dx,

and then

α‖∇uε‖2
L2(Ω) � ‖a‖L∞

∫
Ω

uε

uε + ε
dx � CΩ‖a‖L∞ . (4.2)

Therefore, uε is uniformly bounded in H1
0 (Ω), and then there exists u ∈ H1

0 (Ω) such that (for a subsequence) 
uε converges to u a.e.

Now, we shall prove that a

uε
remains in a bounded set of L1

loc(Ω) ∩H−1(Ω). By Theorem 2.1 (see also 

Theorem 9.3 of [41]), we have

uε(x) =
∫
Ω

GL(x, y) a(y)
(uε(y) + ε) dy a.e. x ∈ Ω, (4.3)

where GL is the Green function associated to L as it is defined in Section 1.
Let Ω′ be a relatively compact open set in Ω. Let f0(y) = a

uε + ε
χΩ′(y) and consider the following 

problem {
−Δw(x) = f0 in Ω
w = 0 on ∂Ω.

This problem has a unique solution w in H1
0 (Ω) ∩H2(Ω). According to the Uniform Hopf Inequality (see 

Theorem 3.1), there exist CΩ,Δ > 0 such that

w(x) � CΩ,Δδ(x)
∫
Ω′

a

uε + ε
δ(y) dy, a.e. x ∈ Ω.

Returning to Theorem 2.1 and to the inequality in Theorem 2.2, then for K = K(Ω′) > 0

K−1w(x) = K−1
∫
Ω

G−Δ(x, y)f0(y) dy �
∫
Ω

GL(x, y)f0(y) dy

�
∫
Ω

GL(x, y) a(y)
uε(y) + ε

dy = uε(x), a.e. x ∈ Ω.

Consequently,

+∞ > uε(x) � K−1w(x) � CΩ,Δδ(x)
∫

a

uε + ε
δ(y) dy, a.e. x ∈ Ω′, (4.4)
Ω′



N. El Berdan et al. / J. Math. Anal. Appl. 437 (2016) 350–379 363
which yields that a
uε

∈ L1
loc(Ω) and uε > 0 a.e. in Ω. To prove that a

u
∈ L1

loc(Ω), it is enough to pass to the 

limit at (4.4), since from Fatou’s Lemma, we get

+∞ > u(x) � CΩ,Δδ(x)
∫
Ω′

a(y)
u(y) dy, a.e. x ∈ Ω′.

In particular, this implies that inf
0<ε<ε1

∫
Ω′

a

uε + ε
δ(y) dy > 0. We now have

a

uε + ε
−−−→
ε→0

a

u
a.e., on Ω,

and for all Ω′ relatively compact in Ω, since inf
y∈Ω′

δ(y) > 0, then (4.4) yields for a.e. x ∈ Ω′

0 � a

uε + ε
(x) � a

uε
(x) � CΩ′

a∫
Ω′

a(x)
uε(x) + ε

(y) dy
� CΩ′ a(x) < +∞.

Then, by using the Lebesgue dominated convergence theorem, we obtain∫
Ω

a

uε + ε
ψ(x) dx −−−→

ε→0

∫
Ω

a

u
ψ(x) dx, ∀ψ ∈ D(Ω).

Now, we want to show that ∫
Ω

A(x)∇u · ∇ψ =
∫
Ω

a

u
ψ, ∀ψ ∈ H1

0 (Ω).

For this we observe that a

uε + ε
belongs to a bounded subset of H−1(Ω) ∩L1

loc(Ω) since, ∀ψ � 0, ψ ∈ H1
0 (Ω)

we have ∫
Ω

aψ

uε + ε
dx =

∣∣∣∣ ∫
Ω

A(x)∇uε · ∇ψ dx

∣∣∣∣ � C‖∇uε‖L2(Ω)‖∇ψ‖L2(Ω) � C‖∇ψ‖L2(Ω).

But, a

uε + ε
converges to 

a

u
a.e. Thus by Fatou’s lemma, we deduce (knowing that |ψ| ∈ H1

0 (Ω) once that 

ψ ∈ H1
0 (Ω))

sup
ψ∈H1

0
‖∇ψ‖L2(Ω)=1

∣∣∣∣ ∫
Ω

aψ

u
dx

∣∣∣∣ � CΩ < +∞.

This shows that a
u

∈ H−1(Ω) and following the property defined by Brezis–Browder [5], aψ
u

∈ L1(Ω) for 
ψ ∈ H1

0 (Ω) and also

<
a

u
;ψ >H−1,H1=

∫
aψ

u
dx, ∀ψ ∈ H1

0 (Ω).

Ω
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But ∀ψ ∈ D(Ω), ∫
Ω

A(x)∇u · ∇ψ dx =
∫
Ω

a

u
ψ dx.

So, by density, we have

lim
ψn∈D
ψn→ψ

<
a

u
;ψn >=<

a

u
;ψ >, ∀ψ ∈ H1

0 (Ω).

This ends the proof. �
Our next results show that the gradient of the solution is more regular. We start with the study in the 

Lp(Ω) spaces.

Theorem 4.2. Assume furthermore that operator L satisfies the Uniform Hopf Inequality, ∂Ω is C1 and that 
aij ∈ vmo(Ω). Then, ∀p ∈ [1, ∞[, u ∈ W 1,p(Ω), and

‖u‖W 1,p
0 (Ω) � C1

Ω(A, p) ‖a‖∞∫
Ω

a(x)δ(x)
u(x) dx

, (4.5)

for some positive constant C1
Ω(A, p).

Proof. Since L satisfies the Uniform Hopf Inequality, there exists a constant CL > 0 such that we have

0 � a(x)
uε(x) � CL

‖a‖∞

δ(x)
∫
Ω

a(y)δ(y)
(uε + ε)(y) dy

, a.e. x ∈ Ω.

Then, if ψ ∈ W 1,p′

0 (Ω) with 
1
p′

= 1 − 1
p
, ψ � 0, we then have,

0 �
∫
Ω

a(x)
uε(x)ψ(x) dx � CL

∫
Ω

a(x)ψ(x)

δ(x)
∫
Ω

a(y)
(uε + ε)(y) dy

dx

� CL
‖a‖∞∫

Ω

a(y)
(uε + ε)(y) dy

∫
Ω

ψ(x)
δ(x) dx

� CΩ,L(a)
∫
Ω

ψ(x)
δ(x) dx.

By using the Hardy inequality, we obtain:

0 �
∫

a(x)
uε(x)ψ(x) dx � CΩ,L(a)‖∇ψ‖Lp′ (Ω), (4.6)
Ω
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for some positive constant CΩ,L(a). Therefore, we deduce

a

uε + ε
belongs to a bounded set of W−1,p(Ω).

From the regularity result applied to the associated linear equation, the unique solution uε of (Pε) is in 
W 1,p(Ω) (see Simader [40], Auscher–Quafsaoui [1] and Byun [4]) and

‖∇uε‖Lp(Ω) � CΩ‖
a

uε + ε
‖W−1,p(Ω) � CΩ

‖a‖∞∫
Ω

a(y)δ(y)
uε + ε

dy

� C(Ω, a). (4.7)

(Notice that

lim
ε1→0

⎡⎣ inf
0<ε<ε1

∫
Ω

a(y)δ(y)
uε + ε

dy

⎤⎦ �
∫
Ω

a(y)δ(y)
u(y) dy > 0

which implies the uniform estimates in (4.7).)
Therefore, ∇uε is bounded in Lp(Ω)n, and since uε converges to u weakly in H1

0 (Ω), thus ∇uε converges 
weakly to ∇u in Lp(Ω)n. Then

‖∇u‖Lp(Ω) � lim
ε→0

inf ‖∇uε‖Lp(Ω)

� lim
ε→0

inf CΩ‖a‖∞∫
Ω

a(y)δ(y)
uε + ε

dy

= CΩ(a).

This gives relation (4.5). �
Theorem 4.3. Assume that aij ∈ C0,1(Ω), ∀i, j and ∂Ω is C1,1. Then the solution satisfying ii) of Theo-
rem 4.1, belongs to W 1

0 bmor(Ω).

Proof. First let us notice that according to Theorem 3.1, the operator L satisfies the Uniform Hopf In-
equality. Therefore the uniform estimates given by (4.6) and Theorem 4.2 hold true. We will prove that 
∇u ∈ bmor(Ω)n. For this statement, we will partly use some arguments from Campanato [8]. We shall 
establish two new a priori estimates:

i) Interior local estimate:

Lemma 4.1. For any open smooth sets Ω0, Ω̃0 with Ω0 ⊂ Ω̃0 and Ω̃0 ⊂ Ω, for all 1 � p < ∞, there exists a 
constant C(p; Ω̃0) such that:

‖D2uε‖Lp(Ω0) � C(p; Ω̃0).

Proof. Consider δ̃ = dist(Ω̃0; ∂Ω) and introduce function θ0 be such that:

⎧⎨⎩
θ0 ∈ C∞

c (Ω̃0), 0 � θ0 � 1 and supp θ0 ⊂ Ω̃0 ⊂ Ω,

θ0 = 1 on Ω0, |Dαθ0| � M
, α = (α1, . . . , αn) ∈ N

n, |α| = α1 + . . . + αn.

δ̃|α|
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Let vε = uεθ0 ∈ H1
0 (Ω̃0). Then vε verifies the local problem:

(Pl) :

⎧⎨⎩− div(A(x)∇vε) = aθ0

uε + ε
− div(A(x)uε∇θ0) in Ω̃0,

vε = 0 on ∂Ω̃0.

Let Fε := aθ0

uε + ε
− div(A(x)uε∇θ0), and let U0 = A(x)∇θ0. Then Fε = aθ0

uε + ε
+ U0∇uε + uε div(U0), 

support U0 ⊂ Ω̃0 \ Ω0 and

‖ div(U0)‖L∞ + ‖U0‖L∞ � M

δ̃2
= M(Ω̃0).

Therefore, using estimates (4.7)

‖Fε‖Lp(Ω̃0) � Ca(Ω̃0)
(
‖θ0

δ̃
‖Lp(Ω) + C(Ω, a)

)
. (4.8)

By the well known Agmon–Douglis–Nirenberg regularity results we have,

‖vε‖W 2,p(Ω̃0) � CΩ(p)‖Fε‖Lp(Ω̃0). (4.9)

Since Dαvε = Dαuε on Ω0, then relation (4.9) leads finally to

‖uε‖W 2,p(Ω0) � C‖vε‖W 2,p(Ω̃0)
� Cp(Ω̃0). �

As a consequence of Lemma 4.1 one has,

Lemma 4.2. For all p � 1, for all open smooth set Ω0 relatively compact in Ω, the sequence uε remains in 
a bounded set of W 2,p(Ω0). Moreover, the sequence remains in a bounded set of C1(Ω0).

Proof. It is a consequence of Lemma 4.1 and the Sobolev embedding,

W 2,p(Ω0) ↪→ C1(Ω0), p > n. �
ii) Estimates in a neighborhood of the boundary: Since we assume that Ω is of class C1,1, for every x ∈ ∂Ω, 
we can find, an open neighborhood of x denoted by Ω0,1(x) and a bijection

τ : Ω0,1 = Ω0,1 −→ I+(1),

such that

τ ∈ C1,1 (Ω0,1(x))n , τ−1 ∈ C1,1
(
I+(1)

)n
and τ(∂Ω ∩ Ω0,1) = Γ1,

where

I+(1) :=
{
x = (x′, xn) ∈ R

n such that |x| < 1 and xn > 0
}
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and

Γ1 :=
{
x = (x′, 0) : |x′| � 1

}
.

This means that we can continuously deform the boundary to a hyperplane and that this transformation is 
regular. After this transformation the problem (Pε) reads

τ(Pε) :

⎧⎨⎩− div(B(y)∇wε) = ã(y)
wε + ε

in I+(1),

wε = 0 on Γ1,

with B(y) ∈ C0,1
(
I+(1)

)
, ̃a(y) ∈ L∞(I+(1)) and ∀ζ = (ζ1, · · ·, ζn) ∈ R

n, ∃ν > 0 such that 
∑
i,j

bijζiζj �

ν|ζ|2. On each ball I+(0, r) = I+(r), more generally, for x0 ∈ I+(1), we set

I+(x0, r) :=
{
x ∈ I+(1) : |x− x0| < r

}
, Γr =

{
x ∈ I+(r) : xn = 0

}
,

I(x0, r) is the ball of radius r centered at x0.
We will construct two Dirichlet problems with constant coefficients such that the sum of the two solutions 

of these two problems coincides with wε.
Let us fix 0 < R < 1, x0 ∈ I+(R), R closed to 1. The first problem will be defined without the right-hand 

side of τ(Pε), and having the same trace of wε, i.e.,

τ(Pε)1 :
{

− div(B(x0)∇w1
ε) = 0 in I+(x0, r),

w1
ε = wε on ∂I+(x0, r).

Here, 0 < r � 1 −R .
2
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Theorem 4.4. (See Campanato [pages 338, 352].) τ(Pε)1 admits a positive solution w1
ε with∫

I+(x0;r)

|∇w1
ε |2dx � cB

∫
I+(x0;r)

|∇wε|2dx � c(Ω, a) (independent of x0, and r).

There exists c(ν) > 0, ∀ 0 < ρ < r such that

1. If ΓR ∩ I(x0, r) = ∅ then

‖∇w1
ε − {∇w1

ε}ρ‖2
L2(I+(x0,ρ)) � c(ν)

(ρ
r

)n+2
‖∇w1

ε − {∇w1
ε}r‖2

L2(I+(x0,r)). (4.10)

2. If ΓR ∩ I(x0, r) �= ∅ then∫
I+(x0;ρ)

∣∣∣Djw
1
ε

∣∣∣2dx � c(ν)
(ρ
r

)n+2 ∫
I+(x0;r)

∣∣∣Djw
1
ε

∣∣∣2dx, j = 1, . . . , n− 1, (4.11)

∫
I+(x0;ρ)

∣∣∣Dnw
1
ε −
{
Dnw

1
ε

}
ρ

∣∣∣2 � c(ν)
(ρ
r

)n+2 ∫
I+(x0;ρ)

∣∣∣Dnw
1
ε −
{
Dnw

1
ε

}
r

∣∣∣2dx. (4.12)

Here Dj denotes the partial derivative in the xj-direction, j = 1, . . . n and {·}ρ is the average over 
I+(x0, ρ).

Proof. The problem τ(Pε)1 is identical to the one considered by Campanato [8]. Therefore, his proof can 
be reproduced line by line to get (4.10), (this estimate is proven in p. 338 by Campanato [8], see relation 
(8.12) for the local estimate, observing in that case I(x0, r) = B(x0; r) ⊂ I+(1)).

The second set of relations (4.11) and (4.12), are given in page 352 (Corollary I.11 and Lemma II.11) of 
Campanato [8]. �

Now, we construct the second problem as follows:

τ(Pε)2 :=

⎧⎨⎩− div(B(x0)∇w2
ε) = ã(y)

wε + ε
+ div((B(y) −B(x0))∇wε) in I+(x0, r),

w2
ε = 0 on ∂I+(x0, r).

Theorem 4.5. τ(Pε)2 admits a unique solution w2
ε ∈ H1

0 (I+(x0; r)) and for all λ ∈ [0, n[,

‖∇w2
ε‖2

L2(I+(x0;r)) � c

∫
I+(x0;r)

ã(y) dy + rλ+2CΩ(λ, a),

for some c > 0, which depends only on Ω.

Proof. This problem is well-posed since the right hand side is in H−1(I+(x0, r)) and admits a unique 
solution w2

ε ∈ H1
0 (I+(x0, r)) (by using Lax–Milgram Theorem). Note that we have wε = w1

ε + w2
ε .

Estimate on ∇w2
ε : By multiplying τ(Pε)2 by w2

ε , we get

ν

∫
+

|∇w2
ε |2 dy �

∫
+

ã(y)w2
ε(y)

wε + ε
dy +

∫
+

(B(y) −B(x0))∇wε∇w2
ε dy.
I (x0,r) I (x0,r) I (x0,r)
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Since w2
ε = wε − w1

ε and w1
ε � 0 then w2

ε � wε the Lipschitz continuity condition on B, Cauchy–Schwartz 
inequality and Young’s inequality, yield

∫
I+(x0,r)

|∇w2
ε |2 dy � c

∫
I+(x0,r)

ã(y)w2
ε

wε + ε
dy +

∫
I+(x0,r)

cr|∇wε.∇w2
ε | dy,

� c

∫
I+(x0,r)

ã(y) dy + c2r2

2

∫
I+(x0,r)

|∇wε|2 dy + 1
2

∫
I+(x0,r)

|∇w2
ε |2 dy.

Thus ∫
I+(x0;r)

|∇w2
ε |2 dy � c

∫
I+(x0;r)

ã(y) dy + cr2
∫

I+(x0;r)

|∇wε|2 dy.

Next, we want to show that ∫
I+(x0;r)

|∇wε|2dx � rλcΩ(λ, a). (4.13)

From relation (4.6) of the proof of Theorem 4.2, we have proved that

‖∇uε‖Lp(Ω) � CΩ(p, a), ∀p ∈ [1,+∞[.

Lemma 4.3. Let λ ∈ [0, n[. Then, Lp(Ω) ↪→ L2,λ(Ω) provided for p � 2n
n− λ

. Moreover, there exists C(Ω) > 0
such that

sup
x∈Ω
r>0

[
r−λ|v|L2(B(x,r)∩Ω)

]
� C(Ω)|v|Lp(Ω).

Proof. Setting Ω0,r = B(x, r) ∩ Ω, we have

r−λ

∫
Ω∩B(x,r)

|v|2 dx = r−λ

∫
Ω

|v|2χΩ0,r dx � r−λ‖v‖2
Lp(Ω)|Ω0,r|

p−2
p � c(Ω)‖v‖2

Lp(Ω).

Thus,

sup
r>0
x0∈Ω

(r−λ

∫
Ω∩B(x,r)

|v|2 dx) � c(Ω)‖v‖2
Lp(Ω). �

Using Lemma 4.3 and relation (4.6), we obtain that

‖∇uε‖2
L2(Ω∩B(x,r)) � rλCΩ(n, λ, a). (4.14)

By applying the homeomorphism function τ , we obtain

‖∇wε‖2
L2(I+(x ;r)) � rλCΩ(λ, a). (4.15)
0
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Therefore,

‖∇w2
ε‖2

L2(I+(x0;r)) � c

∫
I+(x0;r)

ã(y) dy + rλ+2CΩ(λ, a). � (4.16)

Next, we want prove that for all R < 1

sup
∀x0∈I+(R)

∀ρ>0

ρ−n‖∇wε − {∇wε}ρ‖2
L2(I+(x0,ρ)) � C(R) < ∞. (4.17)

Let x0 ∈ I+(R), we set δ0 = 1 −R

2 with 0 < R < 1. We have two cases to be analyzed:

1st case: ρ � 1 −R

2
In this case, we have for any x0

ρ−n
∥∥∥∇wε −

{
∇wε

}
ρ

∥∥∥2

L2(I+(x0;ρ))
�
(

2
1 −R

)n

‖∇wε‖L2(I+(1)) � cΩ
‖a‖∞

(1 −R)n . (4.18)

2nd case: 0 < ρ <
1 −R

2 . Let r be such 0 < ρ < r � 1 −R

2 . We have two subcases: either ΓR ∩ I(x0; r) = ∅
or ΓR ∩ I(x0; r) �= ∅.
(a) For the first case, ΓR ∩ I(x0; r) = ∅, we first write wε = w1

ε +w2
ε and apply estimate (4.10) of 

Theorem 4.4 to derive∥∥∥∇wε −
{
∇wε

}
ρ

∥∥∥2

L2(I+(x0;ρ))
� c(ν)

(ρ
r

)n+2 ∥∥∥∇w1
ε −
{
∇w1

ε

}
r

∥∥∥2
L2(I(x0;r))

+
∥∥∥∇w2

ε −
{
∇w2

ε

}
ρ

∥∥∥2

L2(I(x0;ρ))
.

Applying Theorem 4.5 and the decomposition w1
ε = wε − w2

ε ,

‖∇wε − {∇wε}ρ‖2
L2(I+(x0,ρ)) � c(ν)

(ρ
r

)n+2
‖∇wε − {∇wε}r‖2

L2(I+(x0,r))

+ rλ+2CΩ(λ, a) + 2
∫

+

ã(y) dy.

I (x0,r)
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Choosing λ = n − 1, one has for all 0 < ρ < r

‖∇wε − {∇wε}ρ‖2
L2(I+(x0,ρ)) � c(ν)

(ρ
r

)n+2
‖∇wε − {∇wε}r‖2

L2(I+(x0,r)) + c(Ω)rn. (4.19)

Applying the iteration Lemma 2.3 (see [8,12]) on (4.13) with

Φ(ρ) = ‖∇wε − {∇wε}ρ‖2
L2(I+(x0,ρ)),

we get

‖∇wε − {∇wε}ρ‖2
L2(I+(x0,ρ)) � c

(ρ
r

)n
‖∇wε − {∇wε}r‖2

L2(I+(x0,r)) + c(Ω)ρn.

Dividing by ρn, we obtain

1
ρn

∥∥∥∇wε −
{
∇wε

}
ρ

∥∥∥2
L2(I+(x0,ρ))

� c

rn
∥∥∇wε

∥∥∥2

L2(I+(1))
+ c(Ω). (4.20)

(b) For the second case, ΓR ∩ I(x0; r) �= ∅, we need to use relation (4.11) of Theorem 4.4 by 
distinguishing the xj-direction, j � n − 1 and xn-direction.
For j = 1, . . . , n − 2, since wε = w1

ε + w2
ε , we have∫

I+(x0;ρ)

|Djwε|2dx � 2
∫

I+(x0;ρ)

|Djw
1
ε |2dx + 2

∫
I+(x0;ρ)

|Djw
2
ε |2dx (4.21)

Using Theorem 4.4 relation (4.11) and Theorem 4.5, we derive from this last relation that∫
I+(x0;ρ)

|Djwε|2 � c
(ρ
r

)n+2 ∫
I+(x0;r)

|Djw
1
ε |2dx + crn

� c
(ρ
r

)n+2 ∫
I+(x0;r)

|Djwε|2dx + c
(ρ
r

)n+2 ∫
I+(x0;r)

|Djw
2
ε |2dx + crn. (4.22)

Using again Theorem 4.5 with relation (4.21), we deduce∫
I+(x0;ρ)

|Djwε|2dx � c
(ρ
r

)n+2 ∫
I+(x0;r)

|Djwε|2dx + crn. (4.23)

This last relation is valid for all 0 < ρ < r we may appeal the iteration lemma (see [12,39]), to derive∫
I+(x0;ρ)

|Djwε|2dx � c
(ρ
r

)n ∫
I+(x0;r)

|Djwε|2dx + c.ρn (4.24)

Thus

ρ−n

∫
I+(x0;ρ)

∣∣∣Djwε −
{
Djwε

}
ρ

∣∣∣2dx � ρ−n

∫
I+(x0;ρ)

|Djwε|2 � c
1
rn

∫
I+(1)

∣∣Djwε

∣∣2dx + c. (4.25)

In the xn-direction, we have from Theorem 4.4, relation (4.12) and Theorem 4.5 with λ = n − 1, for all 
0 < ρ < r
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∫
I+(x0;ρ)

∣∣∣Dnwε −
{
Dnwε

}
ρ

∣∣∣2 �
∫

I+(x0;ρ)

∣∣∣Dnw
1
ε −
{
Dnw

1
ε

}
ρ

∣∣∣2dx +
∫

I+(x0;ρ)

∣∣∣Dnw
2
ε

∣∣∣2dx
� c
(ρ
r

)n+2 ∫
I+(x0;r)

∣∣∣Dnw
1
ε −
{
Dnw

1
ε

}
r

∣∣∣2dx + crn

� c
(ρ
r

)n+2 ∫
I+(x0;r)

∣∣∣Dnwε −
{
Dnwε

}
r

∣∣∣2dx. (4.26)

Thus, we may appeal the iteration Lemma 2.3 with Φ(ρ) =
∫

I+(x0;ρ)

∣∣∣Dnwε −
{
Dnwε

}
ρ

∣∣∣2dx to derive

ρ−n

∫
I+(x0;ρ)

∣∣∣Dnwε −
{
Dnwε

}
ρ

∣∣∣2dx � c

rn

∫
I+(1)

|Dnwε|2dx + c. (4.27)

In all the cases, from relations (4.20), (4.25), (4.27), there exists a constant c, ∀ 0 < ρ < r, for all x0 ∈ I+(R)

ρ−n
∥∥∥∇wε −

{
∇wε

}
ρ

∥∥∥2

L2(I+(x0;ρ))
� c

1
rn
∥∥∇wε

∥∥2
L2(I+(1)) + c, (4.28)

which infer that

sup
ρ>0, x0∈I+(R)

ρ−n
∥∥∥∇wε −

{
∇wε

}
ρ

∥∥∥2
L2(I+(x0;ρ))

� c

(1 −R)n < ∞.

This ends the proof of (4.17). �
Applying τ−1 on relation (4.17), we derive that

uε remains in a bounded set of W 1bmor

(
τ−1(I+(R)

))
for all R < 1.

In the local estimate, we have proved that ∇uε ∈ bmor(Ω0)n, ∀Ω0 ⊂⊂ Ω, and in the estimate in a 
neighborhood of the boundary τ−1(I+(R)

)
= Ω0,R(x) for all R < 1, we proved that ∇uε ∈ bmor(Ω0,R(x))n

with x ∈ ∂Ω. Collecting both results on local estimates and boundary estimates, we can conclude as in 
Campanato [8] that ∇uε remains in a bounded set of bmor(Ω)n. This implies that uε belongs to a bounded 
set of W 1

0 bmor(Ω). This shows that u ∈ W 1
0 bmor(Ω). �

5. Case where the right hand side is a(x)u−m(x), m > 0

In this paragraph, we want to discuss the existence and the regularity of solution for the following 
problem {

Lu = − div(A(x)∇u) = a(x)u−m(x) in Ω
u = 0 on ∂Ω.

As we shall see the regularity of the solution relies not only on the value of m but also on the regularity of 
the coefficients of A(x) = (aij(x))i,j the domain is still a Lipschitz one. For an alternative proof see also [3]. 
More precisely, we want to show:
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Theorem 5.1 (Existence). Let a ∈ L∞
+ (Ω), m > 0, and let A(x) = (aij(x))i,j be an α-coercive matrix with 

bounded coefficients. Then there exists a positive function u ∈ H1
loc(Ω) such that

1) u ∈ Lq(Ω), q = 2∗

2 (m + 1), [2∗ is the Sobolev exponent], a

um
∈ L1

loc(Ω), and

∫
Ω

|u(x)|q dx � CΩ

(
‖a‖∞
α

) 2∗
2

.

2) ∀ψ ∈ D(Ω), 
∫
Ω A(x)∇u · ∇ψ dx =

∫
Ω
a(x)ψ(x)
um(x) dx, and u

m+1
2 ∈ H1

0 (Ω). Moreover, 
∫
Ω

|∇u|2um−1 dx �

‖a‖∞
αm

(
m + 1

2

)2

.

In the special case of 0 < m � 1, then 
a

u
∈ L1(Ω, δ) and u ∈ H1

0 (Ω).

Proof. Let ε > 0. Then, there exists a non-negative function uε ∈ H1
0 (Ω) ∩ L∞(Ω) satisfying∫

Ω

A(x)∇uε · ∇ϕdx =
∫
Ω

a(x)ϕ(x)
um
ε + ε

dx, ∀ϕ ∈ H1
0 (Ω). (5.1)

Then, one has the following a priori estimates∫
Ω

|∇(u
m+1

2
ε )|2 dx � ‖a‖∞

αm

(
m + 1

2

)2

, (5.2)

and there exists CΩ > 0, such that

∫
Ω

|uε|q dx � CΩ

(
‖a‖∞
α

) 2∗
2

(5.3)

with q = 2∗

2 (m + 1), again [2∗ is the Sobolev exponent].
Indeed, for the first inequality, we choose ϕ = um

ε as a test function and we use the coercivity condition 
on A to derive that

mα

∫
Ω

∇uε · ∇um
ε dx �

∫
Ω

A(x)∇uε · ∇um
ε dx =

∫
Ω

a(x)um
ε

um
ε + ε

� ‖a‖∞.

Therefore, ∫
Ω

|∇uε|2um−1
ε dx � ‖a‖∞

αm
.

Consequently, ∫
|∇(u

m+1
2

ε )|2 dx =
(
m + 1

2

)2 ∫
|∇uε|2um−1

ε dx �
(
m + 1

2

)2 ‖a‖∞
αm

. (5.4)

Ω Ω
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While for the second inequality, we shall set vε = u
m+1

2
ε and we have

∫
Ω

|uε|q dx =
∫
Ω

|vε|2
∗
dx � CΩ

⎛⎝∫
Ω

|∇vε|2 dx

⎞⎠
2∗
2

� CΩ

(
‖a‖∞
αm

) 2∗
2
(
m + 1

2

)2

.

Using the Rellich–Kondrachov compactness, we may assume that there exists v ∈ H1
0 (Ω) such that v � 0

and vε(x) −→ v(x) a.e. in Ω. Then,

v
2

m+1
ε = uε −→ v(x)

2
m+1 = u(x), a.e. and vε −→ v weakly in H1

0 (Ω).

So,

∫
Ω

|∇v(x)|2 dx � ‖a‖∞
αm

(
m + 1

2

)2

.

By Fatou’s lemma, we have from the estimate (5.5)

∫
Ω

|u|q dx � CΩ

(
‖a‖∞
αm

) 2∗
2
(
m + 1

2

)
. (5.5)

Then we deduce from the Theorem 2.2 that for all open set Ω0 relatively compact in Ω, we have for a.e. 
y ∈ Ω0

uε(y) � C ′
Ω0

∫
Ω0

a(x)δ(x)
um
ε + ε

dx > 0. (5.6)

We know from the Egorov theorem that there is a set B in Ω0 of positive measure on which sup
y∈B

sup
ε>0

uε(y) =

M is finite. Thus, there is a constant C(Ω0) > 0 such that ∀ε > 0∫
Ω0

a(x)δ(x)
um
ε + ε

dx � C(Ω0). (5.7)

By Fatou’s lemma, we deduce

0 <

∫
Ω0

a(x)
um(x)δ(x) dx � C(Ω0) < +∞. (5.8)

• If 0 < m � 1, we can choose ϕ = uε as a test function and get

α

∫
Ω

|∇uε|2 dx �
∫
Ω

A(x)(∇uε)2 dx =
∫
Ω

a(x)uε

um
ε + ε

� ‖a‖∞
∫
Ω

u1−m
ε dx.

This implies that∫
|∇uε|2 dx � ‖a‖∞

α

∫
u1−m
ε dx � C(Ω, a, α),

(
since 0 � 1 −m <

2∗

2 (m + 1)
)
.

Ω Ω
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This and (5.7) yield that u ∈ H1
0 (Ω) and that uε converges weakly to u in H1

0 (Ω).

• If m > 1, then from (5.7) and (5.8), we have

λ0 = inf
ε<ε1

∫
Ω0

a(x)δ(x)
um
ε (x) + ε

dx > 0, for some ε1 > 0.

From (5.4) and (5.6), we have

‖a‖∞
α

�
∫
Ω0

|∇uε|2um−1
ε dx � C ′

Ω0

m−1
λm−1

0

∫
Ω0

|∇uε|2 dx. (5.9)

We then deduce that ∫
Ω0

|∇uε|2 dx � CΩ0 < +∞,

and jointly with the estimate on the Lq norm of uε, we deduce that uε remains in a bounded set of H1
loc(Ω). 

Therefore, since for all ψ ∈ D(Ω), we have

lim
ε→0

∫
Ω

a(x)ψ(x)
um
ε (x) + ε

dx =
∫
Ω

a(x)ψ(x)
um(x) dx

∀ Ω0 ⊂⊂ Ω, recalling that uε(y) � C ′
Ω0

λ0 > 0, and uε converges weakly to u in H1(Ω0) for all Ω0 ⊂⊂ Ω, 
we get the statement 2) of the theorem. �
Remark 3 (The uniqueness of uε and u). The function uε is unique since the mapping t → a(x)

tm + ε
is 

decreasing and the regularity of uε allows at to choose ϕ = uε − uε as a test function whenever uε and uε

are two different solutions. The same remarks holds for u when 0 < m � 1.

Next, we want to study the regularity of the function u = lim uε constructed in Theorem 5.1.

Theorem 5.2 (Regularity). Assume that the operator L satisfies the Uniform Hopf Inequality. Then, the 
function u = lim uε satisfies

1) a

um
∈ L1(Ω; δ) and u(y) � CΩδ(y) 

∫
Ω

aδ

um
(x) dx for a.e. y ∈ Ω.

2) For all m � 1, ∫
Ω

|∇u|2δm−1 dx � C ′
Ω

‖a‖∞

mα

⎛⎝∫
Ω

aδ

um
(x) dx

⎞⎠m−1 .

In particular, u ∈ W 1,2(Ω; δm−1).
3) Assume that aij ∈ vmo(Ω) ∩ L∞(Ω) and ∂Ω is C1, then

a) if 0 < m � 1, then u ∈ W 1,p
0 (Ω) for all 1 � p < +∞,

b) if 1 < m < 2, then u ∈ W 1
0L

1
m−1 ,∞(Ω).
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4) Assume that aij ∈ C0,1(Ω) and ∂Ω is C1,1. Then, if 0 < m � 1, we have

u ∈ W 1
0 bmor(Ω).

Proof. By Fatou’s lemma, we have

lim
ε

inf
∫
Ω

aδ

um
ε + ε

(x) dx �
∫
Ω

aδ

um
(x) dx > 0, since a �= 0, (5.10)

and u(x) < +∞ a.e. On the other hand, since L satisfies the Uniform Hopf Inequality, we get

uε(x) � CΩδ(x)
∫
Ω

aδ

um
ε + ε

(y) dy. (5.11)

Relations (5.10) and (5.11) with the fact that uε(x) converges to u(x) a.e., infers statement 1).
Now combining this last inequality with (5.4), one has, for m � 1,

mαCm−1
Ω

⎛⎝∫
Ω

aδ

um
ε + ε

(y) dy

⎞⎠m−1 ∫
Ω

|∇uε|2δm−1 dx � ‖a‖∞. (5.12)

Thanks to (5.10) and (5.12), we deduce that uε remains in a bounded set of W 1,2(Ω; δm−1) = {ϕ ∈
L2(Ω; δm−1) :

∫
Ω

|∇ϕ|2δm−1 dx < +∞}. Therefore, uε converges weakly to u in W 1,2(Ω; δm−1) and from 

relation (5.12), we then have

mαCm−1
Ω

⎛⎝∫
Ω

aδ

um
(y) dy

⎞⎠m−1 ∫
Ω

|∇u|2δm−1 dx � ‖a‖∞. (5.13)

This proves the second statement.
To prove 3.a), let us show that a

um
ε + ε

∈ W−1,p(Ω) with 1 < p < +∞. If 0 < m � 1, one has from 

(5.11), by taking ϕ ∈ W 1,p′

0 (Ω), 1
p

+ 1
p′

= 1, ϕ � 0,

0 �
∫
Ω

a

um
ε + ε

ϕ dx � C0
Ω‖a‖∞⎛⎝∫

Ω

aδ

um
ε + ε

dy

⎞⎠m

∫
Ω

ϕ

δm
dx � C1

Ω

⎛⎝∫
Ω

ϕ

δm
dx

⎞⎠ . (5.14)

If 0 < m � 1, we have 
1
δm

= 1
δ
δ1−m � CΩ

1
δ
, so the Hardy inequality leads to

0 �
∫
Ω

a

um
ε + ε

ϕ dx � C1
Ω

∫
Ω

ϕ

δ
dx � C2

Ω

∥∥∥∥ϕδ
∥∥∥∥
Lp′ (Ω)

� C‖∇ϕ‖W 1,p′ (Ω), p′ > 1,

which implies that ∥∥∥∥ a

um + ε

∥∥∥∥ � C(p) uniformly in ε.

ε W−1,p(Ω)
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Now, to prove 3.b), let us show that a

um
ε + ε

∈ W−1L
1

m−1 ,+∞(Ω), with W−1L
1

m−1 ,+∞(Ω) being the dual of 

W 1
0L

1
m−1 ,+∞(Ω).

If 1 < m < 2, we deduce from relation (5.11) and Hardy inequality with weights (see statement 2, section 1) 
∀ϕ ∈ C1

c (Ω)

0 �
∫
Ω

a

um
ε + ε

|ϕ| dx � C ′
Ω

∫
Ω

|ϕ|δ−m dx � C ′
Ω

∫
Ω

|∇ϕ|δ1−m dx

� C ′
Ω|∇ϕ|Lnm,1(Ω)‖δ1−m‖

L
1

m+1 ,∞(Ω)
, nm = 1

2 −m
,

according to Diáz–Rakotoson ([15], pp. 53–54), δ1−m ∈ L
1

m−1 ,+∞(Ω). Thus,

a

um
ε + ε

∈ W−1L
1

m−1 ,∞(Ω).

Now, we apply the regularity result to uε satisfying − div(A(x)∇uε) =
a

um
ε + ε

.

If 1 < m < 2,

‖∇uε‖
L

1
m−1 ,∞(Ω)

� CΩ‖δ1−m‖
L

1
m−1 ,∞(Ω)

< +∞.

If 0 < m � 1, for 1 < p < +∞,

‖∇uε‖Lp(Ω) � CΩ(p) < +∞.

Finally, for statement 4), if aij ∈ C0,1(Ω), then uε remains in a bounded set of W 1bmor(Ω). Indeed, we 

write 
a

um
ε + ε

= a

uε + ε
· uε + ε

um
ε + ε

= aε
uε + ε

. We have

0 � aε = a · uε + ε

um
ε + ε

� ‖a‖∞u1−m
ε � CΩ.

If 0 < m � 1, since uε remains in a bounded set of W 1,p
0 (Ω), p > n according to statement 3.a), thus 

uε ∈ W 1,p
0 (Ω), ∀p < +∞ and satisfies

− div(A(x)∇uε) = aε
uε + ε

, (5.15)

with aε remaining in a bounded set of L∞(Ω). Thus, we conclude (following the bmor(Ω) result previously 
proved) that the solution uε of (5.15) is in a bounded set of W 1

0 bmor(Ω). �
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