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1. Introduction

The purpose of this paper is to prove a Gauss–Kuzmin-type problem for N -continued fraction expansions 
introduced by Burger et al. [3]. In order to solve the problem, we apply the theory of random systems with 
complete connections by Iosifescu [9].

Fix an integer N ≥ 1. In this paper, we consider a generalization of the Gauss transformation, i.e.,

TN (x) :=

⎧⎨
⎩

N

x
−
⌊
N

x

⌋
, x ∈ I := [0, 1], x �= 0,

0, x = 0
(1.1)

where �·� denotes the floor (or entire) function.
The generalized Gauss measure GN (A) = 1

log{(N + 1)/N}

∫
A

dx

x + N
, A ∈ BI = σ-algebra of all Borel 

subsets of [0, 1] is TN -invariant, i.e., GN

(
T−1
N (A)

)
= GN (A) for any A ∈ BI . Define a1(x) = �N/x�, 
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x ∈ (0, 1], a1(0) = ∞, and an(x) = a1
(
Tn−1
N (x)

)
, x ∈ I, n ∈ N+ := {1, 2, . . .}, with T 0

N (x) = x. By the very 
definitions, Burger et al. proved in [3] that any irrational 0 < x < 1 can be written in the form

x = N

a1 + N

a2 + N

a3 +
.. .

:= [a1, a2, a3, . . .]N (1.2)

where an’s are non-negative integers. We will call (1.2) the N -continued fraction expansion of x. In [4], 
Dajani et al. proved that (I, BI , GN , TN ) is an ergodic dynamical system.

The Perron–Frobenius operator of TN under a non-atomic probability measure μ on BI (i.e., μ(T−1
N (A)) =

0 whenever μ(A) = 0) is defined as the bounded linear operator U on the Banach space L1(I, μ) := {f :
I → C :

∫
I
|f |dμ < ∞} such that the following holds:

∫
A

Uf dμ =
∫

T−1
N (A)

f dμ for all A ∈ BI , f ∈ L1(I, μ). (1.3)

In particular, the Perron–Frobenius operator of TN under GN is

{Uf}(x) =
∑
i≥N

VN,i(x) f
(

N

x + i

)
, f ∈ L1(I,GN ) (1.4)

where VN,i := x + N

(x + i) (x + i + 1) for any i ≥ N and n ∈ N+ [17]. An important fact is that for any 

probability measure μ on BI such that μ 	 λ, where λ is the Lebesgue measure on BI , we have

μ
(
T−n
N (A)

)
=

∫
A

{Unf}(x)dGN (x) (1.5)

where f(x) :=
(
log

(
N+1
N

))
(x + N)h(x) for x ∈ I [17].

The problem of finding the asymptotic of T−n
N (A) as n → ∞ represents the Gauss–Kuzmin-type problem 

for N -continued fraction expansions.

Theorem 1.1 (A Gauss–Kuzmin theorem for TN). Fix an integer N ≥ 1 and let (I, BI , TN ) be as above.

(i) For a probability measure μ on (I, BI), let the assumption (A) as follows:

(A) μ is non-atomic and has a Riemann-integrable density.

Then for any probability measure μ which satisfies (A), the following holds:

lim
n→∞

μ(Gn
N < x) = 1

log{(N + 1)/N} log x + N

N
, x ∈ I. (1.6)

(ii) In addition to assumptions of μ in (i), if the density of I 
 x �→ μ([0, x]) is Lipschitz continuous, then 
there exist two positive constants q < 1 and � such that for any x ∈ I and n ≥ 1, there exists θ with 
|θ| ≤ �, the following holds:

μ (Gn
N < x) = 1 + θqn log x + N (1.7)
log{(N + 1)/N} N
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where θ := θ(N, μ, n, x). As a consequence, the n-th error term en(N, μ; x) of the Gauss–Kuzmin problem 
is obtained as follows:

en(N,μ;x) = θqn

log{(N + 1)/N} log x + N

N
. (1.8)

The paper is organized as follows. In Section 2, we recall random system with complete connections 
(=RSCC), and show examples and properties. In Section 3, we prove Theorem 1.1. By using the ergodic 
behavior of the RSCC associated with N -continued fraction expansion, we determine the limit of the se-
quence ( μ(Gn

N < x) )n≥1 of distributions as n → ∞.

2. Random systems with complete connections

In this section, we introduce random systems with complete connections and show its properties.
The first explicit formal definition of the concept of dependence with complete connections was given 

by Onicescu and Mihoc [22]. It is a non-trivial extension of Markovian dependence theory, and it was also 
investigated by Doeblin and Fortet [5] and by Harris [7]. The concept of random system with complete 
connections (=RSCC) was defined by Iosifescu [8].

Examples of RSCC are urns models [22,10], stochastic learning processes [21,10,12], partially observed 
random chains [10], image coding [1], continued fraction expansions [9,16,23–25] and others.

An RSCC is often called an iterated function system with place-dependent probabilities or simply an 
iterated function system (= IFS) [2]. Applications of IFS to continued fractions can be found in [15,19]. For 
more detail, see [9–11].

2.1. Definitions and their extensions

In this subsection, we introduce the definition of random system with complete connections which is 
restricted to a smaller class than the original. Next we extend domains of functions in such a system.

Definition 2.1. [8,9,21] A random system with complete connections (=RSCC) is a quadruple

{(W,W), X, u, P} (2.1)

where

(i) (W, W) is a measurable space and X is a non-empty set;
(ii) u : W ×X → W is a measurable function with respect to W for each element in X;
(iii) P : W × X → [0, 1] satisfies that 

∑
x∈X P (w, x) = 1 for each w ∈ W , and P (·, x) is a measurable 

function on (W, W) for each x ∈ X.

For an RSCC in Definition 2.1, we call W , X, u and P , the state space, the event space, the transition 
function and the ((W, X)-) transition probability function, respectively ([21], Section 1.2). The role of the 
function u is to change a state w ∈ W into the new state w′ = u(w, x) ∈ W by an event x ∈ X:

W 
 w
x�→ w′ = u(w, x) ∈ W. (2.2)

In this case, P (w, x) is regarded as the probability of the transition w �→ w′ which depends on the information 
of both w and x.
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Remark 2.2.

(i) In the original definition of RSCC in [9], X is assumed as a measurable space (X, X ). In Definition 2.1, 
we treat only the case X = P(X) (= the power set of X). A lot of examples in [9] satisfy this condition.

(ii) An RSCC can be regarded as an automaton with output [20,13]. A Mealy machine (W, X, Δ, u, λ)
consists of three sets W, X, Δ and two maps u, λ where W is the set of states, X is the input alphabet, 
Δ is the output alphabet, and the transition function u : W × X∗ → W and the map of outputs
λ : W ×X∗ → Δ∗ which satisfy{

u(w, xa) = u(u(w, x), a),
λ(w, xa) = λ(w, x)λ(u(w, x), a),

x ∈ X∗, a ∈ X,w ∈ W (2.3)

where X∗ and Δ∗ denote free semigroups generated by X and Δ, respectively. When it is an RSCC, 
Δ = [0, 1] and Δ∗ is reduced to the [0, 1] with respect to the multiplication in (R, ×), π : Δ∗ → [0, 1]. 
The map π ◦λ is a transition probability function P . An example of Mealy machine as an RSCC will be 
shown in Example 2.5. The similarity can be explained as the reason that initial applications of RSCC 
were related to learning processes which may be understood as an algorithmic study of such systems.

For a given RSCC {(W, W), X, u, P}, we extend domains of both u and P as follows.

(i) In order to extend the domain of u, we prepare the free semigroup X∗ generated by X as follows: In 
Definition 2.1, we regard X as a set of letters, and treat Xn as the set of all strings of length n ≥ 1. We 
write an element (x1, . . . , xn) ∈ Xn as x1 · · ·xn. Then the set X∗ of all strings with the empty letter 
ε is a semigroup with the concatenation as its product, and the unit of X∗ is ε. The semigroup X∗ is 
called the free semigroup generated by X [18].
With respect to the semigroup X∗, the function u induces a unique right action of X∗ on W which is 
denoted by the same symbol u here:

u : W ×X∗ → W ; (w, x) �→ wx := u(w, x). (2.4)

For example, w(xx′) is defined as (wx)x′ = u(u(w, x), x′) for w ∈ W , x ∈ X∗ and x′ ∈ X. For 
x = x1 · · ·xn ∈ Xn, we can write wx := w(x1 · · ·xn) for w ∈ W .

(ii) Let P(X) denote the power set of X. The domain W ×X of P is extended to W × P(X) as follows:

P (w,A) :=

⎧⎨
⎩

∑
x∈A

P (w, x), A �= ∅,

0, A = ∅,
(w,A) ∈ W × P(X). (2.5)

By Definition 2.1(iii), we see that (X, P(X), P (w, ·)) is a probability space for each w ∈ W .

As a generalization of P , we define Pr : W ×Xr → [0, 1] for each r ≥ 1 by

P1 := P, Pr(w, xx′) := Pr−1(w, x)P (wx, x′), (2.6)

with w ∈ W, x ∈ Xr−1, x ∈ X, r ≥ 2, where the notation in (2.4) is used. Then we see that Pr(w, x) means 
the transition probability from w to w · x along the path w → wx1 → wx1x2 → · · · → wx1 · · ·xr with 
length r. For A ⊂ Xr, we also define

Pr(w,A) :=

⎧⎨
⎩

∑
x∈A

Pr(w, x), A �= ∅,

0, A = ∅.
(2.7)
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By definition, Pr(w, A) is the summation of all paths from w to w · x for x ∈ A. For example, we can verify 
that Pr(w, A ×X) = Pr−1(w, A) for any (w, A) ∈ W ×P(Xr−1) by Definition 2.1(iii) and (2.6). Especially, 
Pr(w, Xr) = 1. Hence (Xr, P(Xr), Pr(w, ·)) is also a probability space for each w ∈ W and r ≥ 1.

2.2. Transition probability functions defined on the square of the state space

Let {(W, W), X, u, P} be as in Definition 2.1. Recall that P is the transition probability function with 
the domain W × P(X). We define new transition probability functions with the domain W × W in this 
subsection.

2.2.1. Space of paths
For w, w′ ∈ W , define the subset X(w, w′) of X by

X(w,w′) := {x ∈ X : u(w, x) = w′}. (2.8)

Then X(w, w′) can be identified with the set of all paths from w to w′ with length 1. Remark that X(w, w′)
may be the empty set. By definition, X(w, w′) ∩X(w, w′′) = ∅ when w′ �= w′′ and 

∐
w′∈W X(w, w′) = X. 

From these properties, the following holds.

Fact 2.3. For (w, B) ∈ W ×W, let X(w, B) := {x ∈ X : u(w, x) ∈ B}. Then the following holds for each 
w ∈ W :

(i) X(w, B) ∩X(w, B′) = ∅ when B ∩B′ = ∅.
(ii) X(w, B) =

⋃
w′∈B X(w, w′).

(iii) X(w, B) ⊂ X(w, B′) when B ⊂ B′.
(iv) X(w, B) ∪X(w, B′) = X(w, B ∪B′).

In [9], the symbol X(w, B) is written as Bw.

2.2.2. Transition probability functions defined on the square of the state space
By using the extension of P in (2.5) and X(w, w′) in (2.8), define the new function Q : W ×W → [0, 1]

by

Q(w,w′) := P (w,X(w,w′)), (w,w′) ∈ W ×W. (2.9)

This means the total sum of transition probabilities from w to w′ by all possible event x ∈ X. We extend 
the domain of Q to W ×W as follows ([9], (1.1.11)):

Q(w,B) := P (w,X(w,B)) =
∑

x∈X(w,B)

P (w, x), (w,B) ∈ W ×W. (2.10)

We call Q the ((W, W )-) transition probability function associated with {(W, W), X, u, P}. The number 
Q(w, B) means the probability such that a state w changes to a state belonging to B by measuring all 
possible (one-step) events. For w ∈ W , define the function Qw as

Qw : W → [0, 1]; Qw(B) := Q(w,B), B ∈ W. (2.11)

By Fact 2.3,

0 ≤ Qw(B) ≤ Qw(W ) = 1,
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Qw(B) + Qw(B′) = Qw(B ∪B′) when B ∩B′ = ∅. (2.12)

Hence (W, W, Qw) is a probability space for each w ∈ W . Remark that Qw can be defined on the whole 
of P(W ), but we restrict Qw on the given σ-algebra W ⊂ P(W ) here. Thanks to Qw, we can define the 
integration 

∫
B
f(w′) dQw(w′) for B ∈ W and a measurable function f on (W, W).

For w, w′ ∈ W , define the family {Q(k)(w, w′) : k ≥ 1} recursively as

Q(1)(w,w′) := Q(w,w′), Q(k)(w,w′) :=
∫
W

dQw(w′′)Q(k−1)(w′′, w′), k ≥ 2. (2.13)

By definition, Q(k)(w, w′) is the expectation value of Q(k−1)(·, w′) on the probability space (W, W, Qw). We 
extend the domain of Q(k) to W ×W as follows:

Q(1)(w,B) := Q(w,B), Q(k)(w,B) :=
∫
W

dQw(w′)Q(k−1)(w′, B), k ≥ 2. (2.14)

We will say Q(k) the k-step transition probability function of the Markov chain associated with {(W, W), X,

u, P}. We see that 
(
W,W, Q

(k)
w

)
is also a probability space for each w ∈ W and k ≥ 1 where Q(k)

w :=
Q(k)(w, ·). Furthermore, define

Qn(w,B) := 1
n

n∑
k=1

Q(k)(w,B), (w,B) ∈ W ×W, n ≥ 1. (2.15)

For example, Q1 = Q. Then (W, W, Qn,w) is also a probability space for each w ∈ W where Qn,w(B) :=
Qn(w, B) for B ∈ W.

2.3. Examples

In this section, we shall give two examples of RSCC.

Example 2.4. We show the RSCC associated with regular continued fraction expansions. More precisely, it 
is the RSCC associated with the dynamical system (I, BI , τ) where τ is the Gauss transformation, defined 
as τ = T1, where TN is as in (1.1). Define the RSCC {(W, W), X, u, P} as W = [0, 1], W = B[0,1], X = N+,

u : W ×X → W ; u(w, x) = 1
w + x

, (2.16)

P : W ×X → [0, 1]; P (w, x) = w + 1
(w + x)(w + x + 1) . (2.17)

By definition, we see that u(·, x) is also a right inverse of τ for each x ∈ X, that is, τ(u(w, x)) = w for 
any w ∈ W . This shows that the dynamical system (I, BI , τ) is encoded onto the RSCC {(W, W), X, u, P}. 
About more details, see Sec. 1.2 of [9].

Example 2.5. According to §3.1 of [13], we show a simple (but non-trivial) example of (finite) RSCC by 
using a finite automaton with input/output. Define the data {(W, W), X, u, P} as follows:

(i) For the 2-point set {1, 2}, let P({1, 2}) denote its power set. Then ({1, 2}, P({1, 2})) is a measurable 
space. Define (W, W) := ({1, 2}, P({1, 2})) and X := {1, 2}.
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Fig. 1. RSCC as Mealy machine.

(ii) Any function u : W ×X → W is measurable with respect to (W, W) by definition. For example, let

u(i, j) := j, i, j = 1, 2. (2.18)

(iii) Any transition probability function P : W × X → [0, 1] is uniquely defined by two real numbers 
P (i, 1) ∈ [0, 1] for i = 1, 2. For example, for 0 ≤ α, β ≤ 1, define P (1, 1) = α and P (2, 1) = β. Then 
they define a unique transition probability function P as

P (1, 1) = α, P (1, 2) = 1 − α, P (2, 1) = β, P (2, 2) = 1 − β. (2.19)

For example, the value Q(1, 1) of Q in (2.9) is computed as follows:

Q(1, 1) = P (1, {x ∈ {1, 2} : u(1, x) = 1}) = P (1, 1) = α. (2.20)

Remark that u in (2.18) is the case such that u(i, ·) does not depend on i ∈ W ([9], p. 15, (i)). As the case 
such that u(i, ·) depends on i ∈ W , we can define other u, for example, u(i, j) = i for i ∈ W , j ∈ X.

We can illustrate this example as a finite automaton with input/output (= Mealy machine [20]). Assume 
that {(W, W), X, u, P} is as in (2.18) and (2.19). For this system, we draw the transition diagram (= an 
oriented graph with labeling edges) as follows:

(1) The set of vertices is the state space W = {1, 2}.
(2) For two vertices i, j ∈ W (i and j may be same), if there exists an event (= input signal) k ∈ X = {1, 2}

such that u(i, k) = j, then draw the oriented edge from i to j. We write (i, k, j) as this edge here.
(3) Write “k/P (i, k)” as the label of an edge (i, k, j).

According to these rules, the transition diagram of the RSCC is illustrated as Fig. 1.
For example, from (2.18), u(1, 1) = 1, and from (2.19), P (1, 1) = α. Hence the label of the edge (1, 1, 1)

is given as “1/α”. About a Markov chain related to this example, see Chap. 5 of [6]. About other examples 
of Mealy machine, see [13,14].

2.4. Operators associated with an RSCC

In this subsection, we present the asymptotic and ergodic properties of operators associated with an 
RSCC. To state these results, we prepare definitions. We add the following assumption for all RSCC in this 
subsection:

Assumption (B). For an RSCC {(W, W), X, u, P}, W is a measurable subset of the measurable space (R, BR)
and W = BW .

Thanks to Assumption (B), we can use the absolute value | · | and the Lebesgue measure on W induced 
by R, which will be necessary in this subsection.

Let L∞(W ) denote the Banach space of all complex-valued bounded measurable functions defined on 
(W, W). We define operators on L∞(W ) associated with an RSCC {(W, W), X, u, P} as follows.



D. Lascu / J. Math. Anal. Appl. 444 (2016) 610–623 617
Definition 2.6.

(i) The transition operator U on L∞(W ) is defined by

{Uf}(w) :=
∑
x∈X

P (w, x) f(u(w, x)), f ∈ L∞(W ), w ∈ W. (2.21)

(ii) ([9], (3.1.7)) For n ≥ 1, define the operator Un on L∞(W ) as

{Unf}(w) :=
∫
W

f(w′) dQn,w(w′), f ∈ L∞(W ), w ∈ W (2.22)

where Qn,w := Qn(w, ·) is as in (2.15).

Remark 2.7.

(i) Let U be as in (2.21). For each w ∈ W , {U(f)}(w) is the expectation value of (f ◦u)(w, ·) with respect to 
the probability space (X, P(X), P (w, ·)). For example, if f is the characteristic function of B ∈ W, then 
we see {Uf}(w) = Q(w, B). For each n ≥ 1, {Unf}(w) =

∑
x∈Xn Pn(w, x)f(wx) where Un denotes the 

n-the iterate of U and Pn is as in (2.6) for r = n.
(ii) Let Un be as in (2.22). Remark that Un is well-defined on L∞(W ) because Qn,w is a probability measure. 

For example, if f is the characteristic function of B ∈ W, then {U1f}(w) = Q(w, B). Since

Qn,w(w′) = Qn(w,w′) = 1
n

n∑
k=1

Q(k)(w,w′), (2.23)

we see that

{Unf}(w) = 1
n

n∑
k=1

∫
W

f(w′) dQ(k)
w (w′). (2.24)

Next, let L(W ) denote the Banach space of all complex-valued Lipschitz continuous functions on W with 
the following norm ‖ · ‖L:

‖f‖L := sup
w∈W

|f(w)| + sup
w′ �=w′′

|f(w′) − f(w′′)|
|w′ − w′′| , f ∈ L(W ). (2.25)

Remark that we use Assumption (B) here. By definition, L(W ) ⊂ L∞(W ).
According to [9,21], we introduce several characterizations of the operator U in (2.21) as follows.

Definition 2.8. ([9], Definition 3.1.4, [21], Definition 2.1) Let W, U, Un, L(W ) be as in (2.1), (2.21), (2.22)
and (2.25), respectively. We consider restrictions of U, Un on L(W ) as follows.

(i) U is ordered if there exists a bounded linear operator S on L(W ) such that

lim
n→∞

‖Unf − Sf‖L = 0, f ∈ L(W ). (2.26)

(ii) U is aperiodic if there exists a bounded linear operator S′ on L(W ) such that

lim
n→∞

‖Unf − S′f‖L = 0, f ∈ L(W ), (2.27)

where Un is the n-th iterate of U for n ≥ 1.



618 D. Lascu / J. Math. Anal. Appl. 444 (2016) 610–623
(iii) U is ergodic with respect to L(W ) if U is ordered and the rank of S in (2.26) is 1.
(iv) U is regular with respect to L(W ) if U is ergodic and aperiodic.
(v) The Markov chain corresponding to U is regular if U is regular with respect to L(W ).

Remark 2.9.

(i) Definition 2.8(i) and (ii) mean that sequences (Un) and (Un) converge to operators S and S′, respec-
tively, with respect to the strong operator topology on L(W ).

(ii) Under the Assumption (B), W is separable. In addition, if W is complete and U is orderly, then there 
exists probability measures {Q∞

w : w ∈ W} on (W, W) such that

{Sf}(w) =
∫
W

dQ∞
w (w′) f(w′), f ∈ L(W ), w ∈ W (2.28)

by Theorem 3.1.24 of [9] where S is as in Definition 2.8(i).
(iii) In addition to the assumption in (ii), if U is ergodic with respect to L(W ), then Sf in (2.28) is a 

constant function on W for any f ∈ L(W ). Therefore the operator S is identified with a bounded 
linear functional on L(W ), S : L(W ) → C. Then (2.28) is rewritten as

S : L(W ) → C; Sf =
∫
W

dQ∞(w′) f(w′), f ∈ L(W ) (2.29)

for some probability measure Q∞ on (W, W).

Definition 2.10. ([9], Definition 3.1.15) Under the Assumption (B), {(W,W), X, u, P} is an RSCC with 
contraction if the following conditions are satisfied:

(i) r1 < ∞,
(ii) r� < 1 for some � ≥ 1, and
(iii) R < ∞

where (rk) and R are defined as

rk := sup
w′ �=w′′

∑
x∈Xk

P (w′, x) |w
′x− w′′x|
|w′ − w′′| , k ≥ 1, (2.30)

R := sup
A⊂X

sup
w′ �=w′′

|P (w′, A) − P (w′′, A)|
|w′ − w′′| . (2.31)

Remark that we use the Assumption (B) for | · | in Definition 2.10.
When k = 1, (2.30) is rewritten by using u as follows:

r1 = sup
w′ �=w′′

∑
x∈X

P (w′, x) |u(w′, x) − u(w′′, x)|
|w′ − w′′| . (2.32)

If supw′ �=w′′ |u(w′, x) − u(w′′, x)|/|w′ − w′′| < 1, then r1 < 1. In this case, assumptions (i) and (ii) in 
Definition 2.10 are satisfied.
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Theorem 2.11. Under the Assumption (B), let {(W,W), X, u, P} be an RSCC with contraction. For Q(n) in 
(2.13), define (σn) by

σn(w) := suppQ(n)(w, ·), w ∈ W (2.33)

where suppμ denotes the support of a measure μ. Assume that W is compact. Then the following holds.

(i) The Markov chain associated with the RSCC is regular if and only if there exists a point w0 ∈ W such 
that

lim
n→∞

dist(σn(w), w0) = 0 for all w ∈ W (2.34)

where dist(A, w) := infw′∈A |w′ − w| for A ⊂ W .
(ii) For (σn) in (2.33), the following holds:

σm+n(w) =
⋃

w′∈σm(w)

σn(w′), (2.35)

for all m, n ∈ N+, w ∈ W , where the overline means the topological closure in W .

Proof. (i) See Theorem 3.3.31, p. 116, of [9].
(ii) By assumption, W is a compact metric subspace of R. Hence the Q in (2.10) is “continuous” in 

the sense of Definition 3.3.1 in [9]. Therefore we can apply Lemma 3.3.32, p. 117 of [9] and the statement 
holds. �
Definition 2.12. Let {(W, W), X, u, P} be an RSCC and let Pr be as in (2.7).

(i) For w ∈ W , n, r ∈ N+, and A ⊂ Xr, define

Pn
r (w,A) := Pr+n−1(w, Xn−1 ×A), (2.36)

with the convention X0 ×A := A.
(ii) ([9], Definition 2.1.4) An RSCC {(W,W), X, u, P} is said to be uniformly ergodic if for any r ∈ N+, 

there exists a probability measure P∞
r on (Xr, P(Xr)) such that the sequence {Pn

r (w, A) : n ≥ 1} in 
(2.36) converges uniformly to P∞

r (A), that is, the following sequence (εn)n∈N+ goes to 0 when n → ∞:

εn := sup{|Pn
r (w,A) − P∞

r (A)| : w ∈ W, r ∈ N+, A ⊂ Xr}. (2.37)

Theorem 2.13. Under the Assumption (B), let {(W,W), X, u, P} be an RSCC with contraction such that 
W is compact. Assume that {(W,W), X, u, P} has a regular associated Markov chain. Then the following 
holds:

(i) {(W,W), X, u, P} is uniformly ergodic.
(ii) Let Q∞ be as in Remark 2.9(iii). Then the probability measure P∞

r in (2.37) is given as follows:

P∞
r (A) =

∫
W

Pr(w,A) dQ∞(w), A ∈ P(Xr) (2.38)

where Pr is as in (2.7).
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Proof. (i) From Theorem 3.4.5, p. 125 in [9], the statement holds.
(ii) By (i), conditions in Remark 2.10(ii) and (iii) are satisfied by assumption. Hence we obtain Q∞ on 

(W, W) in (2.29). From Theorem 3.4.5, p. 125 in [9], the statement holds. �
3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. General results in Section 2 will be applied to N -continued fraction 
expansions.

3.1. RSCC associated with N -continued fraction expansion

Fix an integer N ≥ 1. We introduce a random system with complete connections (= RSCC) 
{(I, BI), Λ, u, P} as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u : I × Λ → I; u(x, i) := uN,i(x) = N

x + i
,

P : I × Λ → I; P (x, i) := VN,i(x) = x + N

(x + i)(x + i + 1) ,

Λ = {N,N + 1, . . .}.

(3.1)

By the definition of P and using the partial fraction decomposition, 
∑

i∈Λ P (x, i) = 1. By (2.10), 
Q(x, B) =

∑
i∈X(x,B) VN,i(x) for (x, B) ∈ I × BI where X(x, B) := {i ∈ Λ : uN,i(x) ∈ B}. Let U and 

Q(n) be as in (2.21) and (2.14), respectively. By definition, {(I, BI), Λ, u, P} satisfies the Assumption (B)
in Section 2.4.

For the dynamical system (I, BI , TN ) in Section 1 and a given probability measure μ on (I, BI), the 
ergodic behavior of the RSCC in (3.1) allows us to find the limiting Gauss–Kuzmin distribution F with 
respect to (TN , μ):

F (x) := lim
n→∞

μ(Tn
N < x), x ∈ I (3.2)

and the invariant measure induced by F .

Lemma 3.1. {(I, BI), Λ, u, P} is an RSCC with contraction.

Proof. We have

d

dx
u(x, i) = d

dx
uN,i(x) = − N

(x + i)2 ,

d

dx
P (x, i) = i2 + i− 2Ni− (x2 + 2Nx + N)

(x + i)2(x + i + 1)2 (3.3)

for any x ∈ I and i ∈ Λ. Thus,

sup
x∈I

∣∣∣∣ ddxu(x, i)
∣∣∣∣ ≤ N

i2
, i ∈ Λ (3.4)

sup
x∈I

∣∣∣∣ ddxP (x, i)
∣∣∣∣ < ∞. (3.5)

Hence the requirements of Definition 2.10 are fulfilled. �
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Lemma 3.2. {(I, BI), Λ, u, P} has a regular associated Markov chain.

Proof. By Theorem 2.11(i), it is equivalent to that

(Γ) :
{

there exists a point x∗ ∈ I such that
lim
n→∞

dist(σn(x), x∗) = 0 for all x ∈ I

}

where we remark that W = I = [0, 1] in this case. Hence we show the condition (Γ) as follows.
Fix x ∈ I. Let us define the sequence (xn)n≥0 in I, recursively by x0 := x, xn+1 := N

xn + N
for 

n ≥ 1. Clearly xn+1 ∈ σ1(xn) and therefore Theorem 2.11(ii) and an induction argument lead us to the 

conclusion that xn ∈ σn(x) for n ∈ N+. But, lim
n→∞

xn = x∗ = −N +
√
N2 + 4N
2 for any x ∈ I. Hence 

dist(σn(x), x∗) ≤ |xn−x∗| → 0 as n → ∞. Hence we find x∗ := −N +
√
N2 + 4N
2 in the condition (Γ). �

Proposition 3.3. {(I, BI), Λ, u, P} is uniformly ergodic.

Proof. In order to apply Theorem 2.13 to the RSCC {(I, BI), Λ, u, P} in (3.1), we check assumptions in 
Theorem 2.13. By definition, I is compact. By Lemma 3.1, {(I, BI), Λ, u, P} is an RSCC with contraction. 
By Lemma 3.2, {(I, BI), Λ, u, P} is regular. Hence all assumptions in Theorem 2.13 are satisfied. Hence the 
statement holds. �

Let L(I) denote the Banach space of all complex-valued Lipschitz continuous functions on I. The regular-
ity of U in (1.4) with respect to L(I) follows from Theorem 2.11. Moreover, the sequence {Q(n)(·, ·) : n ≥ 1}
in (2.14) converges uniformly to a probability measure Q(∞) on (I, BI) and that there exist two positive 
constants q < 1 and k such that

‖Unf − U∞f‖L ≤ kqn‖f‖L, n ∈ N+, f ∈ L(I) (3.6)

where

Un : L(I) → L(I); {Unf}(x) =
∫
I

f(y) dQ(n)
x (y), (3.7)

U∞ : L(I) → C; U∞f =
∫
I

f(y) dQ(∞)(y) (3.8)

with Q(n)
x (B) := Q(n)(x, B) in (2.14).

Proposition 3.4. The probability Q(∞) is the invariant probability measure of the transformation TN .

Proof. For GN in Section 1 and Q in (2.10), and on account of the uniqueness of Q(∞) we have to show 
that

1∫
0

Q(x,B) dGN (x) = GN (B), B ∈ BI . (3.9)

Since the intervals [0, u) ⊂ [0, 1) generate BI , it is sufficient to show the equation (3.9) just for B = [0, u), 
0 < u ≤ 1. Let E(x, N) =

⌊
N
u − x

⌋
+ 1. Since Q(x, B) =

∑
i∈X(x,B) VN,i(x) for (x, B) ∈ I × BI where 

X(x, B) := {i ∈ N : uN,i(x) ∈ B}, we have
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Qm(x, [0, u)) =
∑

{i∈N:0≤ui(x)<u}
VN,i(x) =

∑
i≥E(x,N)

VN,i(x)

= N − E(x,N)
x + E(x,N) . (3.10)

Thus,
1∫

0

Q(x, [0, u))dGN (x) = 1
log{(N + 1)/N} log x + N

N
= GN ([0, u)). (3.11)

Hence the statement holds. �
3.2. Proof of Theorem 1.1

By using Proposition 3.3, we prove Theorem 1.1.

Proof of Theorem 1.1. Fix an integer N ≥ 1 and let GN be as in Section 1. By (1.5), we have

μ
(
T−n
N (A)

)
=

∫
A

{Unf0}(x)dGN (x) for any n ∈ N+, A ∈ BI (3.12)

where f0(x) = (x + N)(dμ/dλ)(x) for x ∈ I. If dμ/dλ ∈ L(I), then f0 ∈ L(I) and by (3.8) we have

U (∞)f0 =
∫
I

f0(x)Q(∞)(dx) =
∫
I

f0(x)GN (dx)

=
∫
I

(dμ/dλ)(x) dx = 1
log{(N + 1)/N} log x + N

N
. (3.13)

Taking into account (3.6), there exist two constants q < 1 and k such that∥∥∥Unf0 − U (∞)f0

∥∥∥
L
≤ kqn ‖f0‖L , n ∈ N+. (3.14)

Furthermore, consider the Banach space C(I) of all real-valued continuous functions on I with the norm 
‖f‖ := supx∈I |f(x)|. Since L(I) is a dense subspace of C(I) we have

lim
n→∞

∥∥∥(Un − U (∞)
)
f
∥∥∥ = 0 for all f ∈ C(I). (3.15)

Therefore, (3.15) is valid for a measurable function f0 which is Q(∞)-almost surely continuous, that is, for 
a Riemann-integrable function f . Thus, we have

lim
n→∞

μ (Gn
N < x) = lim

n→∞

x∫
0

{Unf0}(u)GN (du) (3.16)

= 1
log{(N + 1)/N} log x + N

N

x∫
0

GN (du) (3.17)

= 1
log{(N + 1)/N} log x + N

N
. (3.18)

Hence (1.6) is proved. �



D. Lascu / J. Math. Anal. Appl. 444 (2016) 610–623 623
Acknowledgments

The author would like to express their sincere thanks to Professor Marius Iosifescu for their valuable 
comments.

References

[1] M. Barnsley, J. Elton, A new class of Markov processes for image encoding, Adv. in Appl. Probab. 20 (1988) 14–32.
[2] M. Barnsley, S. Demko, J. Elton, J. Gerinomo, Invariant measures for Markov processes arising from iterated function 

systems with place-dependent probabilities, Ann. Inst. Henri Poincaré Probab. Stat. 24 (3) (1988) 367–394.
[3] E.B. Burger, J. Gell-Redman, R. Kravitz, D. Walton, N. Yates, Shrinking the period lengths of continued fractions while 

still capturing convergents, J. Number Theory 128 (1) (2008) 144–153.
[4] K. Dajani, C. Kraaikamp, N. van der Wekken, Ergodicity of N-continued fraction expansions, J. Number Theory 133 (9) 

(2013) 3183–3204.
[5] W. Doeblin, R. Fortet, Sur des chaînes à liaisons complètes, Bull. Soc. Math. France 65 (1937) 132–148.
[6] R. Durrett, Probability Theory: Theory and Examples, 3rd ed., Thomson Brooks/Cole, 2005.
[7] T.E. Harris, On chains of infinite order, Pacific J. Math. 5 (1955) 707–724.
[8] M. Iosifescu, Random systems with complete connections with an arbitrary set of states, Rev. Roumaine Math. Pures 

Appl. 8 (1963) 611–645.
[9] M. Iosifescu, S. Grigorescu, Dependence with Complete Connections and Its Applications, 2nd edition, Cambridge Tracts 

in Math., vol. 96, Cambridge Univ. Press, Cambridge, 2009.
[10] M. Iosifescu, R. Theodorescu, Random Processes and Learning, Springer-Verlag, Berlin, 1969.
[11] S. Kalpazidou, On a problem of Gauss–Kuzmin type for continued fraction with odd partial quotients, Pacific J. Math. 

123 (1) (1986) 103–114.
[12] S. Karlin, Some random walks arising in learning models. I, Pacific J. Math. 3 (4) (1953) 725–756.
[13] K. Kawamura, Automata computation of branching laws for endomorphisms of Cuntz algebras, Internat. J. Algebra 

Comput. 17 (7) (2007) 1389–1409.
[14] K. Kawamura, A generalization of de Bruijn graphs and classification of endomorphisms of Cuntz algebras by graph 

invariants, Semigroup Forum 81 (2010) 405–423.
[15] K. Kawamura, Y. Hayashi, D. Lascu, Continued fraction expansions and permutative representations of the Cuntz alge-

bra O∞, J. Number Theory 129 (12) (2009) 3069–3080.
[16] D. Lascu, On a Gauss–Kuzmin-type problem for a family of continued fraction expansions, J. Number Theory 133 (7) 

(2013) 2153–2181.
[17] D. Lascu, Metric properties of N -continued fractions, Math. Rep. (2016), in press.
[18] M. Lothaire, Combinatorics on Words, Cambridge University Press, 1997.
[19] R.D. Mauldin, M. Urbański, The doubling property of conformal measures of infinite iterated function systems, J. Number 

Theory 102 (1) (2003) 23–40.
[20] G.J. Mealy, A method for synthesizing sequential circuits, Bell Syst. Tech. J. 34 (5) (1955) 1045–1079.
[21] E. Norman, Markov Processes and Learning Models, Academic Press, New York, 1972.
[22] O. Onicescu, Gh. Mihoc, Sur les chaînes de variables statistiques, Bull. Sci. Math. 59 (1935) 174–192.
[23] G.I. Sebe, On convergence rate in the Gauss–Kuzmin problem for grotesque continued fractions, Monatsh. Math. 133 

(2001) 241–254.
[24] G.I. Sebe, A Gauss–Kuzmin theorem for the Rosen fractions, J. Théor. Nombres Bordeaux 14 (2) (2002) 667–682.
[25] G.I. Sebe, D. Lascu, A Gauss–Kuzmin theorem and related questions for θ-expansions, J. Funct. Spaces 2014 (2014), 12 

pages.

http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4261726E736C6579456C746F6E2D31393838s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4261726E736C65792D31393838s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4261726E736C65792D31393838s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4275726765722D32303038s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4275726765722D32303038s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib444B572D32303133s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib444B572D32303133s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib44462D31393337s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib44757272657474s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4861727269732D31393535s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4D492D31393633s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4D492D31393633s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib49472D32303039s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib49472D32303039s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib49542D31393639s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4B616C70617A69646F752D31393836s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4B616C70617A69646F752D31393836s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4B61726C696E2D31393533s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4B6177616D757261s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4B6177616D757261s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4B6177616D75726132s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4B6177616D75726132s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4B484C2D32303039s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4B484C2D32303039s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4C2D32303133s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4C2D32303133s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4C2D323031362D31s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4C6F746861697265s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4D552D32303033s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4D552D32303033s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4D65616C79s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4E6F726D616E2D31393732s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib4F4D2D31393335s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib536562652D32303031s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib536562652D32303031s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib536562652D32303032s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib536562654C617363752D32303134s1
http://refhub.elsevier.com/S0022-247X(16)30283-9/bib536562654C617363752D32303134s1

	Dependence with complete connections and the Gauss-Kuzmin theorem for N-continued fractions
	1 Introduction
	2 Random systems with complete connections
	2.1 Deﬁnitions and their extensions
	2.2 Transition probability functions deﬁned on the square of the state space
	2.2.1 Space of paths
	2.2.2 Transition probability functions deﬁned on the square of the state space

	2.3 Examples
	2.4 Operators associated with an RSCC

	3 Proof of Theorem 1.1
	3.1 RSCC associated with N-continued fraction expansion
	3.2 Proof of Theorem 1.1

	Acknowledgments
	References


