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Abstract

Multistability, especially bistability, is one of the most important nonlinear phenomena in deterministic
and stochastic dynamics. The identification of unstable fixed points for randomly perturbed dynamical
systems with multistability has drawn increasing attention in recent years. In this paper, we provide a rigorous
mathematical theory of the previously proposed data-driven method to identify the unstable fixed points
of multistable systems. Specifically, we define a family of statistics which can be estimated by practical
time-series data and prove that the local maxima of this family of statistics will converge to the unstable
fixed points asymptotically. During the proof of the above result, we obtain two mathematical by-products
which are interesting in their own right. We prove that the downhill timescale for randomly perturbed
dynamical systems is log(1/ε), different from the uphill timescale of eV/ε for some V > 0 predicted by
the Freidlin-Wentzell theory. Moreover, we also obtain an Lp maximum inequality for randomly perturbed
dynamical systems and a class of diffusion processes.
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1 Introduction

A number of deterministic and stochastic dynamical systems possess multiple stable or metastable
equilibrium states. This phenomenon is widely referred to as multistability, which is one of the
most important nonlinear phenomena in deterministic and stochastic dynamics [16]. Systems and
devices with multistability, especially bistability, have been found or used in a wide range of scientific
fields, including but not limited to mechanics, electronics, optics, thermodynamics, chemistry, biology,
ecology, and meteorology. In the recent two decades, multistability has been extensively studied in
biology. It has become increasingly clear that multistability is the key to understanding various basic
cellular functions and the onset of complex diseases [20].

Due to the stochastic effects, a multistable system in natural sciences is usually modeled by the
following randomly perturbed dynamical system:

dXε
t = b(Xε

t )dt+
√
εσ(Xε

t )dBt, (1.1)

where B = (Bt)t≥0 is a standard Brownian motion. For simplicity, we only consider the one-
dimensional case in this paper. A multistable system can be clearly described in terms of its potential,



which is defined as
U(x) = −

∫ x

0

2b(y)

σ2(y)
dy. (1.2)

The potential of a multistable system has multiple local minima and any two adjacent local minima
are separated by a local maximum (see Figure 1(a)). In the language of dynamical systems, the local
minima and local maxima of the potential are the stable and unstable fixed points of the deterministic
counterpart ẋ = b(x) of the randomly perturbed dynamical system (1.1), respectively. Let si be all the
stable fixed points and let ui be all the unstable fixed points of the dynamical system ẋ = b(x). Then
si and ui can be generally arranged as (see Figure 1(b)):

−∞ < s1 < u1 < s2 < · · · < sk−1 < uk−1 < sk < ∞.

In recent years, the identification of unstable fixed points for multistable systems has attracted
increasing attention. Recent studies on complex diseases have shown that any disease progression can
be divided into a normal state, a pre-disease state, and a disease state [3]. The normal and disease states
correspond to the stable fixed points of a multistable system and the pre-disease state corresponds
to the unstable fixed point between them. Once the expression level of the disease-related gene in
a person is close to the unstable fixed point, we have good reasons to believe that this person is in
a pre-disease state and is at high risk of disease progression. This suggests that the identification
of unstable fixed points for multistable systems is closely related to the early diagnosis of complex
diseases.

Now that the unstable fixed points of multistable systems are of great importance, it is natural to
ask whether we can detect them in an effective way by using the experimental data. Recently, several
research groups have proposed different methods to solve this problem [3, 4, 10, 12]. In biological
experiments, it often occurs that a large number of multistable systems with the same distribution can
be observed or measured at several discrete times t1, t2, · · · , tn with time interval h(ε) = tm+1 − tm.
For example, the expression levels of some pivotal genes of a large amount of cells within an isogenic
population can be measured at several discrete times. Intuitively, if the measurement at time tm is
around the stable fixed point si, then the measurement at time tm+1 should be also around si. However,
if the measurement at time tm is around the unstable fixed point ui, then the measurement at time
tm+1 should become rather scattered. Based on this idea, Dai et al. [4] and Jia et al. [10] define the
following variance function:

Dε(x) = Var(Xε
tm+1

|Xε
tm = x) = Ex

∣∣Xε
h(ε) − ExX

ε
h(ε)

∣∣2 . (1.3)

According to the above intuitive ideas, the variance function should be very small around each stable
fixed point and should be very large around each unstable fixed point. This suggests that the unstable
fixed points should be detected by seeking the local maxima of the variance function.

Although the above method has been applied to detect the unstable fixed points of multistable
biological systems based on practical time-series data, there is still a lack of a rigourous mathematical
theory of this method. In this paper, we generalize the variance function proposed earlier to the case
of any pth moment with p > 0:

V ε,p(x) = Ex

∣∣Xε
h(ε) − ExX

ε
h(ε)

∣∣p .
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In the case of p = 2, the function V ε,p(x) is exactly the same as the variance function Dε(x). Let mε
i

be the maximum point of V ε,p(x) between two adjacent stable fixed points, si and si+1. We prove that
when the time interval h(ε) satisfies appropriate conditions, we have

lim
ε→0

mε
i = ui,

where ui is the unstable fixed point between si and si+1. This shows that when ε is not very large, we
can indeed identity the unstable fixed points by seeking the local maxima of V ε,p(x) for any p > 0.
This is the first main result of this paper.

In order to prove the above result, we must solve two mathematical problems which are interesting
in their own right. The first problem is the downhill timescale for randomly perturbed dynamical
systems. Roughly speaking, the downhill time of a multistable system is the time for the system to
arrive at the stable fixed points along the potential gradient, while the uphill time of a multistable
system is the time for the system to arrive at the unstable fixed points against the potential gradient. It
is a classical result of the Freidlin-Wentzell theory that the uphill timescale for multistable systems is
eV/ε for some V > 0 [7]. In this paper, we prove that the downhill timescale for randomly perturbed
dynamical systems is log(1/ε). This result, which is the second main result of this paper, is closely
related to the previous studies on the escape of a randomly perturbed dynamical system from unstable
fixed points or limit cycles [1, 5, 6, 13, 18].

The second problem is the Lp maximum inequality for randomly perturbed dynamical systems.
In fact, the L1 maximum inequalities for one-dimensional diffusion processes have been studied by
Peskir et al. by using Lenglart’s domination principle [8, 15]. However, the Lp maximum inequalities
for diffusion processes with p �= 1 turn out to be rather difficult, even for the Ornstein-Uhlenbeck
(OU) process. As an attempt, Yan et al. [21, 22] have studied the Lp maximum inequalities for a class
of diffusion processes. Although their ideas are fairly nice, their detailed proofs are questionable (see
Remark 4.3). In this paper, we provide a complete proof of the Lp maximum inequality for diffusion
processes with convex potential and use it to prove an Lp maximum inequality for randomly perturbed
dynamical systems. This is the third main result of this paper.

The content of this paper is organized as follows. In Section 2, we develop a mathematical theory
of the previously proposed method to identify the unstable fixed points of multistable systems. In
Section 3, we study the downhill timescale for randomly perturbed dynamical systems. In Section
4, we study the Lp maximum inequalities for randomly perturbed dynamical systems and a class of
diffusion processes.

2 Identification of unstable fixed points for randomly perturbed dynamical systems

2.1 Model

For any ε > 0, let Xε = (Xε
t )t≥0 be a one-dimensional time-homogeneous diffusion process

solving the stochastic differential equation

dXε
t = b(Xε

t )dt+
√
εσ(Xε

t )dBt, (2.1)

3



where B = (Bt)t≥0 is a standard Brownian motion defined on some filtered space (Ω,F , {Ft}, P )

satisfying the usual conditions. When ε = 0, the stochastic differential equation (2.1) degenerates to
the dynamical system ẋ = b(x). When ε is small, the diffusion process Xε can be viewed as a random
perturbation to the dynamical system ẋ = b(x). Therefore, Xε is widely referred to as a randomly
perturbed dynamical system.

In this paper, we consider the case when the dynamical system ẋ = b(x) has a finite number of
fixed points which are either stable or unstable. This implies that the number of zeros of b(x) is finite
and the sign of b(x) changes at each zero of b(x). Thus there exists a unstable fixed point between any
two adjacent stable fixed points and a stable fixed point between any two adjacent unstable fixed points.
We further assume that the smallest and largest fixed points are stable. Under these assumptions, all
the stable and unstable fixed points can be arranged as

−∞ < s1 < u1 < s2 < · · · < sk−1 < uk−1 < sk < ∞,

where si are all the stable fixed points and ui are all the unstable fixed points of the dynamical system
ẋ = b(x) (see Figure 1(b)). When k = 2, the dynamical system ẋ = b(x) has two stable fixed points
and thus Xε is called bistable; when k ≥ 2, the dynamical system ẋ = b(x) has multiple stable fixed
points and thus Xε is called multistable.

s1 u1 s2 u2 s3 u3 s4

U(x)
(a)

(b)

Figure 1. (a) The potential of a multiscale system. (b) The phase portrait of the deterministic counterpart of the multiscale
system.

For further reference, recall that the potential of Xε is defined in (1.2). Moreover, the infinitesimal
generator of Xε is given by

Lε = b(x)
d

dx
+

ε

2
σ2(x)

d2

dx2

and the scale function of Xε is given by

sε(x) =

∫ x

0

eU(y)/εdy.

It is easy to see that all the stable fixed points si are the local minima of the potential U(x) and all the
unstable fixed points ui are the local maxima of the potential U(x) (see Figure 1(a)). Intuitively, a

4



multistable system has multiple local minima of the potential and any two adjacent local minima are
separated by a local maximum, which can be visualized as a potential barrier between them.

Throughout this paper, we make the following technical assumptions.

Assumption 2.1. (i) The drift coefficient b(x) and the diffusion coefficient σ(x) are locally Lipschitz
continuous, that is, for any N > 0, there exists a constant KN such that for any |x| ≤ N and |y| ≤ N ,

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ KN |x− y|.
(ii) The diffusion coefficient σ(x) is uniformly elliptic and bounded, that is, there exist constants
γ1 > 0 and γ2 > 0 such that γ1 ≤ σ(x) ≤ γ2 for any x ∈ R.

Remark 2.2. If b(x) and σ(x) are locally Lipschitz continuous, the stochastic differential equation
(2.1) has a unique strong solution Xε with explosion time ηε [9, Page 178]. Since the potential U(x)

has a finite number of local minima, it is easy to see that U(x) is bounded from below. This implies
that the scale function sε(x) satisfies sε(∞) = ∞ and sε(−∞) = −∞, which guarantee that ηε = ∞,
a.s. [9, Page 447, Theorem 3.1] and Xε is recurrent [17, Page 311, Exercise 3.21]. Thus under
Assumption 2.1, the stochastic differential equation (2.1) has a unique strong solution over the whole
time axis which is also recurrent.

Assumption 2.3. The potential U(x) satisfies:
(i) For any 1 ≤ i ≤ k, U(x) is convex in a neighborhood of si and U ′′(si) > 0;
(ii) For any 1 ≤ i ≤ k − 1, U(x) is concave in a neighborhood of ui and U ′′(ui) < 0.

Under Assumption 2.1, U(x) must be a C1 function and may not be a C2 function. Thus
U ′′(si) > 0 in general cannot ensure U(x) to be convex in a neighborhood of si. However, if b(x) and
σ(x) are both C1 functions, then U(x) is a C2 function and thus U ′′(si) > 0 is enough to ensure U(x)

to be convex in a neighborhood of si.

2.2 Main results of this section

In biological experiments, it often occurs that a large number of multistable systems with the same
distribution can be measured at several discrete times t1, t2, · · · , tn with time interval h(ε) = tm+1−tm.
In this paper, we define the following function V ε,p(x) for any p > 0:

V ε,p(x) = Ex

∣∣Xε
h(ε) − ExX

ε
h(ε)

∣∣p . (2.2)

The following theorem provides a theoretical basis for the method to identify the unstable fixed
points of multistable systems proposed in previous papers [4, 10].

Theorem 2.4. For any 1 ≤ i ≤ k − 1, let mε
i be the maximum point of V ε,p(x) within the interval

[si, si+1]. that is, V ε,p(mε
i) = max{V ε,p(x) : x ∈ [si, si+1]}. Assume that the time interval h(ε)

satisfies the following two conditions:

lim
ε→0

h(ε)−1 log(1/ε) = 0, (2.3)

lim
ε→0

ε log h(ε) = 0. (2.4)
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Then for any 1 ≤ i ≤ k − 1,
lim
ε→0

mε
i = ui.

Remark 2.5. The above theorem shows that when the time interval h(ε) is appropriately chosen, the
local maxima mε

i of V ε,p(x) will be very close to the unstable fixed points ui when ε is small. This
implies that we can indeed detect the unstable fixed points of Xε by seeking the local maxima of
V ε,p(x). This idea provides a data-driven method to identify the unstable fixed points of multistable
systems without resorting to the details of the specific model such as the forms of the drift and diffusion
coefficients.

For any 1 ≤ i ≤ k− 1, let τ εi = inf{t ≥ 0 : Xε
t /∈ (si, si+1)}. Then τ εi is the downhill time for Xε

when the initial value is between the stable fixed points si and si+1. We further define an auxiliary
function Ṽ ε,p(x) as

Ṽ ε,p(x) = Ex|Xε
τεi
− ExX

ε
τεi
|p. (2.5)

The following lemma gives an upper bound of the downhill timescale.

Lemma 2.6. For any 1 ≤ i ≤ k − 1,

sup
x∈[si,si+1]

Exτ
ε
i = O (log(1/ε)) . (2.6)

Proof. This lemma is a direct corollary of Theorem 3.1 proved in Section 3.1.

The following lemma gives a condition under which Xε cannot go too far within the time interval
h(ε) when starting from the stable fixed point si.

Lemma 2.7. Assume that the time interval h(ε) satisfies (2.4). Then for any 1 ≤ i ≤ k and p > 0,

lim
ε→0

Esi sup
0≤t≤h(ε)

|Xε
t − si|p = 0.

Proof. This lemma will be proved in Section 4.1.

With the above two lemmas, we can prove the following approximation theorem.

Theorem 2.8. Assume that the time interval h(ε) satisfies (2.3) and (2.4). Then for any 1 ≤ i ≤ k− 1

and p > 0,
lim
ε→0

sup
x∈[si,si+1]

|V ε,p(x)− Ṽ ε,p(x)| = 0. (2.7)

Proof. For any fixed 1 ≤ i ≤ k − 1 and x ∈ [si, si+1], let ξε,x = |Xε
h(ε) − ExX

ε
h(ε)| and ηε,x =

|Xε
τεi
− ExX

ε
τεi
|. Note that for any p > 0,

|V ε,p(x)− Ṽ ε,p(x)| = ∣∣Exξ
p
ε,x − Exη

p
ε,x

∣∣ ≤ Ex

∣∣ξpε,x − ηpε,x
∣∣ .

Recall that for any a ≥ 0, b ≥ 0, and p > 0,

(a+ b)p ≤ max{2p−1, 1}(ap + bp). (2.8)
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If p < 1, it follows from (2.8) that

|ξpε,x − ηpε,x| ≤ |ξε,x − ηε,x|p. (2.9)

If p ≥ 1, it is readily checked from (2.8) that

|ξpε,x − ηpε,x| ≤ (|ξε,x − ηε,x|+ ηε,x)
p − ηpε,x.

Denote by �p	 the integer satisfying p− 1 ≤ �p	 < p. Direct computation shows that for any p ≥ 1,

|ξpε,x − ηpε,x| ≤ (|ξε,x − ηε,x|+ ηε,x)
�p	 (|ξε,x − ηε,x|+ ηε,x)

p−�p	 − ηpε,x

≤
�p	∑
m=0

Cm
�p	|ξε,x − ηε,x|mη�p	−m

ε,x

(|ξε,x − ηε,x|p−�p	 + ηp−�p	
ε,x

)− ηpε,x

=

�p	∑
m=0

Cm
�p	|ξε,x − ηε,x|m+p−�p	η�p	−m

ε,x +

�p	∑
m=1

Cm
�p	|ξε,x − ηε,x|mηp−m

ε,x .

(2.10)

Since ηε,x ≤ si+1 − si and p− �p	 > 0, (2.9) and (2.10) imply that for any p > 0, |V ε,p(x)− Ṽ ε,p(x)|
can be controlled by a finite linear combination of {Ex|ξε,x − ηε,x|q : q > 0}. For any q > 0,

Ex|ξε,x − ηε,x|q = Ex

∣∣∣∣∣Xε
h(ε) − ExX

ε
h(ε)

∣∣− |Xε
τεi
− ExX

ε
τεi
|
∣∣∣q

≤ Ex

[
|Xε

h(ε) −Xε
τεi
|+ |ExX

ε
h(ε) − ExX

ε
τεi
|
]q

≤ max{2q−1, 1}
[
Ex|Xε

h(ε) −Xε
τεi
|q +

(
Ex|Xε

h(ε) −Xε
τεi
|
)q]

.

Thus for any p > 0, |V ε,p(x)− Ṽ ε,p(x)| can be controlled by a finite polynomial of {Ex|Xε
h(ε)−Xε

τεi
|q :

q > 0}. By Chebyshev’s inequality and the strong Markov property of Xε at τ εi , for any q > 0,

Ex|Xε
h(ε) −Xε

τεi
|q = Ex|Xε

h(ε) −Xε
τεi
|qI{τεi >h(ε)} + Ex|Xε

h(ε) −Xε
τεi
|qI{τεi ≤h(ε)}

≤ (si+1 − si)
q
Px(τ

ε
i > h(ε)) + Ex[ sup

0≤t≤h(ε)

|Xε
τεi +t −Xε

τεi
|q]

≤ (si+1 − si)
qExτ

ε
i

h(ε)
+ ExEXε

τε
i

[ sup
0≤t≤h(ε)

|Xε
t −Xε

0|q]

≤ (si+1 − si)
qExτ

ε
i

h(ε)
+ Esi [ sup

0≤t≤h(ε)

|Xε
t − si|q] + Esi+1

[ sup
0≤t≤h(ε)

|Xε
t − si+1|q].

It follows from Lemma 2.6 that

lim
ε→0

sup
x∈[si,si+1]

Exτ
ε
i

h(ε)
= lim

ε→0
h(ε)−1O (log(1/ε)) = 0.

This fact, together with Lemma 2.7, shows that

lim
ε→0

sup
x∈[si,si+1]

Ex|Xε
h(ε) −Xε

τεi
|q = 0.

This completes the proof of this theorem.

We are now in a position to prove Theorem 2.4.
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Proof of Theorem 2.4. For any 1 ≤ i ≤ k − 1, let m̃ε
i be the maximum point of Ṽ ε,p(x) within the

interval [si, si+1]. Direct computation shows that

Ṽ ε,p(x) = (si+1 − si)
p
[
Px(X

ε
τεi

= si)Px(X
ε
τεi

= si+1)
p + Px(X

ε
τεi

= si)
p
Px(X

ε
τεi

= si+1)
]
.

For any a ∈ [0, 1], let g(a) = a(1− a)p + (1− a)ap. It is easy to verify that g(a) is strictly increasing
on [0, r] and is strictly decreasing on [1− r, 1], where

r =
1 ∧ p

1 + p
≤ 1

2
.

Therefore, m̃ε
i should satisfy

Ṽ ε,p(m̃ε
i) ≥ (si+1 − si)

pg(r). (2.11)

It is a classical result [11, Page 344, (5.61)] that

Px(X
ε
τεi

= si+1) =
sε(x)− sε(si)

sε(si+1)− sε(si)
=

∫ x

si
eU(y)/εdy∫ si+1

si
eU(y)/εdy

. (2.12)

Note that U ′′
i (ui) < 0 and ui is the unique maximum point of U(x) between si and si+1. By Laplace’s

method [19, Page 277], it is easy to check that

lim
ε→0

∫ si+1

si

eU(y)/εdy

/[
eU(ui)/ε

√
−2πε/U ′′(ui)

]
= 1.

This shows that when ε is sufficiently small,∫ si+1

si

eU(y)/εdy ≥ 1

2
eU(ui)/ε

√
−2πε/U ′′(ui).

Thus for any η > 0, whenever x < ui − η, we have

Px(X
ε
τεi

= si+1) =

∫ x

si
eU(y)/εdy∫ si+1

si
eU(y)/εdy

≤ 2(ui − η − si)e
U(ui−η)/ε

eU(ui)/ε
√−2πε/U ′′(ui)

→ 0, as ε → 0.

Thus when ε is sufficiently small, Px(X
ε
τεi

= si+1) < r/2 for any x < ui − η. Similarly, when ε is
sufficiently small, Px(X

ε
τεi

= si+1) > 1−r/2 for any x > ui+η. This shows that for any |x−ui| > η,

Ṽ ε,p(x) ≤ g(r/2)(si+1 − si)
p.

By Theorem 2.8, when ε is sufficiently small, we have

sup
x∈[si,si+1]

|V ε,p(x)− Ṽ ε,p(x)| < 1

2
(si+1 − si)

p(g(r)− g(r/2)). (2.13)

Thus for any |x− ui| > η,

V ε,p(x) ≤ Ṽ ε,p(x) + sup
x∈[si,si+1]

|V ε,p(x)− Ṽ ε,p(x)| < 1

2
(si+1 − si)

p(g(r) + g(r/2)).

On the other hand, it follows from (2.11) and (2.13) that

V ε,p(m̃ε
i) ≥ Ṽ ε,p(m̃ε

i)− sup
x∈[si,si+1]

|V ε,p(x)− Ṽ ε,p(x)| > 1

2
(si+1 − si)

p (g(r) + g(r/2)) .

This implies that V ε,p(m̃ε
i) > V ε,p(x) whenever |x− ui| > η. Thus when ε is sufficiently small, we

have |mε
i − ui| ≤ η. By the arbitrariness of η, we obtain the desired result.
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We have seen that the keys to the proof of Theorem 2.4 are Lemmas 2.6 and 2.7, which are
interesting in their own right. Lemma 2.6 gives an upper bound of the downhill timescale for randomly
perturbed dynamical systems and Lemma 2.7 is closely related to the Lp maximum inequality for
randomly perturbed dynamical systems. These two lemmas will be proved in the following two
sections.

2.3 A remark on the choice of the time interval h(ε)

There is an important question that has not been answered satisfactorily in the previous studies:
how should we choose the time interval h(ε) between two successive measurements? In this paper, we
prove that if the interval h(ε) satisfies the two conditions given in (2.3) and (2.4), then we can detect
the unstable fixed points of multistable systems by seeking the local maxima of V ε,p(x). However,
this raises the following question: what are the intuitive implications of these two conditions?

Intuitively, if we hope V ε,p(x) to be large around the unstable fixed points ui, then the interval h(ε)
should be long enough to make the system arrive at the stable fixed points si or si+1 within the interval
h(ε). This shows that h(ε) should have a larger timescale than the downhill time τ εi . This intuitive
idea, together with Lemma 2.6, shows that h(ε) should be chosen to satisfy the condition (2.3).

On the other hand, if we hope V ε,p(x) to be small around the stable fixed points si, then the
interval h(ε) should be short enough to ensure the system not to make transitions between different
stable fixed points within the interval h(ε). According to the Freidlin-Wentzell theory [7], Xε will
transition between different stable fixed points at the timescale of eV/ε for some V > 0. This suggests
that h(ε) should be chosen to satisfy the condition (2.4).

The above discussion shows that the two conditions given in (2.3) and (2.4) coincide with our
intuitive ideas perfectly. Based on numerical simulations, Jia et al. [10] suggested that the timescale of
h(ε) may be chosen as 1/ε. It is obvious that any polynomial timescale of 1/ε must satisfy these two
conditions and thus the above mentioned method to identify the unstable fixed points of multistable
systems can be successfully applied.

3 Downhill timescale for randomly perturbed dynamical systems

3.1 Main results of this section

In this section, we shall study the downhill timescale for randomly perturbed dynamical systems.
The following theorem gives an upper bound of the downhill time for Xε when the initial value is
between two adjacent stable fixed points.

Theorem 3.1. For any 1 ≤ i ≤ k − 1, let τ εi = inf{t ≥ 0 : Xε
t /∈ (si, si+1)}. Then for any

1 ≤ i ≤ k − 1,

lim sup
ε→0

supx∈[si,si+1]
Exτ

ε
i

log(1/ε)
≤ 2

γ2
1

[
1

U ′′(si)
− 2

U ′′(ui)
+

1

U ′′(si+1)

]
,

where γ1 is the constant described in Assumption 2.1.
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Proof. This theorem will be proved in Section 3.2.

The reader may ask what is the downhill timescale for Xε when the initial value is outside the
interval [s1, sk]. To answer this question, we make the following assumption, which is equivalent to
saying that Xε has an invariant distribution when ε is sufficiently small.

Assumption 3.2. There exists a constant γ3 > 0 such that∫
R

e−γ3U(y)dy < ∞.

Let τ εx = inf{t ≥ 0 : Xε
t = x} be the first passage time of x by Xε. Then τ εs1 is the downhill time

for Xε when the initial value x ≤ s1 and τ εsk is the downhill time for Xε when the initial value x ≥ sk.
The following theorem gives an upper bound of the downhill timescale for Xε when the initial value is
outside the interval [s1, sk].

Theorem 3.3. Under Assumptions 3.2, for any x ≥ sk,

lim sup
ε→0

Exτ
ε
sk

log(1/ε)
≤ 1

γ2
1U

′′(sk)
, (3.1)

and for any x ≤ s1,

lim sup
ε→0

Exτ
ε
s1

log(1/ε)
≤ 1

γ2
1U

′′(s1)
. (3.2)

Proof. This theorem will be proved in Section 3.3.

Remark 3.4. The above two theorems show that wherever the initial value is located, the downhill
timescale for Xε has an upper bound of log(1/ε). In fact, it can be proved that under stronger
conditions, log(1/ε) is also a lower bound. This shows that in general, log(1/ε) is the correct downhill
timescale for randomly perturbed dynamical systems.

3.2 Proof of Theorem 3.1

In order to prove Theorem 3.1, we need a lemma.

Lemma 3.5. For any 1 ≤ i ≤ k − 1,

sup
x∈[si,si+1]

Exτ
ε
i ≤ 4

εγ2
1

[∫ ui

si

eU(y)/εdy

∫ ui

y

e−U(z)/εdz +

∫ si+1

ui

eU(y)/εdy

∫ y

ui

e−U(z)/εdz

]
.

Proof. For any 1 ≤ i ≤ k − 1 and x ∈ [si, si+1], it is a classical result [17, Page 305, Corollary 3.8]
that

Exτ
ε
i =

[
1

ε

∫ x

si

eU(y)/εdy

∫ x

y

2

σ2(z)
e−U(z)/εdz

]
Px(X

ε
τεi

= si)

+

[
1

ε

∫ si+1

x

eU(y)/εdy

∫ y

x

2

σ2(z)
e−U(z)/εdz

]
Px(X

ε
τεi

= si+1).
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It thus follows from Assumption 2.1 that

Exτ
ε
i ≤ 2

εγ2
1

[∫ x

si

eU(y)/εdy

∫ x

y

e−U(z)/εdz

]
Px(X

ε
τεi

= si)

+
2

εγ2
1

[∫ si+1

x

eU(y)/εdy

∫ y

x

e−U(z)/εdz

]
Px(X

ε
τεi

= si+1).

For any x ∈ [si, ui],∫ si+1

x

eU(y)/εdy

∫ y

x

e−U(z)/εdz

=

∫ ui

x

eU(y)/εdy

∫ y

x

e−U(z)/εdz +

∫ si+1

ui

eU(y)/εdy

[∫ ui

x

e−U(z)/εdz +

∫ y

ui

e−U(z)/εdz

]

≤
∫ si+1

x

eU(y)/εdy

∫ ui

x

e−U(z)/εdz +

∫ si+1

ui

eU(y)/εdy

∫ y

ui

e−U(z)/εdz

Thus it follows from (2.12) that[∫ si+1

x

eU(y)/εdy

∫ y

x

e−U(z)/εdz

]
Px(X

ε
τεi

= si+1)

≤
[∫ si+1

x

eU(y)/εdy

∫ ui

x

e−U(z)/εdz

] ∫ x

si
eU(y)/εdy∫ si+1

si
eU(y)/εdy

+

∫ si+1

ui

eU(y)/εdy

∫ y

ui

e−U(z)/εdz

≤
∫ x

si

eU(y)/εdy

∫ ui

x

e−U(z)/εdz +

∫ si+1

ui

eU(y)/εdy

∫ y

ui

e−U(z)/εdz

≤
∫ ui

si

eU(y)/εdy

∫ ui

y

e−U(z)/εdz +

∫ si+1

ui

eU(y)/εdy

∫ y

ui

e−U(z)/εdz.

Note that [∫ x

si

eU(y)/εdy

∫ x

y

e−U(z)/εdz

]
Px(X

ε
τεi

= si) ≤
∫ ui

si

eU(y)/εdy

∫ ui

y

e−U(z)/εdz.

Thus for any x ∈ [si, ui],

Exτ
ε
i ≤ 4

εγ2
1

∫ ui

si

eU(y)/εdy

∫ ui

y

e−U(z)/εdz +
2

εγ2
1

∫ si+1

ui

eU(y)/εdy

∫ y

ui

e−U(z)/εdz. (3.3)

Similarly, for any x ∈ [ui, si+1], one can prove that

Exτ
ε
i ≤ 2

εγ2
1

∫ ui

si

eU(y)/εdy

∫ ui

y

e−U(z)/εdz +
4

εγ2
1

∫ si+1

ui

eU(y)/εdy

∫ y

ui

e−U(z)/εdz. (3.4)

Combining (3.3) and (3.4), we obtain the result of this lemma.

We are now in a position to finish the proof of Theorem 3.1.

Proof of Theorem 3.1. By Assumption 2.3, U(x) is convex in a neighborhood of si and is concave in
a neighborhood of ui. Thus there exists bi > si and ci < ui, such that U(x) is convex on [si, bi] and is

11



concave on [ci, ui]. Note that

1

ε

∫ ui

si

eU(y)/εdy

∫ ui

y

e−U(z)/εdz

=
1

ε

∫ bi

si

eU(y)/εdy

∫ bi

y

e−U(z)/εdz +
1

ε

∫ bi

si

eU(y)/εdy

∫ ui

bi

e−U(z)/εdz

+
1

ε

∫ ci

bi

eU(y)/εdy

∫ ui

y

e−U(z)/εdz +
1

ε

∫ ui

ci

eU(y)/εdy

∫ ui

y

e−U(z)/εdz

:= I + II + III + IV

We shall next estimate I, II, III, and IV, respectively. To estimate I, let

gεi (x) =
1

ε

∫ bi

x

eU(y)/εdy

∫ bi

y

e−U(z)/εdz.

Note that the value of gεi (x) does not change under any translation of U(x). Without loss of generality,
we assume that U(si) = 0. By Assumption 2.3, there exists δ > 0 such that U(y) ≤ U ′′(si)(y − si)

2

for any y ∈ [si, si + δ]. By Laplace’s method [19, Page 277], it is easy to check that

lim
ε→0

∫ bi

si

e−U(z)/εdz

/√
πε

2U ′′(si)
= 1.

This shows that when ε is sufficiently small, we have∫ bi

si

e−U(z)/εdz ≤
√
2πε/U ′′(si).

Thus when ε is sufficiently small, we have

gεi (si)− gεi (si +
√
ε) =

1

ε

∫ si+
√
ε

si

eU(y)/εdy

∫ bi

y

e−U(z)/εdz

≤
[
1

ε

∫ si+
√
ε

si

eU
′′(si)(y−si)

2/εdy

]√
2πε/U ′′(si)

=

√
π

U ′′(si)

∫ √
2U ′′(si)

0

ey
2/2dy.

Since U(x) is convex on [si, bi], we have U ′(z)/U ′(y) ≥ 1 for any si ≤ y ≤ z ≤ bi. Therefore,

gεi (si +
√
ε) ≤ 1

ε

∫ bi

si+
√
ε

eU(y)/εdy

∫ bi

y

e−U(z)/εU
′(z)

U ′(y)
dz

≤
∫ bi

si+
√
ε

eU(y)/ε 1

U ′(y)
e−U(y)/εdy =

∫ bi

si+
√
ε

1

U ′(y)
dy.

Applying L’Hospital’s rule and Assumption 2.3(i), we obtain that

lim sup
ε→0

gεi (si +
√
ε)

log(1/ε)
≤ lim

ε→0

∫ bi
si+

√
ε

1
U ′(y)dy

log(1/ε)
= lim

ε→0

√
ε

2U ′(si +
√
ε)

=
1

2U ′′(si)
. (3.5)

12



Therefore,

lim sup
ε→0

I
log(1/ε)

= lim sup
ε→0

gεi (si)− gεi (si +
√
ε) + gεi (si +

√
ε)

log(1/ε)
≤ 1

2U ′′(si)
. (3.6)

Note that U ′(x) is continuous and U ′(x) > 0 for any x ∈ [bi, ci]. This shows that

r := min
x∈[bi,ci]

U ′(x) > 0.

Direct computation shows that

II ≤ 1

ε
(bi − si)e

U(bi)/ε

[∫ ci

bi

e−U(z)/εdz +

∫ ui

ci

e−U(ci)/εdz

]

≤ 1

ε
(bi − si)

[∫ ci

bi

e−(U(z)−U(bi))/εdz + (ui − ci)e
−(U(ci)−U(bi))/ε

]

≤ 1

ε
(bi − si)

∫ ci

bi

e−r(z−bi)/εdz +
1

ε
(bi − si)(ui − ci)e

−(U(ci)−U(bi))/ε

≤ bi − si
r

+
1

ε
(bi − si)(ui − ci)e

−(U(ci)−U(bi))/ε.

In analogy to the estimation of II, we have

III ≤ 1

ε

∫ ci

bi

eU(y)/εdy

[∫ ci

y

e−U(z)/εdz +

∫ ui

ci

e−U(ci)/εdz

]

≤ 1

ε

∫ ci

bi

dy

∫ ci

y

e−r(z−y)/εdz +
1

ε
(ui − ci)

∫ ci

bi

e−r(ci−y)/εdy ≤ ci − bi
r

+
ui − ci

r
.

To estimate IV, let Ũ(x) = −U(x). By Fubini’s theorem, we have

IV =
1

ε

∫ ui

ci

eŨ(z)/εdz

∫ z

ci

e−Ũ(y)/εdy.

By Assumption 2.3, it is easy to see that ui is a local minimum point of Ũ(x), Ũ(x) is convex on
[ci, ui], and Ũ

′′
(ui) > 0. In analogy to the estimation of I, it is easy to check that

lim sup
ε→0

IV
log(1/ε)

≤ − 1

2U ′′(ui)
.

Therefore,

lim sup
ε→0

1

ε log(1/ε)

∫ ui

si

eU(y)/εdy

∫ ui

y

e−U(z)/εdz

= lim sup
ε→0

I + II + III + IV
log(1/ε)

≤ 1

2U ′′(si)
− 1

2U ′′(ui)
.

Similarly, one can show that

lim sup
ε→0

1

ε log(1/ε)

∫ si+1

ui

eU(y)/εdy

∫ y

ui

e−U(z)/εdz ≤ 1

2U ′′(si+1)
− 1

2U ′′(ui)
.

Thus by Lemma 3.5, we obtain the desired result.
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3.3 Proof of Theorem 3.3

In order to prove Theorem 3.3, we need a lemma.

Lemma 3.6. Let τ εα = inf{t ≥ 0 : Xε
t = α}. Then under Assumption 3.2, for any x ≥ α ≥ sk,

Exτ
ε
α =

1

ε

∫ x

α

eU(y)/εdy

∫ ∞

y

2

σ2(z)
e−U(z)/εdz. (3.7)

Proof. It is a classical result [11, Pages 343-344, (5.55) and (5.59)] that for any β ≥ x,

Exτ
ε
α ∧ τ εβ

=

[
1

ε

∫ β

α

eU(y)/εdy

∫ y

α

2

σ2(z)
e−U(z)/εdz

] ∫ x

α
eU(y)/εdy∫ β

α
eU(y)/εdy

− 1

ε

∫ x

α

eU(y)/εdy

∫ y

α

2

σ2(z)
e−U(z)/εdz

=
1

ε

∫ x

α

eU(y)/εdy

∫ ∞

y

2

σ2(z)
e−U(z)/εdz − 1

ε

∫ x

α

eU(y)/εdy

[∫ β

α
eU(y)/εdy

∫∞
y

2
σ2(z)

e−U(z)/εdz∫ β

α
eU(y)/εdy

]
.

Applying Assumptions 2.1(ii), 3.2, and L’Hospital’s rule, we have

lim sup
β→∞

∫ β

α
eU(y)/εdy

∫∞
y

2
σ2(z)

e−U(z)/εdz∫ β

α
eU(y)/εdy

≤ lim
β→∞

2

γ2
1

∫ ∞

β

e−U(y)/εdy = 0.

It follows from Remark 2.2 that Xε is non-explosive. This implies that limβ→∞ τ εβ = ∞, a.s. Thus

Exτ
ε
α = lim

β→∞
Exτ

ε
α ∧ τ εβ =

1

ε

∫ x

α

eU(y)/εdy

∫ ∞

y

2

σ2(z)
e−U(z)/εdz,

which gives the desired result.

We are now in a position to finish the proof of Theorem 3.3.

Proof of Theorem 3.3. The proofs of (3.1) and (3.2) are totally the same. Thus we only prove (3.1).
By Assumption 2.3, U(x) is convex in a neighborhood of sk. Thus there exists bk > sk, such that
U(x) is convex on [sk, bk]. It is easy to see that Exτ

ε
sk

is an increasing function of x. Without loss of
generality, we assume that x ≥ bk and U(sk) = 0. By Assumptions 2.1(ii) and Lemma 3.6, we have

Exτ
ε
sk

≤ 2

γ2
1

[
1

ε

∫ x

sk

eU(y)/εdy

∫ ∞

y

e−U(z)/εdz

]
.

Note that
1

ε

∫ x

sk

eU(y)/εdy

∫ ∞

y

e−U(z)/εdz

=
1

ε

∫ bk

sk

eU(y)/εdy

∫ bk

y

e−U(z)/εdz +
1

ε

∫ bk

sk

eU(y)/εdy

∫ ∞

bk

e−U(z)/εdz

+
1

ε

∫ x

bk

eU(y)/εdy

∫ x

y

e−U(z)/εdz +
1

ε

∫ x

bk

eU(y)/εdy

∫ ∞

x

e−U(z)/εdz

:= I + II + III + IV.
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We shall next estimate I, II, III, and IV, respectively. In analogy to the proof of (3.6) in Theorem 3.1, it
is easy to check that

lim sup
ε→0

I
log(1/ε)

≤ 1

2U ′′(sk)
.

To estimate II, we arbitrarily choose 0 < δ < bk − sk. Note that U ′(x) is continuous and U ′(y) > 0

for any y ∈ [sk + δ, x]. This shows that

r := min
y∈[sk+δ,x]

U ′(y) > 0.

By Assumption 3.2, when ε is sufficiently small,

II =
1

ε

∫ bk

sk

dy

∫ ∞

bk

e−γ3(U(z)−U(y))−(1/ε−γ3)(U(z)−U(y))dz

≤ 1

ε
eγ3U(bk)

∫ ∞

bk

e−γ3U(z)dz

∫ bk

sk

e−(1/ε−γ3)(U(bk)−U(y))dy

≤ 1

ε
eγ3U(bk)

∫ ∞

bk

e−γ3U(z)dz

[∫ sk+δ

sk

e−(U(bk)−U(y))/2εdy +

∫ bk

sk+δ

e−(U(bk)−U(y))/2εdy

]

≤ 1

ε
eγ3U(bk)

∫ ∞

bk

e−γ3U(z)dz

[
δe−(U(bk)−U(sk+δ))/2ε +

∫ bk

sk+δ

e−r(bk−y)/2εdy

]

≤ eγ3U(bk)

∫ ∞

bk

e−γ3U(z)dz

[
δ

ε
e−(U(bk)−U(sk+δ))/2ε +

2

r

]
.

To estimate III, note that

III =
1

ε

∫ x

bk

dy

∫ x

y

e−(U(z)−U(y))/εdz ≤ 1

ε

∫ x

bk

dy

∫ x

y

e−r(z−y)/εdz ≤ x− bk
r

.

By Assumption 3.2, when ε is sufficiently small,

IV =
1

ε

∫ x

bk

dy

∫ ∞

x

e−γ3(U(z)−U(y))−(1/ε−γ3)(U(z)−U(y))dz

≤ 1

ε
eγ3U(x)

∫ ∞

x

e−γ3U(z)dz

∫ x

bk

e−(U(x)−U(y))/2εdy ≤ 2

r
eγ3U(x)

∫ ∞

x

e−γ3U(z)dz.

Thus by Lemma 3.6, it is easy to check that

lim sup
ε→0

Exτ
ε
sk

log(1/ε)
≤ lim sup

ε→0

2

γ2
1

· I + II + III + IV
log(1/ε)

≤ 1

γ2
1U

′′(sk)
,

which gives the desired result.

4 Lp maximum inequality for randomly perturbed dynamical systems

4.1 Main results of this section

In this section, we shall study the Lp maximum inequality for randomly perturbed dynamical
systems. The following theorem gives an Lp maximum inequality for diffusion processes with convex
potential.
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Theorem 4.1. Let X = (Xt)t≥0 be a diffusion process solving the stochastic differential equation

dXt = b(Xt)dt+ dBt, X0 = 0,

where b(x) is locally Lipschitz continuous and monotonically decreasing. Let F (x) be the function
defined by

F (x) = 2

∫ x

0

eU(y)dy

∫ y

0

e−U(z)dz,

where U(x) = −2
∫ x

0
b(y)dy is the potential of X . Assume that the following condition is satisfied:

sup
x>0

[
F (x)

x

∫ ∞

x

dz

F (z)

]
< ∞ (4.1)

and let H(x) = F−1(x) denote the inverse of F (x) for x ≥ 0. Then for any p > 0, there exists a
constant cp > 0 such that for any stopping time τ ,

E[ sup
0≤t≤τ

Xt]
p ≤ cpEH(τ)p.

Proof. This theorem will be proved in Section 4.2.

Applying the above theorem, we can obtain an Lp maximum inequality for the OU process.

Corollary 4.2. Let V = (Vt)t≥0 be an OU process solving the stochastic differential equation

dVt = −αVtdt+ βdBt, V0 = 0,

where α, β > 0. Then for any p > 0, there exists a constant cp > 0 such that for any stopping time τ ,

E[ sup
0≤t≤τ

|Vt|]p ≤ cpβ
p

αp/2
E logp/2(1 + ατ).

Proof. Let Xt = Vt/β. Then X is the solution to the following stochastic differential equation:

dXt = −αXtdt+ dBt, X0 = 0.

It is easy to check that the potential of X is U(x) = αx2. This shows that

F (x) = 2

∫ x

0

eU(y)dy

∫ y

0

e−U(z)dz = 2

∫ x

0

eαy
2

dy

∫ y

0

e−αz2dz.

A successive application of L’Hospital’s rule then shows that (4.1) holds. By estimating the inverse
H(x) = F−1(x), it is easy to check that

1√
α

√
log(1 + αx) ≤ H(x) ≤

√
2√
α

√
log(1 + αx).

It thus follows from Theorem 4.1 that for any p > 0, there exists a constant cp > 0 such that for any
stopping time τ ,

E[ sup
0≤t≤τ

Xt]
p ≤ cp

αp/2
E logp/2(1 + ατ). (4.2)

This shows that
E[ sup

0≤t≤τ
Vt]

p ≤ cpβ
p

αp/2
E logp/2(1 + ατ). (4.3)

By symmetry, it is easy to see that the above inequality also holds when Vt is replaced by −Vt. This
completes the proof of this corollary.
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Remark 4.3. In fact, the L1 maximum inequality for the OU process was first obtained by Graversen
and Peskir [8]. Subsequently, Yan et al. [21] stated the Lp maximum inequality with p �= 1 for the
OU process. However, although their ideas are fairly nice, their detailed proofs are questionable
because they mistakenly regarded the random time TI{S<T} as a stopping time, where S and T are two
stopping times with S ≤ T (see [21, Page 6, Lines 2 and 10]). In this paper, we provide a complete
proof of the Lp maximum inequality for the OU process.

Based on Theorem 4.1, we can obtain an Lp maximum inequality for randomly perturbed dynami-
cal systems, which is stated in the following theorem.

Theorem 4.4. Assume that the time interval h(ε) satisfies (2.4). Then for any 1 ≤ i ≤ k and p > 0,
there exist constants αi > 0, βi > 0, and Kp > 0 such that

Esi [ sup
0≤t≤h(ε)

(Xε
t − si)]

p ≤ Kp[ε log(1 + αih(ε))]
p/2 +Kpe

−βi/ε
[
(εh(ε))p/2 + 1

]
(4.4)

when ε is sufficiently small.

Proof. This theorem will be proved in Section 4.3.

The proof of Lemma 2.7 follows from the above theorem immediately.

Proof of Lemma 2.7. Fix 1 ≤ i ≤ k and p > 0. For any η > 0, when ε is sufficiently small, we have
h(ε) ≤ eη/ε. Thus when ε is sufficiently small,

ε log(1 + αih(ε)) ≤ ε log(1 + αie
η/ε) ≤ ε log(e2η/ε) = 2η.

By the arbitrariness of η, we obtain that

lim
ε→0

ε log(1 + αih(ε)) = 0. (4.5)

On the other hand, when ε is sufficiently small, we have

e−βi/εh(ε)p/2 = exp

[
−βi

ε
+

p

2ε
o(1)

]
≤ e−βi/2ε.

This shows that
lim
ε→0

e−βi/ε(εh(ε))p/2 = 0. (4.6)

Thus (4.5) and (4.6), together with Theorem 4.4, show that

lim
ε→0

Esi [ sup
0≤t≤h(ε)

(Xε
t − si)]

p = 0. (4.7)

By symmetry, it is easy to check that the above equality holds when Xε
t − si is replaced by si −Xε

t .
This completes the proof of this lemma.
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4.2 Proof of Theorem 4.1

In order to prove Theorem 4.1, we need two lemmas. The following lemma, which gives the L1

maximum inequality for diffusion processes, can be found in [15, Theorem 2.5].

Lemma 4.5. Let X = (Xt)t≥0 be a diffusion process solving the stochastic differential equation

dXt = b(Xt)dt+ dBt, X0 = 0,

where b(x) is continuous. Assume that the condition (4.1) holds. Then there exists a universal constant
c > 0 such that for any stopping time τ ,

E[ sup
0≤t≤τ

Xt] ≤ cEH(τ).

The following useful lemma can be found in [2, Lemma 4.1].

Lemma 4.6. Let A = (At)t≥0 and B = (Bt)t≥0 be two continuous, adapted, increasing processes
with A0 = 0 and B0 ≥ 0. Assume that there exist q > 0 and c > 0 such that for any pair of finite
stopping times S and T with S ≤ T ,

E[(AT − AS)
q] ≤ c‖BT‖q∞P(S < T ).

Then for any p > 0, there exists a constant cp > 0 such that for any stopping time τ ,

EAp
τ ≤ cpEB

p
τ .

Based on the above two lemmas, we are in a position to prove Theorem 4.1.

Proof of Theorem 4.1. For any pair of finite stopping times S and T with S ≤ T , it is easy to check
that

sup
0≤t≤T

Xt − sup
0≤t≤S

Xt = sup
0≤t≤S

Xt ∨ sup
S≤t≤T

Xt − sup
0≤t≤S

Xt ≤ sup
S≤t≤T

Xt

and that

sup
0≤t≤T

Xt − sup
0≤t≤S

Xt = sup
0≤t≤S

Xt ∨ (XS + sup
S≤t≤T

(Xt −XS))− sup
0≤t≤S

Xt ≤ sup
S≤t≤T

(Xt −XS).

Thus we have

E[ sup
0≤t≤T

Xt − sup
0≤t≤S

Xt] ≤ E[ sup
S≤t≤T

Xt ∧ sup
S≤t≤T

(Xt −XS)]

≤ E[ sup
S≤t≤T

Xt;XS < 0] + E[ sup
S≤t≤T

(Xt −XS);XS ≥ 0] := I + II.
(4.8)

To estimate I, let R = inf{t ≥ S : Xt = 0} and Yt = XR+t. Direct computation shows that

I = E[ sup
S≤t≤T

Xt;XS < 0, T ≤ R] + E[ sup
S≤t≤T

Xt;XS < 0, T > R]

≤ E[ sup
S≤t≤T

Xt;XS < 0, T > R] = E[ sup
R≤t≤T

Xt;XS < 0, T > R]

≤ E[ sup
0≤t≤T−R

Yt;T > R] = E[ sup
0≤t≤T∨R−R

Yt].
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Since R is a stopping time, Wt = BR+t − BR is an {FR+t}-Brownian motion. It is easy to check that
Y is the solution to the stochastic differential equation

dYt = b(Yt)dt+ dWt, Y0 = 0.

Note that Y is an {FR+t}-adapted process and T ∨R−R is an {FR+t}-stopping time. By Lemma
4.5, we obtain that

I ≤ cE[H(T ∨R−R)] ≤ c‖H(T )‖∞P(R < T ) ≤ c‖H(T )‖∞P(S < T ). (4.9)

To estimate II, let Zt = XS+t. Direct computation shows that

II = E[ sup
0≤t≤T−S

(XS+t −XS);XS ≥ 0]

=

∫
[0,∞)

E[ sup
0≤t≤T−S

(XS+t −XS)|XS = a]P(XS ∈ da)

=

∫
[0,∞)

E
Z
a [ sup

0≤t≤T−S
(Zt − a)]P(XS ∈ da),

(4.10)

where E
Z
a (·) = E(·|Z0 = a). Since S is a stopping time, βt = BS+t − BS is an {FS+t}-Brownian

motion independent of FS . This implies that under PZ
a , βt is still an {FS+t}-Brownian motion. For

any a ∈ R, let Za
t = Zt − a and ba(x) = b(x+ a). It is easy to check that under PZ

a , Za is the solution
to the following stochastic integral equation:

Za
t =

∫ t

0

ba(Za
s )ds+ βt.

Moreover, let L be the solution to the following stochastic integral equation under PZ
a :

Lt =

∫ t

0

b(Ls)ds+ βt.

Since b(x) is monotonically decreasing, it is easy to see that ba(x) ≤ b(x) for any a ≥ 0 and x ∈ R. By
the comparison theorem [9, Page 437, Theorem 1.1], we have Za

t ≤ Lt for any t ≥ 0 with probability
one under PZ

a . Since L is an {FS+t}-adapted process and T −S is an {FS+t}-stopping time, it follows
from Lemma 4.5 that

E
Z
a [ sup

0≤t≤T−S
(Zt − a)] = E

Z
a [ sup

0≤t≤T−S
Za

t ] ≤ E
Z
a [ sup

0≤t≤T−S
Lt]

≤ cEZ
a [H(T − S)] ≤ c‖H(T )‖∞P

Z
a (S < T ).

Thus by (4.10) we have

II ≤
∫
[0,∞)

c‖H(T )‖∞P
Z
a (S < T )P(XS ∈ da)

= c‖H(T )‖∞P(S < T,XS ≥ 0) ≤ c‖H(T )‖∞P(S < T ).

(4.11)

Combining (4.8), (4.9), and (4.11), we obtain that

E[ sup
0≤t≤T

Xt − sup
0≤t≤S

Xt] ≤ 2c‖H(T )‖∞P(S < T ).
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It thus follows from Lemma 4.6 that for any p > 0, there exists a constant cp > 0 such that for any
stopping time τ ,

E[ sup
0≤t≤τ

Xt]
p ≤ cpEH(τ)p,

which gives the desired result.

4.3 Proof of Theorem 4.4

In order to prove Theorem 4.4, it is convenient to introduce the following definition.

Definition 4.7. Let X = (Xt)t≥0 be a diffusion process solving the stochastic differential equation

dXt = b(Xt)dt+ βdBt, X0 = 0,

where b(x) is locally Lipschitz continuous and β > 0. Then X is called a unilateral OU process if
b(x) is monotonically decreasing and there exists α ≥ 0 such that b(x) = −αx for x ≥ 0.

The following lemma gives an Lp maximum inequality for unilateral OU processes.

Lemma 4.8. Let X = (Xt)t≥0 be the unilateral OU process described in Definition 4.7. Then for any
p > 0, there exists a constant cp > 0 such that for any stopping time τ ,

E[ sup
0≤t≤τ

Xt]
p ≤ cp

[
βp

αp/2
E logp/2(1 + ατ)I{α>0} + βp

Eτ p/2I{α=0}

]
. (4.12)

Proof. Let Yt = Xt/β and let b̃(x) = b(βx)/β. Then Y is the solution to the following stochastic
differential equation:

dYt = b̃(Yt)dt+ dBt, Y0 = 0.

Let Ũ(x) denote the potential function of Y .
We first consider the case when α = 0. In this case, we have b̃(x) = Ũ(x) = 0 for any x ≥ 0.

Thus for any x ≥ 0,

F (x) = 2

∫ x

0

eŨ(y)dy

∫ y

0

e−Ũ(z)dz = x2.

and H(x) = F−1(x) =
√
x. It is easy to check that

sup
x>0

[
F (x)

x

∫ ∞

x

dz

F (z)

]
= 1 < ∞.

It thus follows from Theorem 4.1 that for any p > 0, there exists a constant cp > 0 such that for any
stopping time τ ,

E[ sup
0≤t≤τ

Yt]
p ≤ cpEτ

p/2.

This shows that (4.12) holds when α = 0.
We next consider the case when α > 0. In this case, we have b̃(x) = −αx and Ũ(x) = αx2 for

any x ≥ 0. In analogy to the proof of Corollary 4.2, it is easy to prove that for any p > 0, there exists
a constant cp > 0 such that for any stopping time τ ,

E[ sup
0≤t≤τ

Yt]
p ≤ cp

αp/2
E logp/2(1 + ατ).

This shows that (4.12) holds when α > 0.

20



We are now in a position to give the proof of Theorem 4.4.

Proof of Theorem 4.4. We first give the proof of the theorem when σ(x) ≡ 1. By Assumption 2.3, for
any 1 ≤ i ≤ k, there exists δ > 0 such that for any x ∈ [si, si + δ],

−2b(x) = U ′(x) ≥ 1

2
U ′′(si)(x− si).

This shows that b(x) ≤ −αi(x − si) for any x ∈ [si, si + δ], where αi = U ′′(si)/4. Since b(x) is
locally Lipschitz continuous, there exists a locally Lipschitz continuous function bi(x) such that bi(x)
is monotonically decreasing, bi(si) = 0, and b(x) ≤ bi(x) for any x ≤ si. Let

fi(x) =

⎧⎨
⎩−αi(x− si), x > si,

bi(x), x ≤ si.

It is easy to see that b(x) ≤ fi(x) for any x ≤ si + δ and fi(x) is monotonically decreasing. For any
1 ≤ i ≤ k, let X i,ε be the unilateral OU process solving the stochastic differential equation

dX i,ε
t = fi(X

i,ε
t )dt+

√
εdBt, X i,ε

0 = si.

Thus we have

Esi [ sup
0≤t≤h(ε)

(Xε
t − si)]

p

= Esi

[
[ sup
0≤t≤h(ε)

(Xε
t − si)]

p;h(ε) ≤ τ εsi+δ

]
+ Esi

[
[ sup
0≤t≤h(ε)

(Xε
t − si)]

p;h(ε) > τ εsi+δ

]

:= I + II.

(4.13)

Since b(x) ≤ fi(x) for any x ≤ si + δ, by the comparison theorem [9, Page 437, Theorem 1.1] and
the local property of diffusion processes, we have

I ≤ Esi

[
[ sup
0≤t≤h(ε)

(Xε
t − si) ∧ δ]p

]
= Esi

[
[ sup
0≤t≤h(ε)

(X i,ε
t − si) ∧ δ]p

]
≤ Esi [ sup

0≤t≤h(ε)

(X i,ε
t − si)]

p.

It follows from Lemma 4.8 that for any p > 0, there exists a constant cp > 0 such that

I ≤ Esi [ sup
0≤t≤h(ε)

(X i,ε
t − si)]

p ≤ cp[ε log(1 + αih(ε))]
p/2. (4.14)

On the other hand, by the strong Markov property of Xε at τ εsi+δ, we have

II = Esi

[
[ sup
τεsi+δ≤t≤h(ε)

(Xε
t − si)]

p;h(ε) > τ εsi+δ

]

≤ Esi

[
[ sup
0≤t≤h(ε)

(Xε
t+τεsi+δ

− si)]
p;h(ε) > τ εsi+δ

]

= Esi+δ[ sup
0≤t≤h(ε)

(Xε
t − si)]

p
Psi(τ

ε
si+δ < h(ε)).

(4.15)
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When 1 ≤ i ≤ k − 1, without loss of generality, we assume that δ < sk − sk−1. This shows that
si + δ < sk. Thus we obtain that

Esi+δ[ sup
0≤t≤h(ε)

(Xε
t − si)]

p

= Esi+δ

[
[ sup
0≤t≤h(ε)

(Xε
t − si)]

p;h(ε) ≤ τ εsk

]
+ Esi+δ

[
[ sup
0≤t≤h(ε)

(Xε
t − si)]

p;h(ε) > τ εsk

]

≤ (sk − si)
p + Esk

[
[ sup
0≤t≤h(ε)

(Xε
t − si)]

p

]

≤ (sk − si)
p +max{2p−1, 1}

[
Esk [ sup

0≤t≤h(ε)

(Xε
t − sk)]

p + (sk − si)
p

]
.

Recall that there exists a locally Lipschitz continuous function bk(x) such that bk(x) is monotonically
decreasing, bk(sk) = 0, and b(x) ≤ bk(x) for any x ≤ sk. Let

g(x) =

⎧⎨
⎩0, x > sk,

bk(x), x ≤ sk.

It is easy to see that b(x) ≤ g(x) for any x ∈ R. Let Y ε be the unilateral OU process solving the
stochastic differential equation

dY ε
t = g(Y ε

t )dt+
√
εdBt, Y ε

0 = sk.

By the comparison theorem and Lemma 4.8, for any p > 0, there exists a constant cp > 0 such that

Esk [ sup
0≤t≤h(ε)

(Xε
t − sk)]

p ≤ E[ sup
0≤t≤h(ε)

(Y ε
t − sk)]

p ≤ cp(εh(ε))
p/2. (4.16)

This shows that

Esi+δ[ sup
0≤t≤h(ε)

(Xε
t − si)]

p ≤ (sk − si)
p +max{2p−1, 1} [cp(εh(ε))p/2 + (sk − si)

p
]
. (4.17)

When i = k, direct computation shows that

Esk+δ[ sup
0≤t≤h(ε)

(Xε
t − sk)]

p ≤ max{2p−1, 1}Esk+δ

[
[ sup
0≤t≤h(ε)

(Xε
t − sk − δ)]p + δp

]
.

In analogy to the proof of (4.16), we can prove that for any x ≥ sk,

Ex[ sup
0≤t≤h(ε)

(Xε
t − x)]p ≤ cp(εh(ε))

p/2. (4.18)

Thus we have

Esk+δ[ sup
0≤t≤h(ε)

(Xε
t − sk)]

p ≤ max{2p−1, 1} [cp(εh(ε))p/2 + δp
]
. (4.19)

It follows from (4.17) and (4.19) that there exists a constant Kp ≥ cp such that for any 1 ≤ i ≤ k,

Esi+δ[ sup
0≤t≤h(ε)

(Xε
t − si)]

p ≤ Kp

[
(εh(ε))p/2 + 1

]
. (4.20)
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Furthermore, since we have assumed that σ(x) ≡ 1, it is a classical result of the Freidlin-Wentzell
theory that for any 1 ≤ i ≤ k, there exists a constant βi > 0 such that

Psi(τ
ε
si+δ < eβi/ε) ≤ e−βi/ε

when ε is sufficiently small [14, Page 116, Remark 2.41]. By (2.4), we have h(ε) ≤ eβi/ε when ε is
sufficiently small. This shows that when ε is sufficiently small,

Psi(τ
ε
si+δ < h(ε)) ≤ e−βi/ε. (4.21)

Combining (4.13), (4.14), (4.15), (4.20), and (4.21), we finally obtain that

Esi [ sup
0≤t≤h(ε)

(Xε
t − si)]

p ≤ Kp[ε log(1 + αih(ε))]
p/2 +Kpe

−βi/ε
[
(εh(ε))p/2 + 1

]
. (4.22)

We next give the proof of the theorem for general σ(x). Let M ε
t =

∫ t

0
σ(Xε

s)dBs. Then the
quadratic variation process of M ε is [M ε]t =

∫ t

0
σ2(Xε

s)ds. By Assumption 2.1(ii), [M ε]t is strictly
increasing and [M ε]∞ = ∞. Let ζεt = [M ε]−1

t be the inverse of [M ε]t and let Y ε
t = Xε

ζεt
. It is easy to

check that Y ε is the solution to the following stochastic differential equation

dY ε
t =

b(Y ε
t )

σ2(Y ε
t )

dt+
√
εdW ε

t , Y ε
0 = 0,

where W ε
t = M ε

ζεt
is a standard Brownian motion. By Assumptions 2.1 and 2.3, it is easy to check that

b(x)/σ2(x) is locally Lipschitz continuous. Moreover, it is easy to see that

sup
0≤t≤h(ε)

Xε
t = sup

0≤t≤[Mε]h(ε)

Y ε
t ≤ sup

0≤t≤γ2
2h(ε)

Y ε
t .

It thus follows from (4.23) that for any 1 ≤ i ≤ k and p > 0, there exists a constant Kp > 0, αi > 0,
and βi > 0 such that

Esi [ sup
0≤t≤h(ε)

(Xε
t − si)]

p ≤ Kp[ε log(1 + αiγ
2
2h(ε))]

p/2 +Kpe
−βi/ε

[
γp
2(εh(ε))

p/2 + 1
]
, (4.23)

which gives the desired result.
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