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Existence and uniqueness for a concrete

carbonation process with hysteresis

Toyohiko Aiki∗ and Sergey A. Timoshin†

January 4, 2017

Abstract

A partial differential system arising in the moisture transport in
concrete carbonation modeling is considered. The system consists of
a diffusion equation for moisture and an ordinary differential equa-
tion accounting for the hysteresis effect appearing in the process. The
existence of solutions for this system supplied with suitable initial
boundary conditions and having fairly general nonlinear right-hand
sides is established. When the dimension of the space domain is one,
the uniqueness of a solution is also provided.

Keywords: evolution system, hysteresis, concrete carbonation.

1 Introduction

In the space-time cylinder Q(T ) := [0, T ]×Ω, where Ω ⊂ R
N (N ≥ 1) is a bounded

domain with smooth boundary ∂Ω and T > 0 is a fixed final time, consider the
system

ρut − div(g(u)∇u) = h(u,w) in Q(T ), (1.1)

wt + ∂I(u;w) � F (u,w) in Q(T ), (1.2)

u = ub on (0, T )× ∂Ω, (1.3)
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u(0) = u0, w(0) = w0 on Ω. (1.4)

Here, ρ is a given positive constant, I(u; ·) is the indicator function of the interval
[f∗(u), f∗(u)], ∂I(u; ·) is its subdifferential, g, h, F, f∗, f∗ are given functions with
the properties specified in the next section, ub, u0, w0 are given boundary and initial
conditions.

For convenience, denote system (1.1)–(1.4) by (P ). System (P ) in case when
F ≡ 0 and h = wf(t, x) with f ∈ L∞(Q(T )), f ≥ 0 was studied in [1,2] as a simpli-
fied model for moisture transport appearing in concrete carbonation process when
hysteresis effects are taken into account. The unknowns u = u(t, x) and w = w(t, x)
represent then the relative humidity and the degree of saturation, respectively, ρ is
the density of saturated vapor and f is the quantity of water produced as a result
of chemical reactions during concrete carbonation. Eq. (1.1) is the diffusion equa-
tion for moisture and relation (1.2) models the so-called generalized play operator
generated by the curves w = f∗(u) and w = f∗(u), see [3–5] for details. The in-
troduction of the latter operator to the model accounts for hysteretic relationship
between u and w, playing in this case the roles of the input and output functions,
respectively. We refer the reader to [6] for more physical background on the model.
We mention also the articles [7–9], where systems related to (P ) with g(u) ≡ 1 were
considered.

The purpose of the present paper is to prove the existence of a solution to
system (P ) in case of sufficiently general F and h and, when N = 1, to establish
the uniqueness of such a solution. The reason for considering general nonlinearities
on the right-hand sides of (1.1), (1.2) is two-fold. First, in this form the proposed
system might be a better approximation of a rather complicated from the mathe-
matical investigation point of view model of the moisture transport in cementitious
materials proposed originally in [10] and then simplified in [1, 2]. Second, such a
generalization often represents a challenging and interesting task from the mathe-
matical point of view.

Our approach to establish the existence for problem (P ) is in some aspects
somewhat close to that used in [1]. In particular, first we construct a family of suit-
able approximate problems based on the Yosida regularization ∂Iλ(u; ·), λ > 0 of
the subdifferential ∂I(u; ·) and establish the existence of solutions for these approx-
imate problems for each λ > 0. Then, we derive a priori estimates independent of λ
for solutions of approximate problems. Finally, we prove existence of a solution to
problem (P ) through the passage-to-the-limit procedure. We note that in contrast
to [1] we do not singularly perturb Eq. (1.2) to get suitable compactness proper-
ties. Instead, in order to legitimate the passage-to-the-limit we exploit essentially
the properties derived from the specific structure of the approximate equations for
(1.2). This also allowed us, inter alia, to treat general nonlinearities in Eqs. (1.1),
(1.2).

At the end of the introduction we make some remarks on the uniqueness proof
for problem (P). In case when F ≡ 0 and h = wf(t, x), the uniqueness of a solution
to the problem is proved for N = 3 in [11]. We note that the corresponding proof is
rather long and complicated due to the facts that the continuous dependence of the



Existence for a concrete carbonation process 3

solution w of (1.2) on u is only valid in the topology of L∞ (see Lemma 6.1 below)
and (1.1) is quasi-linear. Thus, in the present paper we prove the uniqueness only for
the case of N = 1. However, since in our problem F �≡ 0 the difficulty for the proof
of uniqueness persists. To circumvent such a difficulty, in [9] Kenmochi, Minchev
and Okazaki added ut to (1.1), applied the Hilpert inequality, and then proved the
uniqueness. The idea to overcome this difficulty in our paper is to impose some
monotonicity or smallness assumptions on F . Making use of these assumptions
we obtain the continuous dependence for (1.2) as stated in Lemma 6.1. Then, in
order to apply Lemma 6.1 to prove the uniqueness we need an estimate for the
L∞−norm of the difference of two solutions u1 and u2. Accordingly, we multiply
the corresponding difference of the equations (1.1) for u1 and u2 by −(u1 − u2)xx
and get the required estimate. A similar argument to treat the quasi-linear equation
(1.1) is outlined in [2].

2 Preliminaries and hypotheses on the data

In this section, we recall some notions which we use in the paper, state several
known auxiliary results, and posit assumptions on the coefficients and functions
describing problem (P ).

Throughout the paper we denote by H the Hilbert space L2(Ω) with the
standard inner product (·, ·)H , and by V the Sobolev space H1(Ω).

Let f∗, f∗ be two Lipschitz continuous functions defined on R. Recall that the
subdifferential of the indicator function I(u; ·), u ∈ H,

I(u;w) :=

{
0 if w ∈ K(u),

+∞ otherwise,

of the set K(u) = {w ∈ H; f∗(u) ≤ w ≤ f∗(u) a.e. on Ω} has the form:

∂I(u;w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅ if w /∈ K(u),
[0,+∞) if w = f∗(u) > f∗(u) a.e. on Ω,
{0} if f∗(u) < w < f∗(u) a.e. on Ω,

(−∞, 0] if w = f∗(u) < f∗(u) a.e. on Ω,
(−∞,+∞) if w = f∗(u) = f∗(u) a.e. on Ω.

(2.1)

For λ > 0 the Yosida regularization of ∂I(u;w) is the function

∂Iλ(u;w) =
1

λ
[w − f∗(u)]+ − 1

λ
[f∗(u)− w]+, u, w ∈ H. (2.2)

It is the subdifferential of the convex function

Iλ(u;w) =
1

2λ

∣∣[w − f∗(u)]+
∣∣2
H
− 1

2λ

∣∣[f∗(u)− w]+
∣∣2
H
, u, w ∈ H.

Lemma 2.1. (cf. [8, Lemma 4.1]) For u,w ∈ W 1,2(0, T ;H) we have

d

dt
Iλ(u;w) ≤ (∂Iλ(u;w), wt)H + C0|∂Iλ(u;w)|H |ut|H a.e. on [0, T ], λ > 0,
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where C0 := max{|f ′
∗|L∞(R), |f∗′|L∞(R)}.

Problem (1.1)–(1.4) is considered under the following hypotheses:

(A1) ρ is a positive constant;

(A2) g ∈ C2((0,∞)) and g(r) ≥ g0 for r > 0, where g0 is a positive constant. In
addition, g(r) = G′(r) for a continuous function G : (0,∞) → R;

(A3) h, F : R2 → R are locally Lipschitz continuous and h is nonnegative and
bounded on R

2;

(A4) f∗, f∗ ∈ C2(R) ∩ W 2,∞(R) with 0 ≤ f∗ ≤ f∗ ≤ w∗ on R, where w∗ is a
positive constant;

(A5) ub ∈ W 1,2(0, T ;V ) ∩ L∞(0, T ;H2(Ω)) with ub ≥ κ0 a.e. on Q(T ) for some
positive constant κ0;

(A6) u0 ∈ L∞(Ω) ∩ V , w0 ∈ L∞(Ω) with u0 ≥ κ0, w0 ≥ 0 a.e. on Ω, u0 = ub(0)
a.e. on ∂Ω and f∗(u0) ≤ w0 ≤ f∗(u0).

Note that these hypotheses are consistent with physically justified assumptions
on the concrete carbonation model considered in [1, 2] for the case of F ≡ 0 and
h = wf(t, x) with a nonnegative function f ∈ L∞(Q(T )).

Next, we define a notion of solution to our problem (P ).

Definition 2.1. A pair {u,w} is called a solution of system (1.1)–(1.4) if

u ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ];H2(Ω)), u > 0,

w ∈ W 1,2(0, T ;H),

and there exists a function ξ ∈ L2(0, T ;H) such that

wt + ξ = F (u,w) a.e. in Q(T ),

ξ(t) ∈ ∂I(u(t);w(t)) for a.e. t ∈ [0, T ],

ρut − div(∇G(u)) = h(v, w) a.e. in Q(T ),

u = ub a.e. on (0, T )× ∂Ω,

u(0) = u0, w(0) = w0 a.e. on Ω.

3 L∞-boundedness of solutions

In this section, we obtain a priori L∞-bounds for all possible solutions of system
(1.1)–(1.4). To this end, let {u,w} be an arbitrary solution to problem (P ). First,
we note that in view of (2.1) Eq. (1.2) requires the following constraint:

f∗(u) ≤ w ≤ f∗(u) a.e. on Q(T ). (3.1)
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Hence, taking account of (A4) we immediately see that

0 ≤ w ≤ w∗ a.e. on Q(T ).

Next, testing (1.1) by −[û + κ0]
+, where û = −u, κ0 is the same constant as

in (A5), (A6), from (A3) we obtain

ρ

2

d

dt

∣∣[û+ κ0]
+
∣∣2
H
+

∫
Ω

ΔG(u(t))[û+ κ0]
+dx ≤ 0 for a.e. t ∈ [0, T ]. (3.2)

We note that by virtue of (A5), (A2)

∫
Ω

ΔG(u(t))[û+ κ0]
+dx = −

∫
Ω

∇G(u(t))∇[û+ κ0]
+dx

= −
∫
Ω

g(u(t))∇u(t)∇[û+ κ0]
+dx

=

∫
Ω

g(u(t))
∣∣∇[û+ κ0]

+
∣∣2
H
dx ≥ 0 for a.e. t ∈ [0, T ].

From (3.2) we then infer that

u ≥ κ0 a.e. on Q(T ).

Let now

M1 := max{|u0|L∞(Ω), |ub|L∞(Ω)},
M2 := ρ−1|h|L∞(R2),

p(t) := M1 +M2t.

Testing (1.1) by [u− p]+ we deduce that

ρ

2

d

dt

∣∣[u− p]+
∣∣2
H
+

∫
Ω

∇G(u)∇[u− p]+dx

=

∫
Ω

(h(u,w)− ρM2)[u− p]+dx ≤ 0 a.e. on [0, T ].

Hence,
u ≤ p ≤ M1 +M2T := M0 a.e. on Q(T ).

Therefore, for any solution {u,w} of problem (P ) we have

κ0 ≤ u ≤ M0, 0 ≤ w ≤ w∗. (3.3)

Now that every solution of (1.1)–(1.4) is bounded, without loss of generality, we
may assume (cutting off outside the set {κ0 ≤ u ≤ M0, 0 ≤ w ≤ w∗}, if necessary)
that the functions h, F are both bounded and Lipschitz continuous on R

2. We
denote by L a common Lipschitz constant of h and F .
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4 Approximation problem

In order to prove the existence of a solution to our problem (P ), in this section, we
approximate the latter by a family of suitable problems depending on two approx-
imation parameters which we introduce next.

For λ > 0 and u ∈ H, let ∂Iλ(u; ·) be the Yosida regularization of ∂I(u; ·).
Furthermore, for a given m > 0 let gm be a function on R such that gm ∈ C1(R),
gm(r) = g(r) for 1

m ≤ r ≤ m and gm ≥ g0 on R, where g0 is the constant from (A2).

Setting Gm(r) =
∫ r

1
gm(s) ds for r ∈ R, we consider the following approximate

problem denoted by (P )λ,m:

ρut − div(∇Gm(u)) = h(u,w) in Q(T ), (4.1)

wt + ∂Iλ(u;w) = F (u,w) in Q(T ), (4.2)

u = ub on (0, T )× ∂Ω, (4.3)

u(0) = u0, w(0) = w0 on Ω. (4.4)

A pair of functions {u,w} is called a solution to (P )λ,m if u ∈ W 1,2(0, T ;H) ∩
L∞(0, T ;V ) ∩ L2(0, T ];H2(Ω)), u > 0 a.e. on Q(T ), w ∈ W 1,2(0, T ;H) and (4.1)–
(4.4) hold.

Below, we prove the existence of solutions for problems (P )λ,m, λ,m > 0.
We split the proof into three steps. In the first one, we establish the continuity of
the solution operator that with a function u from an appropriate class associates
the solution w of the ODE (4.2) and derive a priori estimates for w. Then, we
obtain a similar result for the solution operator which with a function w associates
the solution u of the PDE (4.1). Finally, we use these continuity properties and
estimates to construct a solution to (P )λ,m by the Schauder fixed point theorem.

4.1 Step 1: ODE mapping

We fix λ,m > 0 and let

KC := {z ∈ L2(0, T ;H); |z|W 1,2(0,T ;H) + |z|L∞(0,T ;V ) ≤ C},
for a positive constant C to be determined later. For a given ũ ∈ KC consider the
following problem:

wt + ∂Iλ(ũ;w) = F (ũ, w) in Q(T ), (4.5)

w(0) = w0 on Ω. (4.6)

Since ∂Iλ(ũ;w)− F (ũ, w) is Lipschitz continuous, by general existence-uniqueness
theorem for ODEs system (4.5), (4.6) admits a unique solution w ∈ W 1,2(0, T ;H).

Lemma 4.1. If w is a solution to (4.5), (4.6), then

|w| ≤ R (4.7)

for R = w∗ + |F |L∞(R2)T , where w∗ is the constant from (A4).
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Proof. Let p(t) := w∗ + |F |L∞(R2)t. Then, testing (4.5) by [w − p]+ we obtain

1

2

d

dt

∣∣[w − p]+
∣∣2
H
+

∫
Ω

∂Iλ(ũ;w)[w − p]+dx

=

∫
Ω

(
F (ũ, w)− |F |L∞(R2)

)
[w − p]+dx ≤ 0 a.e. on [0, T ].

Since the second term on the left-hand side of this inequality is non-negative (cf.
(2.2)) we have

w ≤ p ≤ w∗ + |F |L∞(R2)T =: R.

Testing next (4.5) by −[ŵ − p]+ with ŵ = −w we see that

1

2

d

dt

∣∣[ŵ − p]+
∣∣2
H

= −
∫
Ω

(|F |L∞(R2) + F (ũ, w)
)
[ŵ − p]+dx

+

∫
Ω

∂Iλ(ũ;w)[ŵ − p]+dx a.e. on [0, T ].

Since ∂Iλ(ũ;w)[ŵ − p]+ ≤ 0 (cf. (2.2)), from the above inequality we infer that

w ≥ −p ≥ −R,

so that the claim of lemma follows. �
For C > 0, let S1 : KC → L2(0, T ;H) be given by

S1ũ = w, ũ ∈ KC ,

where w is the solution of (4.5), (4.6) for ũ ∈ KC .

Lemma 4.2. The operator S1 is continuous.

Proof. Let ũi, ũ ∈ KC , i ≥ 1, ũi → ũ in L2(0, T ;H) as i → ∞, and wi := S1ũi,
i ≥ 1, w := S1ũ. Then, by virtue of Eq. (4.5) we have

(wi − w)t + ∂Iλ(ũi;wi)− ∂Iλ(ũ;w) = F (ũi, wi)− F (ũ, w) in Q(T ).

Multiplying this equality by wi − w, using the Lipschitz continuity of ∂Iλ, F and
Young’s inequality we obtain

1

2

d

dt
|wi(t)− w(t)|2H ≤ C1|ũi(t)− ũ(t)|2H + C2|wi(t)− w(t)|2H for a.e. t ∈ [0, T ],

where C1, C2 are some positive constants depending on λ and the Lipschitz con-
stants of f∗, f∗ and F . The Gronwall inequality allows us to conclude now that
wi → w in L2(0, T ;H). Hence, S1 is continuous as claimed. �
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4.2 Step 2: PDE mapping

Let

WR := {z ∈ L2(0, T ;H); |z| ≤ R a.e. on Q(T )},
where R is the constant from (4.7). For a given w̃ ∈ WR consider the following
problem:

ρut − div(∇Gm(u)) = h(u, w̃) in Q(T ), (4.8)

u = ub on (0, T )× ∂Ω, (4.9)

u(0) = u0 on Ω. (4.10)

Define the function

ϕt(z) :=

{ |∇z|2H if z ∈ V with z = Gm(ub) on ∂Ω,
+∞ otherwise,

(4.11)

and consider the following problem:

ρut + ∂ϕt(Gm(u)) � h(u, w̃) in H, t ∈ [0, T ], (4.12)

u(0) = u0 in H. (4.13)

Since Gm is bi-Lipschitz continuous and h is continuous and bounded invoking the
abstract theory as developed by Kenmochi (cf. [12, Theorem 2.8.1 and Proposition
3.2.2]) we conclude that problem (4.12), (4.13) has a solution u ∈ W 1,2(0, T ;H)
such that ϕt(Gm(u)) is bounded on [0, T ]. From the bi-Lipschitz continuity of
Gm we then infer that u(t) ∈ H1(Ω) for every t ∈ [0, T ]. Furthermore, from
the fact that Gm(u) = Gm(ub) a.e. on (0, T ) × ∂Ω we obtain that u = ub a.e. on
(0, T )×∂Ω. Therefore, u is also a solution to (4.8)–(4.10) with u ∈ L∞(0, T ;H1(Ω)).
In addition, [13, Lemma 3.7.1] implies that u ∈ L2(0, T ;H2(Ω)).

Next, we establish the uniqueness result for problem (4.8)–(4.10).

Lemma 4.3. For a given w̃ ∈ WR problem (4.8)–(4.10) has a unique solution.

Proof. Let u1, u2 be two solutions of (4.8)–(4.10) for a given w̃ ∈ WR. Then, we
have

ρ(u1 − u2)t −Δ(Gm(u1)−Gm(u2)) = h(u1, w̃)− h(u2, w̃). (4.14)

We denote by sign : R → {−1, 0, 1} the sign function, that is, sign(z) = 1 if z > 0,
sign(z) = 0 if z = 0, sign(z) = −1 if z < 0, and by signδ its regularization with a
positive parameter δ, which is defined as

signδ(z) =

⎧⎨
⎩

1 for z ≥ δ,
z/δ for z ∈ (−δ, δ),
−1 for z ≤ −δ.
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Testing (4.14) by signδ(Gm(u1)−Gm(u2)) and using the Lipschitz continuity of h
we obtain

ρ

∫
Ω

(u1t(t)− u2t(t)) signδ(Gm(u1)(t)−Gm(u2)(t)) dx

+

∫
Ω

∇(Gm(u1(t))−Gm(u2(t)))∇ signδ(Gm(u1(t))−Gm(u2(t))) dx

≤ L|u1(t)− u2(t)|L1(Ω) for a.e. t ∈ [0, T ]. (4.15)

Since sign′δ ≥ 0, the second term on the left-hand side of this inequality is non-
negative. Letting δ tend to zero and using the fact that sign(u1−u2) = sign(Gm(u1)−
Gm(u2)) a.e. in Q(T ), from (4.15) we infer that

ρ
d

dt
|u1(t)− u2(t)|L1(Ω) ≤ L|u1(t)− u2(t)|L1(Ω) for a.e. t ∈ [0, T ].

The Gronwall argument now implies the claim of lemma. �

Lemma 4.4. If u is a solution to problem (4.8)–(4.10) for w̃ ∈ WR, then

κ0 ≤ u ≤ M0 a.e. in Q(T ),

where κ0,M0 are the same constants as in Section 3.

The proof of this lemma follows the lines of the proof of a priori estimates for u
given in Section 3.

Now, let S2 : WR → L2(0, T ;H) be given by the rule

S2w̃ = u, w̃ ∈ WR,

where u is the solution of (4.8)–(4.10) for w̃ ∈ WR.

Lemma 4.5. The operator S2 is continuous.

Proof. Let w̃i, w̃ ∈ WR, i ≥ 1, w̃i → w̃ in L2(0, T ;H) as i → ∞, and ui := S2w̃i,
i ≥ 1, u := S2w̃. Then, from Eq. (4.8) it follows that

ρ(ui − u)t −Δ(Gm(ui)−Gm(u)) = h(ui, w̃i)− h(u, w̃) in Q(T ).

Multiplying this equality by signδ(Gm(ui)−Gm(u)), in view of the Lipschitz con-
tinuity of h we obtain

ρ

∫
Ω

(uit(t)− ut(t)) signδ(Gm(ui)(t)−Gm(u)(t)) dx

≤
∫
Ω

(|ui(t)− u(t)|+ |w̃i(t)− w̃(t)|) dx for a.e. t ∈ [0, T ].

Letting δ → 0 we conclude as in Lemma 4.4 that

ρ
d

dt
|ui(t)− u(t)|L1(Ω) ≤ L

(|ui(t)− u(t)|L1(Ω) + |w̃i(t)− w̃(t)|L1(Ω)

)
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for a.e. t ∈ [0, T ]. The Gronwall argument then implies that

ui → u in L1(0, T ;L1(Ω)) as i → ∞.

The claim of lemma finally follows from the inequality

|ui − u|L2(0,T ;H) ≤
√

2M0|ui − u|1/2L1(0,T ;L1(Ω)).

�

4.3 Step 3: Fixed point argument

Consider the superposition of the operators S1 and S2 defined in two previous
steps. Lemmas 4.1, 4.2 and 4.5 imply that this superposition S := S2 ◦ S1 : KC →
L2(0, T ;H) is continuous in L2(0, T ;H). Since the set KC is non-empty, convex
and compact in L2(0, T ;H), in order to apply the Schauder fixed point theorem
to establish the existence of a solution to problem (P )λ,m it remains to show that
S takes its values in the set KC for an appropriate choice of the constant C. The
following lemma serves this purpose.

Lemma 4.6. If u is a solution to problem (4.8)–(4.10) for a given w̃ ∈ WR, then

|u|L∞(0,T ;V ) + |u|L2(0,T ;H2(Ω)) ≤ M, (4.16)

for some M independent of w̃.

Proof. Testing (4.8) by Gm(u)t we obtain

ρ(ut(t), Gm(u(t))t)H + (−ΔGm(u(t)), Gm(u(t))t)H

= (h(u(t), w̃(t)), Gm(u(t))t)H for a.e. t ∈ [0, T ].

Then, [14, Proposition 3.2] implies that

d

dt
ϕt(Gm(u(t)))− (h(u(t), w̃(t))− ρut(t), Gm(u(t))t)H

≤ δ|h(u(t), w̃(t))− ρut(t)|2H
+

( 1

2δ
|a′(t)|2 + |a′(t)|

)
(1 + ϕt(Gm(u(t)))) (4.17)

for a.e. t ∈ [0, T ] for some δ > 0, where ϕt is defined by (4.11) and a(t) =

const · ∫ t

0
|Gm(ub(τ))τ |Hdτ (cf. [12, Proposition 3.2.2]). From (4.17) we further

obtain

(ρg0
2

− 2δρ2
)
|ut(t)|2H +

d

dt
ϕt(Gm(u(t)))

≤ M1 + 2δM2 +
( 1

2δ
|a′(t)|2 + |a′(t)|

)
(1 + ϕt(Gm(u(t)))) (4.18)
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for a.e. t ∈ [0, T ], whereM1 = (|h|L∞(R2)g∗|Ω|1/2)2/(2ρg0) with g∗ = sup
κ0≤r≤M0

gm(r),

M2 = |h|2L∞(R2)|Ω|. Taking δ such that ρg0/2− 2δρ2 > 0 and applying Gronwall’s

lemma to (4.18) we have

|u|W 1,2(0,T ;H) + |u|L∞(0,T ;V ) ≤ M3, (4.19)

for some constant M3 > 0.
Finally, proceeding exactly as in [1, Lemma 7] we obtain the assertion of lemma.

�
Now, setting C = M + M3, where M and M3 are the constants from (4.16)

and (4.19), respectively, we see that the operator S acts from KC into KC . There-
fore, from the Schauder fixed point theorem we conclude that S has a fixed point,
which we denote by uλ,m ∈ KC , λ > 0, m > 0. This, in particular, means that
{uλ,m, wλ,m}, where wλ,m := S1uλ,m, is a solution to problem (P )λ,m, λ > 0,
m > 0.

5 Existence for problem (P )

Reasoning as in Lemmas 4.1, 4.4 we see that for a solution {uλ,m, wλ,m} to problem
(P )λ,m, λ > 0, m > 0 obtained at the end of previous section the following estimates
hold

κ0 ≤ uλ,m ≤ M0, |wλ,m| ≤ R a.e. on Q(T ).

Therefore, fixing m such that 1
m ≤ κ0 and M0 ≤ m, we deduce that {uλ,m, wλ,m}

is also a solution to the problem consisting of Eqs. (4.1), (4.2)–(4.4) and denoted
by (P )λ, λ ∈ (0, 1]. Below, we derive a priori uniform estimates independent of λ
for solutions {uλ, wλ} to (P )λ, λ ∈ (0, 1] and use them to establish the existence of
a solution to problem (P ) through the passage-to-the-limit procedure.

Lemma 5.1. The set {uλ}λ∈(0,1] is bounded in W 1,2(0, T ;H), L∞(0, T ;V ) and
L2(0, T ;H2(Ω)). In addition, {Gm(uλ)}λ∈(0,1] is bounded in L2(0, T ;H2(Ω)).

Proof. First, as shown above, we have

κ0 ≤ uλ ≤ M0 a.e. on Q(T ), λ ∈ (0, 1].

Next, arguing as in Lemma 4.6 we can prove that {uλ}λ∈(0,1] is bounded inW 1,2(0, T ;H)
and L∞(0, T ;V ). Then, since ρuλt −ΔGm(uλ) = h(uλ, wλ) on Q(T ), we see that
{ΔGm(uλ)}λ∈(0,1] is bounded in L2(0, T ;H). Hence, [13, Lemma 3.7.1] implies that
{Gm(uλ)}λ∈(0,1] is bounded in L2(0, T ;H2(Ω)). Finally, from the equality

ΔGm(uλ) = gm(uλ)Δuλ + g′m(uλ)|∇uλ|2

and the fact that gm ≥ g0 we infer that {Δuλ}λ∈(0,1] is bounded in L2(0, T ;H) and
thus {uλ}λ∈(0,1] is bounded in L2(0, T ;H2(Ω)). �
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Lemma 5.2. The set {wλ}λ∈(0,1] is bounded in W 1,2(0, T ;H), {∂Iλ(uλ;wλ)}λ∈(0,1]

is bounded in L2(0, T ;H), and {Iλ(uλ;wλ)}λ∈(0,1] is bounded in L∞(0, T ).

Proof. First, we see again that

|wλ| ≤ R a.e. on Q(T ), λ ∈ (0, 1].

Next, let λ ∈ (0, 1]. Testing (4.2) by wλt we obtain

|wλt|2H + (∂Iλ(uλ;wλ), wλt)H ≤ |F (uλ, wλ)|H |wλt|H a.e. on [0, T ].

From Lemma 2.1 it then follows that

|wλt|2H +
d

dt
Iλ(uλ;wλ) ≤ C0|∂Iλ(uλ;wλ)|H |uλt|H + |F (uλ, wλ)|H |wλt|H

a.e. on [0, T ]. In view of Eq. (4.2) using Young’s inequality we further obtain

|wλt|2H + 2
d

dt
Iλ(uλ;wλ) ≤ C1

(
1 + |uλt|2H

)
a.e. on [0, T ]

for C1 = max{2(C0 + C2
0 ), (

C0

2 + 2)|F |2L∞(R2)|Ω|}. Integrating this inequality and

taking account of the facts that Iλ(uλ;wλ) ≥ 0, Iλ(u0;w0) = 0 (cf. (A6)) from
Lemma 5.1 we infer that {wλ}λ∈(0,1] is bounded in W 1,2(0, T ;H)

Now, testing (4.2) by ∂Iλ(uλ;wλ) and using Lemma 2.1 again we have

d

dt
Iλ(uλ;wλ) + |∂Iλ(uλ;wλ)|2H ≤ |F (uλ, wλ)|H |∂Iλ(uλ;wλ)|H

+ C0|∂Iλ(uλ;wλ)|H |uλt|H a.e. on [0, T ].

Applying Young’s inequality to the terms on the right-hand side of this inequality
we deduce that

d

dt
Iλ(uλ;wλ) +

1

2
|∂Iλ(uλ;wλ)|2H ≤ C2

(
1 + |uλt|2H

)
a.e. on [0, T ]

for some C2 > 0 depending on C0, |F |2L∞(R2) and |Ω|. Then, integrating the last

inequality we see as above that {∂Iλ(uλ;wλ)}λ∈(0,1] is bounded in L2(0, T ;H) and
{Iλ(uλ;wλ)}λ∈(0,1] is bounded in L∞(0, T ). �

On account of Lemmas 5.1 and 5.2, by weak and weak-star compactness results,
there exists a null sequence λj , j ≥ 1, in (0, 1] and functions u,w ∈ W 1,2(0, T ;H),
ξ ∈ L2(0, T ;H) such that

uj := uλj → u weakly in W 1,2(0, T ;H) ∩ L2(0, T ;H2(Ω)),

weakly-star in L∞(0, T ;V ) and in C([0, T ];H),
(5.1)

wj := wλj → w weakly in W 1,2(0, T ;H), (5.2)

∂Iλj (uj ;wj) → ξ weakly in L2(0, T ;H). (5.3)
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We will show below that also

wj → w in C([0, T ];H). (5.4)

In fact, from (4.2) for any i, j ≥ 1, i �= j, we have

wjt − wit + ∂Iλj (uj ;wj)− ∂Iλi(ui;wi) = F (uj , wj)− F (ui, wi).

Testing this equality by wj − wi, using the Lipschitz continuity of F and Young’s
inequality we obtain

1

2

d

dt
|wj − wi|2H + (∂Iλj (uj ;wj)− ∂Iλi(ui;wi), wj − wi)H

≤ 2L(|wj − wi|2H + |uj − ui|2H). (5.5)

Set

Sij = (∂Iλj (uj ;wj)− ∂Iλi(ui;wi), wj − wi)H . (5.6)

Then, from (2.2) it follows that

Sij =

(
1

λj
[wj − f∗(uj)]

+ − 1

λj
[f∗(uj)− wj ]

+

− 1

λi
[wi − f∗(ui)]

+ +
1

λi
[f∗(ui)− wi]

+, wj − wi

)
H

.

Next, we estimate the value of Sij from below. There are nine possible cases to
consider. First, we assume that wj ≥ f∗(uj), wi ≥ f∗(ui). Then, we have

Sij =

(
1

λj
(wj − f∗(uj))− 1

λi
(wi − f∗(ui)),

λj
1

λj
(wj − f∗(uj))− λi

1

λi
(wi − f∗(ui)) + f∗(uj)− f∗(ui)

)
H

≥ λj |∂Iλj (uj ;wj)|2H + λi|∂Iλi(ui;wi)|2H − (λj + λi)|∂Iλj (uj ;wj)|H |∂Iλi(ui;wi)|H
− (|∂Iλj

(uj ;wj)|H + |∂Iλi
(ui;wi)|H)|f∗(uj)− f∗(ui)|H .

In the case when wj ≥ f∗(uj), f∗(ui) ≤ wi < f∗(ui) we have

Sij =

(
1

λj
(wj − f∗(uj)), wj − wi

)
H

≥ −|∂Iλj (uj ;wj)|H |f∗(uj)− f∗(ui)|H .

If wj ≥ f∗(uj), wi < f∗(ui), then

Sij =

(
1

λj
(wj − f∗(uj)) +

1

λi
(f∗(ui)− wi), wj − wi

)
H

≥ − (|∂Iλj (uj ;wj)|H + |∂Iλi(ui;wi)|H
) |f∗(uj)− f∗(ui)|H .
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The remaining cases:

f∗(uj) < wj < f∗(uj), wi ≥ f∗(ui)

f∗(uj) < wj < f∗(uj), f∗(ui) ≤ wi < f∗(ui)

f∗(uj) < wj < f∗(uj), wi < f∗(ui)

wj ≤ f∗(uj), wi ≥ f∗(ui)

wj ≤ f∗(uj), f∗(ui) ≤ wi < f∗(ui)

wj ≤ f∗(uj), wi < f∗(ui)

are fully symmetric and are thus treated likewise. Therefore, in all possible cases
we see that

Sij ≥ −(λj + λi)|∂Iλj (uj ;wj)|H |∂Iλi(ui;wi)|H
− (|∂Iλj (uj ;wj)|H + |∂Iλi(ui;wi)|H) (|f∗(uj)− f∗(ui)|H + |f∗(uj)− f∗(ui)|H)

=: δij .

Consequently, from (5.5), (5.6) we infer that

|wj − wi|2H(t) ≤ 4L

∫ t

0

|wj − wi|2H(τ) dτ + 4L

∫ t

0

|uj − ui|2H(τ) dτ + 2

∫ t

0

δij(τ) dτ.

Since uj → u in C([0, T ];H), invoking the Gronwall argument and Lemma 5.2 we
conclude from the last inequality that wj , j ≥ 1, is a Cauchy sequence in the space
C([0, T ];H). Hence, according to (5.2) we obtain the convergence (5.4).

Now, from the monotonicity of ∂ϕt and Eq. (4.1) via the representation (4.11)
it follows that for any v ∈ L2(0, T ;V ) with v = Gm(ub) a.e. on (0, T )×∂Ω we have

∫ T

0

(h(uj , wj)− ρujt, v −Gm(uj))Hdt ≤
∫ T

0

ϕt(v) dt−
∫ T

0

ϕt(Gm(uj)) dt. (5.7)

Let z ∈ L2(0, T ;H) and zk ∈ C∞
0 (Q(T )), k ≥ 1 be such that zk → z in L2(0, T ;H)

as k → ∞. Then, we have

∫ T

0

(∇Gm(uj)−∇Gm(u), z)Hdt =

∫ T

0

(∇Gm(uj)−∇Gm(u), z − zk)Hdt

+

∫ T

0

(gm(uj)− gm(u), zk∇uj)Hdt+

∫ T

0

(∇uj −∇u, gm(u)zk)Hdt. (5.8)

We note that Gm(uj), Gm(u) are bounded in L∞(0, T ;V ) and zk∇uj , gm(u)zk are
bounded in L2(0, T ;H). Letting j → ∞ and fixing a suitable number k we infer
from (5.1) and (5.8) that ∇Gm(uj) → ∇Gm(u) weakly in L2(0, T ;H). Hence,

1

2

∫ T

0

|∇Gm(u)|2Hdt ≤ lim inf
j→∞

1

2

∫ T

0

|∇Gm(uj)|2Hdt.
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Therefore, passing to the limit as j → ∞ in (5.7) we conclude in view of (5.1), (5.4)
that h(u,w)− ρut ∈ ∂ϕt(Gm(u)) a.e. on [0, T ], which in turn implies (1.1) as well
as the initial and boundary conditions for u.

Finally, given the convergences (5.1)–(5.4) we see that the pair {u,w} is a
solution to problem (P ) provided

ξ ∈ ∂I(u;w) a.e. on [0, T ]. (5.9)

In order to establish this latter fact, let z be an arbitrary function from L2(0, T ;H)
such that f∗(u) ≤ z ≤ f∗(u) a.e. on Q(T ) and for each j ≥ 1 let

zj := max{min{z, f∗(uj)}, f∗(uj)} on Q(T ).

Clearly, f∗(uj) ≤ zj ≤ f∗(uj) on Q(T ), j ≥ 1, and zj → z in L2(0, T ;H) as j → ∞.
Hence,

∫ T

0

(∂Iλj (uj ;wj), zj − wj)Hdt ≤
∫ T

0

(Iλj (uj ; zj)− Iλj (uj ;wj))dt = 0, (5.10)

j ≥ 1. On the other hand, from (2.2) we see that

[wj − f∗(uj)]
+ − [f∗(uj)− wj ]

+ = λj∂Iλj (uj ;wj) → 0

in L2(0, T ;H) as j → ∞. Consequently, we have f∗(u) ≤ w ≤ f∗(u) a.e. on Q(T ).
Passing now to the limit as j → ∞ in (5.10) we conclude that (5.9) holds and {u,w}
is thus a solution to problem (P ).

6 Uniqueness for problem (P )

In this section, we consider the uniqueness for problem (P ) in case N = 1. Then,
(P ) is given by

ρut − (g(u)ux)x = h(u,w) in Q(T ), (6.1)

wt + ∂I(u;w) � F (u,w) in Q(T ), (6.2)

u(·, 0) = b0, u(·, 1) = b1 on (0, T ), (6.3)

u(0) = u0, w(0) = w0 on(0, 1), (6.4)

where b0 and b1 are given functions on [0, T ].
Here, we assume the following conditions for F and bi, i = 0, 1:

(A3-1) For any u ∈ R the function F (u,w) is nonincreasing with respect to w ∈ R.

(A5-1) For i = 0, 1 we have bi ∈ W 1,2(0, T ) and bi ≥ κ0 on [0, T ].

The next theorem guarantees the uniqueness of a solution of (P ).

Theorem 6.1. Under (A1), (A2), (A3), (A3-1), (A4), (A5-1), (A6) let {u1, w1}
and {u2, w2} be solutions of (P ). If δ ≤ ui ≤ M on Q(T ) for i = 1, 2, where δ and
M are positive constants, then u1 = u2 and w1 = w2 on Q(T ).
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For the proof of Theorem 6.1 we prepare the following two lemmas.

Lemma 6.1. Under the same assumptions as in Theorem 6.1, there exist positive
constants C1 and 0 < T1 ≤ T such that

|w1(t)− w2(t)|L∞(0,1) ≤ C1|u1 − u2|L∞(0,t1;L∞(0,1)) for 0 ≤ t ≤ t1 ≤ T1. (6.5)

Proof. We put u = u1 − u2 and w = w1 − w2. By Definition 2.1 for i = 1, 2 there
exists ξi ∈ L2(0, T ;H) such that

ξi(t) ∈ ∂I(ui(t), wi(t)) for a.e. t ∈ [0, T ],

wit + ξi = F (ui, wi)(=: Fi) a.e. on Q(T ).

Let t1 ∈ (0, T ] be fixed, and 
(t1) = |u|L∞(0,t1;L∞(0,1))

v1(t) = w1(t)− [w(t)− C(t+ 1)
(t1)]
+ for 0 ≤ t ≤ t1,

where C ≥ C∗ is a positive constant, C∗ = max{C1, C2}, and C1 and C2 are the
Lipschitz constants of f∗ and f∗, respectively. Then it holds that

f∗(u1) ≤ v1 ≤ f∗(u1) a.e. on Q(t1). (6.6)

In fact, it is clear that v1 ≤ f∗(u1) a.e. on Q(t1). If w ≤ C(t + 1)
(t1), then
v1 ≥ f∗(u1). Otherwise, we observe that

v1 = w2 + C(t+ 1)
(t1)

≥ f∗(u2) + C(t+ 1)
(t1)

≥ −C∗
(t1) + f∗(u1) + C(t+ 1)
(t1)

≥ f∗(u1).

Thus we get (6.6). Similarly, we put

v2(t) = w2(t) + [w(t)− C(t+ 1)
(t1)]
+ for 0 ≤ t ≤ t1,

and obtain

f∗(u2) ≤ v2 ≤ f∗(u2) a.e. on Q(t1).

Immediately, we see that

ξi(wi − vi) ≥ 0 a.e. on Q(t1) for i = 1, 2.

Accordingly, we have

w1t[w − C(t+ 1)
(t1)]
+ ≤ F1[w − C(t+ 1)
(t1)]

+,
−w2t[w − C(t+ 1)
(t1)]

+ ≤ −F2[w − C(t+ 1)
(t1)]
+

}
a.e. on Q(t1),
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so that

1

2

d

dt
|[w − C(t+ 1)
(t1)]

+|2

≤(F1 − F2 − C
(t1))[w − C(t+ 1)
(t1)]
+

≤(L|u|+ F (u1, w1)− F (u1, w2)− C
(t1))[w − C(t+ 1)
(t1)]
+ a.e. on Q(t1),

where recall that L is the Lipschitz constant of F . Here, we take C with C ≥
max{L,C∗}. Since F is a nonincreasing function with respect to w, we have

(F (u1, w1)− F (u1, w2))[w − C(t+ 1)
(t1)]
+ ≤ 0,

so that
1

2

d

dt
|[w − C(t+ 1)
(t1)]

+|2 ≤ 0 a.e. on Q(t1). (6.7)

Then, (6.5) is a direct consequence of (6.7). �
Lemma 6.2. For i = 1, 2, uix ∈ L4(Q(T )) ∩ L2(0, T ;L∞(0, 1)).

Proof. For i = 1, 2 by the Gagliardo-Nirenberg inequality there exists a positive
constant M∗ such that

|uix(t)|L4(0,1) ≤ M∗(|uixx(t)|1/4H |uix(t)|3/4H + |uix(t)|H) for a.e. t ∈ [0, T ].

Since ui ∈ L∞(0, T ;H1(0, 1)), it is easy to see that∫ T

0

|uix|4L4(0,1)dt

≤M4
∗

∫ T

0

(|uixx|H |uix|3H + |uix|4H)dt

≤M4
∗ (|uix|3L∞(0,T ;H)

∫ T

0

|uixx|Hdt+ |uix|4L∞(0,T ;H)T ),

and uix ∈ L4(Q(T )).
It is clear that |uix(t)|2L∞(0,1) ≤ 2(|uixx(t)|2H+ |uix(t)|2H) for 0 ≤ t ≤ T . This implies

that uix ∈ L2(0, T ;L∞(0, 1)). �

In the rest of this section, we prove Theorem 6.1.

Proof of Theorem 6.1. We put u = u1 − u2, w = w1 − w2, h1 = h(u1, w1) and
h2 = h(u2, w2). Easily, we get

ρut − (g(u1)u1x − g(u2)u2x)x = h1 − h2 on Q(T ). (6.8)

We multiply (6.8) by −uxx and integrate it. Then, we observe that

ρ

2

d

dt

∫ 1

0

|ux|2dx+

∫ 1

0

(g(u1)u1x − g(u2)u2x)xuxxdx

=−
∫ 1

0

(h1 − h2)uxxdx a.e. on [0, T ],
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and ∫ 1

0

(g(u1)u1x − g(u2)u2x)xuxxdx

=

∫ 1

0

g(u1)|uxx|2dx+

∫ 1

0

(g(u1)− g(u2))u2xxuxxdx

+

∫ 1

0

g′(u1)(|u1x|2 − |u2x|2)uxxdx+

∫ 1

0

(g′(u1)− g′(u2))|u2x|2uxxdx

=:I1 + I2 + I3 + I4 a.e. on [0, T ].

First, by (A2) we note that

I1 ≥ g0

∫ 1

0

|uxx|2dx a.e. on [0, T ].

Here, since δ ≤ ui ≤ M on Q(T ), there exists a positive constant Cg such that
|g′(ui)| ≤ Cg, |g(u1) − g(u2)| ≤ Cg|u|, |g′(u1) − g′(u2)| ≤ Cg|u| a.e. on [0, T ] for
i = 1, 2. By elementary calculations, for instance, |u|L∞(0,1) ≤ |ux|H , we observe
that

|I2| ≤Cg

∫ 1

0

|u||u2xx||uxx|dx

≤g0
8
|uxx|2H +

2C2
g

g0
|ux|2H |u2xx|2H ,

|I3| ≤Cg

∫ 1

0

(|u1x|+ |u2x|)|ux||uxx|dx

≤g0
8
|uxx|2H +

4C2
g

g0
(|u1x|2L∞(0,1) + |u2x|2L∞(0,1))|ux|2H ,

and

|I4| ≤Cg

∫ 1

0

|u||u2x|2|uxx|dx

≤g0
8
|uxx|2H +

2C2
g

g0
|u2x|4L4(0,1)|ux|2H a.e. on [0, T ].

Next, we obtain

−
∫ 1

0

(h1 − h2)uxxdx

≤L

∫ 1

0

(|u|+ |w|)|uxx|dx

≤g0
4
|uxx|2H +

2L2

g0
(|ux|2H + |w|2H) a.e. on [0, T ],
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where recall that L is the Lipschitz constant of h. By adding these inequalities we
have

ρ

2

d

dt
|ux(t)|2H +

g0
4
|uxx(t)|2H

≤ρ

2
E(t)|ux(t)|2H +

ρ

2
C2|w(t)|2H for a.e. t ∈ [0, T ],

where C2 is a positive constant and

E(t) =
2

ρ

(
4C2

g

g0

(
|u1x(t)|2L∞(0,1) + |u1x(t)|2L∞(0,1)

)

+
2C2

g

g0
|u2x(t)|4L4(0,1) +

2C2
g

g0
|u2xx(t)|2H +

2L2

g0

)
for t ∈ [0, T ].

Then, Lemma 6.2 guarantees that E ∈ L1(0, T ).
Thanks to the Gronwall inequality, we infer that

|ux(t)|2H ≤ C2 exp

(∫ t

0

E(τ)dτ

)∫ t

0

|w(τ)|2Hdτ for t ∈ [0, T ]. (6.9)

Moreover, on account of Lemma 6.1 there exist positive constants C1 and T1 satis-
fying (6.5). Next, we substitute (6.5) into (6.9) and see that

|ux(t)|2H ≤ C1C3

∫ t1

0

|u|2L∞(0,t1;L∞(0,1))dτ for 0 ≤ t1 ≤ T1,

where C3 = C2 exp(
∫ T

0
E(τ)dτ), and

|u(t)|2L∞(0,1) ≤ C1C3t1|u|2L∞(0,t1;L∞(0,1)) for 0 ≤ t1 ≤ T1.

Hence, for t1 with C1C3t1 < 1 it holds that |u|L∞(0,t1;L∞(0,1)) = 0. This shows that
u = 0 and w = 0 on Q(t1). Since the choice of t1 is independent of the initial values,
we can say that u = 0 and w = 0 on Q(T ). Thus, we have proved the uniqueness.
�
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