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In the present paper we study geodesic mappings between generalized Riemannian 
GRN and generalized Kählerian spaces of the third type GK

3
N , and specially the 

case when these spaces have the same torsions at corresponding points. Using the 
non-symmetric metric tensor we find necessary and sufficient conditions for the 
existence of geodesic mapping f : GRN → GK

3
N with respect to the four kinds of 

covariant derivatives.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In 1922 Cartan put forward a modification of General Relativity Theory (GRT), by relaxing the as-
sumption that the affine connection has vanishing antisymmetric part (torsion tensor), and relating the 
torsion to the density of the intrinsic angular momentum. Also, the torsion is implicit in the 1928 Einstein 
theory of gravitation with teleparallelism. Afterwards, several mathematicians dealt with non-symmetric 
affine connection, for example, Eisenhart [2], Prvanović, Minčić [13–16] etc. Sinyukov [18] introduced the 
concept of almost geodesic mappings between affine connected spaces without torsion. Mikeš and coauthors 
[8–12] gave some significant contributions to the study of geodesic and almost geodesic mappings of affine 
connected, Riemannian and Einstein spaces.

The fundamental (0,2) tensor gij in a non-symmetric (generalized) Riemannian space is in general non-
symmetric. It is decomposed in two parts, the symmetric part gij and the skewsymmetric part gij

∨
, where

gij = 1
2(gij + gji) = 1

2g(ij), gij
∨

= 1
2(gij − gji) = 1

2g[ij]. (1.1)
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The Levi-Civita connection corresponding to the symmetric non-degenerate (0,2) tensor gij we denote 
by Γi

jk. The lowering and the raising of indices is defined via the tensors gij and gij respectively, where gij

is defined by the equation

gijg
jk = δki (1.2)

and δki is the Kronecker symbol. The Koszul formula reads

Γi.jk = 1
2(gji,k − gjk,i + gik,j), gij,k =

∂gij

∂xk
. (1.3)

We denote the (0,3) torsion tensor with respect to gij by the same letter, Tk.ij := gkpT
p
ij .

Based on non-symmetry of the connection in a generalized Riemannian space one can define four kinds 
of covariant derivatives. For example, for a tensor aij in GRN we have

aij |
1
m = aij,m + Γi

pmapj − Γp
jmaip,

aij |
2
m = aij,m + Γi

mpa
p
j − Γp

mja
i
p,

aij |
3
m = aij,m + Γi

pmapj − Γp
mja

i
p,

aij |
4
m = aij,m + Γi

mpa
p
j − Γp

jmaip.

(1.4)

In the paper [6], a generalized Riemannian space is considered and the connection coefficients are explicitly 
given, namely

Theorem 1.1. Let (GRN , g = gij + gij
∨
) be a generalized Riemannian space and Γi

jk be the Levi-Civita 

connection of gij. Let Γi
jk be a linear connection with torsion T i

jk. Then Γi
jk is unique determined by the 

following formula

Γi.jk = Γi.jk + 1
4

[
Ti.jk + Tk.ij − Tj.ki

]
− 1

2

[
gik|

1
j + gij |

1
k − gkj |

1
i

]
. (1.5)

Many different types of generalized Riemannian spaces are found in literature, one of which is the gen-
eralized Riemannian space in the sense of Eisenhart’s definition [2], i.e. it is a differentiable N -dimensional 
manifold, equipped with a non-symmetric basic tensor gij (i.e. gij �= gji). The connection coefficients of this 
space are explicitly given by

Γi.jk = 1
2(gji,k − gjk,i + gik,j), Γi

jk = gip Γp.jk. (1.6)

Generally Γi
jk �= Γi

kj . Therefore, one can define the anti-symmetric part of Γi
jk

Γi
jk
∨

= 1
2(Γi

jk − Γi
kj) = 1

2Γi
[jk] (1.7)

The quantity Γi
jk
∨

= T i
jk is the torsion tensor of the space GRN .

In the rest of the paper we will consider a generalized Riemannian space in the sense of Eisenhart’s 
definition.
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It is easy to see that the equation (1.6) can be written in the form

Γi.jk = 1
2(gji,k − gjk,i + gik,j)

= 1
2(gji,k − gjk,i + gik,j) + 1

2(gji
∨
,k − gjk

∨
,i + gik

∨
,j)

= Γi.jk + 1
2dgijk,

where Γi.jk is the Levi-Civita connection corresponding to the symmetric tensor gij and dgijk is the exterior 
derivative of the anti-symmetric part gij

∨
. From the previous equation, we see that the symmetric part gij

of gij is covariantly constant, and the torsion Ti.jk is totally skew-symmetric determined by the equation 
Ti.jk = 1

2dgijk.

Cappozziello–Lambiase–Stornaiolo classification for the torsion in GR4. A property of torsion is that it can 
be decomposed with respect to the Lorentz group into three irreducible tensors (for more details see [1]), 
i.e. it can be written as

T i
jk = tT i

jk + aT i
jk + vT i

jk. (1.8)

In the previous equation, we have

vT i
jk = 1

3(Tjδ
i
k − Tkδ

i
j) (vTj = vT k

jk), (1.9)

aT i
jk = gipT[p.jk] = T i

jk, (1.10)

which is called the axial torsion, and

tT i
jk = T i

jk − aT i
jk − vT i

jk, (1.11)

which is the traceless part of torsion. In this case, tT i
jk = −vT i

jk.

Among all forms of generalized Riemannian spaces, specially are interesting quarter-symmetric spaces 
and their particular form, the semi-symmetric spaces. Further considerations of these component and spaces 
we leave for future work.

1.1. Generalized Kählerian spaces of the third kind

Kählerian spaces and their mappings were investigated by many authors, for example K. Yano [20], 
M. Prvanović [17], J. Mikeš [5,8–12], Domašev, N. Pušić, T. Otsuki and Y. Tasiro, S.S. Pujar, N.S. Sinjukov, 
U.C. De [7] and many others.

An N -dimensional Riemannian space with the metric tensor gij is a Kählerian space KN if there exists 
an almost complex structure F i

j , such that

Fh
p F

p
i = −δhi ,

gpqF
p
i F

q
j = gij , gij = gpqF i

pF
j
q ,

Fh
i;j = 0,

(1.12)

where (; ) denotes the covariant derivative with respect to the metric tensor gij .
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In the papers [16,19] different kinds of Kählerian spaces with torsion are considered. Taking into account 
non-symmetry of the connection and there being defined four kinds of covariant derivatives of tensors, the 
almost complex structure can be covariantly constant with respect to for kinds of differentiation.

Kählerian spaces of the first type are characterized by the equation F i
j |
1
k = 0. In [19] we proved that 

Kählerian spaces of the first type are equivalent to the Kählerian spaces of the second type (F i
j |
2
k = 0). Now, 

we define a new class of Kählerian spaces, more precisely

Definition 1.1. A generalized N -dimensional Riemannian space with a non-symmetric metric tensor gij, is a
generalized Kählerian space of the third kind GK

3 N if there exists an almost complex structure F i
j , so that

Fh
p F

p
i = −δhi , (1.13)

gpq F
p
i F

q
j = gij , gij = gpqF i

pF
j
q , (1.14)

Fh
i|
3
j = 0, (1.15)

Fh
i;j = 0, (1.16)

where |
3

denotes the covariant derivative of the third kind with respect to the connection Γi
jk (Γi

jk �= Γi
kj)

and (; ) denotes the covariant derivative with respect to the symmetric part of the metric tensor Γi
jk.

From (1.14), using (1.13), we get Fij = −Fji, F ij = −F ji, where we denote Fji = F p
j g

pi , F ji = F j
p g

pi.
From these considerations we immediately have the following theorem:

Theorem 1.2. For the almost complex structure F i
j of GK

3 N the relations

Fh
i|
1
j = 2Fh

p Γp
ji
∨
, Fh

i|
2
j = 2F p

i Γh
jp
∨
, Fh

i|
4
j = 0, (1.17)

are valid, where Γh
ij
∨

is the torsion tensor.

2. Geodesic mapping

The study of the theory of geodesic mappings of Riemannian spaces, affine connection spaces and their 
generalizations has been an active field over the past several decades. Many new and interesting results 
appeared in the papers of N.S. Sinyukov [18], J. Mikeš [8], G.S. Hall [4,3], etc. The investigation of geodesic 
mappings for special spaces is an important and active research topic.

In this section we consider a geodesic mapping f : GRN → GK
3 N .

Definition 2.1. A diffeomorphism f : GRN → GK
3 N is geodesic, if geodesics of the space GRN are mapped 

to geodesics of the space GK
3 N .

At the corresponding points M and M we can put

Γi
jk = Γi

jk + P i
jk, (i, j, k = 1, ..., N), (2.1)

where P i
jk is the deformation tensor of the connection Γ of GRN according to the mapping f : GRN → GKN .
3
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Theorem 2.1. [15] A necessary and sufficient condition that the mapping f : GRN → GK
3 N to be geodesic is 

that the deformation tensor P i
jk from (2.1) has the form

P i
jk = δij ψk + δik ψj + ξijk, (2.2)

where

ψi = 1
N + 1(Γα

iα − Γα
iα), ξijk = P i

jk
∨

= 1
2(P i

jk − P i
kj). (2.3)

We remark that in GK
3 N the following equations are valid:

Γα
iα
∨

= 0, ξαiα = 0, Fα
α = 0. (2.4)

Let us construct the geodesic mapping f : GR4 → GK
3 4.

Example 2.1. Let the generalized Riemannian space GR4 be given by basic metric tensor gij = gij + gij
∨

where

(gij) =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 ex

1
x3 ex

1
x2

0 0 ex
1
x2 ex

1(x2 + x3)

⎤
⎥⎥⎥⎦ (gij

∨
) =

⎡
⎢⎢⎢⎣

0 1 0 0
−1 0 (x1)2 (x2)2
0 −(x1)2 0 1
0 −(x2)2 −1 0

⎤
⎥⎥⎥⎦ (2.5)

Also, let

(gij) =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 x3 x2

0 0 x2 1

⎤
⎥⎥⎥⎦ and (Fh

i ) =

⎡
⎢⎢⎢⎣

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎤
⎥⎥⎥⎦ (2.6)

are symmetric part of basic metric tensor and almost complex structure of the space GK
3 4. Then the 

conditions (1.13), (1.14) and (1.16) are satisfied. If Γh

ij
∨

we choose so that the conditions Γh

pj
∨
F

p

i −Γp

ji
∨
F

h

p = 0

are valid then the condition (1.15) is satisfied i.e. the space GK
3 4 is the fourth dimensional generalized 

Kählerian space of the third kind. If the mapping f : GR4 → GK
3 4 is geodesic, then

ψk = 1
5(Γp

kp − Γp
kp), (k = 1, · · · , 4) where

Γp
kp = ∂

∂xk
ln

√
det(gij) = 1

2
∂

∂xk
ln (x3 − (x2)2)

Γp
kp = ∂

∂xk
ln

√
det(gij) = 1

2
∂

∂xk
[x1 + 1

2 ln (x2x3 − (x2)2) + (x3)2]. �
(2.7)

In [11] Mikeš et al. have provided necessary and sufficient conditions for the existence of a geodesic 
mapping of a Riemannian space onto a Kählerian space.

Theorem 2.2. The Riemannian space RN admits a nontrivial geodesic mapping onto the Kählerian space 
KN if and only if, in the common coordinate system x with respect to the mapping, the conditions
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a) gij;k = 2ψkgij + ψigjk + ψjgik;

b) F
h

i;k = F
h

kψi − δhkF
α

i ψα;
(2.8)

hold, where ψi �= 0 and the tensors gij and F
h

i satisfy the following conditions:

det(gij) �= 0, F
h

αgαj + F
α

j gαi = 0, F
h

αF
α

i = −δhi . (2.9)

Then gij and F
h

i are the metric tensor and the structure of KN , respectively.

Our idea is to establish appropriate necessary and sufficient conditions for the existence of geodesic 
mappings with respect to the four kinds of covariant derivatives. The details follow.

Theorem 2.3. The generalized Riemannian space GRN admits a nontrivial geodesic mapping onto the gener-
alized Kählerian space GK

3 N if and only if, in the common coordinate system x with respect to the mapping, 
the conditions

a) gij |
1
k = gij

∨
|
1
k + 2ψkgij + ψigjk + ψjgik + ξpikgpj + ξpjkgip;

b) F
h

i|
1
k = F

h

i|
1
k + F

h

kψi − δhkF
p

iψp − ξhpkF
p

i + ξpikF
h

p ;
(2.10)

hold with respect to the first kind of covariant derivatives, where ψi �= 0 and the tensors gij and F
h

i satisfy 
the following conditions:

det(gij) �= 0, F
α

i gαj + F
α

j gαi = 0, F
h

αF
α

i = −δhi . (2.11)

Then gij and F
h

i are the metric tensor and the almost complex structure of GK
3 N , respectively.

Proof. The equation (2.10)(a) guarantees the existence of a geodesic mapping from the generalized Rie-
mannian space GRN onto the generalized Riemannian space GRN with the metric tensor gij with respect 
to the first kind of covariant derivatives.

The formula (2.10)(b) implies that the structure F
h

i in GRN is covariantly constant with respect to the 

third kind of covariant derivative. The algebraic conditions (2.11) guarantee that gij and F
h

i are the metric 
tensor and the structure of GK

3 N , respectively.
The deformation tensor is determined by equation (2.2), i.e.

Γh

ij − Γh
ij = ψiδ

h
j + ψjδ

h
i + ξhij . (2.12)

For the structure F , we have the following equations:

F
h

i|
1
k = F

h

i,k + Γh
pkF

p

i − Γp
ikF

h

p , F
h

i|
2
k = F

h

i,k + Γh
kpF

p

i − Γp
kiF

h

p . (2.13)

Substituting Γh
ij from (2.12) in (2.13), we get

F
h

i|
1
k = F

h

i,k + (Γh

pk − ψpδ
h
k − ψkδ

h
p − ξhpk)F

p

i − (Γp

ik − ψiδ
p
k − ψkδ

p
i − ξpik)F

h

p

= F
h

i,k + Γh

pkF
p

i − ψpδ
h
kF

p

i − ψkδ
h
pF

p

i − ξhpkF
p

i − Γp

ikF
h

p + ψiδ
p
kF

h

p + ψkδ
p
i F

h

p + ξpikF
h

p

= F
h

i|k − ψpδ
h
kF

p

i − ψkδ
h
pF

p

i − ξhpkF
p

i + ψiδ
p
kF

h

p + ψkδ
p
i F

h

p + ξpikF
h

p (2.14)

1
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= F
h

i|
1
k − ψpδ

h
kF

p

i − ψkF
h

i − ξhpkF
p

i + ψiF
h

k + ψkF
h

i + ξpikF
h

p

= F
h

i|
1
k − ψpδ

h
kF

p

i + ψiF
h

k − ξhpkF
p

i + ξpikF
h

p ,

where |, and | are respectively the covariant derivatives in GRN and GK
3 N . �

Theorem 2.4. The generalized Riemannian space GRN admits a nontrivial geodesic mapping onto the gener-
alized Kählerian space GK

3 N if and only if, in the common coordinate system x with respect to the mapping, 
the conditions

a) gij |
2
k = gij

∨
|
2
k + 2ψkgij + ψigjk + ψjgik + ξpkigpj + ξpkjgip;

b) F
h

i|
2
k = F

h

i|
2
k + F

h

kψi − δhkF
p

iψp − ξhkpF
p

i + ξpkiF
h

p ;
(2.15)

hold with respect to the second kind of covariant derivatives, where ψi �= 0 and the tensors gij and F
h

i satisfy 
the following conditions:

det(gij) �= 0, F
α

i gαj + F
α

j gαi = 0, F
h

αF
α

i = −δhi . (2.16)

Then gij and F
h

i are the metric tensor and the almost complex structure of GK
1 N , respectively.

Proof. In GRN for the second kind of covariant derivatives, we have

F
h

i|
2
k = F

h

i,k + (Γh

kp − ψkδ
h
p − ψpδ

h
k − ξhkp)F

p

i − (Γp

ki − ψkδ
p
i − ψiδ

p
k − ξpki)F

h

p

= F
h

i,k + Γh

kpF
p

i − ψkδ
h
pF

p

i − ψpδ
h
kF

p

i − ξhkpF
p

i − Γp

kiF
h

p + ψkδ
p
i F

h

p + ψiδ
p
kF

h

p + ξpkiF
h

p

= F
h

i|
2
k − ψkδ

h
pF

p

i − ψpδ
h
kF

p

i − ξhkpF
p

i + ψkδ
p
i F

h

p + ψiδ
p
kF

h

p + ξpkiF
h

p

= F
h

i|
2
k − ψkF

h

i − ψpδ
h
kF

p

i − ξhkpF
p

i + ψkF
h

i + ψiF
h

k + ξpkiF
h

p

= F
h

i|
2
k + ψiF

h

k − ψpδ
h
kF

p

i − ξhkpF
p

i + ξpkiF
h

p . �

(2.17)

In a similar way, we can obtain the following corresponding results for the third and the fourth kind of 
covariant derivatives:

Theorem 2.5. The generalized Riemannian space GRN admits a nontrivial geodesic mapping onto the gener-
alized Kählerian space GK

3 N if and only if, in the common coordinate system x with respect to the mapping, 
the conditions

a) gij |
3
k = gij

∨
|
3
k + 2ψkgij + ψigjk + ψjgik + ξpikgpj + ξpkjgip;

b) F
h

i|
3
k = ψiF

h

k − ψpδ
h
kF

p

i − ξhpkF
p

i + ξpkiF
h

p ,
(2.18)

hold with respect to the third kind of covariant derivatives, where ψi �= 0 and the tensors gij and F
h

i satisfy 
the following conditions:

det(gij) �= 0, F
α

i gαj + F
α

j gαi = 0, F
h

αF
α

i = −δhi . (2.19)

Then gij and F
h

i are the metric tensor and the almost complex structure of GKN , respectively.

3
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Theorem 2.6. The generalized Riemannian space GRN admits a nontrivial geodesic mapping onto the gener-
alized Kählerian space GK

3 N if and only if, in the common coordinate system x with respect to the mapping, 
the conditions

a) gij |
4
k = gij

∨
|
4
k + 2ψkgij + ψigjk + ψjgik + ξpkigpj + ξpjkgip;

b) F
h

i|
4
k = ψiF

h

k − ψpδ
h
kF

p

i − ξhkpF
p

i + ξpikF
h

p ,
(2.20)

hold with respect to the fourth kind of covariant derivatives, where ψi �= 0 and the tensors gij and F
h

i satisfy 
the following conditions:

det(gij) �= 0, F
α

i gαj + F
α

j gαi = 0, F
h

αF
α

i = −δhi . (2.21)

Then gij and F
h

i are the metric tensor and the almost complex structure of GK
3 N , respectively.

2.1. Equitorsion geodesic mappings

Equitorsion mappings play an important role in the theories of geodesic, conformal and holomorphically 
projective transformations between two spaces of non-symmetric affine connection.

Definition 2.2. [15] A mapping f : GRN → GK
3 N is an equitorsion geodesic mapping if the torsion tensors 

of the spaces GRN and GK
3 N are equal. Then from (2.1), (2.2) and (2.12) it follows

Γh
ij
∨
− Γh

ij
∨

= ξhij = 0, (2.22)

where ij
∨

denotes an antisymmetrization with respect to i, j.

In the special case of this kind of mappings, the previous Theorems 2.3–2.6 become:

Theorem 2.7. The generalized Riemannian space GRN admits a nontrivial equitorsion geodesic mapping 
onto the generalized Kählerian space GK

3 N if and only if, in the common coordinate system x with respect 
to the mapping, the conditions

a) gij |
1
k = 2ψkgij + ψigjk + ψjgik;

b) F
h

i|
1
k = F

h

i|
1
k + F

h

kψi − δhkF
p

iψp;
(2.23)

hold with respect to the first kind of covariant derivatives, where ψi �= 0 and the tensors gij and F
h

i satisfy 
the following conditions:

det(gij) �= 0, F
α

i gαj + F
α

j gαi = 0, F
h

αF
α

i = −δhi . (2.24)

Theorem 2.8. The generalized Riemannian space GRN admits a nontrivial equitorsion geodesic mapping 
onto the generalized Kählerian space GK

3 N if and only if, in the common coordinate system x with respect 
to the mapping, the conditions

a) gij |
2
k = 2ψkgij + ψigjk + ψjgik;

b) F
h

i|k = F
h

i|k + F
h

kψi − δhkF
p

iψp;
(2.25)
2 2
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hold with respect to the second kind of covariant derivatives, where ψi �= 0 and the tensors gij and F
h

i satisfy 
the following conditions:

det(gij) �= 0, F
α

i gαj + F
α

j gαi = 0, F
h

αF
α

i = −δhi . (2.26)

Theorem 2.9. The generalized Riemannian space GRN admits a nontrivial equitorsion geodesic mapping 
onto the generalized Kählerian space GK

3 N if and only if, in the common coordinate system x with respect 
to the mapping, the conditions

a) gij |
3
k = 2ψkgij + ψigjk + ψjgik;

b) F
h

i|
3
k = ψiF

h

k − ψpδ
h
kF

p

i

(2.27)

hold with respect to the third kind of covariant derivatives, where ψi �= 0 and the tensors gij and F
h

i satisfy 
the following conditions:

det(gij) �= 0, F
α

i gαj + F
α

j gαi = 0, F
h

αF
α

i = −δhi . (2.28)

Theorem 2.10. The generalized Riemannian space GRN admits a nontrivial equitorsion geodesic mapping 
onto the generalized Kählerian space GK

3 N if and only if, in the common coordinate system x with respect 
to the mapping, the conditions

a) gij |
4
k = 2ψkgij + ψigjk + ψjgik;

b) F
h

i|
4
k = ψiF

h

k − ψpδ
h
kF

p

i ,
(2.29)

hold with respect to the fourth kind of covariant derivatives, where ψi �= 0 and the tensors gij and F
h

i satisfy 
the following conditions:

det(gij) �= 0, F
α

i gαj + F
α

j gαi = 0, F
h

αF
α

i = −δhi . (2.30)

3. Conclusion

The present article presents a continuation of the work on developing the general ideas outlined and 
suggested in [16,19,21] by introducing the notion of generalized Kähler spaces of the third kind.

The following two results constitute the main contribution of the paper:

1. New explicit necessary and sufficient conditions for the existence of geodesic mappings onto GK
3 N are 

given in Section 2.
2. New explicit necessary and sufficient conditions for the existence of equitorsion geodesic mappings onto 

GK
3 N are given in Section 2.1.

In this way we hope to have given useful contribution to the development of the theory of geodesic 
mappings and its applications.
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