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SUMMATION FORMULAE FOR A CLASS

OF TERMINATING BALANCED q-SERIES

XIAOJING CHEN AND WENCHANG CHU

Abstract. A class of terminating balanced q-series are investigated. Thirty
summation formulae are established by employing Carlitz’ inversions and the
polynomial argument, as well as contiguous relations.

1. Introduction and Motivation

Let N and N0 be the sets of natural numbers and nonnegative integers, respectively.
For an indeterminate x, the shifted factorial with the base q is defined by (x; q)0 = 1
and

(x; q)n = (1− x)(1− qx) · · · (1− qn−1x) for n ∈ N.

Then the Gaussian binomial coefficient reads as[
m

n

]
=

(q; q)m
(q; q)n(q; q)m−n

=
(qm−n+1; q)n

(q; q)n
where m, n ∈ N.

In 1973, Carlitz [4] found a well–known pair of inverse series relations, which can be
reproduced as follows. Let {ak, bk}k≥0 be two sequences such that the p-polynomials
defined by

p(x; 0) ≡ 1 and p(x;n) =

n−1∏
k=0

(ak + xbk) for n = 1, 2, · · ·

differ from zero at x = q−m for m ∈ N0. Then the following inverse relations hold

f(n) =

n∑
k=0

(−1)k
[
n

k

]
p(q−k;n)g(k),

g(n) =
n∑

k=0

(−1)k
[
n

k

]
q(

n−k
2 ) ak + q−kbk

p(q−n; k + 1)
f(k).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1)

Alternatively, if the p-polynomials differ from zero at x = qm for m ∈ N0, Carlitz
deduced, under the base change q → q−1, another pair of inversions:

f(n) =

n∑
k=0

(−1)k
[
n

k

]
q(

n−k
2 )p(qk;n)g(k),

g(n) =
n∑

k=0

(−1)k
[
n

k

]
ak + qkbk
p(qn; k + 1)

f(k).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2)
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These inverse pairs have been shown by Chu [5, 6] to be very useful in proving
terminating q-series identities. As further applications, this paper will investigate
the following balanced series

Ω(w, x, y) =
∑
k≥0

[
x, y
qw

∣∣∣ q]
k

(wxy; q3)k
(xy; q)2k

qk. (3)

When the series is nonterminating, it seems that there does not exist closed expres-
sion. However, when the Ω-series is terminating, we do have the following summa-
tion formula due to Andrews [1, Eq. 4.7] (see also Gessel–Stanton [8, Eq. 4.32]):

n∑
k=0

[
q−n, qny

q

∣∣∣ q]
k

(y; q3)k
(y; q)2k

qk = χ(n ≡3 0)

[
q, q2

qy, q2y

∣∣∣ q3]
�n

3 �
y�

n
3 �. (4)

Here and forth, we fix δ = 0, 1 and utilize, for brevity, three notations: �x� for the
integer part of a real number x, i ≡m j for the congruence of i and j modulo m,
and χ for the logical function with χ(true) = 1 and χ(false) = 0 otherwise.

Observe that Andrews’ identity (4) corresponds to only one of the four terminating
cases of the Ω-series listed below:

• w = 1 and x = q−n.
• xy = q1+δ and wxy = q−3n.
• x = q−n and y = q1+δ+n.
• w = 1 and xy = q−3n.

We shall also consider the following terminating Ω-series perturbed by two integer
parameters λ and μ

Ωλ,μ(w, x, y) =
∑
k≥0

[
x, qλy
qw

∣∣∣ q]
k

(qμwxy; q3)k
(xy; q)2k

qk. (5)

By employing contiguous relations, thirty summation formulae will be proved with
most of them having not appeared previously. In order to ensure the accuracy, all
the formulae presented in this paper are checked with Mathematica commands.

The rest of the paper will be organized as follows. In the next section, three con-
tiguous relations for the above Ωλ,μ(w, x, y)-series will be established for subsequent
applications. From Section 3 to Section 5, we shall utilize the Carlitz inversions
to derive summation formulae for the Ωλ,μ(w, x, y)-sums corresponding to the first
three terminating cases. Then the polynomial argument will be employed in Sec-
tion 6 to prove summation formulae for the fourth terminating case. Finally, the
reversal series of Ωλ,μ(w, x, y) will be examined in Section 7 and four summation
formulae will be exemplified.

Throughout the paper, the product and quotient of shifted factorials will be abbre-
viated respectively to

[ α, β, · · · , γ; q ]n = (α; q)n (β; q)n · · · (γ; q)n ,[
α, β, · · · , γ
A, B, · · · , C

∣∣∣ q]
n

=
(α; q)n (β; q)n · · · (γ; q)n
(A; q)n (B; q)n · · · (C; q)n

.

The q-series is defined, according to Bailey [2] and Gasper–Rahman [9], by

1+�φ�

[
a0, a1, · · · , a�

b1, · · · , b�
∣∣∣ q; z] =

∞∑
n=0

[
a0, a1, · · · , a�
q, b1, · · · , b�

∣∣∣ q]
n

zn.
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If one of its numerator parameters is of the form q−m with m ∈ N0, then we say
that the 1+�φ�-series terminates. In particular, there are two important classes
of q-series. One class is well–poised when their parameters can be paired off in
columns such that two entries in each column have always the same product, i.e.,
qa0 = a1b1 = · · · = a�b�. Another class is called balanced or Saalschützian if the
parameters satisfy the condition qa0a1 · · · a� = b1b2 · · · b�. It is routine to check
that when λ+μ = 0, the Ωλ,μ(w, x, y)–series defined in (5) is balanced for the four
terminating cases.

2. Contiguous Relations for the Ω-Series

In this section, we shall prove three contiguous relations for the Ωλ,μ-series, that
will be utilized to derive summation formulae in next four sections.

According to the linear equation

1− qλ+k−1y =
w − qλ−1y

w − x
(1− qkx)− x− qλ−1y

w − x
(1− qkw)

we can manipulate the Ωλ,μ-series defined in (5) as follows

Ωλ,μ =
∑
k≥0

1− qλ+k−1y

1− qλ−1y

[
x, qλ−1y

qw

∣∣∣ q]
k

(qμwxy; q3)k
(xy; q)2k

qk

=
∑
k≥0

(1− qkx)(1− qλ−1y/w)

(1− x/w)(1− qλ−1y)

[
x, qλ−1y

qw

∣∣∣ q]
k

(qμwxy; q3)k
(xy; q)2k

qk

+
∑
k≥0

(1− qkw)(1− qλ−1y/x)

(1− w/x)(1− qλ−1y)

[
x, qλ−1y

qw

∣∣∣ q]
k

(qμwxy; q3)k
(xy; q)2k

qk

=
(1− x)(1− qλ−1y/w)

(1− x/w)(1− qλ−1y)
Ωλ,μ(w, qx, y/q)

+
(1− w)(1− qλ−1y/x)

(1− w/x)(1− qλ−1y)
Ωλ−1,μ+1(w/q, x, y).

This can be equivalently restated in the following lemma.

Lemma 1 (Contiguous relation).

1− qw

1− x
Ωλ−1,μ+1(w, x, y) =

(1− qw/x)(1− qλ−1y)

(1− x)(1− qλ−1y/x)
Ωλ,μ(qw, x, y)

+
qw

x

(1− qλ−2y/w)

(1− qλ−1y/x)
Ωλ,μ(qw, qx, y/q).

By means of this lemma, we shall be able to evaluate the Ωλ−1,μ+1-sums from
Ωλ,μ-sums as long as the latter one has closed expression.
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Similarly, applying the linear equation

1− q2kxy =
w2 − xy

(w − x)(w − qλy)
(1− qkx)(1− qλ+ky)

+
xy − q2λy2

(x− qλy)(−w + qλy)
(1− qkx)(1− qkw)

+
xy − x2

(w − x)(x− qλy)
(1− qλ+ky)(1− qkw)

we can establish another contiguous relation

Ωλ,μ(w, x, y) =
(w2 − xy)(1− x)(1− qλy)

(1− xy)(w − x)(w − qλy)
Ωλ+1,μ−1(w, qx, y)

+
(xy − q2λy2)(1− x)(1− w)

(1− xy)(x− qλy)(−w + qλy)
Ωλ,μ(w/q, qx, y)

+
(xy − x2)(1− qλy)(1− w)

(1− xy)(w − x)(x− qλy)
Ωλ,μ(w/q, x, qy).

After some simplification, we state it as the following lemma.

Lemma 2 (Contiguous relation).

Ωλ+1,μ−1(w, x, y) =
(1− xy/q)(w − x/q)(w − qλy)

(w2 − xy/q)(1− x/q)(1− qλy)
Ωλ,μ(w, x/q, y)

+
(xy/q − q2λy2)(w − x/q)(1− w)

(w2 − xy/q)(x/q − qλy)(1− qλy)
Ωλ,μ(w/q, x, y)

+
(x2/q2 − xy/q)(w − qλy)(1− w)

(w2 − xy/q)(x/q − qλy)(1− x/q)
Ωλ,μ(w/q, x/q, qy).

This lemma will be used to evaluate the Ωλ+1,μ−1-sums from Ωλ,μ-sums.

Finally, in accordance with the expression

1 =
qλy

qλy − x
(1− qkx) +

x

x− qλy
(1− qλ+ky)

we can verify, without difficulty, the following third recurrence.

Lemma 3 (Contiguous relation).

Ωλ,μ(w, x, y) =
qλy(1− x)

qλy − x
Ωλ+1,μ(w, qx, y/q) +

x(1− qλy)

x− qλy
Ωλ+1,μ(w, x, y).

It will be employed to find closed formulae for Ωλ,μ-sums from the Ωλ+1,μ-sums.

3. Evaluation of the Ωλ,μ(1, q
−n, y)-Sums

By applying the recurrence relations established in the last section to Andrews’
identity (4), we shall prove more closed formulae for the Ωλ,μ(1, q

−n, y)-sums. Our
starting point is the crucial formula (4). To maintain the integrity, we present
another proof of it by means of inverse series relations.
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Recall the q-Pfaff–Saalschütz summation theorem (cf. Bailey [2, §8.4] and Gasper–
Rahman [9, II-12]) about the terminating balanced series:

3φ2

[
q−n, a, b

c, q1−nab/c

∣∣∣ q; q] =

[
c/a, c/b
c, c/ab

∣∣∣ q]
n

. (6)

Its particular case

3φ2

[
q−n, q1−n, q2−n

q3x, q3−3n/x

∣∣∣ q3; q3] =
(x; q)2n

(x; q3)n(qx; q)n

can be reformulated as the following q-binomial sum∑
k≥0

(−1)k
[
n

3k

]
(q−3kx; q3)n

[
q, q2

q3x, q3/x

∣∣∣ q3]
k

q(
1+3k

2 ) =
(x; q)2n
(qx; q)n

.

Observing that this equality matches the first equation of (1) under the specifica-
tions

f(n) → (x; q)2n
(qx; q)n

, p(y;n) → (xy; q3)n;

g(k) → χ(k ≡3 0)

[
q, q2

q3x, q3/x

∣∣∣ q3]
k
3

q(
k+1
2 );

we obtain the following dual relation from the second equation of (1)
n∑

k=0

(−1)k
[
n

k

]
q(

n−k
2 ) 1− q2kx

(q−nx; q3)k+1

(x; q)2k
(qx; q)k

= χ(n ≡3 0)

[
q, q2

q3x, q3/x

∣∣∣ q3]
�n

3 �
q(

n+1
2 )

which can be restated equivalently as
n∑

k=0

(q−n; q)k(qx; q)2k
(q; q)k(qx; q)k(q3−nx; q3)k

qk = χ(n ≡3 0)

[
q, q2

q3x, 1/x

∣∣∣ q3]
�n

3 �
. (7)

Its reversal under the replacement x → q−2n/y confirms the identity (4).

Theorem 4 (Ω0,0(1, q
−n, qny): Andrews [1]).

n∑
k=0

[
q−n, qny

q

∣∣∣ q]
k

(y; q3)k
(y; q)2k

qk = χ(n ≡3 0)

[
q, q2

qy, q2y

∣∣∣ q3]
�n

3 �
(y)�

n
3 �.

There is also an alternative proof by applying Carlitz’ inversions to the q-Dougall
sum. The interested reader can find it in Chu [5, Eq. 4.4d].

Now we are going to derive summation formulae for the Ωλ,μ(1, q
−n, y)-sums by

utilizing the contiguous relations proved in the last section.

First, letting λ = μ = 0 and w → q−1, x → q−n−1, y → qn−1y in Lemma 1 and
then applying Theorem 4, we derive the following summation formula.

Corollary 5 (Ω−1,1(1, q
−n, qny)).

n∑
k=0

[
q−n, qn−1y

q

∣∣∣ q]
k

(qy; q3)k
(y; q)2k

qk =
(qy)�

n
3 �

1− q2n−1y

[
q, q2

y, y/q

∣∣∣ q3]
�n+1

3 �

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1− y/q, n ≡3 0;

0, n ≡3 1;

y2/q − y, n ≡3 2.
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By combining the last formula with Lemma 1 specified by λ = −1, μ = 1 and
w → q−1, x → q−n−1, y → qn−1y, we obtain another balanced series identity.

Corollary 6 (Ω−2,2(1, q
−n, qny)).

n∑
k=0

[
q−n, qn−2y

q

∣∣∣ q]
k

(q2y; q3)k
(y; q)2k

qk = (q2y)�
n
3 �

[
q, q2

y, qy

∣∣∣ q3]
�n

3 �

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− qn−2y)(1− qn−3y)

(1− q2n−2y)(1− q2n−3y)
, n ≡3 0;

y(1− qn)(1− qn+1)

q(1− q2n−1y)(1− q2n−2y)
, n ≡3 1;

−y(1 + q)(1− qn)(1− qn−1)

(1− q2n−1y)(1− q2n−3y)
, n ≡3 2.

Similarly, letting λ = 0, μ = 0 and w → 1, x → q−n, y → qny in Lemma 2 and
then invoking Theorem 4, we derive the following closed formula.

Corollary 7 (Ω1,−1(1, q
−n, qny)).

n∑
k=0

[
q−n, qn+1y

q

∣∣∣ q]
k

(y/q; q3)k
(y; q)2k

qk =
(y
q

)�n+2
3 � [ q, q2

y, qy

∣∣∣ q3]
�n+2

3 �
.

By applying Lemma 2 to the last formula, we can further evaluate Ω2,−2(1, q
−n, qny).

We limit ourselves to record the following formula corresponding to n ≡3 1 because
the resulting expressions for the remaining two cases are too complicated.

Corollary 8 (Ω2,−2(1, q
−3m−1, q3m+1y)).

n∑
k=0

[
q−1−3m, q3+3my

q

∣∣∣ q]
k

(y/q2; q3)k
(y; q)2k

qk =
ym+1(1− q2)(1− q3)

q2m+2(1− y)(1− qy)

[
q4, q5

q2y, q3y

∣∣∣ q3]
m

.

Finally, by means of the Lemma 3, we can show further five summation formulae
for Ωλ,μ(1, q

−n, qny), where the formulae to be employed will be indicated in the
headers of corollaries.

Corollary 9 (Ω0,−1(1, q
−n, qny) by Corollary 7).

n∑
k=0

[
q−n, qny

q

∣∣∣ q]
k

(y/q; q3)k
(y; q)2k

qk =
(y
q

)�n+2
3 � [ q, q2

y, qy

∣∣∣ q3]
�n+2

3 �

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, n ≡3 0;

1− qny

1− qn+1
, n ≡3 1;

1, n ≡3 2.
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Corollary 10 (Ω−1,−1(1, q
−n, qny) by Corollary 9).

n∑
k=0

[
q−n, qn−1y

q

∣∣∣ q]
k

(y/q; q3)k
(y; q)2k

qk =
(y
q

)�n+2
3 � [ q, q2

y, qy

∣∣∣ q3]
�n+1

3 �

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, n ≡3 0;

1− q2n

1− q2n−1y
, n ≡3 1;

1− q2n−2y2

1− q2n−1y
, n ≡3 2.

Corollary 11 (Ω−1,0(1, q
−n, qny) by Theorem 4).

n∑
k=0

[
q−n, qn−1y

q

∣∣∣ q]
k

(y; q3)k
(y; q)2k

qk = y�
n+2
3 �

[
q, q2

qy, q2y

∣∣∣ q3]
�n

3 �

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1− qn−1y

1− q2n−1y
, n ≡3 0;

qn−1(1− qn)

1− q2n−1y
, n ≡3 1;

0, n ≡3 2.

Corollary 12 (Ω−2,0(1, q
−n, qny) by Corollary 11).

n∑
k=0

[
q−n, qn−2y

q

∣∣∣ q]
k

(y; q3)k
(y; q)2k

qk = y�
n+2
3 �

[
q, q2

qy, q2y

∣∣∣ q3]
�n+1

3 �

×

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1− qn−1y)(1− qn−2y)

(1− q2n−1y)(1− q2n−2y)
, n ≡3 0;

(1 + q)qn−2(1− qn)(1− qn−2y)

(1− q2n−1y)(1− q2n−3y)
, n ≡3 1;

yq2n−4(1− qn−1y)(1− qny)

(1− q2n−2y)(1− q2n−3y)
, n ≡3 2.

Corollary 13 (Ω−2,1(1, q
−n, qny) by Corollary 5).

n∑
k=0

[
q−n, qn−2y

q

∣∣∣ q]
k

(qy; q3)k
(y; q)2k

qk =
q − y

q

[
q, q2

y, y/q

∣∣∣ q3]
�n+2

3 �

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(qy)�
n
3 �(1− qn−3y − qn−2y + q2n−2y)

(1− q2n−1y)(1− q2n−3y)
, n ≡3 0;

qn−3(qy)�
n+2
3 �(1− qn−1y)(1− qn−2y)

(1− qn+1)(1− q2n−2y)(1− q2n−3y)
, n ≡3 1;

−(q)�
n
3 �(y)�

n+2
3 �(1− qn−2y)

(1− q2n−1y)(1− q2n−2y)
, n ≡3 2.

Following the same procedure, it is possible to evaluate the Ωλ,μ(1, q
−n, qny)-sums

in closed form for any couple of integer parameters λ and μ satisfying the condition
λ+μ ≤ 0. However we shall not enlarge the list of identities due to their complexity
and space limitations.
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4. Evaluation of the Ωλ,μ(q
−1−δ−μ−3n, x, q1+δ/x)-Sums

As a particular case of (6), it is routine to verify the following equality

3φ2

[
q1−2n, q−2n, q−2n−1

q1−3nx, q2−3n/x

∣∣∣ q3; q3] =
qn

2

(x; q)n(q/x; q)n
(qx; q3)n(q2/x; q3)n

.

Writing the 3φ2-series as a finite sum
∑n

k=0 and then reversing the summation
order by k → n− k, we can reformulate it, after some simplifications, as follows:

n∑
k=0

(−1)k
[
n

k

]
q3
(q−3k−1; q)n

(qx; q3)k(q
2/x; q3)k

(q; q3)k+1(q2; q3)k
q3(

k+1
2 )

=
(q3; q3)n(x; q)n(q/x; q)n

(q; q)2n+1
,

where
[
n
k

]
q3

denotes the Gaussian binomial coefficient
[
n
k

]
with the base q being

replaced by q3. According to the inverse pair (1), we get the dual relation below

n∑
k=0

(−1)k
[
n

k

]
q3
q3(

n−k
2 ) 1− q−2k−1

(q−3n−1; q)k+1

(q3; q3)k(x; q)k(q/x; q)k
(q; q)2k+1

=
(qx; q3)n(q

2/x; q3)n
(q; q3)n+1(q2; q3)n

q3(
n+1
2 ).

This is equivalent to the following summation formula.

Theorem 14 (Ω0,0(q
−3n−1, x, q/x): Chu [5, Eq. 3.9a]).

n∑
k=0

[
x, q/x
q−3n

∣∣∣ q]
k

(q−3n; q3)k
(q; q)2k

qk =

[
qx, q2/x
q, q2

∣∣∣ q3]
n

.

Alternatively, by examining another particular case of (6)

3φ2

[
q−2n, q−2n−1, q−2n−2

q−3n−1x, q1−3n/x

∣∣∣ q3; q3] =
qn

2+n(x; q)n(q
2/x; q)n

(q2x; q3)n(q4/x; q3)n

and carrying out the same procedure, we would find the identity below.

Theorem 15 (Ω0,0(q
−3n−2, x, q2/x): Chu [5, Eq. 3.9b]).

n∑
k=0

[
x, q2/x
q−1−3n

∣∣∣ q]
k

(q−3n; q3)k
(q2; q)2k

qk =

[
q2x, q4/x
q2, q4

∣∣∣ q3]
n

.

Specifying λ = 0, μ = 0 and w → q−2−δ−3n, y → q1+δ/x in Lemma 1 and then
applying Theorem 14 and Theorem 15, we find, respectively, the following two
summation formulae.

Corollary 16 (Ω−1,1(q
−3n−2, x, q/x)).

n∑
k=0

[
x, 1/x
q−3n−1

∣∣∣ q]
k

(q−3n; q3)k
(q; q)2k

qk

=
1− q3n+1x

(1 + x)(1− q)

{[
qx, q2/x
q2, q4

∣∣∣ q3]
n

− q(1− x/q)

1− q3n+1x

[
q2x, q4/x
q2, q4

∣∣∣ q3]
n

}
.
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Corollary 17 (Ω−1,1(q
−3n−3, x, q2/x)).

n∑
k=0

[
x, q/x
q−3n−2

∣∣∣ q]
k

(q−3n; q3)k
(q2; q)2k

qk

=
x(1− q)

q − x2

{[
x, q3/x
q, q2

∣∣∣ q3]
n+1

− 1− q3n+2x

1− x/q

[
x/q, q/x
q, q2

∣∣∣ q3]
n+1

}
.

Similarly, letting λ = −1 and μ = 0 in Lemma 3 and then appealing to Theorem 14
and Theorem 15, we obtain two further identities.

Corollary 18 (Ω−1,0(q
−3n−1, x, q/x)).

n∑
k=0

[
x, 1/x
q−3n

∣∣∣ q]
k

(q−3n; q3)k
(q; q)2k

qk

=
1

1 + x

[
q2x, q/x
q, q2

∣∣∣ q3]
n

+
x

1 + x

[
qx, q2/x
q, q2

∣∣∣ q3]
n

.

Corollary 19 (Ω−1,0(q
−3n−2, x, q2/x)).

n∑
k=0

[
x, q/x
q−3n−1

∣∣∣ q]
k

(q−3n; q3)k
(q2; q)2k

qk

=
1− x

1− x2/q

[
q3x, q3/x
q2, q4

∣∣∣ q3]
n

+
x− x2/q

1− x2/q

[
q2x, q4/x
q2, q4

∣∣∣ q3]
n

.

5. Evaluation of the Ωλ,μ(w, q
−n, q1+n+δ)-Sums

For the bilateral q-series, Bailey [3] discovered the following very well-poised 6ψ6-
series identity (see also Chu [7] and Gasper–Rahman [9, II-33]):

∞∑
k=−∞

1− q2ka

1− a

[
b, c, d, e

qa/b, qa/c, qa/d, qa/e

∣∣∣ q]
k

( qa2

bcde

)k

=

[
q, qa, q/a, qa/bc, qa/bd, qa/be, qa/cd, qa/ce, qa/de
qa/b, qa/c, qa/d, qa/e, q/b, q/c, q/d, q/e, qa2/bcde

∣∣∣ q]
∞

(8)

provided that
∣∣qa2/bcde∣∣ < 1 for convergence.

First, it is not hard to check, under q → q3, the following special case

(q; q)n(q
2; q)n(qw; q

3)n
(q; q)2n(qw; q)n

=
∞∑

k=−∞

1− q6k+1

1− q

[
q/w, q−n, q1−n, q2−n

q3w, q4+n, q3+n, q2+n

∣∣∣ q3]
k

qk(1+3n)wk.

For the last bilateral series, splitting it into two sums
∑

k≥0 and
∑

k<0, and then
replacing the summation index k by −1−k for the second sum, we can reformulate
the resulting equality as

(q; q)n(q; q)n(qw; q
3)n

(qw; q)n(q; q)2n
=

n∑
k=0

(−1)k
[
n

3k

]
q(

3k
2 ) 1− q6k+1

(qn+1; q)3k+1

(qw)k(q/w; q3)k(q; q)3k
(q3w; q3)k

+
n∑

k=0

(−1)k
[

n

3k + 2

]
q(

3k+2
2 ) 1− q6k+5

(qn+1; q)3k+3

(qw)k+1(1/w; q3)k+1(q; q)3k+2

(q2w; q3)k+1
.
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This equality fits perfectly into the second equation displayed in (2) under the
parameter specifications

g(n) =
(q; q)n(q; q)n(qw; q

3)n
(qw; q)n(q; q)2n

, p(y;n) = (qy; q)n;

f(k) = q(
k
2)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(q; q)3i(q/w; q
3)i

(q3w; q3)i
(qw)i, k = 3i;

0, k = 3i+ 1;
(1/w; q3)i+1(q; q)3i+2

(q2w; q3)i+1
(qw)i+1, k = 3i+ 2.

The dual relation corresponding to the first equation of (2) reads as

n∑
k=0

(−1)k
[
n

k

]
q(

n−k
2 )(q1+k; q)n

(q; q)k(q; q)k(qw; q
3)k

(qw; q)k(q; q)2k

= q(
n
2)(q; q)n

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(qw)m
(q/w; q3)m
(q3w; q3)m

, n = 3m;

0, n = 3m+ 1;

(qw)m+1 (1/w; q
3)m+1

(q2w; q3)m+1
, n = 3m+ 2.

This can be restated as the following summation formula.

Theorem 20 (Ω0,0(w, q
−n, q1+n)).

n∑
k=0

[
q−n, q1+n

qw

∣∣∣ q]
k

(qw; q3)k
(q; q)2k

qk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(q/w; q3)m
(q3w; q3)m

(qw)m, n = 3m;

0, n = 3m+ 1;
(1/w; q3)m+1

(q2w; q3)m+1
(qw)m+1, n = 3m+ 2.

Letting w → 0 and w → ∞, we find the following interesting identities

n∑
k=0

(−1)k
[
n+ k

2k

]
q(

n−k
2 ) = (−1)�

n+1
3 �q

n(2n−1)
3 χ(n 	≡3 1), (9a)

n∑
k=0

(−1)k
[
n+ k

2k

]
q(

n−k
2 )+k(k−1) = (−1)�

n+1
3 �q

n(n−2)
3 χ(n 	≡3 1). (9b)

These two identities are reciprocal in the sense that one is equivalent to another un-
der the base replacement q → q−1. In addition, we point out that (9a) is equivalent
to the case m = 2n of the following identity due to Warnaar [10]:

m∑
k=0

(−1)k
[
m− k

k

]
q(

k
2) = χ(m 	≡3 2)(−1)�

m
3 �q

m(m−1)
6 . (10)

Analogously, Bailey’s identity (8) can also be specialized, under the base change
q → q3, to another equality

(q; q)n(q
3; q)n(q

2w; q3)n
(q2; q)2n(qw; q)n

=
∞∑

k=−∞

1−q6k+2

1− q2

[
q2/w, q−n, q1−n, q2−n

q3w, q5+n, q4+n, q3+n

∣∣∣ q3]
k

qk(2+3n)wk
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which can be reformulated further as

(q; q)n(q
2; q)n(q

2w; q3)n
(qw; q)n(q2; q)2n

=
n∑

k=0

(−1)k
[
n

3k

]
q(

3k
2 ) 1− q6k+2

(qn+2; q)3k+1

(q2w)k(q2/w; q3)k(q; q)3k
(q3w; q3)k

+

n∑
k=0

(−1)k
[

n

3k + 1

]
q(

3k+1
2 ) 1− q6k+4

(qn+2; q)3k+2

(q2w)k+1(1/w; q3)k+1(q; q)3k+1

q(qw; q3)k+1
.

By comparing this last relation with the second equation displayed in (2) under the
parameter specifications

g(n) =
(q; q)n(q

2; q)n(q
2w; q3)n

(qw; q)n(q2; q)2n
, p(y;n) = (q2y; q)n;

f(k) = q(
k
2)(q2w)�

k
3 �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(q; q)3i(q
2/w; q3)i

(q3w; q3)i
, k = 3i;

−qw
(1/w; q3)i+1(q; q)3i+1

(qw; q3)i+1
, k = 3i+ 1;

0, k = 3i+ 2;

we get correspondingly the dual relation from the first equation of (2):

n∑
k=0

(−1)k
[
n

k

]
q(

n−k
2 )(q2+k; q)n

(q; q)k(q
2; q)k(q

2w; q3)k
(qw; q)k(q2; q)2k

= q(
n
2)(q; q)n(q

2w)�
n
3 �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(q2/w; q3)m
(q3w; q3)m

, n = 3m;

−qw
(1/w; q3)m+1

(qw; q3)m+1
, n = 3m+ 1;

0, n = 3m+ 2.

This can be restated as another summation theorem.

Theorem 21 (Ω0,0(w, q
−n, q2+n)).

n∑
k=0

[
q−n, q2+n

qw

∣∣∣ q]
k

(q2w; q3)k
(q; q)2k+1

qk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(q2w)m

1− q3m+1

[
q2/w

q3w

∣∣∣ q3
]
m

, n = 3m;

−(q2w)m+1

q(1− q3m+2)

[
1/w

qw

∣∣∣ q3
]
m+1

, n = 3m+ 1;

0, n = 3m+ 2.

Letting w → 0 and w → ∞ respectively, we obtain the following two reciprocal
sums, with the first one corresponding to the case m = 2n+ 1 of (10).

n∑
k=0

(−1)k
[
n+ k + 1

1 + 2k

]
q(

n−k
2 ) = (−1)�

n
3 �q

n(2n+1)
3 χ(n 	≡3 2), (11a)

n∑
k=0

(−1)k
[
n+ k + 1

1 + 2k

]
q(

n−k
2 )+k2

= (−1)�
n
3 �q

n(n−1)
3 χ(n 	≡3 2). (11b)

Based on these two Ω0,0(w, q
−n, q1+n+δ) sums with δ = 0, 1 displayed in Theo-

rems 20 and 21, we may derive further formulae via contiguous relations. Four of
them are listed as follows.

First, letting λ = 0 and μ = 0 in Lemma 1 yields the following two identities.
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Corollary 22 (Ω−1,1(w, q
−n, q1+n)).

n∑
k=0

[
q−n, qn

qw

∣∣∣ q]
k

(q2w; q3)k
(q; q)2k

qk

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(q2w)m

1 + q3m

{
(1/w; q3)m
(qw; q3)m

+
(q2/w; q3)m
(q3w; q3)m

}
, n = 3m;

−q2m+1wm+1

1 + q3m+1

(1/w; q3)m+1

(qw; q3)m+1
, n = 3m+ 1;

−q2m+1wm

1 + q3m+2

(q2/w; q3)m
(q3w; q3)m

, n = 3m+ 2.

Corollary 23 (Ω−1,1(w, q
−n, q2+n)).

n∑
k=0

[
q−n, q1+n

qw

∣∣∣ q]
k

(q3w; q3)k
(q; q)2k+1

qk

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q3mwm

1− q6m+1

(q/w; q3)m
(qw; q3)m

, n = 3m;

q3m+1wm

1− q6m+3

{
(q2/w; q3)m
(q2w; q3)m

− w
(q/w; q3)m+1

(qw; q3)m+1

}
, n = 3m+ 1;

−q3m+2wm+1

1− q6m+5

(q2/w; q3)m+1

(q2w; q3)m+1
, n = 3m+ 2.

Then letting λ = −1 and μ = 0 in Lemma 3, we deduce two further formulae.

Corollary 24 (Ω−1,0(w, q
−n, q1+n)).

n∑
k=0

[
q−n, qn

qw

∣∣∣ q]
k

(qw; q3)k
(q; q)2k

qk

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wm

1 + q3m

{
q4m

(1/w; q3)m
(q2w; q3)m

+ qm
(q/w; q3)m
(q3w; q3)m

}
, n = 3m;

q4m+1wm

1 + q3m+1

(q/w; q3)m
(q3w; q3)m

, n = 3m+ 1;

(qw)m+1

1 + q3m+2

(1/w; q3)m+1

(q2w; q3)m+1
, n = 3m+ 2.

Corollary 25 (Ω−1,0(w, q
−n, q2+n)).

n∑
k=0

[
q−n, q1+n

qw

∣∣∣ q]
k

(q2w; q3)k
(q; q)2k+1

qk

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(q2w)m

1− q6m+1

(q2/w; q3)m
(q3w; q3)m

, n = 3m;

q2m+1wm

1− q6m+3

{
q3m+1 (q

2/w; q3)m
(q3w; q3)m

− w
(1/w; q3)m+1

(qw; q3)m+1

}
, n = 3m+ 1;

−q5m+4wm+1

1− q6m+5

(1/w; q3)m+1

(qw; q3)m+1
, n = 3m+ 2.
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6. Evaluation of the Ωλ,μ(1, x, q
−3n/x)-Sums

For the fourth terminating case, we begin with the following formula.

Theorem 26 (Ω0,0(1, x, q
−3n/x)).

n∑
k=0

[
x, q−3n/x

q

∣∣∣ q]
k

(q−3n; q3)k
(q−3n; q)2k

qk =
1

xn

[
qx, q2x
q, q2

∣∣∣ q3]
n

.

Proof. By multiplying both sides by xn, the last equality becomes a polynomial
identity of degree 2n. Therefore we need only to verify the last equality for 2n+ 1
distinct values of x. First, it is obvious that the equality holds for x = 1. Then for
x = q1+δ−3� with δ = 0, 1 and 
 = 1, 2, · · · , n, the right member is equal to zero.
The corresponding left member reads as

n∑
k=0

[
q1+δ−3�, q3�−3n−1−δ

q

∣∣∣ q]
k

(q−3n; q3)k
(q−3n; q)2k

qk

=

�3n/2�∑
k=0

[
q1+δ−3�, q3�−3n−1−δ

q

∣∣∣ q]
k

(q−3n; q3)k
(q−3n; q)2k

qk,

where the upper limit of the sum is justified by

k ≤ min
{
3
− 1− δ, 3n− 3
+ 1 + δ

} ≤ �3n/2� for 1 ≤ 
 ≤ n.

According to (4), the last sum is annihilated for 1+ δ 	≡3 0. Consequently, we have
validated the equality in question for 2n+1 distinct values of x and completed the
proof of theorem. �

Letting λ = 0, μ = 0 and w → q−1, x → x/q, y → q−3n−2/x in Lemma 1 and then
applying Theorem 26, we derive the following identity.

Corollary 27 (Ω−1,1(1, x, q
−1−3n/x)).

n∑
k=0

[
x, q−2−3n/x

q

∣∣∣ q]
k

(q−3n; q3)k
(q−1−3n; q)2k

qk

=
x−n(1− q2+3n)

1− q2+3nx2

{[
qx, q2x
q, q2

∣∣∣ q3]
n+1

− qn+1

[
x, qx
q, q2

∣∣∣ q3]
n+1

}
.

Alternatively, letting λ = −1 and μ = 0 in Lemma 3 and then invoking Theorem 26,
we get another summation formula.

Corollary 28 (Ω−1,0(1, x, q
−3n/x)).

n∑
k=0

[
x, q−3n−1/x

q

∣∣∣ q]
k

(q−3n; q3)k
(q−3n; q)2k

qk

=
1

xn(1− q1+3nx2)

{
1− x

qn

[
q2x, q3x
q, q2

∣∣∣ q3]
n

+ x(1− qx)

[
q2x, q4x
q, q2

∣∣∣ q3]
n

}
.

Finally, by combining Lemma 3 with Corollary 27, we obtain the identity below.
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Corollary 29 (Ω−2,1(1, x, q
−1−3n/x)).

n∑
k=0

[
x, q−3−3n/x

q

∣∣∣ q]
k

qk(q−3n; q3)k
(q−1−3n; q)2k

=
(qx)−n(1− x)(1− q2+3n)

(1−q3+3nx2)(1−q4+3nx2)

[
q2x, q3x
q, q2

∣∣∣ q3]
n+1

− qx(1− q3+3nx)(1− q2+3n)

(x/q)n(1− q2+3nx2)(1− q3+3nx2)

[
x, qx
q, q2

∣∣∣ q3]
n+1

+
(qx− q + x− q4+3nx2)(1− q2+3n)

xn(1− q2+3nx2)(1− q4+3nx2)

[
qx, q2x
q, q2

∣∣∣ q3]
n+1

.

7. Formulae for the Reversal Λ(w, x, y)-Series

Recall the Ω(w, x, y)-series defined by (3). By considering the “negative part” of the
sum with summation indices k < 0 and then making the replacement k → −1− k,
we can express the resulting series equivalently as

Λ(w, x, y) :=
∑
k≥0

[
w

qx, qy

∣∣∣ q]
k

(qxy; q)2k
(q3wxy; q3)k

qk.

When both Ω(w, x, y)-series and Λ(w, x, y)-series are terminating, it is not hard to
check that they are reversal each other. Therefore, by examining reversals, we may
translate the summation formulae for Ω(w, x, y)-sums obtained in the preceding
sections into Λ(w, x, y)-sums. Four of them are highlighted as examples.

Example 30 (Λ(q−n, x, 1): Reversal of Theorem 4).
n∑

k=0

[
q−n

q, qx

∣∣∣ q]
k

(qx; q)2k
(q3−nx; q3)k

qk = χ(n ≡3 0)

[
q, q2

q3x, 1/x

∣∣∣ q3]
�n

3 �
.

Example 31 (Λ(qn+1, x, q−1−n/x): Reversal of Theorems 14 and 15).

�n/2�∑
k=0

[
q1+n

qx, q−n/x

∣∣∣ q]
k

(q−n; q)2k
(q3; q3)k

qk =
(q2−nx; q3)n

(qx; q)n
.

Example 32 (Λ(w, 1, q−1−n): Reversal of Theorems 20 and 21).

�n/2�∑
k=0

[
w

q, q−n

∣∣∣ q]
k

(q−n; q)2k
(q2−nw; q3)k

qk = χ(n 	≡3 2)

[
q2−n/w
q2−nw

∣∣∣ q3]
�n

3 �
w�n

3 �.

Example 33 (Λ(q−n, x, qn/x): Reversal of Theorem 26).
n∑

k=0

[
q−n

qx, q1+n/x

∣∣∣ q]
k

(q1+n; q)2k
(q3; q3)k

qk =
(q1−n/x; q3)n(q

2−n/x; q3)n
(q−n/x; q)n(q1+n/x; q)n

.
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