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EXISTENCE OF STRONG SOLUTIONS AND DECAY OF TURBULENT

SOLUTIONS OF NAVIER-STOKES FLOW WITH NONZERO DIRICHLET

BOUNDARY DATA

REINHARD FARWIG, HIDEO KOZONO, AND DAVID WEGMANN

Abstract. Recently, Leray’s problem of the L2-decay of a special weak solution to the Navier-

Stokes equations with nonhomogeneous boundary values was studied by the authors, exploiting
properties of the approximate solutions converging to this solution. In this paper this result is
generalized to the case of an arbitrary weak solution satisfying the strong energy inequality.

1. Introduction

Let Ω ⊂ R
3 be a bounded domain or an exterior domain with ∂Ω ∈ C1,1 and let us consider

the non-stationary Navier-Stokes equations with viscosity ν = 1 and data f, β, u0 in the form

ut −Δu+ u · ∇u+∇p = f, divu = 0

u|∂Ω = β, u(0) = u0
(1.1)

in the time interval [0, T ), 0 < T ≤ ∞. To prove the existence of a weak solution to (1.1) we
assume that

f = divF, F ∈ L2(0, T ; L2(Ω)), u0 ∈ L2
σ(Ω),

β ∈ L4(0, T ;W− 1
4 ,4(∂Ω)) ∩ Ls0(0, T ;W− 1

q0
,q0(∂Ω)),

2

s0
+

3

q0
= 1, 2 < s0 < ∞, 3 < q0 < ∞,

ˆ
∂Ω

n · β dσ = 0,

(1.2)

where n = n(x) denotes the exterior normal on the boundary at x ∈ ∂Ω. The existence of weak
solutions was studied by several authors since the early 2000s, see [1,4–14,20]. The most common
way to deal with non-homogeneous boundary data is to split the problem into two parts. The
first one is to construct a solution b to the non-stationary Stokes equations

bt −Δb+∇p̄ = 0, div b = 0

b|∂Ω = β, b(0) = 0.
(1.3)

Then a function u is a solution to (1.1) if and only if the function v := u− b is a solution to

vt −Δv + (v + b) · ∇(v + b) + p̃ = f, div v = 0

v|∂Ω = 0, v(0) = u0
(1.4)

and we will call the equations (1.4) perturbed Navier-Stokes equations. To consider (1.4) instead of
(1.1) leads to the advantage of not dealing with non-homogeneous boundary data, at the cost of a
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more difficult non-linear term. Nevertheless, we will construct a solution to (1.1) via constructing
a solution v to (1.4). Since div v = div b = 0 the non-linear term in (1.4) can be rewritten as

(v + b) · ∇(v + b) = div ((v + b)⊗ (v + b)) = div (v ⊗ v + v ⊗ b+ b⊗ v + b⊗ b).

Here ⊗ denotes the dyadic product, i.e., v⊗b := (vibj)1≤i,j≤3, and the divergence is taken column-

wise. For simplicity we will omit the symbol ⊗ and write vb := v⊗b. Hence, with the L2(Ω)-scalar
product 〈·, ·〉, we have 〈bv,∇w〉 = −〈bw,∇v〉 since v = 0 on ∂Ω. To deal with the non-linear term
during the process of construction of a weak solution one needs to assume that

vb+ bv + bb ∈ L2(0, T ; L2(Ω))

or equivalently

b ∈ Ls0(0, T ; Lq0(Ω)) ∩ L4(0, T ; L4(Ω)).(1.5)

Since we do not need any integrability conditions for ∇b, it usually suffices to deal with a very
weak solution b to (1.3) and so we just need to assume that β takes values in a dual space of a
trace space, cf. (1.2). Let us define the notion of a weak solution, a turbulent solution, and a
strong solution to (1.4).

Definition 1.1. Let b satisfy (1.5) and assume u0 ∈ L2
σ(Ω) and f = divF , F ∈ L2(0, T ; L2(Ω)).

Then a vector field v on (0, T ) × Ω is called a Leray-Hopf type weak solution to the perturbed
Navier-Stokes system (1.4) if the following conditions are satisfied:

(1) v ∈ L∞(0, T ; L2(Ω)), ∇v ∈ L2(0, T ; L2(Ω)),
(2) for each test function ϕ ∈ C∞

0 ([0, T );C∞
0,σ(Ω)) the equality

−〈v, ϕt〉Ω,T + 〈∇v,∇ϕ〉Ω,T − 〈(v + b)(v + b),∇ϕ〉Ω,T = 〈u0, ϕ(0)〉Ω − 〈F,∇ϕ〉Ω,T(1.6)

is fulfilled,
(3) the energy inequality

1

2
‖v(t)‖22 +

ˆ t

0

‖∇v‖22 dτ ≤ 1

2
‖u0‖22 −

ˆ t

0

〈F − (v + b)b,∇v〉 dτ(1.7)

holds for all t ∈ (0, T ).

After a redefinition on a null set we may assume that the weak solution is weakly continuous
in time with values in L2(Ω), cf. [32, Ch. V, 1.3.1 Theorem]. As already mentioned, (1.7) is
called energy inequality. Furthermore, we will say that a weak solution v fulfills the strong energy
inequality, if in addition to (1.7)

1

2
‖v(t)‖22 +

ˆ t

s

‖∇v‖22 dτ ≤ 1

2
‖v(s)‖22 −

ˆ t

s

〈F − (v + b)b,∇v〉 dτ(1.8)

holds for almost all s ∈ (0, T ) and all t ∈ (s, T ), and finally, a solution v fulfills the energy equality,
if

1

2
‖v(t)‖22 +

ˆ t

0

‖∇v‖22 dτ =
1

2
‖u0‖22 −

ˆ t

0

〈F − (v + b)b,∇v〉 dτ(1.9)

holds for all t ∈ (0, T ).

Definition 1.2. Let v be a weak solution to (1.4) in the sense of Definition 1.1.

(1) The solution v is called a turbulent solution to (1.4), if v fulfills the strong energy inequality
(1.8).

(2) The solution v is called a strong solution in the sense of Serrin to (1.4), if

v ∈ Ls(0, T ; Lq(Ω)) for some 2 < s < ∞ and 3 < q < ∞, where
2

s
+

3

q
= 1.
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Note that if v is a strong solution to (1.4), using a density argument one can prove that
v can be used as a test function in (1.6). Therefore, this solution fulfills the energy equality
(1.9). Furthermore, following the proof of [32, Ch. V, 1.4.1 Theorem] one can prove that after
redefinition on a null set v ∈ C0([0, T ); L2(Ω)).

To state our first main theorem, let A denote the Stokes operator in a bounded or exterior
domain Ω and let e−τA, τ ≥ 0, denote the semigroup of the Stokes operator. Let us define

‖u0‖Bq,s
T

:=
(ˆ T

0

‖e−τAu0‖sqdτ
) 1

s

.

For more details to this Besov-type norm see [15–18]. Furthermore, in the Theorems 1.3, 1.5-1.7
we need to assume that b fulfills an additional integrability condition. Let us assume that

b ∈ Ls1(0,∞; Lq1(Ω)), where
1

s0
+

1

s1
=

1

q0
+

1

q1
=

1

2
.(1.10)

Theorem 1.3. Let Ω ⊂ R
3 with ∂Ω ∈ C1,1 be a domain with compact boundary. Let u0 ∈ L2

σ(Ω)

such that ‖u0‖Bq0,s0
T

< ∞ and F ∈ L
s0
2 (0, T ;L

q0
2 (Ω)), 2 < s0 < ∞, 3 < q0 < ∞, 2/s0 + 3/q0 = 1

and let b satisfy (1.5) and (1.10). Then there exists a constant ε� > 0 with the following property:
For any time 0 < T ′ ≤ T such that

‖F‖
L

s0
2 (0,T ′;L

q0
2 (Ω))

+ ‖b‖Ls0 (0,T ′;Lq0 (Ω)) + ‖u0‖Bq0,s0
T

< ε�,

there exists a unique strong solution u to (1.4) with

u ∈ Ls0(0, T ′;Lq0(Ω)).

In a second step, we will deal with a generalization of Serrin’s Uniqueness Theorem.

Theorem 1.4. Let Ω ⊂ R
3 with ∂Ω ∈ C1,1 be a domain with compact boundary. Furthermore,

let b fulfill (1.5) and let f =divF, F ∈ L2(0, T ;L2(Ω)) and u0 ∈ L2
σ(Ω). Finally, let v be a weak

solution to (1.4) and let w be a strong solution to (1.4) in Ω× (0, T ). Then v = w.

Note that in our Definition 1.1 it is already assumed that the weak solution v fulfills the energy
inequality. Hence, in the case b = 0 this result reproves Serrin’s Uniqueness Theorem.

In Theorems 1.5, 1.6 and 1.7 below we will consider Leray’s problem of the L2-decay of a
weak solution to the perturbed Navier-Stokes equations (1.4). Let us remark that so far only
the existence of a special solution to (1.4) which tends to 0 is known, see [13]. This solution was
constructed using Yosida approximation and this generalized the result of Borchers and Miyakawa
[3]. Theorems 1.5-1.7 will extend the results of [13] to the case of arbitrary turbulent solutions.

Theorem 1.5. Let Ω ⊂ R
3 be a bounded domain with ∂Ω ∈ C1,1, let F ∈ L2(0,∞;L2(Ω)),

f = div F, u0 ∈ L2
σ(Ω), and let b satisfy (1.5) and (1.10). Furthermore, assume that there exists

a T > 0 such that F ∈ L
s0
2 (T,∞;L

q0
2 (Ω)). Then every turbulent solution v to (1.4) in the sense

of Definition 1.1 fulfills

lim
t→∞ ‖v(t)‖2 = 0.

Let α ∈ (0, 1), β > 0, and assume in addition that

(1.11) ‖F‖2L2(αt,t;L2(Ω)) + ‖b‖4L4(αt,t;L4(Ω)) + ‖b‖s0Ls0 (αt,t;Lq0 (Ω)) = O(exp(−βt)) as t → ∞.

Then it holds

‖v(t)‖2 = O(exp(−tγ)) as t → ∞
for every turbulent solution v, where γ := min{(1− α)ρ, β} and

√
ρ denotes the largest constant

for which Poincaré’s inequality holds, i.e., ρ‖u‖22 ≤ ‖∇u‖22 for all u ∈ W 1,2
0 (Ω).
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Theorem 1.6. Let Ω ⊂ R
3 be an exterior domain with ∂Ω ∈ C1,1. In addition to the as-

sumptions F ∈ L2(0,∞;L2(Ω)), f = div F, u0 ∈ L2
σ(Ω) and (1.5) and (1.10) for b suppose that

there exist 6
5 < r < 2 and 2 < s2 < s0 such that F ∈ L2(0,∞;Lr(Ω)) and b ∈ L4(0,∞;L2r(Ω)) ∩

Ls2(0,∞;Lq0(Ω)). Furthermore, assume that there exists a T > 0 such that F ∈ L
s0
2 (T,∞;L

q0
2 (Ω)).

Then every turbulent solution v to (1.4) in the sense of Definition 1.1 fulfills

lim
t→∞ ‖v(t)‖2 = 0.

Theorem 1.7. Let Ω ⊂ R
3 be an exterior domain with ∂Ω ∈ C1,1, assume F ∈ L2(0,∞;L2(Ω)),

f = div F, u0 ∈ L2
σ(Ω), and let b satisfy (1.5) and (1.10). Furthermore, assume that there exists

a T > 0 such that F ∈ L
s0
2 (T,∞;L

q0
2 (Ω)). Assume that

∇b ∈ Ls2(0,∞;Lq2(Ω)),
2

s2
+

3

q2
= 2, q2 > 2,

b ∈ Ls3(0,∞;Lq3(Ω)),
2

s3
+

3

q3
=: S(b),

3

2
< q3 ≤ 3,

b · ∇b ∈ L1(0,∞;L2(Ω)),

∇F ∈ L1(0,∞;L2(Ω)),

F ∈ Ls4(0,∞;Lq4(Ω)),
2

s4
+

3

q4
=: S(F ),

3

2
≤ q4 ≤ 2,

(1.12)

and that

‖∇F‖L1(t/2,t;L2(Ω)) + ‖∇b‖Ls2 (t/2,t,Lq2 (Ω)) + ‖b · ∇b‖L1(t/2,t,L2(Ω)) = O(t−α2) as t → ∞(1.13)

for some α2 > 0. Moreover, suppose that

(1.14) ‖e−tAu0‖2 ∈ O(t−α1)

for some α1 > 0. Then every turbulent solution v to (1.4) fulfills

(1.15) ‖v(t)‖2 = O(t−α) as t → ∞
where

(1.16) α := min

{
3

4
, S(b)− 5

4
, S(F )− 5

4
, α1, α2

}
.

Remark 1.8. (1) Leray’s question of the L2-decay of a weak solution was answered first by
Kato [27] and Masuda [28].

(2) Borchers and Miyakawa in [3, Theorem 1] proved a polynomial decay rate for weak
solutions in the exterior domain case. Their result was generalized to the case of f �= 0 �= b
in [13].

(3) In this paper, Theorem 2 in [3] is generalized to the case of f �= 0 �= b.
(4) Our result is closely related to the stability of solutions because the velocity fields b and

v in (1.4) may be regarded as the basic flow and its perturbation, respectively. Similarly
to the class (1.12), there are a number of results to deal with the optimal class of b which
exhibits stability. See for instance, Hishida-Schonbek [24] and Karch-Pilarczyk-Schonbek
[26].

The outline of this paper is as follows. After some preliminaries and a summary of well known
results to the Stokes equations we will prove the existence of a strong solution in Section 4 and
the uniqueness of a strong solution in Section 5. Finally, we will prove our decay results in the
last Section 6.



DECAY OF TURBULENT SOLUTIONS 5

Acknowledgements. The authors R. F. and D. W. greatly acknowledge the support by the EU
Project FLUX, International Research Staff Exchange Scheme, FP7-PEOPLE-2011-IRSES.

The second author H. K. was supported by the Japanese-German Graduate Externship on
Mathematical Fluid Dynamics funded by JSPS.

2. Preliminaries

Let Ω ⊂ R
3 be a domain with compact boundary and ∂Ω ∈ C1,1. As usual, we will use the

Lebesgue spaces Ls(Ω) with norm ‖·‖s, 1 ≤ s ≤ ∞ and Lebesgue-Bochner spaces Ls(0, T ; Lq(Ω)),
1 ≤ s, q ≤ ∞, equipped with the norm ‖ · ‖Ls(0,T ;Lq(Ω)) =: ‖ · ‖q,s,T ; the index T will be omitted
frequently. The pairing of functions will be denoted by 〈·, ·〉 or 〈·, ·〉Ω,T respectively. Furthermore,
we will use standard Sobolev spaces W s,q(Ω) with corresponding trace spaces or dual of trace
spaces W s−1/q,q(∂Ω), respectively, s ∈ R, 1 ≤ q ≤ ∞.

To define weak and very weak solutions to (1.3) and (1.4) we need to introduce the space of
test functions C∞

0 (Ω), of solenoidal test functions C∞
0,σ(Ω) := {ϕ ∈ C∞

0 (Ω) | divϕ = 0} and the
set

C2
0,σ(Ω) := {ϕ ∈ C2(Ω) | divϕ = 0, supp(ϕ) ⊂ Ω is compact and ϕ = 0 on ∂Ω}.

Finally, let Lq
σ(Ω) := C∞

0,σ(Ω)
‖·‖q

.

The existence of a projection Pq : L
q(Ω) → Lq

σ(Ω), the so called Helmholtz projection, is well
known for all 1 < q < ∞. Since Pq(f) = Pr(f) for all 1 < q < r < ∞ and f ∈ Lr(Ω) ∩ Lq(Ω) we
will omit the index q. Using the Helmholtz projection let us define the Stokes operator

A := Aq := −PqΔ: D(Aq) = W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lq

σ(Ω) ⊂ Lq
σ(Ω) → Lq

σ(Ω).

For −1 ≤ α ≤ 1 the fractional powers Aα
q : D(Aα

q ) → Lq
σ(Ω) are well defined, injective, densely

defined with dense range and it holds that (Aα
q )

−1 = A−α
q . It is well known that

‖A 1
2
q u‖q ≤ c‖∇u‖q, 1 < q < ∞.(2.1)

A converse estimate holds if Ω is bounded or, if Ω is an exterior domain, for 1 < q < 3. Moreover,

it holds that ‖A 1
2
2 u‖2 = ‖∇u‖2 for all u ∈ D(A

1
2
2 ). Note that we also have

‖u‖q ≤ c‖Aαu‖γ , 2α+
3

q
=

3

γ
, 1 < γ < 3.(2.2)

The Stokes operator −Aq generates a bounded analytic semigroup {e−tAq | t ≥ 0} on Lq
σ(Ω)

satisfying

‖Aα
q e

−tAqv‖q ≤ ct−α‖v‖q, 0 ≤ α ≤ 1, t > 0,

‖e−tAqv‖p ≤ ct−
3
2 (

1
q− 1

p )‖v‖q, 1 < q ≤ p < ∞
‖∇e−tAqv‖p ≤ ct−

1
2− 3

2 (
1
q− 1

p )‖v‖q, 1 < q ≤ p ≤ 3

(2.3)

for all v ∈ Lq
σ(Ω), see [3, 23]. Moreover, the Stokes operator admits the property of maximal

regularity, i.e., for all f ∈ Ls(0, T ; Lq(Ω)), 1 < s, q < ∞ the instationary Stokes system

vt +Aqv = Pqf, v(0) = 0

has a unique solution v ∈ C([0, T ]; Lq(Ω)) such that vt, Aqv ∈ Ls(0, T ; Lq
σ(Ω)) satisfying the a

priori estimate

‖vt‖q,s,T + ‖Aq‖q,s,T ≤ c‖f‖q,s,T(2.4)

with a constant c independent of T . If f = divF , this solution is given by

v(t) = e−tAu0 +A
1
2

ˆ t

0

e−(t−s)AA− 1
2PdivF (s) ds.(2.5)
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We note that the formal operator A− 1
2Pdiv is well-defined as a bounded operator from Lq(Ω) to

Lq
σ(Ω) for each 1 < q < ∞. For these and further properties of the Stokes operator we refer to

[21, 22, 29, 32].

3. Stokes Equations and Weak Solutions

As already discussed a weak solution to (1.1) will be constructed as a sum of a weak solution
to (1.4) and a very weak solution to (1.3). Therefore, we recall the notion of a very weak solution
to the stationary Stokes equations

−Δb+∇p = 0, div b = 0, b|∂Ω = β(3.1)

and the instationary Stokes equations

bt −Δb+∇p = 0, div b = 0

b(0) = 0, b|∂Ω = β
(3.2)

for the special case of homogeneous data except for nonzero boundary values.

Definition 3.1. Let Ω ⊂ R
3 be a domain with compact C1,1-boundary. Further, let 1 < q < ∞

and let β ∈ W− 1
q ,q(∂Ω) such that

´
∂Ω

n · β dσ = 0 in an appropriate weak sense. A vector field
b ∈ Lq(Ω) is called a very weak solution to (3.1) if

−〈b,Δϕ〉 = −〈β, n · ∇ϕ〉∂Ω
div b = 0, b|∂Ω · n = β · n(3.3)

for all ϕ ∈ C2
0,σ(Ω). Here and hereafter n denotes the outer unit normal vector of Ω.

Note that the term 〈β, n ·∇ϕ〉∂Ω only prescribes the tangential part of b on ∂Ω since div ϕ = 0
and hence n · ∇ϕ is tangential. A similar remark holds for the time-dependent case to be defined
in Definition 3.2 below. The existence and uniqueness of very weak solutions to the stationary

Stokes equations for arbitrary data β ∈ W− 1
q ,q(∂Ω) is well known, see for instance [9, Theorem

1.6]. Note that

‖b‖Lq(Ω) ≤ c‖β‖
W

− 1
q
,q
(∂Ω)

(3.4)

with a constant c independent of β.

Definition 3.2. Let Ω ⊂ R
3 be a domain with compact C1,1-boundary. Let 1 < q < ∞ and

β ∈ Ls(0,∞;W− 1
q ,q(∂Ω)) such that

´
∂Ω

n · β(t) dσ = 0 for a.a. t in an appropriate weak sense.
A function b ∈ Ls(0,∞; Lq(Ω)) is called a very weak solution to (3.2) if

−〈b, ϕt〉Ω,∞ − 〈b,Δϕ〉Ω,∞ = −〈β, n · ∇ϕ〉∂Ω,∞
div b = 0, b(0) = 0, b|∂Ω · n = β · n(3.5)

is satisfied for every ϕ ∈ C1
0 ([0,∞);C2

0,σ(Ω)).

Next, we will briefly discuss the construction of very weak solutions to (3.2). Let γ = γ(t)
denote the solution to

−Δγ(t) +∇p = 0, divγ(t) = 0, γ(t)|∂Ω = β(t).

In [9, Lemma 4.1] it is shown that the unique very weak solution to (3.2) is given by

b(t) =

ˆ t

0

Aqe
−(t−τ)AqPqγ(τ) dτ.(3.6)

Combining (3.4) and (3.6) we conclude from the maximal regularity estimate that

‖b‖q,s ≤ c‖β‖
Ls(0,∞;W

− 1
q
,q
(∂Ω))

.(3.7)
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4. Existence of Strong Solutions

In this section, we are going to prove the existence of a strong solution to (1.4) in the sense of
Definition 1.2. Note that the existence of a strong solution in the bounded domain case is proved
in [19]. Hence, let us assume that Ω is an exterior domain such that ∂Ω ∈ C1,1. For the proof we
will follow the ideas of [19]. Let us start with an elementary lemma, see [19, 32, 33].

Lemma 4.1. Let X be a Banach space and F : X → X be a continuous operator such that
‖F(x)‖ ≤ α(‖x‖+ β)2 for all x ∈ X and some α, β > 0, 4αβ < 1, and let us assume that

‖F(x)−F(y)‖ ≤ α(‖x‖+ ‖y‖+ 2β)‖x− y‖(4.1)

for all x, y ∈ X. Then there exists an r > 0 such that F(Br) ⊂ Br; moreover, in Br there exists
a unique fixed point of F . Here Br denotes the closed ball Br := {x ∈ X | ‖x‖ ≤ r}.
Proof. Let y1 := (2α)−1(1−√

1− 4αβ) = 2β(1+
√
1− 4αβ)−1 ∈ (β, 2β) denote the smallest root

of y − αy2 − β and let r := y1 − β. Let x ∈ Br. Then

‖F(x)‖ ≤ α(‖x‖+ β)2 ≤ αy21 = y1 − β = r

and hence F(Br) ⊂ Br. Furthermore, estimate (4.1) implies that F is a strict contraction and
the Banach Fixed Point Principle completes the proof. �

The main part of the proof of Theorem 1.3 will be given in the next Proposition. To fix some
notation let X = XT = Ls(0, T ; Lq

σ(Ω)) and define

v0(t) := e−tAu0 +

ˆ t

0

A
1
2 e−(t−τ)A(A− 1

2Pdiv )F (τ) dτ

=: V0(t) + V1(t).

Then we consider on X the nonlinear operator

F : w �→
ˆ t

0

A
1
2 e−(t−τ)A(A− 1

2Pdiv )((w + v0 + b)(w + v0 + b))(τ) dτ.

Proposition 4.2. Let Ω be an exterior domain with ∂Ω ∈ C1,1, let u0 ∈ Bq0,s0
T . Furthermore,

let F ∈ L
s0
2 (0, T ;L

q0
2 (Ω)), 2 < s0 < ∞, 3 < q0 < ∞, 2/s0 + 3/q0 = 1, and let b satisfy (1.5).

Then there exists a constant ε� > 0 with the following property: For any 0 < T ′ ≤ T such that

‖F‖
L

s0
2 (0,T ′;L

q0
2 (Ω))

+ ‖b‖Ls0 (0,T ′,Lq0 (Ω)) + ‖u0‖Bq0,s0
T ′

< ε�,

the operator F : XT ′ → XT ′ fulfills the assumptions of Lemma 4.1.

Proof. First we show that v0 ∈ X = XT ′ . Actually, V0 ∈ X by definition since u0 ∈ Bq0,s0
T , and

‖V0‖X ≤ ‖u0‖Bq0,s0
T

. Concerning V1 we use (2.3) and the boundedness of A− 1
2Pdiv to get for

t ∈ (0, T ) that

‖V1(t)‖q0 ≤
ˆ t

0

‖e−(t−τ)A/2A
1
2 e−(t−τ)A/2(A− 1

2Pdiv )F (τ)‖q0 dτ

≤ c

ˆ t

0

(t− τ)−
3

2q0 ‖A 1
2 e−(t−τ)A/2(A− 1

2Pdiv )F (τ)‖q0/2 dτ

≤ c

ˆ t

0

(t− τ)−
3

2q0
− 1

2 ‖F (τ)‖q0/2 dτ.

Then the Hardy-Littlewood-Sobolev inequality implies that

‖V1‖q0,s0 ≤ c‖F‖q0/2,s0/2.
Hence v0 ∈ X and ‖v0‖X ≤ c(‖u0‖Bq0,s0

T
+ ‖F‖q0/2,s0/2).
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For an arbitrary w ∈ X we apply the estimates above to Fw(t) to get that

‖Fw‖q0,s0 ≤ c‖(w + v0 + b)(w + v0 + b)‖q0/2,s0/2
≤ c‖w + v0 + b‖2q0,s0 .

Thus F maps XT ′ into XT ′ and

‖F(w)‖X ≤ c(‖w‖X + β(T ′))2

with β(T ′) = ‖v0‖q0,s0,T ′ + ‖b‖q0,s0,T ′ . By analogy, for given w1, w2 ∈ X, we obtain that

‖F(w1)−F(w2)‖X ≤ c‖w1 − w2‖q0,s0
(‖w1 + v0 + b0‖q0,s0 + ‖w2 + v0 + b0‖q0,s0

)
≤ c‖w1 − w2‖X(‖w1‖X + ‖w2‖X + 2β(T ′)).

Choosing T ′ ∈ (0, T ] so small such that 4cβ(T ′) < 1 we complete the proof of Proposition 4.2. �

Using Proposition 4.2 we will easily prove Theorem 1.3.

Proof of Theorem 1.3. Note that v := v0 + w fulfills

v(t) = e−tAu0 +

ˆ t

0

A
1
2 e−(t−τ)A(A− 1

2Pdiv )(F − (v + b)(v + b))(τ) dτ(4.2)

and hence v is a weak solution to (1.4) if v is in the Leray-Hopf class. Let us prove first that

∇v ∈ L2(0, T ′; L2(Ω)). The assumptions on F, b in (1.2), (1.5), and (1.10) implies that F̃ :=
F − vb− bv − bb ∈ L2(0, T ′; L2(Ω)). Thus, we obtain that

ṽ = e−tAu0 +

ˆ t

0

A
1
2 e−(t−τ)AA− 1

2Pdiv F̃ (τ) dτ

is a weak solution to the nonstationary Stokes equations with initial value u0 and right hand side
div F̃ , see [32, Ch. V, Theorem 2.4.1]; in particular, ∇ṽ ∈ L2(0, T ′; L2(Ω)). Thus ṽ is in the
Leray-Hopf class with

‖ṽ‖q1,s1,T ′ ≤ c(‖ṽ‖2,∞,T ′ + ‖∇ṽ‖2,2,T ′)

where s1, q1 is defined as in (1.10) and consequently satisfies 2
s1

+ 3
q1

= 3
2 .

Let Jn := (1 + 1
nA

1
2 )−1 denote the Yosida operator and let vn = Jnv. We have

JnPdiv (vv) = JnPdiv (v(J
−1
n vn)) = JnP(v · ∇vn) + (

1

n
JnA

1
2 )(A− 1

2Pdiv )(v(A
1
2 vn)).

Using the boundedness of A− 1
2Pdiv and of Jn,

1
nA

1
2 Jn uniformly in n ∈ N as well as the converse

estimate to (2.1) we obtain with 1
γ = 1

2 + 1
q0

that

‖JnPdiv (vv)(t)‖γ ≤ c‖v(t)‖q0‖A
1
2 vn(t)‖2.

Due to (2.2) with α = 3
2γ − 3

4 and (2.3) we get for v, see (4.2), the estimate

‖A 1
2 vn(t)‖2 ≤ ‖A 1

2 Jnṽ(t)‖2 + c

ˆ t

0

‖A 1
2+αe−(t−τ)A‖‖JnPdiv (vv)(τ)‖γ dτ

≤ ‖A 1
2 Jnṽ(t)‖2 + c

ˆ t

0

(t− τ)−1+ 1
s (‖v(τ)‖q0‖A

1
2 vn(τ)‖2) dτ.

Thus, the Hardy-Littlewood-Sobolev inequality yields the estimate

‖A 1
2 vn‖2,2,T ′ ≤ ‖A 1

2 Jnṽ‖2,2,T ′ + c‖v‖q0,s0,T ′‖A 1
2 vn‖2,2,T ′ .

By choosing ε� small enough we can assume that c‖v‖q0,s0,T ′ ≤ 1
2 and hence by an absorption

argument we obtain that

‖A 1
2 vn‖2,2,T ′ ≤ 2‖A 1

2 Jnṽ‖2,2,T ′ ≤ c‖∇ṽ‖2,2,T ′ .
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Since the last estimate is independent of n, a reflexivity argument implies A
1
2 v ∈ L2(0, T ′; L2(Ω)).

As a second step let us prove that vv ∈ L2(0, T ′; L2(Ω)). Therefore, let

v̄(t) := −
ˆ t

0

e−(t−τ)APdiv (vv) dτ

and choose s2, q2 such that
1

q2
=

1

2
+

1

q0
,

1

s2
=

1

2
+

1

s0
.

Then we may estimate, using also q1, s1 as in (1.10),

‖v̄(t)‖q1 ≤ c

ˆ t

0

‖A 3
q0 e−(t−τ)AP(v · ∇v)(τ)‖q2 dτ

≤ c

ˆ t

0

(t− τ)−
3
q0 ‖v‖q0‖∇v‖2 dτ.

Therefore, the Hardy-Littlewood-Sobolev inequality implies that

‖v̄‖q1,s1,T ′ ≤ c‖v‖q0,s0,T ′‖∇v‖2,2,T ′ ,

and we conclude that v = ṽ + v̄ ∈ Ls1(0, T ′; Lq1(Ω)). Thus,

‖vv‖2,2,T ′ ≤ ‖v‖q1,s1,T ′‖v‖q0,s0,T ′ < ∞.

As for ṽ above we obtain that v is a weak solution to the Stokes equations with right hand side
F − vv − bv − vb− bb ∈ L2(0, T ′;L2(Ω)) and thus v fulfills the energy equality (1.9). Especially,
v ∈ L∞(0, T ′; L2(Ω)) and hence v is in the Leray-Hopf class. In summary, we have proved
Theorem 1.3 except for the uniqueness of the strong solution. The uniqueness will be shown in
the next section. �

5. On Serrin’s Uniqueness Condition

In this section we are going to prove Theorem 1.4, i.e., a version of Serrin’s Uniqueness Theorem
[31] for the equation (1.4). To prove this theorem we will follow the ideas of [32, Ch. V, 1.5].
Throughout this section let u denote a weak solution to (1.4) and let w ∈ Ls0(0, T ; Lq0(Ω)),
0 < T ≤ ∞, denote a strong solution to (1.4). Furthermore, let ρ : R → R be a mollifier, i.e.,
0 ≤ ρ ∈ C∞

0 (R) is even and
´
ρ(t) dt = 1. Then we define the convolution operator in time by

vε(t) :=

ˆ T

0

1

ε
ρ
( t− τ

ε

)
v(τ) dτ, ε > 0,

for a given v ∈ Ls(0, T ; Lq(Ω)), 1 ≤ s, q ≤ ∞. All convergence results needed in the proof are
stated in the following Lemma 5.1.

Lemma 5.1. Choose s1, q1 ∈ (1,∞) such that

(5.1)
1

2
=

1

s1
+

1

s0
=

1

q1
+

1

q0

and let q′0, s
′
0 denote the conjugate exponents of q0, s0. Then

‖∇uε−∇u‖2,2 + ‖∇wε −∇w‖2,2 + ‖wε − w‖q0,s0 + ‖Fε − F‖2,2 + ‖(bu)ε − bu‖2,2
+ ‖(bw)ε − bw‖2,2 ++‖(ww)ε − ww‖2,2 + ‖div (uu)ε − divuu‖q′0,s′0 → 0 as ε → 0.

Furthermore, for all t ∈ (0, T ), it holds that

wε(t) → w(t) in L2(Ω), uε(t) ⇀ u(t) in L2(Ω).
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Proof. Most of these results on convergence can be proved easily with a standard mollifier argu-
ment. Let us just mention that 2

s1
+ 3

q1
= 3

2 and 1
2 + 1

s1
= 1

s′0
, 1

2 + 1
q1

= 1
q′0
. Hence

‖div (uu)‖q′0,s′0 ≤ ‖u‖q1,s1‖∇u‖2,2 ≤ c(‖u‖2,∞ + ‖∇u‖2,2)‖∇u‖2,2 < ∞

and

‖ww‖2,2 ≤ ‖w‖q0,s0‖w‖q1,s1 < ∞
‖bu‖2,2 ≤ ‖b‖q0,s0‖u‖q1,s1 < ∞.

The statement of the pointwise convergence follows from the (weak) L2-continuity in time of u
or w, respectively. �

Let us start to prove Theorem 1.4.

Proof of Theorem 1.4. Let 0 < t0 < t1 < T and let ϕ ∈ C∞
0 ((t0, t1)). Using equation (1.6) for u

with the test function (ϕwε)ε we get an integral identity of the form

−
ˆ T

0

〈u(τ), ((ϕwε)ε)t(τ)〉 dτ =

ˆ T

0

〈. . . , (ϕ∇wε)ε(τ)〉 dτ

where the left-hand term may be rewritten as
´ t1
t0
〈∂tuε, wε〉ϕ dτ since supp ϕ ⊂ (t0, t1) and ρ is

even. Since this identity holds for arbitrary ϕ ∈ C∞
0 ((t0, t1)), we conclude that the equality

〈∂tuε(t), wε(t)〉+ 〈∇uε(t),∇wε(t)〉 − 〈((u+ b)(u+ b))ε(t),∇wε(t)〉 = −〈Fε(t),∇wε(t)〉(5.2)

holds for all t ∈ (t0, t1). Adding equation (5.2) and the corresponding equation (1.6) for w tested
with (ϕuε)ε, integrating from t0 to t1, and using the simple identity

ˆ t1

t0

〈∂tuε(τ), wε(τ)〉+ 〈uε(τ), ∂twε(τ)〉 dτ = 〈uε(t1), wε(t1)〉 − 〈uε(t0), wε(t0)〉,

we obtain

〈uε(t1), wε(t1)〉 − 〈uε(t0), wε(t0)〉+ 2

ˆ t1

t0

〈∇uε(τ),∇wε(τ)〉 dτ

−
ˆ t1

t0

〈((u+ b)(u+ b))ε(τ),∇wε(τ)〉+ 〈((w + b)(w + b))ε(τ),∇uε(τ)〉 dτ

= −
ˆ t1

t0

〈Fε(τ),∇uε(τ) +∇wε(τ)〉 dτ.

Taking the limit ε → 0 as well as t0 → 0 we get

〈u(t1), w(t1)〉+ 2

ˆ t1

0

〈∇u(τ),∇w〉 dτ

−
ˆ t1

t0

〈(u+ b)(u+ b),∇w(τ)〉+ 〈(w + b)(w + b),∇u〉 dτ

= −
ˆ t1

0

〈F,∇u+∇w〉 dτ + ‖u0‖22.

(5.3)
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Note that in (5.3) the term 〈bu,∇w〉 + 〈bw,∇u〉 = 0. Adding the energy inequality (1.7) for u,
the energy equality (1.9) for w and subtracting (5.3), we see that

0 ≥ 1

2
‖u(t1)‖22 +

1

2
‖w(t1)‖22 − 〈u(t1), w(t1)〉+

ˆ t1

0

‖∇u‖22 + ‖∇w‖22 − 2〈∇u,∇w〉 dτ

−
ˆ t1

0

〈(u+ b)b,∇u〉+ 〈(w + b)b,∇w〉 dτ

+

ˆ t1

0

〈(u+ b)(u+ b),∇w〉+ 〈(w + b)(w + b),∇u〉 dτ

=
1

2
‖u(t1)− w(t1)‖22 +

ˆ t1

0

‖∇(u− w)‖22 dτ

−
ˆ t1

0

〈(u− w)b,∇(u− w)〉 − 〈uu,∇w〉 − 〈ww,∇u〉 dτ

=
1

2
‖W (t1)‖22 +

ˆ t1

0

‖∇W‖22 dτ −
ˆ t1

0

〈Wb,∇W 〉 − 〈uu,∇w〉 − 〈ww,∇u〉 dτ

with W := u− w. Note that

〈uu,∇w〉+ 〈ww,∇u〉 = −〈W · ∇W,w〉
and hence

1

2
‖W (t)‖22 +

ˆ t1

0

‖∇W (τ)‖22 dτ ≤
ˆ t1

0

〈Wb,∇W 〉+ 〈W · ∇W,w〉 dτ.

Let us define the energy norm ‖ · ‖t1 by

‖W‖2t1 :=
1

2
sup

0<t<t1

‖W (t)‖22 +
ˆ t1

0

‖∇W (τ)‖22 dτ.

Using (5.1) and the estimate ‖W‖q1,s1,t1 ≤ c‖W‖t1 we get that

‖W‖2t1 ≤
ˆ t1

0

〈Wb,∇W 〉+ 〈w,W · ∇W 〉 dτ
≤ (‖b‖q0,s0,t1 + ‖w‖q0,s0,t1)‖∇W‖2,2,t1‖W‖q1,s1,t1
≤ c(‖b‖q0,s0,t1 + ‖w‖q0,s0,t1)‖W‖2t1 .

Choosing t1 such that c(‖b‖q0,s0,t1 + ‖w‖q0,s0,t1) < 1 we see that W|(0,t1) = 0. Considering the
shifted function w(·− t1), u(·− t1) and using an induction argument one proves easily that W = 0
and hence u = w. �

6. Decay of Turbulent Solutions

In this final section we will prove the decay results for turbulent solutions. The main idea for
the proofs of Theorems 1.5 - 1.7 is to construct a strong solution in some time interval (T,∞)
which coincides with the turbulent solution and to use the results in [13]. How to choose the
time T and a suitable initial value for the strong solution requires some considerations and will
be presented in Lemma 6.1. The proof of this lemma is based on ideas from interpolation theory,
but elementary.

Lemma 6.1. Let v ∈ L∞(0,∞;L2(Ω)) such that ∇v ∈ L2(0,∞;L2(Ω)), let T > 0 and let ε > 0.
Then there exists a t > T such that

‖v(t)‖Bq,s
∞ (Ω) < ε,

2

s
+

3

q
= 1, 3 < q < ∞



12 REINHARD FARWIG, HIDEO KOZONO, AND DAVID WEGMANN

Proof. For every δ > 0 and T > 0 there exists a t ≥ T such that ‖v(t)‖2 ≤ ‖v‖L∞(0,∞;L2(Ω)) and
‖v(t)‖6 ≤ c‖v(t)‖Ẇ 1,2 < δ. To control, with x = v(t), the term ‖x‖Bq,s

∞ (Ω), fix 0 < R < ∞. In
the first case let q ≥ 6. Using the Lp-Lq-estimates of the Stokes semigroup (2.3) we obtain the
estimate ˆ ∞

0

‖e−τAx‖sq dτ ≤
ˆ R

0

‖e−τAx‖sq dτ +

ˆ ∞

R

‖e−τAx‖sq dτ

≤ c

ˆ R

0

τ−
3
2 (

1
6− 1

q )s‖x‖s6 dτ + c

ˆ ∞

R

τ−
3
2 (

1
2− 1

q )s‖x‖s2 dτ

≤ c
(
R

s
4 ‖x‖s6 +R− s

4 ‖x‖s2
)

since −3
2 (

1
6 − 1

q )s =
s
4 − 1 and − 3

2 (
1
2 − 1

q )s = − s
4 − 1. Choosing R =

(‖x‖2/‖x‖6)2, we arrive at

the estimate

‖x‖Bq,s
∞ (Ω) ≤ c‖x‖ 1

2
2 ‖x‖

1
2
6 ≤ Cδ

1
2 , x = v(t).

In the second case let 3 < q < 6. Thus there exists α ∈ (0, 1) such that α
6 + 1−α

2 = 1
q . Thenˆ ∞

0

‖e−τAx‖sq dτ ≤ c

ˆ R

0

‖e−τAx‖(1−α)s
2 ‖e−τAx‖αs6 dτ + c

ˆ ∞

R

τ−
s
4−1‖x‖s2 dτ

≤ c‖x‖(1−α)s
2

(
R‖x‖αs6 +R− s

4 ‖x‖αs2
)

The choice R1+ 1
4 =

(‖x‖2/‖x‖6)αs yields the estimateˆ ∞

0

‖e−τAx‖sq dτ ≤ c‖x‖(1−α)s
2

(‖x‖2‖x‖ s
4
6

) αs
1+s/4 ≤ Cδβ , x = v(t),

where β = αs2

4+s . This completes the proof of the lemma. �

Finally, we prove the main Theorems 1.5-1.7. The ideas of these proofs will be the same in all
three cases, so let us present the proof of Theorem 1.6 only.

Proof of Theorem 1.6. Let ε� denote the constant in Theorem 1.3. Let us choose T ≥ 0 such that

‖F‖
L

s0
2 (T,∞;L

q0
2 (Ω))

+ ‖b‖Ls0 (T,∞;Lq0 (Ω)) ≤ ε�
2
.

Furthermore, using Lemma 6.1 we obtain a t ≥ T such that

‖u(t)‖Bq,s
∞ (Ω) <

ε�
2
.

and such that u fulfills the energy inequality on [t,∞). Theorem 1.3 implies the existence of
a strong solution ũ in [t,∞) such that u(t) = ũ(t) and hence u|[t,∞) = ũ by Theorem 1.4.
Furthermore, using [13, Theorem 1.3] we obtain the existence of a weak solution ū to (1.4) in
[t,∞) with u(t) = ū(t) such that u(τ) → 0 as τ → ∞. Using Theorem 1.4 again we see that
u[t,∞) = ū. Hence Theorem 1.6 is proved. �

Note that Theorem 1.5 and Theorem 1.7 can be proved in the same way. In the case of a
bounded domain the existence of a strong solution is proved in [19] and the corresponding decay
results can be found in [13, Theorem 1.2, Theorem 1.4].
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