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Abstract

In this paper, bifurcation of limit cycles is considered for planar cubic-order
systems with an isolated nilpotent critical point. Normal form theory is
applied to compute the generalized Lyapunov constants and to prove the
existence of at least 9 small-amplitude limit cycles in the neighborhood of
the nilpotent critical point. In addition, the method of double bifurcation of
nilpotent focus is used to show that such systems can have 10 small-amplitude
limit cycles near the nilpotent critical point. These are new lower bounds
on the number of limit cycles in planar cubic-order systems near an isolated
nilpotent critical point. Moreover, a set of center conditions are obtained for
such cubic systems.

Keywords: Nilpotent singularity; generalized Lyapunov constant; the
simplest normal form; limit cycle.

1. Introduction

Dynamical systems can exhibit self-sustained oscillations, called limit cy-
cles, which may appear in almost all fields of science and engineering. Devel-
oping limit cycle theory is not only theoretically significant, but also prac-
tically important. Limit cycles theory is closely related to the well-known
Hilbert’s 16th problem, one of the 23 mathematical problems proposed by
D. Hilbert in 1900 [25]. A modern version of this problem was included in
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the 18 most challenging mathematical problems proposed by S. Smale for
the 21st century [35].
Consider the following planar differential system:

dx dy

a ZPn(ZL',y), E :Qn(xay)ﬂ (1'1)
where P,(z,y) and Q,(x,y) are n'-degree polynomials in z and y. The
second part of Hilbert’s 16th problem is to find an upper bound on the
number of limit cycles that system (1.1) can have. This upper bound, denoted
as H(n), is called Hilbert number. For general quadratic polynomial systems,
four limit cycles were found in 1979 [33, 14], which were also obtained recently
in near-integrable quadratic systems [46]. However, whether H(2) = 4 or
not is still an open question. For cubic-degree polynomial systems, many
results have been obtained on the low bound of the Hilbert number, and the
best result so far is H(3) > 13 [26, 27]. In real applications, bifurcation
of limit cycles due to Hopf bifurcation is a common phenomenon, but real
systems often have dimension higher than two [24, 49, 50]. In such a case, the
system can be first reduced to a 2-dimensional dynamical system by using
center manifold theory (e.g., see [24, 19]) and then to study the limit cycles
bifurcation in the reduced system.

Later, Arnold [7] posed the weak infinitesimal Hilbert’s 16th problem,
which is closely related to the so-called near-Hamiltonian system [20]:

dx dy

o = W@y +epuley), == —Ho(wy) +eqgulz,y),  (12)
where H(z,y), po(x,y) and ¢,(x,y) are all polynomial functions in z and
y, and 0 < e < 1 is a small perturbation parameter. Then, the problem on
the study of number of limit cycles is transformed to investigating the zeros

of the Abelian integral or the (first-order) Melnikov function:

M(h, 8) = 74 4nl(2,y) dz — palz, ) dy, (1.3)
H(xz,y)=h

where H(x,y) = h for h € (hy, he) defines a closed orbit, and § is a vec-
tor parameter, representing the parameters (or coefficients) involved in the
polynomials p,(z,y) and ¢,(z,y).

When the study of Hilbert’s 16th problem is restricted to the vicinity of
an isolated fixed point, which is either an elementary focus or a center, it



becomes an investigation on generalized Hopf bifurcations, and the number
of bifurcating small-amplitude limit cycles is usually denoted by M (n). It is
well known that M (2) = 3, obtained by Bautin in 1952 [10]. For n = 3, many
results have been obtained, divided into two categories. For systems with an
elementary focus, the best result obtained so far is 9 limit cycles [44, 13, 31].
On the other hand, for systems with a center, there are also a few results
obtained in the past two decades. In 1995, Zoladek [52] first proposed a
rational Darboux integral, and claimed the existence of 11 small-amplitude
limit cycles around a center, which was reinvestigated recently and proved
that this system can actually have only 9 limit cycles [45, 40]. After more
than ten years, another two cubic-order systems were constructed to show
11 limit cycles [15, 11]. Recently, the system considered in [15] was used by
Yu and Tian to show the existence of 12 small-amplitude limit cycles around
a singular point, which is the best result so far for cubic systems.

To consider bifurcation of limit cycles associated with a singularity of
focus, Lyapunov constants are needed to solve the center-focus problem and
to determine the number and stability of bifurcating limit cycles. There
mainly exist three methods for computing Lyapunov constants: the method
of normal forms [24, 16, 42], the method of Poincaré return map or focus
value method [6, 30], and the method of Lyapunov function [34, 17]. Other
approaches can be found, for example, in [24]. To demonstrate the basic
idea of these methods, without loss of generality, assume that system (1.1)
has a singularity of focus at the origin, and that the Jacobian of the system
evaluated at the origin has a purely imaginary pair: + iw,.. Then, by using the
method of normal forms with the aid of a computer algebra system such as
Maple or Mathematica (e.g., see [24, 42, 38, 39]) we compute the normal form
to obtain the Lyapunov constants L which are used to determine the number
of bifurcating limit cycles around the critical point. vy (k =0,1,2,---).

The above mentioned three methods for computing Lyapunov constants
have also been used to study the center-focus problem associated with nilpo-
tent critical points, see for example [2, 12, 32]. But the method of normal
forms was only recently applied to compute the so-called generalized Lya-
punov constants in determining the lower bound of cyclicity [3]. It is well
known that it is more difficult to distinguish focus from center when the sin-
gular point is degenerate. In [4] Andreev considered the local phase portraits
of analytic systems with the origin being a nilpotent singular point, which
however does not distinguish focus from center. Later, Takens developed a
normal form theory for systems with nilpotent center of foci [36], and Moussu



obtained the C*° normal form for analytic nilpotent centers [32]. Further,
Berthier and Moussu studied the reversibility of nilpotent centers [9], while
Teixeria and Yang applied a convenient normal form to investigate the rela-
tionship between reversibility and the center-focus problem, and then studied
the reversibility of certain types of polynomial vector fields [37]. Recently, by
using Melnikov function method Han and Li [22], and Zhao and Fan [51] con-
sidered polynomial Hamiltonian systems with elementary centers to obtain
lower bounds on the Hilbert number. Moreover, Han et al. [23] studied poly-
nomial Hamiltonian systems with a nilpotent singular point, and obtained
necessary and sufficient conditions for determining the number of limit cycles
bifurcating in quadratic and cubic Hamiltonian systems with a nilpotent sin-
gular point which may be a center, a cusp or a saddle. However, it should be
pointed out that the Melnikov function method used in the above mentioned
articles [23, 22, 51] can not be applied to study the systems considered in
this paper, since our systems here are not Hamiltonian, nor even integrable.

The main goal of this paper is to consider bifurcation of limit cycles in
cubic polynomial systems and apply our general normal form computation
method to obtain new lower bounds on the number of limit cycles. More
specifically, we will show that cubic polynomial systems can have at least 9
small-amplitude limit cycles around an isolated nilpotent critical point, and
at least 10 small-amplitude limit cycles near an isolated nilpotent critical
point. Moreover, a set of center conditions is obtained for such cubic systems.
In the next section, we present some basic formulations and preliminary
results which are needed in proving our main results in Sections 3, 4 and 5.
Conclusion is drawn in Section 6.

2. Mathematical formulation and preliminary results

In this section, we present some basic formulas and preliminary results
which will be used in the following sections. Consider the differential system:

dx = ok

% = y_l_Fl(xay) = %;ajk‘x]y )

W o (2.1)
_ _ pdak

E—Fz(%y)—;b]km]y ’

where F; and F5 are analytic in the neighborhood of the origin, with power
series beginning from second order. As long as the limit cycles bifurcation is



considered near the origin, system (2.1) with a nilpotent center at the origin
is more difficult to analyze than the general system (1.1) with an element
center or focus at the origin, since the conventional normal form of Hopf bi-
furcation [24, 19] can be directly applied to the latter but not the former. In
fact, there exist conventional normal forms for system (2.1) associated with
Bogdanov-Takens bifurcation (i.e., the linearized system contains a double-
zero eigenvalue at the origin) [24, 19], which is however not able to be directly
applied to study bifurcation of limit cycles near the origin. Therefore, a mod-
ified normal form of system (2.1) needs to be developed to study bifurcation
of limit cycles near the origin. In real applications, many physical systems
involve a number of parameters and can thus have higher co-dimensional
singularity such as Bogdanov-Takens bifurcation (which is characterized by
a double-zero eigenvalue at a critical point, leading to a nilpotent singular
point), and thus it is interesting and important to explore the periodic so-
lutions near such a critical point. For example, in the 2-dimensional HIV
model [48], a critical point with Bogdanov-Takens bifurcation is identified
for certain parameter values and thus the system can be put in the form of
system (2.1) in the vicinity of the critical point. Limit cycles due to Hopf bi-
furcation have been obtained near this critical point and even multiple limit
cycles can be found if more parameters are treated as bifurcation parame-
ters. Moreover, homoclinic orbits are identified near this degenerate singular
point [48].

To mathematically analyze bifurcation of limit cycles for system (2.1)
near the origin, we first present the following result [4, 2, 3], which can be
used to determine the monodromy of the origin of system (2.1).

Lemma 2.1. (Theorem 2.1 in [3]) Assume that the origin of system (2.1) is
an isolated singularity. Define two functions f(z) and ¢(x) as

é(z) = 5F1(fg;;f(x)) X aFQ(?;Jf@)))
V(x) = Fy(x, f(x)) = az®+ O(z*™), a#0, a>2,

where y = f(x) is the solution of the equation, y + Fi(x,y) = 0, passing
through the origin (0,0). Write ¢(z) = baP +O(2P*Y), b # 0 and B > 1,
or ¢(x) = 0. Then, the origin of system (2.1) is monodromic if and only if
a<0, a=2n—1 (n > 1) being an odd number, and one of the following three
conditions holds:

(i) B>n—1;



(i) B=n—1, and b> + 4an < 0;
(iii) ¢ = 0.

Under the above conditions, we can apply the classical normal form the-
ory, with the following near-identity transformation,

k k
Tr=u-+ Z hujuivj, Yy=v-+ Z hgijuil}j, (22)
i+j=2 1+j=2

to obtain the conventional normal form [19, 24]:

du
4 = v+ Ol o)),
dv 2n—1 kil—'l B0 k+1 (23)
&= — e S (A 4 Biudv) + O( ().
=B

This conventional normal form can not be directly used to find the limit
cycles bifurcating from the origin. However, if we use the idea of the simplest
normal form theorem (or unique normal form theory) (e.g., see [8, 43, 47, 18])
and introduce a time rescaling,

k
T = (1 + Z hgijui'l)j) t, (24)
i+j=2

into system (2.3), we obtain

d
dv - j |
7 = e +v Bl + Ol(w o)),

jzp

where B; is called the jth-order generalized Lyapunov constant. We have
developed an algorithm with explicit recursive formulas for computing B;
for the general system (2.1), with a computationally efficient Maple program
which can be easily implemented on a computer using Maple. It has been
noted that Liu and Li [28] have developed a different method to compute the
so-called quasi Lyapunov constants, which are equivalent to the generalized
Lyapunov constants. However, their method is only applicable for cubic-
order systems. Before we particularly consider bifurcation of limit cycles in
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cubic-order systems with an isolated nilpotent critical point, we present few
examples, which have been investigated in [3, 5, 1], to illustrate the general
applicability of our method. The method of normal forms has been used
in [3] to study bifurcation of limit cycles, and many examples are presented
in this paper. For example, consider the system,

d_l’ =Y
% ’ (2.6)
= =2° + a2’ +y(ba® + ca?).

Note in the first equation of (2.6) that the first term is —y rather than y.
But this does not affect the normal forms computation provided we apply a
transformation y — —y if it is necessary for executing a computer program.
We used the normal form computation method developed in [3] and coded a
Maple program to obtain the following normal form:

du

u_

CdZT ’

—dv =’ +v[bud + (¢ — 2ab) ut + (38 a®b — Sac)u® (2.7)
=

35707 (21c — 19ab) v’ + g5a*(13ab = 14¢) u® + O(u®)].

which is exactly the same as that given in [3] except the coefficient g which
was typed as 6 in [3]. We have used our method and executed our Maple
program to obtain the following generalized Lyapunov constants:

By=c—32ab, Bg= 35 a*(2lc—19ab), Bs= — 1o a*(33ab — 35¢),
B = — {3, o (47ab 4, -

It is seen that By and Bg are exactly the same as that given in (2.7). Further,
it is easy to verify that setting By = Bg = 0 leads to By, =0, k > 4.

In [5], the authors consider a special case — homogeneous polynomial sys-
tems and developed a special approach to calculate the generalized Lyapunov
constants. Their methodology is computationally efficient, but can not be
applied even to consider a simple cubic polynomial system. The 5Sth-order
homogeneous polynomial system considered in [5] is given by

d
g—f =y + Axty + Bx®y? + C2®y® + Day* + EvpP, 28)

2.8
d_?; =—2° + Qx'y + Ka3y? + La’y® + May* + Ny,



Using our Maple program, we obtain the following generalized Lyapunov
constants:
By=Q, Bs=B+L, Bjp=2%1[2L(K+2A)+3(D+5N)],

Big = Z[(2A+ K)(KL+ 3N)+ L(C +2M)],

By = §[LM(2A+ K) +3N(C +2M)], By = 2xL3(2A+ K),
where By—1) = 0 has been set zero when computing By, for k =2,3,...,6.
They are the same as that given in [5], at most different by a positive constant
factor.

Another special type of systems called quasi-homogeneous system is con-
sidered in [1], which takes the general form:

dx
at —y+ZPq p2is(T,Y),

:g:: Q?q 1%+215 xz y

where p,g e N, p <gq, s = (n+1)p—q > 0,n €N, and P, and ); are quasi-
homogeneous polynomials in = and y with Q4—p125(1,0) < 0. The origin
of this system is a nilpotent and monodromic isolated singular point. The
authors used their method developed in [1] to obtain the center conditions
for the origin of the following system,

dx 5 2 7 4 2

?=y+a1x + axr7y + azr’ + a7y + asry”, (2.10)
d_gt/ =—27 + bty — agay® + b3Sy + byxdy® + bsy’.

Executing our Maple program, we obtain the following generalized Lyapunov

constants for the above system:
By =5a; + by, Bg=Taz+bs, Bs=as+ 3bs— 2a1(by+ 2a4),
Big = —2(2a4 + bd)(az — ayas + 4a?),
Biy = — 2(by + 2a4) [a5 — al(4ad — b4 — 50a2a} + 200a7)],
Biy = —2a1(bs + 2a4)(azy — 4a?)(by — as + 62a] — 268a?),
Big = 5ai(az — 4a3)(3aq — 62a? + 268a?) (5ay — 1243 + 146asa} — 492at),
Big = —5o%a3(ay—4a?)(9a2 — 187aza? +704a}) (387a3 — 4681aza’ +13282a}),

T 2475

By = g=af(as — 4a?)(9a3 — 187azaf + 704a})

% (195302 — 27694a2a2 + 130023asa’ — 201730a5),

(2.9)
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where By;_1) = 0 has been used in computing By, for & = 3,4, ...,10.
Based on these generalized Lyapunov constants, we have the following result.

Proposition 2.1. The origin of system (2.10) is a center if and only if one
of the following conditions is satisfied:

(1) S5a; + by = Taz + bz = 2a4 + by = a5 + 3bs = 0;
(11) a1:a3:a5:b1:b3:b5:0; and
(111) b1 = —5&1, ag — 4@%, b5 = a1b4, as — a1(4a4 — b4), as — b3 = 0.

Note that the three center conditions are given in Theorem 3.1 of [1], but
the condition b = —5a; in (iii) was typed as by = —a; in [1], and in addition,
the conditions az = by = 0 were missed in (iii). It is easy to verify that under
the condition (i) system (2.10) is a Hamiltonian system with the Hamiltonian
function:

Ly 13 5 Lo 7 Lo 4o 3

H(x,y) = Bl + 3” + a2’y + 50277y + azz'y + 504"y — bsy”.
For the condition (ii), it is easy to see that system (2.10) is a reversible system
since it is invariant under the transformation (y,t) — (—y, —t).

For the condition (iii), we present a simple proof different from that given
in [1]. In fact, for this case, we use the following integrating factor,

4agby(by — 2a4)(1 + agx* + dajagwy)> !
2 4 byxt + daybywy + ba(2a4 — by)y?] 20

Ty =
W
to obtain the first integral,

(1 y 4 CL4.1’4 + 4a1a4xy)b4
(2 + byt + daybyzy + ba(2ay — by)y?|20e”

F(:E,y) =

Now, we return to cubic-order systems with an isolated nilpotent critical
point and want to find the maximal number of limit cycles which bifurcate
in the neighborhood of the critical point. In [28], Liu and Li have considered
the following cubic polynomial system,

dx
? =y —2zy — (as — a7)2y + ay® + arxy® + asy?, (2.11)
d—i =223 + a2y + y® + auxy? + asy?,



which contains 7 free parameters. Thus, by adding a linear perturbation,
the authors applied their approach to prove the existence of at least 8 small-
amplitude limit cycles bifurcating from the origin. In fact, using our method,
we can find the generalized Lyapunov constants as follows:

By =ay,

B4 =2 (CLQ + 3&3),

Bg =28 (3a3 — bag),

Bg = 28821 (735 — 105a4 + Tlaz),

Bio = 1155z asar (176400 + 18375a5 + 5460a; + 12250a3 — 32a2),

By = 224601 (30866913000 + 2089303650a; — 1188495000a3

573024375
+29397690a2 — 15232875a2a; — 11099643),
—32aga
By = sgy2iner (44389456322515920000 + 2155807164550977000a;

—1647138037233150000a2 — 11437991172477450a2 — 910916029415875a?
—22121192499656250a + 798220526556a3),

Bis = resaioeims et e (9423370312441682897451542400000
+1514298765681319947369112800000a;
+ 8285932499794642984300933900002
+ 18645670304592919021885846500

+14562086011231729200961815a3 — 2666191085683953547508@?),

where By is the kth generalized Lyapunov constant, and Byg_1) has been
set zero in computing By, for k = 2,3,--- /8. It is noted that the quasi

Lyapunov constants, Ay, & = 1,2,--- 8 obtained in [28], are indeed given
by A\ = ﬁ Bog, k= 1,2,--- 8. Then, by applying proper perturbations
to show that there exist parameter values satisfying B, = By = --- = 0,

but Bjg # 0, implying the existence of 7 limit cycles. In addition, the linear
perturbation gives one more limit cycle to achieve 8 limit cycles [28]. Later,
the same authors considered the following system in [29],

dx
=y — 2boery + an2y? + a2 x?y + apxy® + agsy?,

CCl]gZ (2.12)
% =23 + b02y2 + b21$2y + 512$y2 + b03y37

which is obviously the same as system (2.11), and can have 8 small-amplitude
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limit cycles bifurcating from the origin. Moreover, in [29], the authors applied
the so called method of double bifurcation of nilpotent focus to get 9 small-
amplitude limit cycles, with the distribution of 7 > (1U1). That is, there are
three singular points, one of which is the origin and other two are near the
origin with one limit cycle around each of them, and 7 limit cycles enclose
these two limit cycles. The basic idea is to apply perturbation to system
(2.12) to obtain a perturbed system as follows:

dx
=y — 2boaxy + a2y’ + anx*y + araxy® + agsy?,

% (2.13)
& =40ey + boay? + brawy® + bozy® — (2? — £2)(2x — bayy),

where 0 and e are perturbation parameters, satisfying 0 < |§| < 1, 0 < e <
1. It is easy to see that system (2.13) has three fixed points: (z,y) = (¢,0),
(—&,0) and (0,0). Thus, at § = ¢ = 0, we have the 8 generalized Lyapunov
constants showing the existence of 7 limit cycles around the origin (0,0).
Then, by taking proper perturbation values of § and £, we can find two small-
amplitude limit cycles inside the 7 limit cycles, each of them encloses one of
the two singular points (¢,0) and (—¢,0). More details about the method
of double bifurcation of nilpotent focus can be found in [29]. Although this
approach does not give all 9 limit cycles around the origin, it does have one
more limit cycle near the origin, compared with the result obtained in [28].
Recently, we have studied bifurcation of near-Hamiltonian systems, de-

scribed by
dv  OH(z,y, m)

W - T a. +€P($7y7/’62)7

dt Oy (2.14)
@:—8H($’y’m)+eQ(a:yu)

dt 03: s Yy H2),

where H(x,y, 1) is an nth-degree real polynomial in = and y and P, Q) are
mth-degree of polynomials in x and ¥, and p; and us are vector parameters,
and 0 <e <1 is a small perturbation parameter. The function H(x,y, i)
is called the Hamiltonian of system (2.14). When ¢ = 0, the origin is a
nilpotent center of the system.

The monodromy of the origin of system (2.14)|.—( has been studied in [21]
and detailed classification conditions are given. Very recently, we have ap-
plied our new method to consider the following cubic near-Hamiltonian sys-

11



tem:

dx

pr =y +2xy +3a1y® +2ax 2%y +3azgxy® +4dayy’,

d

d_gt/ =— 423 —y? —2ap2y® —azy +e (0x+0y+xy+b1y> +bow®y+bsxy® +byy?),

(2.15)
which contains 9 free parameters (with 0 being the linear perturbation pa-
rameter), and shown that there exist at least 9 small-amplitude limit cycles
around the origin [41], in which the generalized Lyapunov constants are ob-
tained as follows:

By =36,
By —by — 1,
By = 12by + 24ay by + 2a5 — 1,
Bs =4(az — 5ay) by + 8 [2a;(5—as) —baz] by +16a4+20a; (a3—3a; ) — (2a5—1)?,
By = a3_35a1 {8[(7 + 2a2)(2a2a} + a3 — 2asa1) + 16(5a; — a3)ajas]b;
+2a3 — 8asasz + 88aia; — 224a%az + 8azaz — 12a3 + 24asaias
—8a2a§a1 + 140@33 — 20a§a1 + Sa%al — 3ay + 1daqay

—16(2a3 — 3a, + 2a2a1) as },

Big= -

where By, By, -+, By—1) have been set zero in computing By, for k& =
1,2,---.,9. Then, by using proper perturbations on the 9 parameters, it has
been shown in [41] that there exist at least 9 small-amplitude limit cycles
around the origin.

3. 9 limit cycles in a cubic-order system around a nilpotent critical
point

In this section, we present our main result of this paper. Consider the
cubic polynomial system (2.11) with an additional parameter ag and two
linear perturbation parameters ; and 9ds:

dx
? =y+ 0 y+ (as — 2)xy — (as — a7)x®y + agy® + a2xy® + asy?, (3.1)
d—i ==z + by —22°+ ar’y + y? + asxy® + asy’,

12



where 0 < 1, |02] < 1. Now system (3.1) can yield 9 limit cycles around the
origin, but the computation becomes much more demanding.

In this section, we will consider bifurcation of limit cycles all around the
origin of system (3.1), yielding 9 limit cycles, and in the next section, we will
apply the method of double bifurcation of nilpotent focus to system (3.1) to
obtain 10 limit cycles near the origin.

Theorem 3.1. For system (3.1) with a nilpotent critical point at the origin,
there exist at least 9 small-amplitude limit cycles around the origin.

Proof.  First, let the two linear perturbation parameters equal zero, §; =
02 = 0. Then we apply the method of normal forms and our developed Maple
program to system (3.1) to obtain

By = a. (3.2)
We set a; = 0 to have By = 0. Then, By is given by
By = 2(az + 3az — agas). (3.3)
Similarly, letting

A9 = — 3@3 + agas, (34)

we obtain By = 0. Then, the next two generalized Lyapunov constants By
and Bg become

Bg = %(1()@7—7@34-25@8) as — 115 [as(5as—14as+50) — (9as—50)ar]ag
= 3(3as — bag) ar — = [3(Tas — 25)as + (5a4 — 9ar — 14as + 50)ag] as,
Bg = — g5 [25ag(23as — 105)as — 5(460a7 + 1255as — 241ai — 2100)az
— 3as(62a3 — 143543 + 8500as — 14875) ] as
— gz { [875as —5(42as—265)ar+62a3 — 1645a3 +8950a5 — 14875 ar
— (875a5 — 62a3 + 1435a3 — 8500as + 14875)as fag
= % [(46a3 — b3ag)ar — 3basag — 210a3 + 595&6] ay
— 2 {25(23a5—105)azas + [5(241as — 1255)as — 2(210a; — 6243
+ 1645as — 8950)ag|a; — 3(62a3 — 1435a + 8500as — 14875)a;

—2(875a5 — 6243 + 1435a2 — 8500as + 14875)ag bas,
(3.5)

13



where Bg = 0 has been used to compute Bg. It follows from (3.4) and (3.5)
that we may classify two cases: (A) agas = 0 and (B) agas # 0.

Case (A) agag = 0. In this case, ay = — 3ag. If ag = 0, then a3 = 0 yields
Bg = By = 0, and in fact all By, =0, K =5,6,---,10. This gives a condition

C1 LA = A —Aaz = ag = 0, (36)

under which all the generalized Lyapnov constants, Box, & = 1,2,...,10
vanish. Similarly, if ag = 0, then a; = 0 yields Bg = Bg = 0, and this gives
another condition,

Co: ar=ar=ag3=0, ay=—3as, (3.7)

under which By, =0, k=1,2,...,10.

Next, we want to investigate under the condition agag = 0, what is max-
imal number of limit cycles which can bifurcate from the origin of system
(3.1). We first consider ag = 0, ag # 0 and then ag = 0, a; # 0. The case
ag = ag = 0 is not considered since it yields special cases of Cj.

Case (A1) ag = 0, ag # 0. For this case, Bs = 0 yields a solution a; =
%(7a8 — 25)ag with ag # 0 since ag = 0 leads to a special case of Cy. Then,
Bg becomes

By = —%45[50 (23as — 105)ay — 3(313a3 — 3300af + 11225a5 — 12250)].

This shows that taking as = 2 yields By = —5208%- a3 # 0, implying that 4
limit cycles can be obtained. Suppose ag # %5, we solve By = 0 for a4 and

then substitute this solution into Bjg to obtain

Bio = Gramieogy [1250 (127as — 525)(23as — 105)%as

+ 3(ag—5)*(843883a3 — 17214695a4 + 140051325a3
— 56800712502 + 1148437500ag — 926100000)].

i — 925 44 _ 95644595200 T .
Clearly, setting ag = 13- gives Big = fogrismiang: @3 7 0, yielding 5 limit

cycles around the origin. If choosing a root of the second factor in By, then
as = 0 (due to Byg = 0) and Bjs becomes a function in as, giving 6 limit
cycles. For example, letting ag = 5 we have By = —% a3 # 0. Now
suppose (127ag — 525)(23as — 105) # 0, and the second factor in By is also
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nonzero. Then, we solve By = 0 for a5 and use this solution to simplify B
and Bj4 to obtain

— aszasg 2

By = 6015625(23ag—105)3 (127ag—525) Gl(a:ﬁv as),
— asas 2

B = 782031250(23as —105)3 (127as —525)2 G (a3, as),

Big =

— asas 2
625625000000(23ag—105)°(127ag—525)2 G3(a37 ag),

where G;, i = 1,2, 3 are polynomials in a? and ag and linear with respect to
a?. In particular,

Gy = 187500(697as — 2695)(127as — 525)(23as — 105)3a2
— (ag — 5)*(1377405099237a3 — 50096385469230a5
+808738100674975a — 760620468378650048
+ 45929013487571875a% — 184655576500018750a%
+494307270802515625a3 — 849570999768750000a2
+850698925256250000a5 — 378119684250000000),

which shows that taking ag = % yields 6 limit cycles. Next, suppose
as %. Then, the second factor in G'; must be nonzero since az # 0. We

solve the equation Gy = 0 for a3 and substitute this solution into By, and
Big to obtain two polynomial equations in ag. It can be shown that there
exist 3 real solutions for ag such that a3 > 0 and By, = 0, but Big # 0,
implying that maximal 8 limit cycles can bifurcate from the origin of system
(3.1).

The following analysis will be more or less similar to the above discussion.
Case (Ay) ag = 0, a; # 0. In this case, Bg = 0 yields a3 = %af; with
ag # 0 since ag = 0 gives a special case of C;. For this solution, Bg =

49597 (71, + 735 — 105a4). Letting ay = T9=£™5 vields By = 0 and

By = f160‘1275(12250a§ — 32a% + 5460a; + 176400 + 18375as),

from which we can solve for a5 and substitute the solution into Bjs, B4 and
Big to obtain their simplified expressions in a2 and a7, which are linear with
respect to a2. In particular, Biy is given by

Biy = — 22 [18375(829a; + 64680)aZ + 1109964 — 2939769042

—2089303650a; — 30866913000] .

15



64680 204812940525512704
— 84680 — 2018100551701 4

It is easy to see that taking a; = —= yields By = 73300109081
— 64680 © Then, solving Bis = 0

0, giving 6 limit cycles. Suppose a; # 20
gives a solution for a2, which is substituted into By4 and Bjg to obtain two
polynomial equations in a;. It can be shown that there exists only one real
solution for a; such that a2 > 0 and Byy = 0, but Bjg # 0, implying that
maximal 8 limit cycles can bifurcate from the origin of system (3.1).

Summarizing the above results, we have shown that when agag = 0, the
maximal number of limit cycles can bifurcate from the origin of system (3.1)
is 8. So, to find 9 limit cycles, we must consider the case agag # 0.

Case (B) agag # 0. For convenience, define

Hl = 100,7 - (7@8 - 25) as,
H2 = — (9@8 - 50) a7 + (5@4 - 14@8 + 50) as, (38)
H3 = 5&4&8 — (9(18 — 20)(17 + (7(18 — 25)&8.
Then, Bg can be rewritten as Bg = % asH; — % agHo, which shows that if
Bg = 0, then H; = 0 implies Hy = 0 due to agag # 0. Hence, in order to have

B =0, we need to investigate three cases: Hy = Hy = 0; Hy # 0, Hy = 0;
and H{Hs # 0.

Case (By) HiH, # 0. First we consider the generic case, HiHy # 0, under

which solving Bg = 0 yields a solution for as:

H
as = §ﬁ2; Qe- (3.9)

Next, from the output of our Maple program, we obtain the generalized
Lyapunov constant Bg, which is linear in as. Thus, solving Bg = 0 for as
yields
as = m{lm a? as(105 — 23ag) + 10ayarag(17a2 — 315ag + 1050)
+25a3a%(23as — 105) + 5a%(4a; — a2 + 4ag)(8lag — 355)

— [a4a§ 2 (4a7—a§+4a8)a7] (186a§ —2695a3+12400ag — 18375) }
(3.10)
With the above solutions of a1, as, ag and as, other higher-order generalized

16



Lyapunov constants are obtained as

By = — W‘MZSH% Fy 1,

Bia = — temmrsagmm Lo P2

Bu=— 248310563?000(13 H? Fo I, (3.11)
Bis = — 3357950625000 aZHY Fo I,

— ae
Bis = — s31s3133287500000000 a3 Hj Fo Fs,
where

Fy = ayai — (4ay — ai + dag)ar, (3.12)

and Fy, Fy, ---, F5 are functions in a4, ay, ag and a. Note that if Fy =
0, then all the generalized Lyapunov constants Bsgg, & < 10 vanish. The
condition Iy = 0 together with the solutions ai, as, as and as gives the
following condition:

o a7(4a7+4agfa§)
y= "5

Cgl a1:a5:0, agzaG(ag—Z—Qﬂ), a3:2a6(1+ﬂ)7 )
3 ag ag

asg ’

(3.13)
under which By, =0, k=1,2,...,10.

In order to find the maximal number of limit cycles bifurcating from
the origin, we need to use the parameters a4, ag, a7, ag to find the solutions
such that Fy = F, = F3 = Fy = 0, but F5 # 0 (or Byg # 0). Therefore,
in the following, we shall first try to find the solutions from the equations,
Fy = F;, = F3 = F, = 0, and then verify if the condition Bg # 0 is satisfied
for these solutions. Since all F}, i = 1,2,3,4 are functions in a2 and in
particular, F} is linear in a2, given by

Fy = 4593750 ag a Hs
+1250a3as [315(37as — 175)ar — (9619a3 — 80430as + 165375)as)
— 25a4[50(7513a3 — 11445as — 110250)a? — 5as(38427ad + 77630a3
— 2608725ag + 6615000)ay — a2(201212ai — 369741503 + 24846075a2
—T72736125as + 78553125)] — 500a3(1062a3 — 44885as + 186375)
— 25a2(66303ag — 54452043 + 3396875a3 — 18947250as + 38587500)
— 10a7as (13738243 — 2395130as + 13673725a3 — 2264562503
— 37261875as + 108871875) + a3(Tas — 25)(11112a3 — 215450a;

+ 133037543 — 233937542 — 4081875as + 12403125).
(3.14)
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There are two cases: Hz = 0 and Hs # 0.
First, we consider H3 = 0 from which we obtain

1
ay = = [(9as — 20) a7 — (Tag — 25) ag], (3.15)
5(18
which is substituted into the higher-order generalized Lyapunov constants to
yield B
By = 228, (ag — 5)(2a7 — ag) F1,

137812502
By = 227352,;% (as — 5)(2a7 — ag) Fa,
By = 20692547% (as —5)(2a7 — a8>F3>
Big = 18623292“% (ag — 5)(2ar — ag) F4,

where F; is a function in a; and ag, while Fy, F'5 and F, are functions in az,
ag and aZ. Tt can be shown that (ag — 5)(2a7 — ag) = 0 yields By, = 0, k =
1,2,...,10. In fact, ag = 5 indeed gives a condition,

C4 LA = a5 = 0, ag = 5, g = 2&6, az = deg, ay = ay — 2, (316)

under which all By, k& < 10 vanish. However, 2a; — ag = 0 yields a special
case of Cs.

For other solutions solved from F; = Fy = F5 = 0, it can be shown that
maximal 8 limit cycles can be obtained. First it has been noted that the
coefficient of a2 in Fy is 93a2 — 725ag + 1400. Letting this coefficient equal
zero yields polynomials 'y and F in a7 and it can be shown that there exist
four real solutions such that F'; = 0 (i.e., Byy = 0), but Fy # 0 (i.e., Bp # 0),
implying the existence of 6 limit cycles. When 93a2—725as3+1400 # 0, we can
solve a? from Fy =0, and then F3 and F4 also become polynomials in a; and
as. One can show that there exist four real solutions such that F'; = Fi3 = 0,
but Fy # 0, implying that maximal 8 limit cycles can bifurcate from the
origin.

Now, suppose Hz # 0. Substituting the solution of a? = Ag(as, ar, asg),
solved from F} = 0, into Fy, F3 and Fj, we obtain

4 16 12

2 875H; 7 °? 875H,; 2 ! 765625 Hs

Gs, (3.17)
where Gy, G5 and Gj are respectively, 4th-, 5th- and 7th-degree polynomial
functions in ay4. To solve the equations G; = Go = G3 = 0 for real solutions

of the parameters, a4, a7 and ag, we first use the Maple built-in command
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eliminate to eliminate a4 from the three equations: G; = Gy = G5 = 0,
yielding a solution a4 = ay4(az, ag), and two resultants:

R12 = RO R12a, R13 = RO (93@% — 725@8 + 1400) R13a>
where the common factor Ry is given by

Ro = as H1 (CLg — 5)(9&8 — 35)
x [55125(3as — 4)%a2 — 10a3 (18552a3 — 128825as + 223475) ay

—a? (1852a§L — 19432503 + 177017502 — 5548375ag + 5788125)],

(3.18)
and Rjo, and Rys, are lengthy polynomials in a7 and ag (with 888 terms in
Ri2. and 1380 terms in Rjs,), which are not listed here for brevity. First,
consider Ry. If Rg=0, then all generalized Lyapunov constants vanish. Since
agH; # 0 and ag = 5 has been considered in the condition C,, we only need
to consider other two factors. For the big factor, we can show that letting
this factor equal zero yields H3 = 0, violating the assumption. For ag = %—5,
we get one more condition, given below:

.

CL1:O,
_ 35
as = g,

a6(52488a2—161595a7+115150)
9(8lar—140)(8lay—70)  *
_ a6(59049a2—144585a7+75950)
Cs : a3 = ~9(8Tay;—140)(8la7—70) _ * (3.19)
5904942 —119070a7+34300
945(81a7—140) )
2(27a7—70)(81az—35)(243a7 —350) (162a7 —245)
2679075(81az;—140)2 )
ag - 2 (8lag ~70) (243a7 —280) (a7 - _)
2835,/70(81a7—140)

Qg =

ay =

as =

under which By, =0,¢7=1,2,...,10.
For the remaining parts in Ris and Ry3, we first consider the solution

solved from the simple factor of Ry3, 93a2 — 725ag + 1400 = 0, which gives
two real solutions: ay = %@. Substituting the two solutions into the
equation Ris, = 0 to solve for a7, yielding 15 real solutions corresponding to
ag and 11 real solutions corresponding to ag . It can be verified that among
the 26 solutions, 2 solutions violate the assumption Hs # 0, 12 ones yield
at = Ag(as(ar,ag),ar,ag) < 0, and other 12 ones lead to By # 0, implying

that maximal 8 limit cycles can be obtained from the solutions a3. Hence,
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the feasible solutions for 9 limit cycles must be found from the equations
Ri2a = Riza = 0. Since Rig, and Ry3, are respectively 23rd- and 29th-
degree polynomials in ay, we apply the Maple built-in command resultant to
eliminate a; from the two equations: Rjs, = Ri3, = 0 to obtain a resultant
in ag:

R123 = 0123 a§26(9a8 — 35)2(a8 — 5)5
X (3&8 - 10)8(69708 — 2695)(549@8 - 1645) R123a R123b,

where (93 is a big integer, and Rjgg, (which contains 284 terms) and Riasp
(which includes 1454 terms) are respectively 283th- and 1453th-degree integer
polynomials in ag, each term having a very big integer coefficient. It can be
shown that the polynomial Ris3, does not have solutions satisfying Ris, =
Risa = 0. Thus, we only need to consider the linear factors in Rjo3 and

the factor Risz.. Since ag # 0, the linear factors have the solutions: ag =
%, %, % %5 and 5. ag = 5 has been considered above in the condition
C4, and a direct computation shows that the solution ag = %0 leads to that

Riza(az) an{d Risa(a7) have no common factors. Moreover, for ag = %, we
have a; = iggggg, which yields H; = 0 and so is not allowed. Therefore, we

only need to consider two values of as: % and %. Each of them yields a
unique solution of a; satisfying Ris.(a7) = 0 and Ryza(ay) = 0. But both
them yield a zero divisor for solution a4(a7,ag). Thus, for these two values
of ag, we need reconsider possible bifurcation of limit cycles by investigating

the solutions of the equations: G; = Gy = G3 = 0.

(1) ag = % For this value, Ris.(a7) and Ris,(ay) have a common root

o
_ 161800 .
7 = 351101 under which

 a6(301401a4—49538)  a(301401a4—49538)
By = 11163a,—10744 Bisa(as), Bu= 11163a,—10744 Biaa(as),

where By, and By, are respectively 3rd- and 4th-degree polynomials in
ay. Note that 11163a4 — 10744 = 0 yields H3 = 0 and so is not allowed,
while 301401a4 — 49538 = 0 yields a special case of C3. Moreover, it
is easy to show that Bia,(ay) has 3 real roots, and all of them satisfy
at = Ag(ay(ar, ag), ar,ag) > 0 and By, # 0, implying that there are 6
solutions to yield 7 limit cycles around the origin.
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(2) as = 2. For this case we obtain a7 = 2 and

Biy = siraiesssein g (7812182747 — 20642218243 + 1801393024,
— 51948944),
Bui = smeens s (6011474587650 — 2125734707454
+2802717403668a2 — 1634221389834a, + 355795637488).

Note that 9a4 — 8 = 0 is not allowed since it yields H3 = 0, and
8lay — 68 = 0 gives a special case of C3. The 3rd-degree polynomial in
By has one real solution satisfying a2 = Ag(as(ar, ag), ar, ag) > 0 and
By # 0, implying the existence of 7 limit cycles.

Therefore, none of the solutions obtained from the linear factors can give 9
limit cycles.

Next, consider the factor Ris3,. It has 53 real roots for ag, each of them
yields a unique solution for a; by verifying the common roots of the equa-
tions Ria(ar) = 0 and Rz, (ar) = 0, leading to 53 sets of solutions (az, ag).
Moreover, all the 53 sets of solutions satisfy G; = G = G5 = 0 (i.e.,
Fy = Fy = F; = 0), but only 24 of them yield a2Ag(as(ar, ag),ar,ag) > 0.
These 24 sets of solutions are

(ar,as) = ( 4.398089 -+, —14.54122---), (—66.19700--- ,—10.81905- - -),
( 0.451595 -, —0.019793--), (—0.545773---, 0.891421---),
(—9.202151 -+, 0.916847---), (—0.689736---, 2.248118---),
(—3.237553 .-+, 2.525801:--), (—2.635767- -, 2.674894---),
( 0.911863---, 3.171373---), ( 0.916134---, 3.199575---),
(—0.495531 -+, 3.233994---), (—0.411833---, 3.357596- - ),
( 0.782354 -, 3.464452---), (—0.819658---, 3.530177---),
(1 2.323788---, 3.574264---), ( 2.331817---, 3.578910---),
( 0.506545---, 3.728333.-.), ( 2.897285.--, 4.335131---),
(1 2.989399---, 4.350327---), ( 3.262858.--, 4.519013---),
( 5.444113---, 4.999836---), ( 5.206692---, 5.053923---),
(1 5.639909---, 5.872520---), ( 14.51426---, 8.193654---).

Then, for each set of the above solutions, we can find corresponding solutions
for as(ar, ag), ag = j:\/A5(a4(a7,a8)7a7,a8), as, az and ay. Thus, there are
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in total 48 solutions, satisfying By = By = -+ = Big = 0, but Byg # 0. For
example, taking the fourth solution, we have

a; = 0, as = —0.1481082002 - - -, az = 0.3895415095 - - -
as = 0.2161600548 - -+, a5 = 0.3785873532---, ag = 1.1448190280 - - -
a7 = —0.5457733466 - -+, ag = 0.8914215289---
(3.20)
for which
By=B;=---=Bjg=0, Bjg=—0.2676264978--- # 0. (3.21)

Moreover, using the above critical parameter values, we obtain

det 8<Bg7f4yBs7Bswa,B;zaBm’Bw)] — —490.0663780732 - - - # 0. (3.22)
a1,a2,a3,a4,a5,a6,07,a3)

Therefore, proper perturbations on ag, ay, a4, ag, as, as, a; and a; can be

taken to obtain 8 small-amplitude limit cycles around the origin.

Finally, we consider the linear perturbations which yields one more small-
amplitude limit cycle. Actually, with the small linear perturbed terms, the
origin becomes a focus with eigenvalues %[52 + 5%—451(1—1—51)], showing
that the zeroth-order focus value is vy = %62. At 9, = 0, the origin becomes
an elementary center with a purely imaginary pair: £i1/0,(1+40;). Then, by
using normal form theory, a simple calculation shows that the first Lyapunov
coefficient vy is given by

v = m [al -+ (3a3+2a1—a8a6—2a6+a2) (51 + (3a3—|—a1+a2) 5%] .

Note that v; = %al and By = a; when d; = 0, = 0, which are in the
same order of a; (just by difference of a positive constant factor). Thus, we
can properly perturb do such that vgBs < 0 and |vg| < |Bz| to get the 9th
small-amplitude limit cycle around the nilpotent critical point (the origin).

Case (Bs) H; = Hy = 0. Solving H; = Hy = 0 we have a; = %(7@8 — 25)ag
and as = 2 (3as — 10)(Tas — 25). There are three cases.

(1) ag = £. Then, a4 = a; = 0, and Bg = —2-[12a3 + (2401as — 8)ag).

7 16807
Letting a5 = 5> vyields as = 0 and

2401
Bio = srage(12353145a¢ — 10712),
Bis = goyieess—(1723910797a3 4 596648),
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(3)

which clearly indicates that 6 limit cycles can be obtained. If a5 # ﬁ,
then we have az = —%a6(2401a5 —8), which is substituted into B to
obtain

Big = — 22 qy [84035(117649@% — 80)as + 16470860a2 — 20448],

86436
(3.23)
It is easy to verify that as = 0 gives a special case of C3. If a5 # 0,

then a2 = 11?2 15 results in Byg = giggg ag # 0, yielding 5 limit cycles.
If a2 # 1176 15, then we solve a5 from Byg = 0, which simplifies By and
1312 as

By = o200 ULTTI065112) - (1343419182761204250

~ 2036330213355(117649a2—80)°
— 48401735626048910ag + 31519505743936a2 — 6072763000),

16a6(4117715a2—5112) 6
26186192;4269989(1?7649(1%—80)3 (502164369560774582445%

— 14623351347578446270ag + 12842075888066880a2
—3507925999104).

Eﬁ4::

Again, one can verify that 4117715a2 — 5112 = 0 gives a special case of
C3. Otherwise, solving Byy = 0 gives one real positive solution a2 for

which By, # 0, indicating the existence of 7 limit cycles.
a8 = 4. Then, we have a; = 0 and a; = —2, under which By =

97
1701 0_[45a3 + (567as — 25)ag). If a5 = then az = 0 and

%7’

Big = — 2% (17860502 —1774), Bis = — 500 (3880737a2—21869),

which clearly shows that there exist solutions for the existence of 6

. (25567
limit cycles. If a5 # 22, then az = %(4—5‘15), and Bjy becomes

8a6a5
o67

By = — [(189(3969ag — 61)as + 26460ag — 83].

as = 0 again yields a special case of C3. It is easy to see that 3969a2 —
61 = 0 gives a solution for the existence of 5 limit cycles. If 3969a2 —
61 # 0, then similarly we can prove that there exist 6 solutions for the
existence of 7 limit cycles.

(Tag—25)(3as —10) # 0. Then asa; # 0. Since ag # 0, we solve Bg = 0
to obtain

1
1750a6

as = (as — 5)(17a3 — 139as + 280) [15a3 — ag(7Tas — 15)],
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and then

___as(15a3+15a6—"Tagag) ___as(15a3+15a6—"7asgag)
By = 6890625a¢ Biga, Bz = 11369531250 Bia,

where By, and By, are polynomials in ag, ag and ag. It is easy to verify
that 15a3 + 1bag — Tagag = 0 yields a special case of Cs. Following
a similar procedure as used above, we can show that there exist 8
solutions for the existence of 7 limit cycles.

Case (B3) Hy; # 0, Hy = 0. For this case, Hy = 0 yields a4 = i[(lélag —
50)as + (9ag — 50)az], and then Bg = 0 requires a3 = 0 due to H; # 0. Then,
we solve Bg = 0 to obtain a solution for as, given by

a5 = — gz [ 10a3(21ag — 290as + 875) — azag(as — 5)(62a3 — 1335as + 4725)

T 87542

— a3(62a3 — 143542 + 8500ag — 14875)]

under which

B 4dag(ar+as) 2 o 2a6(a7+ag) 2
Bio = ~ 7513502 Bioa(ag, az, as), Bi2 = — sa7350625a2 Bza(ag, ar, as),

where Bjo, and Bja, are polynomials in a2, a; and ag, and in particular,

Bioa =4593750a2a? — 250a2(3969a3 — 80750a% + 526575as — 1102500)
+ Bazag(74208ag — 2425625a3 + 25885100aF — 110354125as
+162618750) + a3(3704ag 4+ 598890ag — 1637012543
+ 135606125a3 — 455039375ag + 541603125)

Note that a7 + ag = 0 gives a special case of C3z. So solving Bjg, for a2 and
substitute the solution into By and By, to obtain two polynomial equations
in a7 and ag. Solving these two polynomial equations, we obtain 10 sets of
solutions (a7, ag) such that a2 > 0 and By # 0. This shows that there exist
20 solutions for the existence of 8 limit cycles.

Summarizing the above results obtained for Cases (A) and (B) shows that
the maximal number of small-amplitude limit cycles which can bifurcate from
the origin is 9.

The proof of Theorem 3.1 is complete. O
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4. 10 limit cycles in a cubic-order system near a nilpotent critical
point

In this section, we consider system (3.1) again, and will use the method
of double bifurcation of nilpotent focus to show that the system can have 10
small-amplitude limit cycles near the origin. To achieve this, we add different
perturbations to system (3.1) to obtain the following perturbed system:

dx .
=y + (as — 2)zy — (as — a7)2y + agy” + axxy® + asy°,

g_é (4.1)

o =46ey + v* + agzy® + azy® — (22 — %) (22 — ary),

where 0 < [§] < 1, 0 < & < 1. Then, for system (4.1) we have the following
result.

Theorem 4.1. For system (4.1) with a nilpotent critical point at the origin,
there exist at least 10 small-amplitude limit cycles near the origin.

Proof.  The proof has two steps. In the first step, let 6 = & = 0. Then, as
shown in the previous section, we obtain the critical parameter values given
in (3.20) such that the conditions in (3.21) and (3.22) are satisfied, and thus
we obtain 8 small-amplitude limit cycles around the origin by perturbing the
coefficients aq, as, ..., as.

In the second step, by choosing proper values of § and &, we can use the
method of double bifurcation of nilpotent focus [29] to find two more small-
amplitude limit cycles near the origin. In fact, for small § and ¢, the origin of
system (4.1) becomes a saddle, having eigenvalues e [2(5 + V46%2+2], and two
foci arising from the symmetric singular points at (£e,0), with eigenvalues
2e[0++/1+ (as—2)e+(ar —aq)e?], indicating that the zeroth-order focus val-
ues associated with the two foci is given by vy = 22 9. When § = 0, the origin
is still a saddle (with eigenvalues ++/2 ), while the two foci become elemen-
tary centers and Hopf bifurcations occur at the two singular points, with the
critical eigenvalues +iw,, where w.=2e%\/1+(ag—2)e+ (a7 —ay)e? ~ 2e%. A
direct calculation shows that the first Lyapunov constant, associated with
the two Hopf critical points, is given by

3
3
2[1+(ag—2)e+(ar—as)e?

v = } {3a3a8 — 2ag(ag + az7) + [6a3a7 — agag(ays + a7)]5}

where the critical conditions a; = 0 and as = —3az+agas (see (3.2) and (3.4))
have been used. With the critical solution (3.20), v; ~ 0.50065566 % >
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0. Thus, we can perturb § = 0 to 6 < 0 such that |§] < &, leading to
bifurcations of two small-amplitude limit cycles around the two symmetric
singular points (£¢,0). Then, by proper perturbations on other parameters
to get By < 0 and v; < | By, and so on on higher-order generalized Lyapunov
constants. These two additional limit cycles are enclosed by the 8 small-
amplitude limit cycles, giving rise to 10 small-amplitude limit cycles with
the distribution of 8 O (1 U 1). O

5. Center conditions for the nilpotent critical point

In this section, we will present a set of center conditions for system (3.1)
under which the nilpotent critical point — the origin, becomes a center. First
of all, it requires 4; = d5 = 0. Then, based on the generalized Lyapunov
constants, we can find the conditions under which the origin of system (3.1)
is a center. As a matter of fact, the critical conditions C;, i = 1,2,3,4,5
have been shown in the proof of Theorem 3.1 to be the candidates for the
center conditions of the origin since they yield all the generalized Lyapunov
constants to vanish.

Theorem 5.1. When §; = dy = 0, the origin of system (3.1) is a center if
and only if one of the following conditions is satisfied:

Cll a1:a2:a3:a6:0;

CQI a1:a7:a8:a2+3a3:0;

Cy: a1 = a5 = ag—ag(as—2-%7) = 3a3—2a4 (1+%) = a4+7a7(a§_2§8_4“7) =0
(ag 7é 0)7

C43 a1:a5:a8—5:a2—2a6:ag—a6:a4—a7+2:0;

Proof.  The necessity of the conditions C;, ¢ = 1,2, 3,4 has been proved in
Theorem 3.1 since all these conditions and Cjy yield the generalized Lyapunov
constants By, k= 1,2,...,10 to vanish. No other possible center conditions
have been found from the proof of Theorem 3.1. So we only need to prove
the sufficiency of these conditions.

First, consider the condition C;. Under C; system (3.1) becomes

dx

E:y+(ag—2)xy—(a4—a7)$2y+a5y3, 51)
g .
d—i{ =223 + y? + a4 2y%
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It is easy to see that system (5.1) is a reversible system since the system is
invariant under the transformation: (y,t) — (—y, —t). Hence, the origin of
system (5.1) is a center.

For condition Cy, system (3.1) becomes

dx

a =y —2zy — as 2y + ag y* — 3az xy* + as y°,
(5.2)

d
d_gi =223+ y? + agxy® + a3y,
which is a Hamiltonian system with the Hamiltonian function,
H(x )zl 2+1x4—x 2 L2 B8 guayd o Byl
Y 9 Y B ) 9 Y 3 ) 3LY 1 Y.
Next, consider the condition C3 under which system (3.1) can be written
as
dx 2a7(a—2as—2a a
-yt (as — 2)zy + %lﬂy +agy® + ag(as — 2 — ¥2) 2y,
dy ar(ai—4ags—4a a
o =223 4 9% — ar(ag—das—dar) igs daz) xy? + §a6(1+ é)y?’.

(5.3)
It can be shown that there exist integrating factors under different conditions,
given by
La2

I, = [(ag — 2ag — 2a7)r + ag] a§—203~2a7

if (a2 — 2ag — 2ar7)(3a% — 8ag — 8az)
X (a2 — 3ag — 3ay)(a2 — 4as — 4ay)(as + ay) # 0,

I = o5 6o 2221 0323))
agy?{2a6y+3[1+(ag—2)z]} —12 [6+6agz+3azz? +ajx?)
1 if a2 —2ag—2a; =0, (5.4)
I3 = m, if 3@3—8a8—8a7:0,
1 :
]4: m, if a§—3a8—3a7=0,
1 :
I5: m, if a§—4a8—4a7207
1
lg= —— if =0
5T (wr 1) i ag+ar =0,
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such that system (5.3) has the following corresponding first integrals:

_ 1,2 —2,.,2 3, ar(ag—2ag—2ar)

Fi(z,y) —1'1{5y + Ry gy TR
(a2—2as—2a7)z+as

(3a§—8(18—80,7)((1%—30,3—3(17)(a§—4a3—4a7)(a3+a7)

$2y2+%6(a8—2—2%)$y3

_l’_

X [2(a§ — 3ag — 3a7) (a3 — dag — 4ay)(ag + a7) x*

— 3ag(ag + a7)(a — dag — 4a7) 2% + 6a2(ag + a7) x + Sag] },
Fy(z,y) = 2Ina? — In I, — agz,

Fg(x,y) _ y*[8asy+3(3aszr—8z+4)] + 8[9a2x?+54asz+88] + %ID(G8I+4)2,

- 96(agz+4)3 3a§(ag$+4)3
2[2a6y+2(a8—3)2z+3 20373 +12a27% —36asx—135
Fi(a,y) = ig(as(m?»)?) Ly 2 asz T3 - % In(asz + 3)?,
y? dagy+3w(a8—4)+6 a3z’ —6a2x2—16agz+16
F5(5U> y) = [ 24(agz+2) ] + -2 ag?a8x+2)8 + i—g ln((lgI + 2)2,
F _ 1,2 9 —6 3 (2a222—3agz+6)z B Ll 1)2
6(7,y) = 5v°(2a6y — 62 + 3) + BT n(age + 1)°.

Now, for the condition Cy, system (3.1) becomes

dx
ity 3zy + 202y + agy® + 2a¢ Ty,
¢ (5.6)

d
d_gtJ =—22° + > + (a7 — 2) 29® + ag ¥°.
We apply the following transformation and time rescaling
x Yy 3 u v
frnd s = 5 t = 1 - :> - 9 = )
R T (1 =u) Tiow YT 1w
(5.7)

to system (5.6) to obtain

dup 2 o[l = v+ agv(1 — u?)],
i (5.8)
— = u[ — 2u® + (a7 — 4)v* — as 0.
dr
This is a reversible system since it is invariant under the transformation
(u,7) = (—u, —7). Hence, the origin of system (5.8) is a center, implying
that the origin of the original system (3.1) is a center since the origin is
invariant under the transformation (5.7). O
Finally, consider the condition Cj (see Eqn. (3.19)). This condition is
necessary for the origin of system (3.1) being a center has been proved in
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Theorem 3.1. For sufficiency of this condition, we have the following conjec-
ture.

Conjecture 5.1. The condition Cs is also sufficient for the origin of system
(3.1) being a center.

6. Conclusion

In this paper, we have shown that planar cubic polynomial vector fields
with an isolated nilpotent critical point can have at least 9 small-amplitude
limit cycles around the critical point and at least 10 small-amplitude limit
cycles near the critical point with the distribution of 8 > (1U1). Normal form
theory has been applied to compute the generalized Lyapunov constants, and
then to determine the number of bifurcating limit cycles near the critical
point. Moreover, a set of center conditions for the nilpotent point have
been obtained for such cubic polynomial systems. It has demonstrated the
general applicability of our method and program to solve different types of
polynomial systems with a nilpotent singular point.
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