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THE BOLZANO MEAN-VALUE THEOREM AND PARTIAL DIFFERENTIAL
EQUATIONS

WOJCIECH KRYSZEWSKI AND JAKUB SIEMIANOWSKI

Abstract. We study the existence of solutions to abstract equations of the form 0 = Au + F (u),
u ∈ K ⊂ E, where A is an abstract differential operator acting in a Banach space E, K is a
closed convex set of constraints being invariant with respect to resolvents of A and a perturbation
F satisfies a certain tangency condition. Such problems are closely related to the so-called Poincaré-
Miranda theorem, being the multi-dimensional counterpart of the celebrated Bolzano intermediate
value theorem. In fact our main results should be regarded as infinite-dimensional variants of Bolzano
and Miranda-Poincaré theorems. Along with single-valued problems we deal with set-valued ones,
yielding the existence of the so-called constrained equilibria of set-valued maps. The abstract results
are applied to show existence of (strong) steady state solutions to some weakly coupled systems
of drift reaction-diffusion equations or differential inclusions of this type. In particular we get the
existence of strong solutions to the Dirichlet, Neumann and periodic boundary problems for elliptic
partial differential inclusions under the presence of state constraints of different type. Certain aspects
of the Bernstein theory for bvp for second order ODE are studied, too. No assumptions concerning
structural coupling (monotonicity, cooperativity) are undertaken.

1. Introduction

The purpose of this paper is twofold. On the one hand, being motivated by some concrete applica-
tions (see subsection 2.1), we want to establish appropriate topological tools to study the existence of
solutions to systems of N partial differential equations or N -dimensional partial differential inclusions
subject to various boundary conditions and under state constraints. The presence of such constraints
is justified and explained below. This is closely related to the method of the so-called ‘moving rectan-
gles’ (see e.g. [50]) and corresponding techniques used for the study of long time behavior of evolution
systems. We, however, leave aside questions concerning existence, stability and invariance of solutions
of parabolic evolution equations, but in this paper we confine ourselves to elliptic equations rather and
their solutions, i.e. steady state or stationary solutions to related evolutions problems. Nevertheless
the ‘evolution’ origin of the studied steady state problems is of great importance.

On the other hand the proposed topological methods are closely related to problems of the exis-
tence of constrained equilibria or fixed points of abstract single- or set-valued maps, having origins
in the Bolzano mean-value theorem (see Subsection 2.2). This celebrated result is perhaps the most
important topological device when studying one-dimensional equations of the form f(x) = 0. This
fact was extensively used and generalized by numerous authors for almost 150 years (see [39] and [12])
and various important results were established. One of the best known statements in this direction is
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2 WOJCIECH KRYSZEWSKI AND JAKUB SIEMIANOWSKI

the Poincaré-Miranda theorem, which is a direct N -dimensional version of the Bolzano theorem. We
develop the infinite-dimensional counterparts of Poincaré-Miranda theorem, show their relation with
different branches of research concerning e.g. viability theory for differential inclusions and, finally,
apply them in the context of constrained PDE.

The notation used throughout the paper is standard. In particular x · y is the scalar product
of x, y ∈ RN and |x| = √

x · x stands for the norm of x. The use of function spaces (Lp, Sobolev
etc.), linear (unbounded in general) operators in Banach spaces, C0 semigroups is standard. In the
paper, for the sake of generality, we deal mostly with set-valued maps (the terminology in set-valued
analysis is taken after [4]: the symbol � denotes a set-valued map with at least closed values). It is
however important to observe that results we propose are, to the best of our knowledge, new in the
single-valued case, too.

The paper is organized as follows: in Section 2 we discuss origins of problems and motivations
of main assumptions; in Section 3 we establish main abstract results, while Section 4 is devoted to
applications. Subsection 3.2 contains a discussion of invariance issues playing an important role in
the paper.

2. The motivation

2.1. Drift reaction-diffusion equations. When dealing with an evolving in time multicomponent
active continuous substance, whose components interact via certain reaction mechanism, such as
e.g. predator-prey, activator-inhibitor, competition, reaction kinetics etc., and they all diffuse with
different (in general) diffusive constants and are subject to drift or advection, i.e. a passive transfer
caused by, for instance, the moving ambient media, such as gas or fluid, then the adequate model is
provided by the so-called systems of drift reaction-diffusion equations (see e.g. [42]). Such systems in
general are of the form

(2.1) ∂tui = div(di∇ui) + fi(t, x, u,∇u), i = 1, ..., N,

or, shortly,

ut = Lu+ f(t, x, u,∇u), where Lu = (v1, .., vN ), vi = div(di∇ui) for i = 1, ..., N,

along with initial and the (Neumann or Dirichlet) boundary conditions on ∂Ω. Here the unknown
u = (u1, ..., uN ) depends on spatial variables x = (x1, ..., xM ) ∈ Ω ⊂ RM , Ω is an open smooth
domain, and time t ∈ [0, T ], T > 0, ∇u =

[
∂ui
∂xj

]
is the derivative of u. The diffusive coefficients

di ∈ C1(Ω̄), i = 1, ..., N , and f = (f1, ..., fN ) is the source/advection term depending on (t, x, u,∇u).
Sometimes it is convenient to distinguish the advection term

(2.2) fi(t, x, u,∇u) = gi(t, x, u)− γi · ∇ui, i = 1, ..., N,

or, shortly,

f(t, x, u,∇u) = g(t, x, u)− Γu, where Γu = (v1, .., vN ), vi = γi · ∇ui for i = 1, ..., N,

where drift vectors γi := [γi1, ..., γ
i
M ] ∈ L∞(Ω,RM ), i = 1, ..., N ; the second summand is responsible

for the drift of the system.
Our interest is mainly focused on ecological or chemical systems, where ui(x, t) is the concentration

at x ∈ Ω and time t ∈ [0, T ] of the i-th reactant, i = 1, ..., N , contained in a bounded stirred up
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vessel (or reactor) Ω. Clearly the initial state u(·, 0) � 0 on Ω and the natural expectation is that
ui(x, t) � 0 since the concentration cannot be negative. On the other hand there is a threshold value
Ri > 0 beyond which the i-th component is saturated or the model is not adequate. In a similar
manner the implicit threshold value of concentrations may follow from mass conservation: the total
mass of reactants, say R, must be constant. Therefore it makes sense to look for solutions u(x, t) in
the rectangle {u ∈ RN | 0 � ui � Ri, i = 1, ..., N} or in the simplex {u ∈ RN | ∑N

i=1 ui = R, ui �
0, i = 1, ..., N}. In general equations of the form (2.1) should be therefore considered under the
presence of state constraints: u(x, t) ∈ C for x ∈ Ω, t ∈ [0, T ], where C is a given closed subset of the
phase space RN .

This requirement u(x, t) ∈ C has an impact on the source term f or g. If, for instance, we assume
the mass conservation, i.e. demand that solution stay in the simplex C = {u ∈ RN | ∑N

i=1 ui =

R, ui � 0, i = 1, ..., N}, then the natural hypotheses onto g is that
∑N

i=1 gi(t, x, u) = 0 (the total
mass neither increases nor decreases during the process) and if ui = 0, then gi(t, x, u) � 0 (if a
component vanishes, it can only be recreated). When carefully studying this and other examples, we
gather that under the presence of state constraints in a closed convex C ⊂ RN the correct restriction
onto the source term is the tangency condition: f(t, x, u) ∈ TC(u) for t ∈ [0, T ], x ∈ Ω and u ∈ C,
where TC(u) stands for the cone tangent to C at u (see (2.7) and Remark 2.4).

In what follows we admit also discontinuous nonlinearities f (or g). This appears when, for
instance, system data are determined by measurements or are subject to phase transition phenomena
and is motivated by numerous applications of systems with hysteresis (see e.g. [52], [11]). The typical
situation concerns (2.1) with N = M = 1 and is of the form

ut = uxx +H(u),

where H is the hysteresis operator – see [54], [34]. In the simplest case H is driven by the Heaviside
function and may be described via the related Nemytskii operator: given a threshold value α > 0, an
input function u : [0, T ] → R with u(0) � α, then the output H(u)(t) = 0 if u(s) < α for all s ∈ [0, t]

and H(u)(t) = 1 if u(s) = α for some s ∈ [0, t]. For some other instances of the problem – see [8],
[16] and numerous examples in [10]. The common way to overcome this obstacle is to replace the
discontinuous f , or g in (2.2), by an appropriate set-valued regularization F or G (introduced e.g. by
Fillipov or Krasovski – see [27, Sect. 2.7] or [3, p. 101]) and instead of (2.1) consider a problem

(2.3) ut ∈ Lu+ F (t, x, u,∇u)

or

(2.4) ut ∈ Lu− Γu+G(t, x, u)

subject to initial and boundary conditions, where F : [0, T ] × Ω × C × RMN � RN (or G : [0, T ] ×
Ω×C � RN ) is an upper semicontinuous set-valued map with compact convex values satisfying the
appropriate tangency conditions with respect to the constraint set C ⊂ RN .

2.2. Zeros of set-valued maps. In the present paper we shall deal with the existence of steady
state (stationary solutions) of state constrained autonomous problems related to (2.3) or (2.4). This
leads to the second objective of the present paper.

Since 1941, when Kakutani showed that every upper semicontinuous set-valued self map ϕ of the
closed ball D in Rn admitting closed convex values has a fixed point, a lot of attention has been paid
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to the different aspects of the fixed point theory for set-valued maps (see e.g. [29]). In one direction
the development has led to substantial weakening in the assumption that the values of the mapping
are subsets of its domain. The idea is well-illustrated by the classical (single-valued) mean value
theorem of Bolzano.

Theorem 2.1. If f : C := [a, b] → R is continuous, f(a)f(b) � 0 (for instance f(a) � 0 and
f(b) � 0), then there is x̄ ∈ C such that f(x̄) = 0.

This important observation has been generalized by Poincaré in 1883 in his famous conjecture
proved by Miranda [43].

Theorem 2.2. (Poincaré-Miranda) Let C = Πn
k=1[ak, bk] be an n-dimensional cube and let F−

k :=

{x ∈ C | xk = ak}, F+
k := {x ∈ C | xk = bk}, k = 1, 2, ..., n, denote the k-th face of C. Let

f = (f1, ..., fn) : C → Rn be continuous and suppose that for all k = 1, ..., n

(2.5) fk(x)

{
� 0 for every x ∈ F−

k

� 0 for every x ∈ F+
k .

Then f has a zero, i.e., there is x̄ ∈ C such that f(x̄) = 0.

Quite a complicated history of this and other related results is well-described by Mawhin [39] and
[12] (see also [40], [41]). In the spirit of the above we have (see [41], [48])

Theorem 2.3. Let C = {x ∈ �2 | |xk| � k−1} be the Hilbert cube, let f : C → �2 be continuous and
such that for all k ∈ N

(2.6) fk(x1, ..., xk−1,−1

k
, xk+1, ...) � 0, fk(x1, ..., xk−1,

1

k
, xk+1, ...) � 0,

then f has a zero.

In order to understand the nature of assumptions of these results we need to recall the following
definition. Let E be a Banach space, K ⊂ E be a closed set and x ∈ K. The contingent (or
Bouligand) cone TK(x) is defined by

TK(x) = {v ∈ E | lim inf
h→0+

dK(x+ hv)/h = 0}

and the Clarke tangent cone is defined by

CK(x) = {v ∈ E | lim
h→0+, y→x, y∈K

dK(y + hv)/h = 0},

where dK(u) := infy∈K ‖y−u‖. TK(x) and CK(x) are closed cones; additionally CK(x) is convex. In
general CK(x) ⊂ TK(x) and if K is convex, then

(2.7) TK(x) = CK(x) = clSK(x)

where
SK(x) :=

⋃
h>0

h(K − x).

Observe that if x belongs to the interior ofK, then TK(x) = E. For examples and a detailed discussion
see [4].
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Remark 2.4. (1) If C ⊂ Rn is a cube (as in Theorem 2.2) and x ∈ C is a boundary point, then
v ∈ TC(x) if and only if vk � 0 when xk = ak and vk � 0 when xk = bk. This implies that assumption
(2.5) holds true if and only if f(x) ∈ TC(x), x ∈ C. Similarly, in the context of Theorem 2.3,
assumption (2.6) is satisfied if and only if f(x) ∈ TC(x) for all x ∈ C.

(2) Let C = {x ∈ Rn | ∑n
i=1 xi = R, xi � 0, i = 1, ..., n} and x ∈ C. If xi > 0 for all i, then

v ∈ TC(x) if and only if
∑n

i=1 vi = 0; if xj = 0, then v ∈ TC(x) if and only if
∑n

i=1 vi = 0 and vj � 0.
(3) If K = D(0, r) is a closed ball in a Hilbert space E, then TK(x) = {v ∈ E | 〈x, v〉 � 0} for x

in the boundary of K.

In the apparently independent stream of research, the best known equilibrium result is the follow-
ing pioneering result of Browder [13] (with some modification due to Halpern and Bergman [31, 32])
being, in the opinion of Aubin and Cellina (see [3, p. 213, Chapter 5.2] and the discussion therein),
‘one of the most powerful theorems of nonlinear analysis’.

Theorem 2.5. Assume that K ⊂ E is compact convex and ϕ : K � E is upper semicontinuous with
closed convex values. If ϕ satisfies the weak tangency condition with respect to K, i.e.

(2.8) ∀x ∈ K ϕ(x) ∩ TK(x) �= ∅,
then ϕ has an equilibrium: there is x̄ ∈ K such that 0 ∈ ϕ(x̄). If ϕ satisfies the so-called the weak
inwardness (or outwardness) condition, i.e.

(2.9) ∀x ∈ K ϕ(x) ∩ (x+ TK(x)) �= ∅
(or ϕ(x) ∩ (x− TK(x)) �= ∅ for x ∈ K), then ϕ has a fixed point.

In view of Remark 2.4 it is evident that Theorem 2.5 provides a far reaching generalization of
Theorems 2.2 and 2.3.

Remark 2.6. It is easy to see that if K is convex and 0 ∈ K, then TK(x) ⊂ x + TK(x) for all
x ∈ K. Hence in Theorem 2.3 (and in 2.2 if ak � 0 � bk, k = 1, ..., n) f has a fixed point since
f(x) ∈ x + TC(x), x ∈ C and, therefore f(x) − x = 0 for some x ∈ C. Similarly in Theorem 2.5 if
0 ∈ K, then (2.8) implies (2.9) and ϕ has fixed points.

Two drawbacks of this result has to be pointed out. In order to get a decent tool to study existence
of equilibria one needs to get rid of compactness and convexity in Theorem 2.5. The best known result
in this direction is due to Deimling – see [22, Th.11.5], [24].

Theorem 2.7. Let K be a closed bounded convex subset of a Banach space E and let an upper semi-
continuous map ϕ : K � E with compact convex values be condensing with respect to the Kuratowski
or Hausdorff measure of noncompactness. If ϕ is weakly inward, then ϕ has a fixed point.

It is interesting to observe that in Deimling’s theorem there is no way to replace inwardness by
outwardness condition although it was possible in Theorem 2.5.

In order to discuss a nonconvex version of Theorem 2.5 one needs to understand which property
of a set is a suitable substitute for convexity and what should be a suitable counterpart of tangency.
This problem was addressed in [7] and discussed in [35].
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After [7] we say that a closed K ⊂ E is an L-retract if there is ε > 0, a continuous r : U =

B(K, η) → K, where B(K, η) := {x ∈ E | dK(x) < η} (1) and a constant L � 1 such that

r(x) = x for x ∈ K and ‖r(x)− x‖ � LdK(x) for x ∈ U.

Therefore K is an L-retract whenever K is a neighborhood retract in E with retraction r such that
distance of x ∈ U from r(x) ∈ K may be controlled by the distance dK(x). The class of L-retracts
is large. Closed convex sets (in this case one can define r on E with L = 1 + ε, where ε > 0

is arbitrary), compact sets being bi-Lipschitz homeomorphic with closed convex sets, the so-called
proximate retracts, Lipschitz retracts and epi-Lipschitz sets (in the sense of Rockafellar [46]) are
L-retracts.

Remark 2.8. (1) If X is a topological space of finite type, i.e., such that the (singular with rational
coefficients) cohomology groups Hk(X;Q), k � 0, groups are finitely generated and vanish above some
dimension, then the Euler characteristic χ(X) :=

∑∞
k=0(−1)k dimHk(X,Q) of X is well-defined.

(2) If X is a neighborhood retract in E and f : X → X is compact, then f is a Lefschetz map,
i.e. the homomorphism H∗(f) is a Leray endomorphism of H∗(X,Q) and the generalized Lefschetz
number Λ(f) of f is well-defined – see [25, Def. V.(2.1), (3.1). Th. (5.1)]. If f is homotopic to the
identity IX on X, then H∗(f) = H∗(IX) is the identity H∗(X). This implies that IX is a Lefschetz
map; hence H∗(X) is of finite type and the Euler characteristic χ(X) is well-defined. Moreover, in
this case Λ(f) is equal to the ordinary Lefschetz number λ(f) = λ(IX) = χ(X) (for details concerning
these notions see also e.g. [14]). In particular if χ(X) �= 0, then f has a fixed point.

In view of the above if K is a compact L-retract, then its Euler characteristic χ(K) is well-defined.
Note that if K is additionally convex, then χ(K) = 1. After [7] (see also [19]) we have the following
result.

Theorem 2.9. Let K ⊂ E be a compact L-retract with χ(K) �= 0. If ϕ : K � E is upper semicon-
tinuous with closed convex values and weakly tangent to K in the sense of Clarke, i.e.

(2.10) ∀x ∈ K ϕ(x) ∩ CK(x) �= ∅,
then ϕ has an equilibrium.

Note that in condition (2.10) the Bouligand cone has been replaced by the Clarke cone; there are
examples showing that (2.8) is not sufficient (see [35]); however if ϕ = f is a single-valued map, then
(2.8) implies (2.10). It is also evident that the weak inwardness in the sense of Clarke cone implies
the existence of fixed points.

There is no direct generalization of the equilibrium problem from Theorem 2.9 in the noncompact
setting, although there were some partial answers have been discussed in [19] and [20], since we have
the following example showing a compact tangent map without zeros.

Example 2.10. Let E = �2 be the classical Hilbert space. Let D1 = {x ∈ E | ‖x‖ � 1/
√
2} and

let f : D1 → D1 be the variant of the famous Kakutani map: f(x) = (
√

1/2− ‖x‖2, x1, x2, ...) for
x = (xi) ∈ D1. Then f is continuous, it has neither zeros nor fixed points and ‖f(x)‖ = 1/

√
2 for all

1Clearly B(K, η) = K + ηB, where B = B(0, 1) is the open unit ball in E.
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x ∈ D1. Let D be the unit closed ball in E and r : D → D1 the radial retraction. Define g : D → D

by

g(x) :=

{
−f(x) for x ∈ D1;(
2‖x‖2 − 2

)
f(r(x)) +

(
1− 2‖x‖2)x for x ∈ D \D1.

One can see that g is well-defined, continuous and g(x) = −x whenever x ∈ ∂D; an easy argument
yields g(x) �= 0 for every x ∈ D. Finally, define κ : E → E by

κ(x1, x2, . . . , xn, . . .) :=
(
x1, 2

−1x2, . . . , n
−1xn, . . .

)
.

Clearly κ is an injective compact linear map. Thus G := κ ◦ g : D → D is compact and G(x) �= 0 for
x ∈ D. If x ∈ ∂D, then 〈G(x), x〉 = −∑∞

n=1
1
nx

2
n � 0; by Remark 2.4 (3), G is tangent to D.

For examples, further generalizations and a deeper discussion of issues surveyed above the reader
can see [35].

The main aim of the present paper is to show a result in this direction with applications to
constrained steady state problems related to (2.3) or (2.4).

3. Existence results

3.1. The setting and results. In order to study the existence of steady states of autonomous
problem (2.3) we shall take an appropriate abstract setting and consider the following coincidence
problem

(3.1) 0 ∈ Au+Φ(u), u ∈ K ⊂ E,

where:

(A1) (E, ‖ · ‖) is a Banach space, K ⊂ E is a closed convex set;
(A2) A : D(A) → E is a densely defined linear operator such that, for some ω ∈ R, (ω,∞) ⊂ ρ(A);
(A3) there is another Banach space (E0, ‖ · ‖0) and a closed convex K0 ⊂ E0 such that D(A) ⊂

E0 ⊂ E, K0 ⊂ K and the identities D(A) → E0, j : E0 → E are continuous (2);
(A4) Φ : K0 � E is H-upper semicontinuous, bounded and has convex weakly compact values;
(A5) for all u ∈ K0, Φ(u) ∩ TK(j(u)) �= ∅.

Remark 3.1. (1) Let us recall the so-called Lions construction, see [21], [2]. Let V be a reflexive
Banach space which is dense in a (real) Hilbert space H and suppose that the identity V → H is
continuous. Suppose a bilinear continuous form a : V × V → R is such that

(3.2) ∀ v ∈ V a(v, v) + ω‖v‖2H � α‖v‖2V ,
where ω ∈ R and α > 0. Let D(A) be the set of all u ∈ V such that the function V � v �→ a(u, v)

is continuous on V with the H-norm, i.e. such that there is βu � 0 with |a(u, v)| � βu‖v‖H for all
v ∈ V . For any u ∈ D(A) there is a unique Au ∈ H such that

a(u, v) = −〈Au, v〉H , v ∈ V.

2On D(A) the graph norm ‖ · ‖A is considered:

‖u‖A := ‖u‖+ ‖Au‖, u ∈ D(A).
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This defines a linear A : D(A) → H. According to e.g. [49, Prop. 4.1], D(A) is dense in H, A is
closed and (ω,+∞) ⊂ ρ(A). Moreover, A is maximal ω-dissipative and, in view of [2, Theorem 4.2],
A is the generator of a holomorphic C0 semigroup {S(t)}t�0 of linear operators on H with growth
bound equal to ω. Putting E := H, E0 := V and taking a closed convex bounded K ⊂ E we see that
assumption (A1) – (A3) are satisfied provided K0 := K ∩E0. The situation described in this example
is very typical in various applications.

(2) Assumption (A4) is motivated by applications. H-upper semicontinuity (where H stands for
‘Hausdorff’) in (A4) means that for each x ∈ K0 and ε > 0 there is δ > 0 such that Φ(y) ∈ B(Φ(x), ε)

if y ∈ K0 and ‖y − x‖0 < δ. It is well know that (see e.g. [10, prop. 2.3]) that Φ, being H-
upper semicontinuous with weakly compact values, is upper semicontinuous when E is endowed with
the weak topology. This, in turn, implies, that given sequences (xn) ⊂ K0 and yn ∈ Φ(xn), if
xn → x0 ∈ K0, there is a subsequence ynk

such that ynk
⇀ y0 ∈ Φ(x0) (⇀ denotes the weak

convergence). Obviously if Φ is upper semicontinuous with closed compact values, then (A4) is
satisfied, too.

(3) Let h > 0 and hω < 1, then h−1 ∈ ρ(A) and the resolvent

Jh := (I − hA)−1 : E → E

is well defined and continuous. Observe that Jh(u) ∈ D(A) ⊂ E0 for any u ∈ E. Moreover for any
u ∈ E

‖Jh(u)‖A = ‖Jh(u)‖+ ‖AJh(u)‖ � ((1 + h−1)‖Jh‖+ h−1)‖u‖,
This, together with (A3), shows that Jh : E → E0 is continuous, too. Observe that Jh is compact for
some h > 0 with hω < 1 if and only if the identity D(A) → E is compact. If D(A) → E0 is compact,
then Jh, as a map from E to E0 is compact for all h > 0 with hω < 1. It is worth to note that in the
situation described in part (1), ‖Jh‖ � (1− hω)−1.

Let us recall a version of Lemma 17 from [6]; for the reader’s convenience we give an independent
proof.

Lemma 3.2. For any ε > 0, there exists a locally Lipschitz map f = fε : K0 → E being an ε-graph-
approximation (3) of Φ and, for all u ∈ K0,

(3.3) f(u) ∈ TK(j(u)).

Proof: Take ε > 0 and u ∈ K0. By (A5) and (2.7) there is v(u) ∈ E such that

v(u) ∈ B(Φ(u), ε/4) ∩ SK(j(u)).

Hence, there is α(u) > 0 such that
j(u) + α(u)v(u) ∈ K.

By the H-upper semicontinuity choose a number γ(u), 0 < γ(u) < ε/4 such that Φ(B0(u, 2γ(u)) ∩
K0) ⊂ B(Φ(u), ε/2) and a number 0 < δ(u) < min{γ(u)/C, γ(u)/α(u)}, where C := ‖j‖.

Let {λs}s∈S be a locally finite locally Lipschitzian partition of unity refining the open cover
{B0(u, δ(u)α(u)) ∩ K0}u∈K0 . For any s ∈ S, there is us ∈ K such that the support suppλs ⊂

3The graph of f is contained in the ε-neighborhood of the graph of Φ, i.e. f(x) ∈ Φ(B0(x, ε)∩K0)+ εB, where B is
the unit open ball in E, for any x ∈ K0; in particular f is bounded. Here and below we write B(x, r), x ∈ E, to denote
a ball in E and B0(x, r), x ∈ E0, to denote a ball in E0.
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B0(us, δsαs)∩K0 where we have put δs := δ(us) and αs := α(us). Additionally let us set vs := v(us)

and γs := γ(us).
For any s ∈ S, we define a map fs : K0 → E by the formula

fs(u) :=
1

αs
(j(us)− j(u)) + vs, u ∈ K0.

Observe, that for s ∈ S, u ∈ K0, j(u) + αsfs(u) = j(us) + αsvs ∈ K. Hence, for all u ∈ K0,

fs(u) ∈ SK(j(u)) ⊂ TK(j(u)).

It is clear that fs, s ∈ S, is Lipschitz continuous.
Now we define f : K0 → E by the formula

f(u) :=
∑
s∈S

λs(u)fs(u), u ∈ K0.

Observe that f is locally Lipschitz because so are all functions λs, fs for s ∈ S, and the covering
{suppλs}s∈S is locally finite. Moreover, since, for u ∈ K0, f(u) is a (finite) convex combination of
vectors fs(u) ∈ TK(j(u)) and since TK(j(u)) is convex, we see that f(u) ∈ TK(j(u)) for all u ∈ K0.

Take u ∈ K0 and let S(u) = {s ∈ S | u ∈ suppλs}. It is clear that S(u) is a finite set and
f(u) =

∑
s∈S(u)

λs(u)fs(u).

For any s ∈ S(u), we have u ∈ suppλs ⊂ B0(us, δsαs) ∩K0, i.e.

‖u− us‖0 < δsαs < γs and ‖fs(u)− vs‖ < δsC < γs.

There is s0 ∈ S(u) such that γs0 = maxs∈S(u) γs. If s ∈ S(u), then

‖us − us0‖0 � ‖us − u‖0 + ‖us0 − u‖0 < γs + γs0 � 2γs0 .

Therefore, for any s ∈ S(u),

fs(u) ∈ B(vs, γs0) ⊂ Φ(us) + (ε/4 + γs0)B ⊂ Φ(B0(us0 , 2γs0) ∩K0) + (ε/4 + γs0)B

⊂ B(Φ(us0), ε/4 + ε/2 + γs0) ⊂ Φ(us0) + εB.

Hence, by convexity of Φ(us0) + εB,

f(u) ∈ Φ(us0) + εB ⊂ Φ(B0(u, γs0) ∩K0) + εB ⊂ Φ(B0(u, ε) ∩K0) + εB. �

Lemma 3.3. For every u ∈ K0, we have

(3.4) lim
h→0+, v→u, v∈K0

1

h
dK(j(v) + hf(v)) = 0,

where f comes from Lemma 3.2.

Proof: Choose u ∈ K0 and ε > 0. Taking into account (3.3), (2.7) and the continuity of f there is
δ > 0 such that if v ∈ K0, ‖v − u‖0 < δ and 0 < h < δ then

dK(j(v) + hf(u)) < εh/2 and ‖f(v)− f(u)‖ < ε/2.

Thus, for such v and h we have

dK(j(v) + hf(v)) � dK(j(v) + hf(u)) + h‖f(u)− f(v)‖ < εh. �

Now we are ready to prove
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Theorem 3.4. In addition to (A1) – (A5) above, let us assume that K is bounded and for all suffi-
ciently small h > 0:

(A6) Jh(K) ⊂ K0;
(A7) Jh : E → E0 is compact.

Then there is u ∈ K0 ∩D(A) such that 0 ∈ Au+Φ(u).

Proof: Choose ε > 0 and f = fε according to Lemma 3.2. Denote by r : E → K an L-retraction
onto K, i.e. ‖r(u)− u‖ � LdK(u) for u ∈ E for some L � 1. For every sufficiently small h > 0 with
hω < 1, the map Jh ◦ r(j + hf) : K0 → K0 is well-defined due to (A6). Moreover Jh ◦ r(j + hf) is
continuous and compact, since K and Φ (and so does f) are bounded and Jh is compact. Then, by
the Schauder fixed point theorem, for large n � 1 (precisely for n > ω), there is un in K0 such that

un = J1/n ◦ r
(
j(un) +

1

n
f(un)

)
,

so un ∈ D(A) and

j(un)− 1

n
Aun = r

(
j(un) +

1

n
f(un)

)
.

As a result, we have

Aun + f(un) = n

(
j(un) +

1

n
f(un)− r

(
j(un) +

1

n
f(un)

))
.

Therefore

(3.5) ‖Aun + f(un)‖ � nLdK

(
j(un) +

1

n
f(un)

)
� L‖f(un)‖.

Hence {Aun}n�1 is bounded in E. Fix h > 0 with hω < 1 and note that

{un}n�1 = Jh
({j(un)− hAun}n�1

)
.

Since {j(un)−hAun}n�1 is bounded in E, the above equality yields {un}n�1 is relatively compact in
E0. Passing to a subsequence if necessary, we can assume that un → uε in E0 and uε ∈ K0. In view
of (3.5) and Lemma 3.3 we have

(3.6) ‖Aun + f(un)‖ = ndK

(
j(un) +

1

n
f(un)

)
→ 0, as n → ∞.

Hence Aun → −f(uε) in E. The closedness of A yields uε ∈ D(A) ∩K0 and −Auε = f(uε).
Arguing as above, we may assume without loss of generality that uε → u0 ∈ K0 as ε → 0. Let

vε := −Auε. Since
vε := f(uε) ∈ Φ(B0(uε, ε) ∩K0) + εB,

there is u′ε ∈ K0 and v′ε ∈ Φ(u′ε) such that ‖uε−u′ε‖0 < ε and ‖vε− v′ε‖ < ε. Clearly (u′ε, v′ε) ∈ Gr(Φ)

and u′ε → u0; in view of Remark 3.1 (2) we gather that, after passing to a subsequence if necessary,
v′ε ⇀ v0 ∈ Φ(u0). Since vε ⇀ v0, too, and the graph of A, being closed and convex, is also weakly
closed, we see that u0 ∈ D(A) and −Au0 = v0 ∈ Φ(u0). �

Now we are going to establish a counterpart of Theorem 3.4 for L-retracts. In this case the choice
of E0 is immaterial since we shall assume that Φ is defined on K. In addition let us assume that:

(B1) E is a Banach space and K ⊂ E is a bounded L-retract;
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(B2) A : D(A) → E is a densely defined linear operator such that for some ω ∈ R, (ω,+∞) ⊂ ρ(A)

and ‖(A− λI)−1‖ � (λ− ω)−1 for λ > max{0, ω} (4);
(B3) Φ : K � E is bounded H-upper semicontinuous with convex weakly compact values;
(B4) For h > 0 with hω < 1, Jh : E → E is compact and K is resolvent invariant, i.e. Jh(K) ⊂ K

for sufficiently small h.

Remark 3.5. (1) In view (B2) and (B4), the Euler characteristic χ(K) is well-defined. Indeed, by
Remark 2.8, it is sufficient to prove that the identity IK is homotopic to a compact map. To this end
fix h > 0 with hω < 1, such that Jh is compact and consider h : K × [0, 1] → K given by the formula

h(x, t) =

{
Jth(x) if t ∈ (0, 1],

x if t = 0,
x ∈ K.

Assumption (B2) implies that limt→0+ Jth(x) = x for all x ∈ E. Moreover the map E × (0, 1] �
(x, t) �→ Jth(x) ∈ E is continuous. Thus h is continuous and provides a homotopy joining the identity
to the compact map Jh. As a consequence if χ(K) �= 0, then any compact map g : K → K homotopic
to the identity has fixed points.

(2) If A is given as in Remark 3.1 (with E = H), then assumption (B2) is satisfied. Moreover, in
this case the resolvent invariance holds for a convex K if and only if K is semigroup invariant, i.e.
S(t)K ⊂ K for any t � 0. Indeed if K is resolvent invariant then by the Post-Widder formula (see
[26, Corollary 5.5, 5.6]) for each x ∈ K and t > 0

S(t)x = lim
n→∞ Jn

t/nx ∈ K.

Conversely, if K is semigroup invariant, then by [26, Th. 1.10], for any h > 0 with hω < 1 and x ∈ K,

Jhx =
1

h

∫ ∞

0
e−t/hS(t)x dt ∈ K.

Theorem 3.6. Under assumptions (B1) – (B4), the problem (3.1) has a solution if the Euler char-
acteristic χ(K) �= 0 and Φ satisfies the weak tangency condition in the sense of Clarke cones, i.e.

(3.7) ∀u ∈ K Φ(u) ∩ CK(u) �= ∅.

First we need a result, similar to Lemma 3.2, which may be of interest on its own.

Lemma 3.7. Suppose X ⊂ E is closed and that Φ : X � E is H-upper semicontinuous with convex
values. Let a function ξ : X × E → R be such that for each z ∈ E, ξ(·, z) is upper semicontinuous
(as a real function) and for each x ∈ X, ξ(x, ·) is convex. If for all x ∈ X, infz∈Φ(x) ξ(x, z) � 0,
then for any ε > 0 there exists a locally Lipschitz ε-graph-approximation f = fε : X → E of Φ such
ξ(x, f(x)) < ε for all x ∈ X.

Proof: For any z ∈ X choose 0 < δz < ε such that Φ(B(z, δz) ∩X) ⊂ Φ(z) + εB and let an open
covering U of X be a star refinement of the covering {B(z, δz) ∩X}z∈X of X.

For each x ∈ X choose zx ∈ Φ(x) such that ξ(x, zx) < ε. Given U ∈ U and x ∈ U let

VU (x) := {y ∈ U | ξ(y, zx) < ε}.
4I.e. A is maximal ω-dissipative.
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Clearly x ∈ VU (x). Hence V := {VU (x)}U∈U, x∈U is an open cover of X. Let {λs}s∈S be a locally
Lipschitz partition of unity subordinated to V, i.e. for any s ∈ S, there is Us ∈ U, xs ∈ Us such that
suppλs ⊂ Vs := VUs(xs). Let

f(x) :=
∑
s∈S

λs(x)zs, x ∈ X,

where zs := zxs . Then f is well-defined and locally Lipschitz.
Take x ∈ X and let S(x) := {s ∈ S | λs(x) �= 0}. If s ∈ S(x), then x ∈ Vs, i.e. ξ(x, zs) < ε. By

the convexity of ξ(x, ·) we gather that ξ(x, f(x)) < ε. Since xs ∈ Us and U is a star refinement of
{B(z, δz) ∩X} we get that for all s ∈ S(x), x, xs belong to the star of x with respect to U:

x, xs ∈
⋃

{U∈U|x∈U}
U ⊂ B(z, δz) ∩X

for some z ∈ Z. Hence z ∈ B(x, ε) and for s ∈ S(x), zs ∈ Φ(xs) ⊂ Φ(z)+ εB. This together with the
convexity of Φ(z) shows that

f(x) ∈ Φ(z) + εB ⊂ Φ(B(x, ε)) + εB. �

Proof of Theorem 3.6: Let

ξ(u, v) := sup
p∈∂dK(u)

〈p, v〉 ∈ R, u ∈ K, v ∈ E,

where ∂dK(u) ⊂ E∗ denotes the generalized Clarke gradient at u ∈ K of the (locally Lipschitz)
function dK . It is clear that

ξ(u, v) = d◦K(u; v) = lim sup
y→u, y∈K, t→0+

dK(y + tv)

t

is the Clarke directional derivative of dK at u in the direction v. Then ξ : K × E → R is upper
semicontinuous and, for each u ∈ K, ξ(u, ·) is convex.

Observe now that
CK(u) = [∂dK(u)]− := {v ∈ E | ξ(u, v) � 0}.

Condition (3.7) together with with (B3) show that all assumptions of Lemma 3.7 are satisfied.
Take an L-retraction r : B(K, η) → K with constant L. Since Φ is bounded, there are λ0 > 0 and

ε0 > 0 such that
∀u ∈ K u+ λf(u) ∈ B(K, η),

for any f : K → E being an ε-graph-approximation of Φ with 0 < ε < ε0 and 0 < λ � λ0.
Suppose now to the contrary that there are no solutions to (3.1). We claim that there is 0 < ε < ε0

such that if u ∈ K ∩D(A) and f is an ε-graph-approximation of Φ, then

(3.8) ‖Au+ f(u)‖ � (L+ 1)ε.

If not then there are sequences ε0 > εn → 0+, un ∈ K and an εn-approximation fn : K → E of Φ
such that

‖Aun − fn(un)‖ < (L+ 1)εn, n ∈ N.

This implies that the sequence (Aun) is bounded; hence by the same argument as in the proof of
Theorem 3.4, we gather that, passing to a subsequence if necessary, un → u0 ∈ K.

Since fn(un) ∈ Φ(B(un, εn)) + εnB, we find u′n ∈ B(un, εn) and v′n ∈ Φ(u′n) such that ‖fn(un)−
v′n‖ < εn. By Remark 3.1 (2) we may assume that v′n ⇀ v0 ∈ Φ(u0). This implies that fn(un) ⇀ v0
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and, thus −Aun ⇀ v0, too. Hence v0 = −Au0, i.e. 0 ∈ Au0 +Φ(u0): a contradiction.
Now take ε > 0 provided above and, using Lemma 3.7, let f : K → E be an ε-graph-approximation

of Φ such that ξ(u, f(u)) < ε for all u ∈ K. Take a decreasing sequence hn → 0+ with h1 < λ. Since
f is bounded the map

K � u �→ gn(u) := Jhn ◦ r(u+ hnf(u)) ∈ K

is well-defined a compact. Moreover h : K × [0, 1] → K given by

h(u, t) :=

{
Jthn ◦ r (u+ thnf(u)) if t ∈ (0, 1];

u if t = 0,
u ∈ K

provides a (continuous) homotopy joining the identity on K with gn. In view of Remark 3.5, gn(un) =
un for some un ∈ K ∩D(A). This means that

(3.9) Aun + f(un) = h−1
n (un + hnf(un)− r(un + hnf(un))).

Similarly as before we may suppose that un → u0 ∈ K; therefore f(un) → f(u0). By (3.8) and (3.9),
for all n ∈ N,

(L+ 1)ε � ‖Aun + f(un)‖ � Lh−1
n dK(un + hnf(un)) � Lh−1

n dK(un + hnf(u0)) + L‖f(un)− f(u0)‖.
Passing to lim sup and remembering that ξ(u0, f(u0)) < ε we get

(L+ 1)ε � lim sup
n→∞

‖Aun + f(un)‖ � Lε,

a contradiction. This completes the proof. �

3.2. Invariance and viability. A central role among assumptions of Theorems 3.4 and 3.6 is played
by the resolvent invariance of the set K and the tangency condition. Let us consider conditions (B1)

– (B4) and (3.7) and let K be an arbitrary closed subset of E. The Hille-Yosida Theorem implies
that in this case A is the generator of a C0 semigroup {S(t)}t�0. It is not difficult to show that (B4)

and (3.7) imply that

∀u ∈ K lim inf
v→u, v∈K,h→0+

dist(Jh(v + hΦ(v)),K)

h
= 0 (5).

This condition implies that

(3.10) ∀u ∈ K Φ(u) ∩ TA
K(u) �= ∅,

where

TA
K(u) =

{
v ∈ E | lim inf

h→0+

dK(Sv(h)u)

h
= 0

}
and [0,+∞) � t �→ Sv(t)u is the mild solution to the problem ẋ = Ax + v, x(0) = u. Finally (3.10)
is equivalent to the following:

the problem u̇ ∈ Au+Φ(u), u(0) = x ∈ M has(3.11)

a mild solution u : [0,+∞) → E such that u(t) ∈ M for t � 0,

because the semigroup {S(t)}t�0 is immediately compact. This and related results are thoroughly
discussed in [56] and [10]. We thus see that our conditions imply the invariance of K (sometimes

5Here dist stands for the distance between sets, i.e. dist(X,Y ) := inf{‖x− y‖ | x ∈ X, y ∈ Y }.
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called viability) with respect to the ‘heat flow’ generated by A, i.e. condition (3.11). Conversely
condition

(3.12) ∀u ∈ K 0 ∈ TA
K(u)

implies the semigroup invariance and, in case of a convex K, resolvent invariance (B4). The point
is that, in concrete situations of differential problems, condition (3.12) needs to be verified. In most
cases this can be done via an appropriate use of the maximum principles. In the next section we shall
encounter examples of such arguments.

The problem of invariance of systems of parabolic PDE was studied in numerous papers [1], [38],
[50], [6], [10], [57] (and references therein), [58] (the so-called Müller conditions important in various
applications). The most general, often necessary and sufficient, abstract results are presented in [56].
The invariance problem of parabolic problem from (3.11) will be studied in the forthcoming paper
[36]. In particular we shall study the topological structure of the set of all viable (i.e. ‘surviving’ in
K) solutions and show its relation with the existence of steady states, i.e. solutions to (3.1).

4. Applications

4.1. The Neumann problem I. We now study the existence of steady state solutions to (2.3) and
consider the problem

(4.1)

{
−Lu ∈ F (x, u,∇u), u(x) ∈ C a.e. on Ω,

∂
∂nu = 0 on ∂Ω,

where C ⊂ RN is a compact and convex set, ∂
∂nu =

(
∂u1
∂n , ....∂uN

∂n

)
denotes the outward normal

derivative of u. We are going to find a strong solutions: a function u ∈ H2(Ω,RN ) such that
−Lu(x) ∈ F (x, u(x),∇u(x)) for a.a. x ∈ Ω and ∂ui

∂n

∣∣∣
∂Ω

= 0, i = 1, ..., N , in the sense of trace.
Let us make the following assumptions:

(D) For all i = 1, ..., N , di = d ∈ C1(Ω̄) and d > 0;
(F1) F : Ω× C × RMN � RN is upper semicontinuous with compact convex values;
(F2) there is a nonegative b ∈ L2(Ω) such that supy∈F (x,u,v) |y| � b(x) for a.a. x ∈ Ω, u ∈ C and

v ∈ RMN ;
(F3) F is weakly tangent to C with respect to the second variable, i.e. F (x, u, v) ∩ TC(u) �= ∅ for

all x ∈ Ω, u ∈ C and all v ∈ RMN .

We now put
E := L2(Ω,RN ), K := {u ∈ E | u(x) ∈ C a.e. on Ω};

E0 := H1(Ω,RN ), K0 := {u ∈ E0 | u(x) ∈ C a.e. on Ω};

D(A) :=

{
u ∈ H2(Ω,RN ) | ∂u

∂n

∣∣∣∣
∂Ω

= 0

}
, Au := Lu, u ∈ D(A).

Clearly assumptions (A1), (A2) (with ω = 0) and (A3) are satisfied, K is closed convex and bounded;
condition (A7) holds true since the embedding D(A) → E0 is compact.

For any u ∈ K0, let

(4.2) Φ(u) := {v ∈ E | v(x) ∈ F (x, u(x),∇u(x)) for a.a. x ∈ Ω}.
Evidently values Φ : K0 � E are nonempty and convex.
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Proposition 4.1. The map Φ satisfies conditions (A4) and (A5).

Proof: It is straightforward to show that Φ(u) is weakly compact (we work in a Hilbert space,
thus closed convex and bounded sets are convex weakly compact). Below we shall prove a slight
generalization of Proposition 6.2 from [10]. It implies immediately that Φ is H-upper semicontinuous.

Lemma 4.2. If ψ : Ω × Rd � RN is upper semicontinuous with convex compact values and
supy∈ψ(x,u) |y| � b(x) + a|u| for all u ∈ Rd and a.a. x ∈ Ω, where b ∈ L2(Ω) and a > 0, then
the Nemytskii operator

Ψ : E := L2(Ω,Rd) � E, Ψ(u) := {v ∈ E | v(x) ∈ ψ(x, u(x)) for a.a. x ∈ Ω}, u ∈ E,

is H-upper semicontinuous.

Proof: Suppose it is not the case: there are ε0 > 0, a sequences un → u0 in E and vn ∈ Ψ(un) such
that

(4.3) vn /∈ Ψ(u0) +BE(0, ε0), n � 1.

Up to a subsequence (un)n�1 converges a.e. on Ω to u0 and there is h ∈ L2 (Ω,R) such that |un (x) | �
h (x) for a.e. x ∈ Ω and every n � 0. By assumption

|vn (x) | � b (x) + a|un (x) | � b (x) + ah (x) for n � 0 and a.e. x ∈ Ω.

There is η > 0 such that for A ⊂ Ω with Lebesgue measure μ (A) < η

(4.4)
∫
A
4 (b (x) + ah (x))2 dx < ε20/2.

For each n � 0, the set-valued map Hn := ψ (·, un (·)) : Ω � RN is measurable and if w : Ω → RN is
a measurable selection of Hn, then w ∈ E since

(4.5) |w (x) | � b (x) + ah (x) for a.e. x ∈ Ω.

By the Egorov and Lusin theorems (see [5, Th. 1] for a multivalued version of the Lusin theorem)
there is a compact Ωη ⊂ Ω such that μ (Ω \ Ωη) < η, un → u0 uniformly on Ωη, the restriction
u0|Ωη : Ωη → RN is continuous and H0|Ωη : Ωη � RN is H-lower semicontinuous.

Let δ := ε0/
√

2μ (Ω). We will show that there is n0 such that if n � n0 and x ∈ Ωη, then

Hn (x) ⊂ H0 (x) +BRN (0, δ) .

Suppose to the contrary that there is a subsequence (nj)j�1 and a sequence (xj)j�1 in Ωη such that

(4.6) Hnj (xj) �⊂ H0 (xj) +BRN (0, δ) .

We can assume that xj → x0 ∈ Ωη, since Ωη is compact. The continuity of u0|Ωη and the uniform
convergence un → u0 on Ωη imply that unj (xj) → u0(x0) and thus

(
xj , unj (xj)

) → (x0, u0 (x0)) as
j → ∞. The upper semicontinuity of ψ together with the H-lower semicontinuity of H0 on Ωη show
that Hnj (xj) ⊂ H0 (xj) +BRN (0, δ) for sufficiently large j, which contradicts (4.6).

Let us fix n � n0. For a.e. x ∈ Ωη we have

(4.7) vn (x) ∈ Hn (x) ⊂ H0 (x) +BRN (0, δ) .

Observe that the map Ωη � x ��BRN (vn (x) , δ) ∩ H0 (x) is measurable and has nonempty values
for a.e. x ∈ Ωη. By the Kuratowski–Ryll-Nardzewski theorem, there is a measurable selection
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v : Ωη → RN , i.e. v (x) ∈ BRN (vn (x) , δ) ∩H0 (x) for a.e. x ∈ Ωη. Clearly v ∈ L2
(
Ωη,R

N
)
and for

a.e. x ∈ Ωη, |vn (x)− v (x) | < δ. Thus∫
Ωη

|vn (x)− v (x) |2 dx < δ2μ (Ωη) < ε20/2.

Take an arbitrary selection w : Ω → RN of H0, i.e. w (x) ∈ H0 (x) for a.e. x ∈ Ω. Let χ = χΩη be
the indicator of Ωη. Notice that χv + (1 − χ)w : Ω → RN is a square-integrable selection of H0 (we
identify v : Ωη → RN with the function v : Ω → RN putting v ≡ 0 on Ω \ Ωη). By (4.5)

|vn (x)− w (x) | � |vn (x) |+ |w (x) | � 2 (b (x) + ah (x)) for a.e. x ∈ Ω \ Ωη.

Recall that μ (Ω \ Ωη) < η, hence and by (4.4)

‖vn − χv + (1− χ)w‖2 =
∫
Ωη

|vn (x)− v (x) |2 dx+

∫
Ω\Ωη

|vn (x)− w (x) |2 dx

< ε20/2 +

∫
Ω\Ωη

4 (α (x) + h (x))2 dx < ε20.

Thus, contrary to (4.3), vn ∈ Ψ(t0, u0) +BL2(Ω,RN ) (0, ε0) for infinitely many n � 1. �
In order to get the weak tangency (A5) fix u ∈ K0 and define G,H : Ω � RN , by

G (x) := F (x, u (x),∇u(x)) , H (x) := TC(u (x)) for x ∈ Ω.

The map TC(·) : C � RN is lower semicontinuous (see [4, Th. 4.2.2]), G is measurable; hence
Ω � x � G(x) ∩ H(x) ⊂ RN is measurable with nonempty values. By the Kuratowski–Ryll-
Nardzewski theorem, there is a measurable v : Ω → RN such that v (x) ∈ G (x) ∩ H (x) for a.e.
x ∈ Ω. Clearly v ∈ E and v ∈ TK(u) ∩ F (t, u) since in view of [4, Cor. 8.5.2] TK(u) = {v ∈ E |
v(x) ∈ TC(u(x)) a.e. in Ω}. �

Proposition 4.3. For any h > 0 the resolvent Jh maps K into K0.

Proof: In view of [9, Cor. 7.49], C is an intersection of countably many closed half-spaces containing
it, i.e. C =

⋂
n�1Cn, where Cn :=

{
x ∈ RN | pn · x � an

}
for some pn ∈ RN and an ∈ R. Thus, it is

enough to show that Jh(Kn) ⊂ Kn, where

Kn = {u ∈ E | u(x) ∈ Cn for a.a x ∈ Ω}
for every n � 1, since then

Jh(K) = Jh

(⋂
n�1

Kn

)
⊂

⋂
n�1

Jh(Kn) ⊂
⋂
n�1

Kn = K (6).

But Jh(K) ⊂ E0 so, eventually, Jh(K) ⊂ K0.
Without loss of generality, we assume that C =

{
x ∈ RN | p · x � a

}
for some p ∈ RN and a ∈ R

and K = {u ∈ E | p · u(x) � a for a.a x ∈ Ω}. Take f ∈ K and put u = Jh(f). By definition
u ∈ D(A) and

u− hAu = f.

6Observe that in order to have that ∩Kn ⊂ K one needs the countable collection of supporting functionals.
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Define f̄(x) := p · f(x), ū(x) := p · u(x) for x ∈ Ω. Observe that f̄ � a a.e., ū ∈ H2(Ω) and for every
ξ ∈ H1(Ω) ∫

Ω
ū(x)ξ(x) dx+ h

∫
Ω
d(x)∇ū(x)∇ξ(x) dx =

∫
Ω
f̄(x)ξ(x) dx

what yields∫
Ω
(ū(x)− a)ξ(x) dx =

∫
Ω
(f̄(x)− a)ξ(x) dx− h

∫
Ω
d(x)∇(ū− a)(x)∇ξ(x) dx.

Taking ξ = (ū− a)+ := max {0, ū− a}, we have ξ ∈ H1(Ω) and ∇ξ = χ∇(ū− a) by [17, Cor. 1.3.6],
where χ = χ{ū>a}. Therefore, for such ξ:

0 �
∫
Ω
(ū− a)2+(x) dx =

∫
Ω
(f̄(x)− a)(ū− a)+(x) dx− h

∫
{ū>a}

d(x)|∇(ū− a)+(x)|2 dx � 0.

As a result ū � a a.e., that is Jh(f) ∈ K. �
In view of Propositions 4.1 and 4.3 we get

Theorem 4.4. If assumption (D), (F1) – (F3) are satisfied, the problem (4.1) has a solution. �

4.2. The Neumann problem II. We will establish the existence of steady state solutions to problem
(2.4), i.e.

(4.8)

{
−Lu+ Γu ∈ G(x, u) u(x) ∈ C, a.e. on Ω,

∂
∂nu = 0 on ∂Ω,

where C ⊂ RN is compact and convex. We assume (D) and

(Γ) for all i = 1, ..., N , γi = γ = (γ1, ..., γM ) ∈ L∞(Ω,RM ); for any i = 1, ..., N ;
(G1) G : Ω̄× C � RN is upper semicontinuous with compact convex values (7);
(G2) G is weakly tangent to C, i.e. G(x, u) ∩ TC(u) �= ∅ for all x ∈ Ω and all u ∈ C.

Similarly as before we put

E = L2(Ω,RN ), K := {u ∈ E | u(x) ∈ C for a.a. x ∈ Ω}.
Thus (B1) is satisfied. Let us define a continuous bilinear form

a(u, v) =

∫
Ω
(d∇u · ∇v + Γu · v) dx, u, v ∈ H1(Ω,RN ),

where ∇u · ∇v is the Frobenius product of derivatives (8) and Γu · v =
∑N

i=1(γ · ∇ui)vi. Observe that
for any v ∈ H1(Ω,RN ) and ε > 0,

d0‖∇v‖2L2 � a(v, v)−
∫
Ω
Γv · v dx � a(v, v) + ‖γ‖L∞

(
ε‖∇v‖2L2 +

1

4ε
‖v‖2L2

)
,

where d0 = infx∈Ω̄ |d(x)|, in view of the so-called ε-Cauchy inequality. Taking 0 < ε < d0/(2‖γ‖L∞)

we get

(4.9) c‖∇v‖2L2 � a(v, v) + C‖v‖2L2

7Note that G is bounded, i.e. sup{|y| | y ∈ G(x, u), x ∈ Ω̄, u ∈ C} < ∞.
8Recall that if A = [aij ], B = [bij ] are N ×M matrices, then A ·B :=

∑N
i=1

∑M
j=1 aijbij .
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for some positive constants c, C. Therefore for all v ∈ H1(Ω,RN )

c‖v‖2H1 � a(v, v) + (c+ C)‖v‖2L2 .

This implies that we are back in the situation of Remark 3.1 (1), (3) and putting

D(A) = {u ∈ H1(Ω,RN ) | ∀ v ∈ H1(Ω,RN ) a(u, v) = 〈f, v〉L2 for some f ∈ L2(Ω,RN )}
the formula

Au = −f, u ∈ D(A),

where f corresponds to u as in the definition of D(A), well defines a closed densely defined linear
operator satisfying assumption (B2). Moreover A is the generator of a holomorphic C0 semigroup
{S(t)}t�0. The smoothness of the boundary ∂Ω and the standard regularity arguments imply that

D(A) =

{
u ∈ H2(Ω,RN ) | ∂u

∂n

∣∣∣∣
∂Ω

= 0

}
and Au := Lu− Γu, u ∈ D(A).

Now, for any u ∈ K, we put

Φ(u) := {v ∈ E | v(x) ∈ G(x, u(x)) for a.a. x ∈ Ω}.
Arguing as in the proof of Proposition 4.1 we easily get that Φ has properties (B3) and (3.7).

In order to apply Theorem 3.6 we need

Proposition 4.5. Condition (B4) is satisfied.

Proof: In view of Remark 3.1 (3) and since D(A) embeds compactly in E we need to check the
resolvent invariance of K only. To this end we will use the C0 semigroup structure. In view of Remark
3.5 (2) we need to show that K is semigroup invariant i.e. S(t)u0 ∈ K for all t � 0 and u0 ∈ K. It is
well known that

[0,+∞) � t �→ u(t) := S(t)u0

is the unique mild solution to the Cauchy initial value problem

(4.10)

{
u′ = Au, u ∈ E, t > 0

u(0) = u0.

Observe that u is a strong solution, too (9). This holds true since the semigroup {S(t)} is holomorphic
and, thus, immediately differentiable – see [26, Def. II.4.13]; that u ∈ W 1,1

loc ((0,+∞), E) follows from
Theorem II.4.6 in [26].

Exactly as in the proof of Proposition 4.3, using supporting functionals, we may assume that
C = {x ∈ RN | p · x � a} for some p ∈ Rn and a ∈ R. Put ū := p · u, i.e., ū(t)(x) = p · u(t)(x)
and let v := ū − a. Then v(0) = p · u0 − a and v(t) ∈ H1(Ω) for t > 0. It is easy to see that
v : [0,+∞) → L2(Ω) is a strong solution to the following problem

v′(t) = Āv(t),

where
〈Āξ, ζ〉L2(Ω) = −ā(ξ, ζ) := −

∫
Ω
d∇ξ · ∇ζ dx−

∫
Ω
(γ · ∇ξ)ζ dx, ξ, ζ ∈ H1(Ω).

9Recall that a function v : [0,+∞) → E is a strong solution to (4.10) if v(0) = u0, v(t) ∈ D(A) for t ∈ (0,+∞),
v ∈ W 1,1

loc ((0,+∞), E) and v′(t) = Av(t) for a.a. t ∈ (0,+∞) (v′(t) denotes the strong derivative of v which exists a.a.
since v ∈ W 1,1

loc ). It is clear that each strong solution is a mild solution.
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Therefore v(t) ∈ D(Ā) for t > 0 (as in the case of A, the domain of Ā consists of functions in H2(Ω)

whose normal outward derivative vanishes on ∂Ω in the sense of trace) and v ∈ W 1,1
loc ((0,+∞), L2(Ω)).

For any ξ ∈ H1(Ω) and t > 0

〈v′(t), ξ〉L2 = −ā(v(t), ξ).

Now let us take w(t) = v(t)+, i.e. w(t) := max{ū(t)− a, 0}, for t � 0. Then w(t) ∈ H1(Ω); t > 0, by
[49, Prop. III.1.2] for t > 0,

1

2

d

dt
‖w(t)‖2L2 = 〈w′(t), w(t)〉L2 = 〈v′(t), w(t)〉L2 = −ā(v(t), w(t)) = −ā(w(t), w(t)).

Using a counterpart of estimate (4.9) valid for ā we see that for

1

2

d

dt
‖w(t)‖2L2 � −c‖∇w(t)‖2L2 + C‖w(t)‖2L2 � C‖w(t)‖2L2 .

By the Gronwall inequality we infer that ‖w(t)‖L2 = 0 for all t > 0, since w(0) = 0 in L2(Ω) (note
that ū(0) = p · u0 � a since u0(x) ∈ C for a.a. x ∈ Ω). It other words u(t) ∈ K for all t > 0. �

Theorem 4.6. If assumptions (D), (Γ), (G1) and (G2) are satisfied, then problem (4.8) has a solu-
tion. �

Remark 4.7. (1) Observe that theorems 4.4 and 4.6 are true if 0 belongs to the constraint set C

and problems (4.1), (4.8) are subject to the Dirichlet condition. The only difference in proof is to
see that if 0 ∈ C and a functional p supports C, i.e. C ⊂ {x ∈ RN | p · x � a}, then a � 0. Hence
(p · u− a)+ ∈ H1

0 (Ω).
(2) Let C be convex compact subset of RN and Q = (0, l)M ⊂ RM be an open cube. We will look

for solutions to the problem (4.8) with the periodic boundary conditions, i.e.

(4.11)

{
−Lu+ Γu ∈ G(x, u) u(x) ∈ C a.e. on Q,

u|{xi=0} = u|{xi=l}, ∂
∂xi

u
∣∣{xi=0} = ∂

∂xi
u
∣∣{xi=l} .

Assume (D), (Γ) (with Ω = Q) and d ∈ C1
p(Q) (10) and

(P1) G : Q× C � Rn is upper semicontinuous with compact convex values;
(P2) G is weakly tangent to C, i.e. G(x, u) ∩ TC(x) �= ∅ for all x ∈ Q and u ∈ C.

Let us put (11):

E := L2(Q,RN ), K := {u ∈ E | u(x) ∈ C a.e. on Q},
D(A) := H2

p (Q)N and Au := Lu− Γu, u ∈ D(A).

We show, exactly as in Section 4.2, that conditions (B1) – (B4) are satisfied. Thus, Theorem 3.6
yields the existence of solutions to (4.7).

10This symbol stands for the restrictions to Q of functions from C1(RM ) which are l-periodic in each direction.
11ByHk

p (Q) we denote the Sobolev space of l-periodic functions on theM -dimensional domain Q (k positive integer);
see [45, Chapter 5.10] for definitions and properties of Hk

p (Q).
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4.3. Some remarks to the Bernstein theory. In a series of results in [30] authors presented a
modern approach to the so-called Bernstein theory for boundary value problems for second order
ordinary differential equations (see also [28], [25, II.7.4]; for a numerous research afterwards see e.g.
[53] and bibliography therein ). For example we formulate a model result [30, Theorem 1.7].

Theorem 4.8. Suppose that f : [0, T ]× R× R → R is continuous such that

(i) (Sign condition) there is R � 0 such that f(t, u, 0)u � 0 for |u| > R and t ∈ [0, T ];
(ii) there are a, b � 0 so that |f(t, u, v)| � av2 + b for |u| � R, t ∈ [0, T ] and v ∈ R.

Then the problem

(4.12) −u′′ = f(t, u, u′)

subject to Dirichlet (u(0) = u(T ) = 0), Neumann (u′(0) = u′(T ) = 0) or periodic (u(0) = u(T ),
u′(0) = u′(T )) boundary conditions has a solution in C2([0, T ],R) such that |u(t)| � R for 0 � t � T .

To illustrate our approach we will stay on the level of an ordinary differential inclusion and study
the Dirichlet problem (the Neumann and periodic problems may be studied analogously) for a Sturm-
Liouville operator of the form

(4.13) −(pu′)′ + qu ∈ ϕ(t, u, u′),

where

(ϕ0) p, q : [0, T ] → R are continuous, p > 0 on [0, T ] and p is C1-smooth;
(ϕ1) ϕ : [0, T ]× RN × Rn � RN is upper continuous with compact convex values;
(ϕ2) there are R � 0 and c ∈ R such that c � q(t) for t ∈ [0, T ] and miny∈ϕ(t,u,v) y · u � cR2

whenever t ∈ [0, T ], ‖u‖ = R, v ∈ RN with u · v = 0;
(ϕ3) ϕ is bounded on the strip [0, T ]× C × RN , where C := {y ∈ RN | |y| � R}.

In order to apply Theorem 3.4 let us put

E := L2((0, T ),RN ), K := {u ∈ E | |u(x)| � R a.e. on (0, T )};
E0 := C1

0 ([0, T ],R
N ) = {u ∈ C1([0, T ],RN ) | u(0) = u(T ) = 0}, K0 = K ∩ E0;

Au := u′′ + (c− q)u for u ∈ D(A) := H2((0, T ),RN ) ∩ C0([0, T ],R
N ).

Moreover define Φ : K0 � E by

Φ(u) = {v ∈ E | v(t) ∈ ϕ(t, u(t), u′(t))− cu(t) a.e. on [0, T ]}, u ∈ K0.

Within this setting we see that conditions (A1), (A3) and (A4) are satisfied. As concerns (A2) note
that for u ∈ D(A) and v ∈ V := H1

0 ((0, T ),R
N )

−〈Au, v〉L2 = a(u, v)

where the bilinear form a : V × V → R is given by

a(u, v) =

∫ T

0
u′ · v′ dt+

∫ T

0
(q(t)− c)u · v dt, u, v ∈ V.

Thus a(v, v) � ‖v‖2
H1

0
for any v ∈ V , where ‖ · ‖H1

0
is the ‘short’ norm in V . Hence we see that A is

the generator of the C0 semigroup of linear operators on E and conditions (A2), (A7) hold true, since
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the inclusion D(A) → E0 is compact. Condition (A6) may be shown as in Proposition 4.3. Therefore
we only need

Proposition 4.9. Condition (A5) is satisfied.

Proof: Let u ∈ K0, i.e. u ∈ C1([0, T ],RN ), u(0) = u(T ) = 0, |u(t)| � R for all t ∈ [0, T ]. Let

X := {t ∈ [0, T ] | |u(t)| = R}.
It is clear that X ⊂ (0, T ). If t ∈ X, then u(t) · u′(t) = 0 since the function (0, T ) � s �→ |x(s)|2
takes maximum at t. Therefore there is z ∈ ϕ(t, u(t), u′(t)) such that z · u(t) � cR2 = c|u(t)|2, i.e.
(z − cu(t)) · u(t) � 0. Hence and by Remark 2.4 (3)

[ϕ(t, u(t), u′(t))− cu(t)] ∩ TC(u(t)) �= ∅.
If t �∈ X, then TC(u(x)) = RN and so

∀ t ∈ [0, T ] [ϕ(t, u(t), u′(t))− cu(t)] ∩ TC(u(t)) �= ∅.
Arguing as in the last part of the proof of Proposition 4.1 we produce a measurable v ∈ Φ(u) such
that v(t) ∈ TC(u(t)) for all t ∈ [0, T ]. Then again by [4, Cor. 8.5.2], v ∈ TK(j(u)). �

According to Theorem 3.4, there is u ∈ D(A) such that −Au ∈ Φ(u). This implies

Theorem 4.10. Under the above assumptions the problem (4.13) has a strong solution u ∈ K. �

Corollary 4.11. Suppose that f : [0, T ]× RN × RN → RN is continuous such that

(i) there are c ∈ R and R � 0 such that u · f(t, u, v) � cR2 for t ∈ [0, T ], |u| = R and v ∈ RN

with u · v = 0 (12);
(ii) f is bounded on the strip of the form [0, T ]×D(0,M)× RN ;
(iii) p : [0, T ] → R is C1-smooth and positive, q : [0, T ] → R is continuous and q � c.

Then the problem −(pu′)′ − q(t)u = f(t, u, u′) subject to Dirichlet (u(0) = u(T ) = 0), Neumann
(u′(0) = u′(T ) = 0) or periodic (u(0) = u(T ), u′(0) = u′(T )) boundary conditions has a solution in
C2([0, T ],R) such that |u(t)| � R for 0 � t � T . �

The reader will easily formulate analogous results for elliptic PDE or partial differential inclusions.
For instance one can get the generalization of the classical concerning the existence of steady states
of the heat equation ut−Δu = g(u) subject to the Dirichlet boundary condition, where a continuous
g is such that for some positive K,C one has ug(u) � C|u|2 for |u| � K.

4.4. Sub- and superharmonics; moving rectangles. In this section we will discuss the Dirichlet
problem

(4.14) −Δu ∈ H(x, u,∇u), u|∂Ω = 0.

Now we assume

12Observe that if N = 1, then this means that u · f(t, u, 0) � cR2.
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(H1) There are α, β ∈ C1(Ω,RN ) ∩ C(Ω̄,RN ) such that α � β (13), α is a weakly sub- and β a
weakly superharmonic, i.e. for all ϕ ∈ C∞

0 (Ω), ϕ � 0,∫
Ω
Δϕαdx � 0, α|∂Ω � 0 and

∫
Ω
Δϕβ � 0, β|∂Ω � 0;

(H2) H : C × RMN � RN is a bounded upper semicontinuous map with convex compact values,
where

C := {(x, u) ∈ Ω× RN | α(x) � u � β(x)}.
Note that, for any x ∈ Ω, the section C(x) := {u ∈ Rn | (x, u) ∈ C} is a cube in RN , hence the
cone TC(x)(u) is determined in Remark 2.4 (1). The set C maybe viewed as the graph of the moving
rectangles Ω � x �→ C(x).

For any i = 1, ..., N let us introduce the lower and upper i-th ‘faces’ of C:

Ci(x) := {u ∈ Rn | (x, u) ∈ C, ui = αi(x)}, Ci(x) := {u ∈ RN | (x, y) ∈ C, ui = βi(x)}.
Further we assume that for all i = 1, ..., N and x ∈ Ω

(H3) if u ∈ Ci(x) and v = (v1, ..., vN ) ∈ (RM )N with vi = ∇αi(x), then there is y ∈ H(x, u, v) with
yi � 0;

(H4) if u ∈ Ci(x) and v = (v1, ..., vN ) ∈ (RM )N with vi = ∇βi(x), then there is y ∈ H(x, u, v) with
yi � 0.

Let p > M and

E := Lp(Ω,RN ), E0 = C1(Ω,RN ) ∩ C0(Ω̄,R
N );

K := {u ∈ E | α(x) � u(x) � β(x) a.e. on Ω}, K0 = {u ∈ E0 | α(x) � β(x) on Ω};
D(A) = W 1,p

0 (Ω,RN ) ∩W 2,p(Ω,RN ), Au = Δu, u ∈ D(A).

Theorem 4.12. Under hypotheses (H1) – (H4) problem (4.14) has a strong solution in K.

Proof: It is clear that assumptions (A1) – (A3) (with ω = 0) from section 3.1 are satisfied. Let us
define Φ : K0 � E by

Φ(u) = {v ∈ E | v(x) ∈ H(x, u(x),∇u(x)) for x ∈ Ω}.
As in Proposition 4.1 we check that assumption (A4) is also verified. Moreover (A7) holds true since
p > M and, thus, the inclusion D(A) → E0 is compact. We will check that (A5) and (A6) are true.

Take u ∈ K0 and let Xi := {x ∈ Ω | u(x) ∈ Ci(x)}, X i := {x ∈ Ω | u(x) ∈ Ci(x)}, i = 1, .., N .
If x ∈ Xi for some i, then ui(x) = αi(x) and ∇ui(x) = ∇αi(x) since ui − αi attains a minimum
at x; similarly if x ∈ X i, then ui = βi(x) and ∇ui(x) = ∇βi(x). Hence, by (H3) and (H4), if
x ∈ ⋃N

i=1(Xi ∪Xi), then H(x, u(x),∇u(x))∩TC(x)(u(x)) �= ∅. Otherwise, if αi < u(x) < βi(x) for all
i = 1, .., N , then TC(x)(u(x)) = RN . Taking into account [4, Cor. 8.5.2] we see that w ∈ TK(j(u)) if
and only w(x) ∈ TC(x)(u(x)) for a.a. x ∈ Ω. Arguing as in the last part of the proof of Proposition
4.1 we see that (A5) is satisfied.

Condition (A6) follows implicitly from [38, Th. 16]. Since we are in a special situation let us show

13Here and below inequalities between vectors are understood in the componentwise sense.
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a simple argument. Using (H1) and and the density arguments we see that if v ∈ H1
0 (Ω) and v � 0

a.e. on Ω, then for any i = 1, .., N ,∫
Ω
∇v · ∇αi dx � 0 and

∫
Ω
∇v · ∇βi � 0.

Let f ∈ K, i.e. α � f � β, and u = Jh(f), where h > 0. Then for any v ∈ H1
0 (Ω), v � 0,∫

Ω
(ui − βi)v dx+ h

∫
Ω
(∇u−∇βi) · ∇v dx =

∫
Ω
(fi − βi)v dx− h

∫
Ω
∇v · ∇βi dx � 0.

Taking v := (ui − βi)+, we see that v ∈ H1
0 (Ω) since βi � 0. Hence∫

Ω
|v|2 dx � −h

∫
{ui>βi}

|∇(ui − βi)|2 dx � 0

since ∇v = χ{ui>βi}∇(ui − βi). Thus ui � β. Analogously we proof that ui � α on Ω for all
i = 1, ..., N . This means that u ∈ K ∩D(A) ⊂ K0. Applying Theorem 3.4 we end the proof. �

Remark 4.13. The existence of solutions to (4.14) may be established by a direct use of arguments
employed in the proof of Theorem 3.4 since in this situation we can use some particular issues present
in the problem. Given i = 1, ..., N and u ∈ W 1,p

0 (Ω,RN ) let

πi(u) =

⎧⎪⎨
⎪⎩
βi if ui > βi,

ui if αi � ui � βi,

αi if ui < αi.

One can show that πi : E := W 1,p
0 (Ω,RN ) → W 1,p

0 (Ω) is well-defined and continuous. The map
π := (π1, ..., πN ) : E → E is a retraction of E onto K ∩ E. Note that E0 ↪→ E and let

Ψ(u) := Φ(π(u)), u ∈ E0.

Taking into account that 0 ∈ ρ(Δ) we my consider the composition

ξ : E0
Ψ
� E

(−Δ)−1

−→ D(A) → E0.

This composition is a compact (at large: i.e. the range of ξ is relatively compact) upper-semicontinuous
map with compact convex values. By the Glicksberg-Fan theorem (the set-valued version of the
Schauder fixed point principle) we gather that ξ has a fixed point u ∈ E0. Using (H3) and (H4) and
the maximum principle one show that u is located in K and, therefore is a solution to (4.14).
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