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In this paper, we consider the free boundary problem of a reaction diffusion equation 
with nonlinear convection term in one dimensional space. Our study contains three 
parts: in the first part we establish the existence and uniqueness of global solution, in 
the second part we obtain the spreading–vanishing dichotomy, and in third part, we 
obtain some estimations of the asymptotic speed of free boundaries when spreading 
happens.
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1. Introduction

Nonlinear diffusion problems with free boundary conditions are generally used to describe the expansion 
and propagation of biological species or chemical substances, and the free boundary is used to represent the 
frontier of this expansion. It has been a central issue in ecological research to explore the law of population 
expansion of new species or invasive species in new environment. A large amount of empirical evidence 
shows that many invasive species, which survived in new environment, will expand at a fixed rate after a 
very short initial stage. A classic example is the rules discovered by Skellam [19] in 1951, which describes
the spreading of muskrat in Europe in early twentieth century.

One of the most successful mathematical descriptions of the propagation of species is based on the theory 
of traveling wave solutions. In 1937, Fisher [11] made use of the equation

ut − duxx = au− bu2, t > 0, x ∈ R
1, (1.1)
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to study the transmission pattern of advantageous genes, where the function u represents the population 
density of species that carries advantageous genes. He proved that equation (1.1) admits a solution of the 
form u(t, x) = ω(x − ct), if c ≥ 2

√
ad := c∗ and ω satisfies

cω′ + dω′′ + aω − bω2 = 0, ω(−∞) = 0, ω(+∞) = a/b.

He also showed that there exists no such solutions if c < 2
√
ad. Fisher claimed that c∗ is the spreading 

speed for the advantageous genes in his research. The same results were proved by Kolmogorov et al. for a 
more general class of equations whose nonlinearity is now called Fisher-KPP type. In 1975, Aronson and 
Weinberger [1] established a more general theory based on the traveling wave solutions. They proved that 
for any ε > 0, the solution of (1.1) satisfies:

lim
t→∞,|x|≤(c∗−εt)

u(t, x) = a/b, lim
t→∞,|x|≥(c∗+εt)

u(t, x) = 0.

This means that if an observer travels in the direction of propagation at a speed c which is smaller than c∗, 
then it will find that the population is close to ab , and if his speed is bigger than c∗, it would observe that 
the population is nearly 0. The mathematical results have been extended to higher dimensions in [2] by 
Aronson and Weinberger.

The mathematical model mentioned above have obtained lots of good results, but the reaction–diffusion 
equation, which were used in these models to describe the expansion behavior, will force infinite propagation 
speed. Namely, for any initial population distribution which is nonnegative and is positive somewhere, for 
t > 0 the population density at any location is bigger than 0, which does not conform with the reality. To 
overcome the difficulty, Du and Lin [7] first began to try to introduce free boundary conditions to study the 
expansion behavior of biological populations, and they considered the following equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut − duxx = u(a− bu), t > 0, 0 < x < h(t),
ux(t, 0) = 0, u(t, h(t)) = 0, t > 0,
h′(t) = −μux(t, h(t)), t > 0,
h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0,

(1.2)

where h(t) stands for the free boundary, the function u represents population density. The free boundary 
h(t) satisfies equation h′(t) = −μux(t, h(t)), which is a special case of the well-known Stefan condition and 
the deduction can refer to [31]. If the right side is free boundary, the left side is fixed boundary condition, 
then the equation (1.2) describes the expansion behavior of new species or invasive species populations in 
one dimensional environment, they got the following results:

(1) Equation (1.2) has a unique global solution;
(2) Spreading–vanishing dichotomy and its criterion: if t → ∞, then either h(t) → ∞ and u(t, x) → a

b , which 
we called spreading, or h(t) → h∞ ≤ π

2
√
d/a and u(t, x) → 0, which we called vanishing. Furthermore, 

there exists a positive constant μ∗ that describes the ability of expansion, if μ > μ∗, then vanishing 
happens; if 0 ≤ μ ≤ μ∗, then spreading happens, and μ∗ depends on u0 and h0.

(3) Some basic estimates for the asymptotic spreading speed of two fronts when spreading happens, which 
means that there exists a positive constant k0 that only depends on μ, and

lim
t→∞

h(t)
t

= k0, lim
t→∞

−g(t)
t

= k0.

After this pioneering work, a more general reaction diffusion problem with free boundary conditions was 
considered by Du and Lou [9]:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut = uxx + f(u), t > 0, g(t) < x < h(t),
u(t, g(t)) = 0, u(t, h(t)) = 0, t > 0,
h′(t) = −μux(t, h(t)), t > 0,
g′(t) = −μux(t, g(t)), t > 0,
−g(0) = h(0) = h0, u(0, x) = u0(x), −h0 ≤ x ≤ h0.

(1.3)

They studied the problem with general nonlinearity f(u), including general monostable, bistable and com-
bustion types of f(u). They revealed the relation but different sharp transition natures between vanishing 
and spreading for these three types of nonlinearities. For instance, if f(u) is bistable or combustion types, 
then under some initial values, the long-time behavior of solution will have transition state besides spreading 
and vanishing, which means when t → ∞, then (g∞, h∞) = R and u(t, x) converges to some function or some 
constant locally uniformly. For bistable and combustion nonlinearities, they obtained spreading–vanishing–
transition trichotomy and the corresponding criterion, and when spreading happens, for all three kinds of 
nonlinearities, they estimated the asymptotic spreading speed. Later, Du et al. [5] obtain sharp estimates for 
the asymptotic spreading speed of two fronts of problem (1.3). Some related works for the single equation can 
refer to [4,18,21,23,35]. Besides the study of single equation in one dimensional space, lots of free boundary 
problems in biological mathematics has been studied at the same time, such as the competition model [10,
16,27,28,30], prey–predator model [20,22,26,31] in one dimensional space, single reaction–diffusion equation 
in high space dimensions [6], competition model [8,33] and prey–predator model [32] in high dimensional 
space for radially symmetric case.

The expansion behavior of biological populations in the environment is not just caused by simple individ-
ual random move. For example, the migration of animals are affected by the spatial distribution of food and 
water, the movement of bacteria or viruses are affected by the migration of the host, so all these expansion 
behaviors will have a certain direction. In mathematical models, the convection term is generally used to 
describe this kind of directional movement. In 2014, Gu et al. [13,14] considered the free boundary problem 
of convection reaction diffusion equations with linear convection term in one dimensional space:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut − uxx + βux = u(1 − u), t > 0, g(t) < x < h(t),
u(t, g(t)) = 0, u(t, h(t)) = 0, t > 0,
h′(t) = −μux(t, h(t)), t > 0,
g′(t) = −μux(t, g(t)), t > 0,
−g(0) = h(0) = h0, u(0, x) = u0(x), −h0 ≤ x ≤ h0.

(1.4)

They showed spreading–vanishing dichotomy and its criterion which depends on initial value, and gave an 
estimation of the asymptotic spreading speed when the convection coefficient β is small. Later, Kaneko and 
Matsuzawa [17] made a further promotion to this problem. They replaced u(1 − u) by general nonlinearity 
f(u) in (1.4) and established sharp estimation of asymptotic spreading speed for monostable, bistable and 
combustion types of f(u).

In 2015, Gu et al. [15] studied the long-time behavior of the solution of problem (1.4) under the condi-
tions that reaction term is Fisher-KPP type and convection coefficient β ∈ (0, +∞). Let c∗ represent the 
asymptotic spreading speed of the solution of problem (1.3) when nonlinearity f(u) is Fisher-KPP type, 
they proved that there exists a constant β∗ which depends on c∗, if β ≥ β∗, then only vanishing happens, if 
β ∈ (c∗, β∗), then the solution will have some new behaviors such as virtual spreading and virtual vanishing. 
Their works also gave out the sufficient conditions for spreading or vanishing. In the same year, Wang and 
Zhao [34] studied the convection reaction diffusion equations with linear convection term and mixed free 
boundary conditions in one dimensional space:



1236 R.-H. Wang et al. / J. Math. Anal. Appl. 467 (2018) 1233–1257
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut − uxx + βux = f(u), t > 0, 0 < x < h(t),
B[u](t, 0) = 0, u(t, h(t)) = 0, t ≥ 0,
h′(t) = −μux(t, h(t)), t ≥ 0,
h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0.

(1.5)

The left front is represented by B[u] = au − bux, where a, b ≥ 0 and a + b > 0, and the nonlinearity f(u)
is Fisher-KPP type. In their paper, for the first time, the situation that the convection term coefficient β
is negative was considered. They revealed that if β ≤ c∗ then only vanishing happens, and they obtained 
spreading–vanishing dichotomy and its criterion when |β| < c∗.

In the study mentioned above, the convection term is linear and only dependent of the gradient of the 
population density. However, in some cases the convection is also affected by population density, which leads 
to the nonlinear convection. For example, since the total amount of food is limited in a local environment, 
for a population with the greater density, the more individuals inclined to leave the place to go to a more 
affluent place for food. Generally, in one-dimensional space the convection reaction diffusion equation with 
nonlinear term can be written as the following general form:

ut = auxx + (b(u))x + c(u).

In this formulation, a represents the diffusion coefficient, b(u) is a nonlinear convective flux function, b′(u)
can be viewed as nonlinear velocity, c(u) denotes reaction term.

In this paper, we mainly study the free boundary problem of a reaction–diffusion equation with nonlinear 
convection term in one dimensional space:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut − duxx + uux = u(1 − u), t > 0, g(t) < x < h(t),
u(t, g(t)) = 0, g′ = −μux(t, g(t)), t > 0,
u(t, h(t)) = 0, h′ = −μux(t, h(t)), t > 0,
−g(0) = h(0) = h0, u(0, x) = u0(x), −h0 ≤ x ≤ h0.

(1.6)

The local existence and uniqueness of the solution are proved by using the theory of parabolic equation and 
the principle of contraction mapping, then the global existence and uniqueness are obtained. By using the 
zero number argument, we prove the spreading–vanishing dichotomy and give its criterion by the method 
of eigenvalue problem and constructing the upper and lower solutions. Finally, we use the semi-waves to 
estimate the asymptotic spreading speeds of two fronts when spreading happens, and compare these speeds 
with the asymptotic spreading speeds of fronts of the free boundary problem without convection term.

2. Global existence and uniqueness of solutions

In this section, we establish the existence and uniqueness of global solution of (1.6).

2.1. Local existence and uniqueness of the solution

The initial value u0 belongs to X(h0), where

X(h0) := {φ ∈ C2([−h0, h0]) : φ(−h0) = φ(h0) = 0, φ′(−h0) > 0,

φ′(h0) < 0, φ(x) > 0, x ∈ (−h0, h0)},

and h0 is a constant greater than 0.
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Theorem 2.1. For any given u0 belongs to X(h0) and any α ∈ (0, 1), there exists a T > 0 such that problem 
(1.6) has a unique solution

(u, h, g) ∈ C
1+α

2 ,1+α(DT ) × C1+α
2 ([0, T ]) × C1+α

2 ([0, T ]);

moreover,

‖u‖
C

1+α
2 ,1+α(DT )

+ ‖h‖
C1+α

2 ([0,T ]) + ‖g‖
C1+α

2 ([0,T ]) ≤ C,

where DT = {(t, x) ∈ R
2 : x ∈ [g(t), h(t)], t ∈ [0, T ]}, C and T only depends on h0, α and ‖u0‖C2[−h0,h0].

Proof. The idea of this proof comes [24,25] and we only give the outline. Set

y = 2x− g(t) − h(t)
h(t) − g(t) , w(t, y) = u

(
t,

1
2 [(h(t) − g(t))y + h(t) + g(t)]

)
.

Then (1.6), in [0, T ], is equivalent to

⎧⎪⎨
⎪⎩

wt − dρ2(t)wyy − ζ(t, y)wy + ρ(t)wwy = w(1 − w), 0 < t ≤ T, |y| < 1,

w(t,±1) = 0, 0 < t ≤ T,

w(0, y) = u0(h0y) := w0(y), |y| ≤ 1,
(2.1)

{
g′(t) = −μρ(t)wy(t,−1), h′(t) = −μρ(t)wy(t, 1), 0 < t ≤ T,

g(0) = −h0, h(0) = h0,
(2.2)

where

ρ(t) = 2
h(t) − g(t) , ζ(t, y) = h′(t) + g′(t)

h(t) − g(t) + h′(t) − g′(t)
h(t) − g(t) y.

Denote g∗ = −μu′
0(−h0), h∗ = −μu′

0(h0). Then g∗ ≤ 0 and h∗ ≥ 0. For 0 < T ≤ h0
2(4+|g∗|+h∗) := T1, we 

denote ΔT = [0, T ] × [−1, 1], and

GT = {g ∈ C1([0, T ]) : g(0) = −h0, g′(0) = g∗, ‖g′ − g∗‖C([0,T ]) ≤ 1},
HT = {h ∈ C1([0, T ]) : h(0) = h0, h′(0) = h∗, ‖h′ − h∗‖C([0,T ]) ≤ 1}.

Clearly, DT = GT ×HT is a closed convex set of [C1([0, T ])]2. Due to the choice of T , we see that for any 
given (g, h) ∈ DT , we can extend (g, h) to new functions, denoted by themselves, such that (g, h) ∈ D∗

T1
:=

G∗
T1

×H∗
T1

, where

G∗
T1

= {g ∈ C1([0, T1]) : g(0) = −h0, g′(0) = g∗, ‖g′ − g∗‖C([0,T1]) ≤ 2},
H∗

T1
= {h ∈ C1([0, T1]) : h(0) = h0, h′(0) = h∗, ‖h′ − h∗‖C([0,T1]) ≤ 2}.

Therefore, when (g, h) ∈ GT ×HT we have (g, h) ∈ G∗
T1

×H∗
T1

and

|g(t) + h0| + |h(t) − h0| ≤ T1(‖g′‖C([0,T1]) + ‖h′‖C([0,T1])) ≤ h0/2,

which implies

h0 ≤ h(t) − g(t) ≤ 3h0, ∀ t ∈ [0, T1].
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For the given (g, h) ∈ DT , we first extend it to D∗
T1

, then functions ρ(t) and ζ(t, y) are known. By the upper 
and lower solutions method we can show that (2.1) with T = T1 has a unique solution w = w(t, x; g, h)
and w is positive by the maximum principle. Take p > 3. The Lp theory yields that w ∈ W 1,2

p (ΔT1) and 
‖w‖W 1,2

p (ΔT1 ) ≤ C, where C depends only on Λ := {h0, h∗, g∗, μ, ‖u0‖W 2
p (−h0,h0)}. The embedding theorem 

asserts w ∈ C
1+α

2 ,1+α(ΔT1) and ‖w‖
C

1+α
2 ,1+α(ΔT1 )

≤ C(T−1
1 , Λ). Therefore,

wy(t,±1) ∈ C
α
2 ([0, T1]), ‖wy(t,±1)‖

C
α
2 ([0,T1])

≤ C(T−1
1 ,Λ).

Obviously, when 0 < T ≤ T1, we have

‖wy(t,±1)‖
C

α
2 ([0,T ]) ≤ C(T−1

1 ,Λ). (2.3)

Moreover, the Hopf boundary lemma gives wy(t, 1) < 0 and wy(t, −1) > 0. For such a known function w, 
the problem (2.2) has a unique solution, denoted by (ĝ, ̂h). Obviously

ĝ, ĥ ∈ C1+α
2 ([0, T ]), ĝ′(t) < 0, ĥ′(t) > 0.

Define F (g, h) = (ĝ, ̂h). Then

F : DT → C1+α
2 ([0, T ]).

Using (2.3) and (2.2) we have ‖ĝ, ĥ‖
C1+α

2 ([0,T ]) ≤ C(T−1
1 , Λ). Thus, we have

‖ĝ′ − g∗‖C([0,T ]) ≤ ‖ĝ′‖
C

α
2 ([0,T ])T

α
2 ≤ C(T−1

1 ,Λ)T α
2 ,

‖ĥ′ − h∗‖C([0,T ]) ≤ ‖ĥ′‖
C

α
2 ([0,T ])T

α
2 ≤ C(T−1

1 ,Λ)T α
2 .

If 0 < T 
 1, then (ĝ, ̂h) ∈ DT . That is, F : DT → DT provided 0 < T 
 1.
Next we prove that if T > 0 is sufficiently small, then F is a contraction mapping on D. For (gi, hi) ∈ DT

(i = 1, 2), we set wi = w(t, x; gi, hi) and (ĝi, ̂hi) = F (gi, hi). Then it follows from the discussion above that

‖wi‖W 1,2
p (ΔT ) + ‖ĝi, ĥi‖C α

2 ([0,T ]) ≤ C, i = 1, 2. (2.4)

Set

w = w1 − w2, g = g1 − g2, h = h1 − h2, ĝ = ĝ1 − ĝ2, ĥ = ĥ1 − ĥ2

and

ρi(t) = 2
hi(t) − gi(t)

, ζi(t, y) = h′
i(t) + g′i(t)

hi(t) − gi(t)
+ h′

i(t) − g′i(t)
hi(t) − gi(t)

y.

Then we have
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wt − dρ2
1wyy + (ρ1w2 − ζ1)wy + (ρ1w1y + w1 + w2 − 1)w

=
(
ρ2
1 − ρ2

2
)
w2yy + (ζ1 − ζ2)w2y − (ρ1 − ρ2)w2w2y, 0 < t ≤ T, |y| < 1,

w(t,±1) = 0, t ≥ 0,
w(0, y) = 0, |y| ≤ 1,

(2.5)
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and
⎧⎪⎨
⎪⎩

ĝ′(t) = −μρ1wy(t,−1) − μ(ρ1 − ρ2)w2y(t,−1), t ≥ 0,
ĥ′(t) = −μρ1wy(t, 1) − μ(ρ1 − ρ2)w2y(t, 1), t ≥ 0,
ĝ(0) = ĥ(0) = 0.

(2.6)

Notice (2.4), applying the Lp theory to (2.5) we have ‖w‖W 2,1
p (ΔT ) ≤ C‖g, h‖C1([0,T ]), where C depends 

only on Λ. By similar arguments in the proof of [24, Theorem 1.1], we have

[w]
C

α
2 ,α(ΔT ), [wy]C α

2 ,α(ΔT ) ≤ C1‖w‖W 2,1
p (ΔT )

for some positive constant C1 independent of T−1, here [·]
C

α
2 ,α(ΔT ) is Höder semi-norm. Thus,

[wy]C α
2 ,α(ΔT ) ≤ CC1‖g, h‖C1([0,T ]).

It the follows from (2.6) that

[g′, h′]
C

α
2 ([0,T ]) ≤ μ

(
[ρ1wy(t,±1)]

C
α
2 ([0,T ]) + [(ρ1 − ρ2)w2y(·,±1)]

C
α
2 ([0,T ])

)
≤ C2‖g, h‖C1([0,T ]).

Thus

‖ĝ, ĥ‖C1([0,T ]) ≤ C2T
α/2‖ĝ, ĥ‖

C1+α
2 ([0,T ]) ≤ C2T

α/2‖g, h‖C1([0,T ]).

This shows that, when 0 < T 
 1, then F is a contraction map on DT . Hence, the contraction mapping 
theorem implies that F has a unique fixed point (g, h) in DT . Thus the Problem (1.6) has a unique local 
classical solution (u, g, h). �
2.2. Global existence and uniqueness of the solution

To show the solution which obtained above in Theorem 2.1 can be extended to all t > 0, we need the 
following estimate.

Lemma 2.2. Let (u, h, g) be a solution of (1.6) defined for t ∈ (0, T0) for some T0 > 0, then there exist 
constants C1 and C2 independent of T0 such that

0 < u(t, x) ≤ C1, 0 < h′(t), −g′(t) ≤ C2,

for g(t) < x < h(t), t ∈ (0, T0).

Proof. Firstly, the maximum principle gives

u ≤ max{1, max
[−h0,h0]

u0}.

Defining

ΩM1 = {(t, x) : 0 < t < T0, h(t) −M−1
1 < x < h(t)},

ΩM2 = {(t, x) : 0 < t < T0, g(t) < x < g(t) + M−1
2 }.

We construct an auxiliary function ω1(t, x) := C1[2M1(h(t) − x) −M2
1 (h(t) − x)2] on ΩM1 . Clearly,
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ω1,t = 2M1C1h
′(t)[1 −M1(h(t) − x)] ≥ 0,

ω1,x = C1[−2M1 + 2M2
1 (h(t) − x)], ω1,xx = −2M2

1C1,

then

ω1ω1,x = C2
1 [2M1(h(t) − x) −M2

1 (h(t) − x)2][−2M1 + 2M2
1 (h(t) − x)]

= C2
1M

2
1 [−4(h(t) − x) + 6M1(h(t) − x)2 − 2M2

1 (h(t) − x)3].

Let h(t) − x = h, then 0 < h < M−1
1 holds over ΩM1 . By ω1ω1,x = 0, we obtain h = 0 or h =

−6M1±
√

36M2
1−32M2

1
−4M2

1
, in other words, h = 2

M1
or h = 1

M1
. Denote ω1ω1,x = H(h), then

H ′(h) = C2
1M

2
1 (−4 + 12M1h− 6M2

1h
2).

By solving H ′(h) = 0, we have h = −12M1±
√

144M2
1−96M2

1
−12M2

1
= (1 ±

√
3

3 ) 1
M1

. Since H(h) = 0 when h = 0, 1
M1

, 2
M1

. 
Using the properties of cubic function, we know that H(h) reaches the minimum at h = (1 −

√
3

3 ) for 
0 < h < M−1

1 , and H(1 −
√

3
3 ) = −4

9
√

3C2
1M1.

Direct calculations show that ω1,t − dω1,xx ≥ 2dC1M
2
1 , and ω1(1 − ω1) < C1. It follows that

2dC1M
2
1 − 4

9
√

3C2
1M1 − C1 ≥ 0,

if

M1 ≥
4
9
√

3C2
1 +

√
48
81C

4
1 + 8dC2

1

4dC1
.

Then, we have

ω1,t − dω1,xx + ω1ω1,x ≥ ω1(1 − ω1),

ω1(t, h(t) −M−1
1 ) = C1 ≥ u(t, h(t) −M−1

1 ), ω1(t, h(t)) = 0 = u(t, h(t)).

Now if we can find M1, which is independent of T0, such that ω1(0, x) ≥ u0(x) for x ∈ [h0 −M−1
1 , h0], then 

we can apply the maximum principle to ω1 − u.
By the definition of ω1, we have

ω1(0, x) = C1[2M1(h0 − x) −M2
1 (h0 − x)2],

if x ∈ [h0 −M−1
1 , h0 − (2M1)−1], then ω1(0, x) ≥ 3

4C1; if x ∈ [h0 − (2M1)−1, h0], then

ω1,x(0, x) = C1[−2M1 + 2M2
1 (h0 − x)] ≤ −C1M1.

Setting

M1 = max

⎧⎨
⎩4

3
‖u0‖C1[−h0,h0]

C1
,

4
9
√

3C2
1 +

√
48
81C

4
1 + 8dC2

1

4dC1

⎫⎬
⎭ ,

then ω1,x(0, x) ≤ u′
0(x) for x ∈ [h0 − (2M1)−1, h0]. Since ω1(0, h0) = u0(h0) = 0, the above inequality 

implies that ω1(0, x) ≥ u0(x) for x ∈ [h0 − (2M1)−1, h0]. Moreover, for x ∈ [h0 −M−1
1 , h0 − (2M1)−1], we 

have
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u0(x) − u0(h0)
1

M1

≤ ‖u0‖C1[−h0,h0],

then u0(x) ≤ 3
4C1.

By the above discussion we know that u0(x) ≤ ω1(0, x) for x ∈ [h0−M−1
1 , h0], therefore by the maximum 

principle we obtain

ux(t, h(t)) ≥ ω1,x(t, h(t)),

for (t, x) ∈ [0, T0] × [h(t) −M−1
1 , h(t)]. Since ω1,x(t, h(t)) = −2M1C1, so

h′(t) = −μux(t, h(t)) ≤ 2μM1C1.

Define an auxiliary function ω2(t, x) := C1[2M2(x − g(t)) −M2
2 (x − g(t))2] on ΩM2 , direct calculations 

show that

ω2,t = 2M2C1(−g′(t))[1 −M2(x− g(t))] ≥ 0,

ω2,x = C1[2M2 − 2M2
2 (x− g(t))], ω2,xx = −2M2

2C1,

then

ω2ω2,x = C2
1 [2M2(x− g(t)) −M2

2 (x− g(t))2][2M2 − 2M2
2 (x− g(t))]

= C2
1M

2
2 [4(x− g(t)) + 6M2(x− g(t))2 + 2M2

2 (x− g(t))3].

Let x − g(t) = g, then 0 < g < M−1
2 holds over ΩM2 . By ω2ω2,x = 0 we obtain g = 0 or g = 1

M2
or 

g = 2
M2

. If 0 < g < 1
M2

, then ω2ω2,x > 0, thus

ω2,t − dω2,xx + ω2ω2,x ≥ 2dC1M
2
2

holds over ΩM2 . Since ω2(1 − ω2) < C1, then

ω2,t − dω2,xx + ω2ω2,x ≥ ω2(1 − ω2),

if M2
2 ≥ 1

2d . By the definition of ω2, we have

ω2(0, x) = C1[2M2(x− g0) −M2
2 (x− g0)2],

if x ∈ [g0 + (2M2)−1, g0 + M−1
2 ], then ω2(0, x) ≥ 3

4C1; and if x ∈ [g0, g0 + (2M2)−1], then

ω2,x(0, x) = C1[2M2 − 2M2
2 (x− g0)] ≥ C1M2.

Take

M2 = max
{

4
3
‖u0‖C1[−h0,h0]

C1
,

√
1
2d

}
.

By the similarly discussion, we know that u0(x) ≤ ω2(0, x) for x ∈ [g0, g0 + M−1
2 ]. Using the maximum 

principle, we have

ux(t, g(t)) ≤ ω2,x(t, g(t))
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for (t, x) ∈ [0, T0] × [g(t), g(t) + M−1
2 ]. Since ω2,x(t, g(t)) = 2M2C1, then

−g′(t) = μux(t, g(t)) ≤ 2μM2C1.

Take C2 = max{μM1C1, μM2C1}, this completes the proof. �
Theorem 2.3. For all t ∈ (0, ∞), the solution of problem (1.6) exists and is unique.

Proof. Let [0, Tmax) be the maximum time interval of solution. By Theorem 2.1 we know that Tmax > 0. 
Now we show that Tmax = ∞.

Assuming Tmax < ∞, by Lemma 2.2, there exist constants C1 and C2 independent of Tmax such that for 
any t ∈ [0, Tmax) and x ∈ [g(t), h(t)],

0 ≤ u(t, x) ≤ C1, h0 ≤ h(t) ≤ h0 + C2t, 0 ≤ h′(t) ≤ C2,

h0 − C2t ≤ g(t) ≤ h0, 0 ≤ −g′(t) ≤ C2.

Fix δ0 ∈ (0, Tmax) and M > Tmax. Using Lp theory, Sobolev imbedding theorem and the Schauder estimates 
for parabolic equations, we can find a positive constant C3 which depends on δ0, M , C1 and C2 such that 
‖u(t, x)‖C2[g(t),h(t)] ≤ C3 for t ∈ [δ0, Tmax). It then follows from the proof of Theorem 2.1 that there exists a 
τ > 0 which depends on C1, C2 and C3 such that the solution of problem (1.6) with initial moment Tmax− τ

2
can be extended uniquely to the moment Tmax − τ

2 + τ . But this contradicts the definition of Tmax. The 
proof is complete. �
3. Some estimates on solutions of (1.6)

Theorem 3.1. Let (u, g, h) be the unique global solution of (1.6). Then there exists a positive constant C, 
depends only on Λ, g∞ and h∞ such that

‖u(t, ·)‖C1+α([g(t), h(t)]) ≤ C, ∀ t ≥ 1; ‖g′, h′‖Cα/2([1,∞)) ≤ C. (3.1)

Proof. The proof is the same as those of [23, Theorem 2.1] and [29, Theorem 2.2]. When h∞ − g∞ < ∞, 
along the arguments in the proof of [23, Theorem 2.1] step by step we can get (3.1). When h∞ − g∞ = ∞, 
the estimate (3.1) can be obtained by use the same method of [29, Theorem 2.2]. �
Lemma 3.2 ([29, Lemma 4.1]). Let d, C, μ and m0 be positive constants, w ∈ W 1,2

p ((0, T ) × (0, m(t))) for 
some p > 1 and any T > 0, and wx ∈ C([0, ∞) × [0, m(t)]), m ∈ C1([0, ∞)). If (w, m) satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wt − dvxx ≥ −Cw, t > 0, 0 < x < m(t),
w ≥ 0, t > 0, x = 0,
w = 0, m′(t) ≥ −μwx, t > 0, x = m(t),
w(0, x) = w0(x) ≥, �≡ 0, x ∈ (0,m0),
m(0) = m0,

and

lim
t→∞

m(t) = m∞ < ∞, lim
t→∞

m′(t) = 0,

‖w(t, ·)‖C1[0, m(t)] ≤ M, ∀ t > 1
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for some constant M > 0. Then

lim
t→∞

max
0≤x≤m(t)

w(t, x) = 0.

Theorem 3.3. Assume that (u, h, g) is the time-global solution of (1.6). If I∞ is a finite interval, then

lim
t→+∞

‖u‖C1[g(t),h(t)] = 0. (3.2)

Proof. When I∞ is finite, by Theorem 3.1 and Lemma 3.2 we have lim
t→∞

max
g(t)≤x≤h(t)

u(t, x) = 0. So, 

lim
t→∞

max
−1≤y≤1

w(t, y) = 0, where w(t, y) = u
(
t, 12 [(h(t) − g(t))y + h(t) + g(t)]

)
. The estimate (3.1) implies 

‖w(t, ·)‖C1+α([−1,1]) ≤ C for all t ≥ 1. Using the compact arguments we can get lim
t→+∞

‖w(t, ·)‖C1[−1,1] = 0, 
which implies (3.2). �
4. The spreading–vanishing dichotomy

We first give the sufficient conditions for spreading and vanishing.

Lemma 4.1. Let (u, h, g) be the unique solution of (1.6). If h∞ < ∞, g∞ > −∞, then h∞ − g∞ ≤ π
√
d.

Proof. Assume on the contrary that h∞−g∞ > π
√
d. Then there is ε > 0 such that h∞−g∞ > π

√
d/(1 − ε). 

Noticing (3.2), there exists Tε 
 1 such that h(Tε) − g(Tε) > π
√
d/(1 − ε) and |ux| < ε for all t > Tε and 

g(t) ≤ x ≤ h(t). Thus u satisfies
⎧⎪⎪⎨
⎪⎪⎩
ut − duxx ≥ u(1 − ε− u), t > Tε, g(t) < x < h(t),
u(t, g(t)) = 0, g′ = −μux(t, g(t)), t ≥ Tε,

u(t, h(t)) = 0, h′ = −μux(t, h(t)), t ≥ Tε.

As h(Tε) − g(Tε) > π
√
d/(1 − ε), by the comparison principle and the results of [7] we have h∞ − g∞ = ∞, 

which yields a contradiction. This completes the proof. �
By [3, Theorem A.1 and Theorem A.2] and [7, Lemma 3.5 and Lemma 5.7], the following comparison 

theorem holds:

Lemma 4.2. Let (u, h, g) be the unique solution of (1.6). Suppose that T ∈ (0, ∞), h̄, ḡ ∈ C1([0, T ]), ū ∈
C(D̄T ) ∩ C1,2(DT ), where DT = {(t, x) : 0 < t ≤ T, ̄g(t) < x < h̄(t)}, and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ūt − dūxx + ū ūx ≥ ū(1 − ū), t > 0, ḡ(t) < x < h̄(t),
ū(t, ḡ(t)) = ū(t, h̄(t)) = 0, t ≥ 0,
ḡ′(t) ≤ −μūx(t, ḡ(t)), t ≥ 0,
h̄′(t) ≥ −μūx(t, h̄(t)), t ≥ 0.

If [−h0, h0] ⊆ [ḡ(0), ̄h(0)] and u0(x) ≤ ū(0, x) in [−h0, h0], then

g(t) ≥ ḡ(t), h(t) ≤ h̄(t), ∀ t ∈ [0, T ]; u(t, x) ≤ ū(t, x), ∀ t ∈ [0, T ], x ∈ [g(t), h(t)].

Lemma 4.3. Assume h0 < π
2
√
d. Then there exists an 0 < μ0 
 1, such that (g∞, h∞) is finite for all 

0 < μ ≤ μ0.
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Proof. In view of h0 < π
2
√
d, there exists sufficient small δ > 0 such that

(
π

h0(1 + δ)

)2

≥ 4
d

(
1 + δ + δ2h0

μ

)
.

Obviously, there exists s > 0 such that

s cos πx

2h0(1 + δ/2) ≥ u0(x), −h0(1 + δ/2) ≤ x ≤ h0(1 + δ/2).

Let k(t) = h0(1 + δ − δ
2e

−δt) and

w(t, x) := se−δt cos
(

πx

2k(t)

)
, t ≥ 0, −k(t) ≤ x ≤ k(t).

Then w(t, ±k(t)) = 0, k(0) = h0(1 + δ
2 ) > h0, and for t ≥ 0, we have h0(1 + δ

2 ) ≤ k(t) ≤ h0(1 + δ), 
k′(t) = h0

δ2

2 e−δt. Direct calculations show that

wt = −δw − se−δt sin
(

πx

2k(t)

)(
πx

−2k2(t)

)
k′(t),

wx = −se−δt sin
(

πx

2k(t)

)(
π

2k(t)

)
,

wxx = −se−δt cos
(

πx

2k(t)

)(
π

2k(t)

)2

= −
(

π

2k(t)

)2

w.

For t ≥ 0, −k(t) ≤ x ≤ k(t), we have

−se−δt sin
(

πx

2k(t)

)(
πx

−2k2(t)

)
k′(t) = se−δt sin

(
πx

2k(t)

)(
πx

2k2(t)

)
h0

δ2

2 e−δt ≥ 0.

Thus,

wt − dwxx + wwx − w(1 − w)

≥ d

(
π

2k(t)

)2

w − δw + w

[
−se−δt sin

(
πx

2k(t)

)(
π

2k(t)

)]
− w(1 − w)

=
[
d

(
π

2k(t)

)2

− δ − se−δt sin
(

πx

2k(t)

)(
π

2k(t)

)
+ w − 1

]
w.

By the formulation of w, we know that if t ≥ 0, −k(t) ≤ x ≤ k(t), then 0 ≤ w ≤ s, and

se−δt sin
(

πx

2k(t)

)(
π

2k(t)

)
≥ −s

π

2h0(1 + δ
2 )

.

Therefore

d

(
π

2k(t)

)2

− δ − se−δt sin
(

πx

2k(t)

)(
π

2k(t)

)
+ w − 1

≥ d

(
π

2k(t)

)2

− δ − s
π

δ
− 1
2h0(1 + 2 )
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≥ d

(
π

2k(t)

)2

− δ − δ2h0

2μ − 1

≥
(

π

4h0(1 + δ)

)2

− δ − δ2h0

2μ
− 1 ≥ 0.

In other words, for t ≥ 0, −k(t) ≤ x ≤ k(t),

wt − dwxx + wwx − w(1 − w) ≥ 0.

Take μ0 = δ2h2
0/(πs). Then we have, when 0 < μ ≤ μ0,

−μwx(t, k(t)) = μse−δt π

2k(t) ≤ h0
δ2

2 e−δt = k′(t),

−μwx(t,−k(t)) = −μse−δt π

2k(t) ≥ −h0
δ2

2 e−δt = −k′(t).

By the comparison principle (Lemma 4.2),

−h0(1 + δ) < −k(t) ≤ g(t) < h(t) ≤ k(t) < h0(1 + δ).

So I∞ is a finite interval. �
Lemma 4.4. Let C > 0 be a constant. For any given constants h̄0, H > 0, and any function ū0 ∈ C2([0, ̄h0])
satisfying ū0(0) = ū0(h̄0) = 0 and ū0 > 0 in (0, ̄h0), there exists μ0 > 0 so that when μ ≥ μ0 and (ū, ̄h)
satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ūt − dūxx + ūūx ≥ −Cū, t > 0, 0 < x < h̄(t),

ū(t, 0) = ū(t, h̄(t)) = 0, t > 0,

h̄′(t) = −μūx(t, h̄(t)), t > 0,

ū(0, x) = ū0(x), h̄(0) = h̄0, 0 < x < h̄0,

we must have lim inf
t→∞

h̄(t) > H.

Proof. This proof is the same as that of [26, Lemma 3.2]. For the convenience to readers we shall give the 
details. By the results of §2 we see that the problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vt − dvxx + vvx = −Cv, t > 0, 0 < x < r(t),

v(t, 0) = v(t, r(t)) = 0, t > 0,

r′(t) = −μvx(t, r(t)), t > 0,

v(0, x) = ū0(x), r(0) = h̄0, 0 < x < h̄0

(4.1)

admits a unique global solution (v, r) and r′(t) > 0 for t > 0. By Lemma 4.2,

ū(t, x) ≥ v(t, x), h̄(t) ≥ r(t), ∀ t ≥ 0, x ∈ [0, r(t)]. (4.2)

In what follows, we are going to prove that for all large μ,

r(2) ≥ H. (4.3)
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To the end, we first choose a smooth function r(t) with r(0) = h̄0/2, r′(t) > 0 and r(2) = H. We then 
discuss the following initial-boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

vt − dvxx + v vx = −Cv, t > 0, 0 < x < r(t),

v(t, 0) = v(t, r(t)) = 0, t > 0,

v(0, x) = v0(x), 0 < x < h̄0/2.

(4.4)

Here, for the smooth initial value v0, we require
{

0 < v0(x) ≤ ū0(x), x ∈ (0, h̄0/2),

v0(0) = v0(h̄0/2) = 0, v′0(h̄0/2) < 0.
(4.5)

The standard theory for parabolic equations ensures that (4.4) has a unique positive solution v, and 
vx(t, r(t)) < 0 for all t ∈ [0, 2] due to the Hopf boundary lemma. According to our choice of r(t) and 
v0(x), there is a constant μ0 > 0 such that, for all μ ≥ μ0,

r′(t) ≤ −μvx(t, r(t)), ∀ 0 ≤ t ≤ 2. (4.6)

On the other hand, for the problem (4.1), we can establish the comparison principle analogous with lower 
solution to Lemma 4.2 by the same argument. Thus, note that r(0) = h̄0/2 < r(0), it follows from (4.1) and 
(4.4)–(4.6) that

v(t, x) ≥ v(t, x), r(t) ≥ r(t), ∀ t ∈ [0, 2], x ∈ [0, r(t)].

Which particularly implies r(2) ≥ r(2) = H, and so (4.3) holds true. Making use of (4.2) and (4.3) we then 
obtain

lim
t→∞

h̄(t) ≥ lim
t→∞

r(t) > r(2) ≥ H.

The proof is complete. �
In view of Lemmas 4.4 and 4.2 we have

Corollary 4.5. Assume h0 < π
2
√
d. Then there exists an μ0 > 0, such that (g∞, h∞) = R for all μ ≥ μ0.

Theorem 4.6. Assume h0 < π
2
√
d. Then there exists an μ∗ > 0 such that (g∞, h∞) = R when μ > μ∗, and 

(g∞, h∞) is finite when 0 < μ ≤ μ∗.

Proof. Noticing Lemma 4.3 and Corollary 4.5, by use of the continuity method, we can prove this theorem. 
Please refer to the proof of [7, Theorem 3.9] for details. �
5. The estimates for asymptotic spreading speeds

In this section, we estimate the spreading speeds of h(t) and g(t) when spreading happens by using upper 
and lower solutions constructed by semi-waves.

If (c, q(z)) satisfies

{
q′′ − ( c−q

d )q′ + q(1−q)
d = 0, z ∈ (0,+∞),

q(0) = 0, q(+∞) = 1, q(z) > 0, z ∈ (0,+∞),
(5.1)
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we call q(z) a semi-wave with speed c. The first equation of (5.1) is equivalent to the following system:

{
q′ = p,

p′ = c−q
d p− q(1−q)

d .
(5.2)

A solution q(z) of (5.1) corresponds to a trajectory (q(z), p(z)) of (5.2) in the q − p phase plane, such a 
trajectory starts from the point (0, ω) and ends at the point (1, 0) when z → +∞, where ω = q′(0) > 0. For 
any point satisfies p �= 0, the trajectory has a slope

dp
dq = c− q

d
− q(1 − q)

dp
. (5.3)

For any c ≥ 0, the critical points of the system (5.2) are (0, 0) and (1, 0). By direct calculations, we know 
that the linearized system of (5.2) at point (0, 0) is

{
q′ = p,

p′ = −q
d + c

dp

and the corresponding eigenvalues are

λ±
0 = c±

√
c2 − 4d
2d .

The linearized system of (5.2) at point (1, 0) is

{
q′ = p,

p′ = q
d + (c−1)

d p

and the corresponding eigenvalues are

λ±
1 =

(c− 1) ±
√

(c− 1)2 + 4d
2d .

Therefore (1, 0) is a saddle point, and (0, 0) is a center if c = 0, or a unstable spiral point if 0 < c < 2
√
d, or 

a unstable nodal point if c ≥ 2
√
d. By the theory of ordinary differential equations, there are two trajectories 

of the system (5.2) that approach (1, 0) from q < 1. One of them has slope (c−1)−
√

(c−1)2+4d
2d < 0 at point 

(1, 0), will be denoted as T c
r . Some part of T c

r lies in the set S := {(q, p) : 0 ≤ q ≤ 1, p ≥ 0} and contains 
the point (1, 0), this part expressed by a function p = P c

r (q), q ∈ [qc, 1], where qc ∈ [0, 1), P c
r (q) > 0 in 

(qc, 1), and the point (qc, P c
r (qc)) lies on the boundary of the set S. The function p = P c

r (q) satisfies (5.3)
and (P c

r (1))′ = (c−1)−
√

(c−1)2+4d
2d < 0 at the point (1, 0). If qc > 0, then P c

r (qc) = 0. When q decreases 
from 1, the function P c

r (q) stays positive and approaches 0 if q decreases to qc. According to the formulation 
of (5.3), checking the sign of (P c

r (q))′ we can see that this cannot happen except qc ≤ 0, so T c
r lies in the 

set S := {(q, p) : 0 ≤ q ≤ 1, p ≥ 0} and pass through points (1, 0) and (0, P c
r (0)), where P c

r (0) ≥ 0.
Consider the dependence of the solution of the following problem on variable c:

{
dPi

dq + f(q)
dPi

= 1
d (ci − q), q ∈ (α, β),

Pi(β) = βi, i = 1, 2,
(5.4)

where 0 ≤ α < β ≤ 1.
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Lemma 5.1. Assume there exists δ > 0 such that f(q) ≥ 0 if β − δ < q < β, Pi(q) satisfies (5.4) when 
α < q < β and Pi(q) is positive, then P1(q) > P2(q) when c1 < c2, β1 ≥ β2.

Proof. By (5.4) we have

d(P1 − P2)
dq − f(q)

dP1P2
(P1 − P2) = 1

d
(c1 − c2).

Multiplying two sides of the last equation by

h(q) := exp{−
q∫

β− δ
2

f(t)
dP1(t)P2(t)

dt}

and G(q) = (P1(q) − P2(q))h(q), we obtain

dG
dq = 1

d
(c1 − c2)h(q), q ∈ (α, β).

Define

K =
β∫

β− δ
2

f(t)
dP1(t)P2(t)

dt.

Then if K is divergent, we have lim
q→β−

G(q) = 0. If K is convergent, then

lim
q→β−

G(q) ≥ 0; dG
dq < 0, q ∈ (α, β).

Thus G(q) > 0, in other words, P1(q) > P2(q) for q ∈ (α, β). �
It follows from the Application 8.10 of the theory of nonlinear convection reaction diffusion equation [12]

that if d ≥ 1
4 and c ≥ 2

√
d, or if 0 < d < 1

4 and c ≥ 2d + 1
2 , then the equation

ut − duxx + uux = u(1 − u),

admits a traveling-wave solution u(t, x) = U(ct − x) connecting 0 and 1 with wave speed c, which is unique 
modulo translation.

For any d > 0, when c ≥ 2
√
d, the equation

ut − duxx − uux = u(1 − u),

admits a traveling-wave solution from 0 to 1 with wave speed c of the form u = U(ct − x), and the 
traveling-wave solution is unique modulo translation.

If d ≥ 1
4 , then define cr0 := 2

√
d. If 0 < d < 1

4 , then define cr0 := 2d + 1
2 . We have the following theorem:

Theorem 5.2. The trajectory p = P
cr0
r (q), q ∈ (0, 1) corresponds to a solution q0(z) of the following problem 

with c = cr0:
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{
q′′ − ( c−q

d )q′ + q(1−q)
d = 0, z ∈ R

1,

q(−∞) = 0, q(+∞) = 1, q(z) > 0, z ∈ R
1,

and q0(z) is unique modulo translation. Moreover, for any c ≥ cr0, the above problem admits a unique 
solution. However, no such solution exists if c ∈ [0, cr0).

By Theorem 5.2, we know that for any c ≥ c0 = cr0, P c
r (0) = 0, and P c

r (q) > 0 in (0, 1). In order to prove 
the existence of a semi-wave, we need the following lemma.

Lemma 5.3. If 0 ≤ c1 < c2 < cr0, then P c1
r > P c2

r for q ∈ [0, 1), and for any c̄ ≥ 0, lim
c→c̄

P c
r = P c̄

r uniformly 

in [0, 1]. Moreover, for any c ≥ c0 = cr0, P c
r (0) = 0, and P c

r (q) > 0 in (0, 1).

Proof. By (P c
r (1))′ = (c−1)−

√
(c−1)2+4d
2d , we have (P c1

r (1))′ < (P c2
r (1))′ when 0 ≤ c1 < c2. Since P c1

r (1) =
P c2
r (1) = 0, for sufficient small δ > 0, we can see that P c1

r (1 − δ) > P c2
r (1 − δ), and P c1

r (q) > P c2
r (q) in 

(1 − δ, 1).
We claim that qc2 ≥ qc1 . Otherwise, since q(1 − q) > 0 for q ∈ (0, 1), define α = qc1 , β = 1 − δ, then it 

follows from Lemma 5.1 that P c1
r (q) > P c2

r (q) in (qc1 , 1). However, by the definition of qc1 and qc2 we can 
find that P c1

r (qc1) = 0, this contradicts to P c2
r (qc1) > 0.

Let α = qc1 , β = 1 − δ. Using Lemma 5.1, we know that P c1
r (q) > P c2

r (q) in (qc2 , 1). Since qc2 ≤ 0, we 
have P c1

r (q) > P c2
r (q) in (0, 1). It follows from Theorem 5.2 that qc2 < 0 for 0 ≤ c1 < c2 < cr0, therefore, 

P c1
r (q) > P c2

r (q) > 0 in [0, 1).
Summarizing the above results, we can see that P c

r (q) is nonincreasing in variable c for q ∈ [0, 1], so 
for any c̄ ≥ 0, if c increases to c̄, then P c

r (q) converges monotonically to some R(q) in [0, 1], where R(q)
represents the trajectory of (5.2) with c = c̄ that approaches (1, 0) from q < 1, and its slope is negative at 
(1, 0). By the uniqueness of T c̄

r , R(q) must coincides with P c̄
r (q). In a similar way, we can show that when 

c decreases to c̄, P c
r (q) converges monotonically to P c̄

r (q) in [0, 1]. �
Now we prove the uniqueness of the semi-wave.

Theorem 5.4. For any μ > 0, there exists a unique c∗r = c∗r,μ ∈ (0, cr0) such that P c∗r
r (0) = c∗r

μ , and the problem 

(5.1) admits a unique solution (c∗r , q∗r ) satisfying q′(0) = c∗r
μ . Moreover, if c∗r,μ increases in variable μ, then 

lim
μ→∞

c∗r,μ = cr0.

Proof. By the results of Lemma 5.3, for any c ∈ [0, cr0), P c
r (0) > 0. In particular, P ′

r(0) is strictly decreasing 
in c ∈ [0, cr0] and P cr0

r (0) = 0.
Define a continuous function

ξ(c) = ξμ(c) := P c
r (0) − c

μ
, c ∈ [0, cr0].

We know that the function ξ(c) is strictly decreasing in c ∈ [0, cr0], ξ(0) = P 0
r (0) > 0, ξ(cr0) = − cr0

μ < 0. Thus 
there exists a unique c∗r = c∗r,μ ∈ (0, cr0) such that ξ(c∗r) = 0.

We can view (c∗r,μ, 
c∗r,μ
μ ) as the unique intersection point of the decreasing curve y = P c

r (0) and the 
increasing curve y = c

μ in [0, cr0], it is obviously that c∗r,μ increases to cr0 when μ increases to ∞.
For q ∈ [0, 1), the curve p = P

c∗r
r (q) corresponds to a trajectory of (5.2), denoted by (q∗r (z), p∗r(z)), 

z ∈ [0, ∞), that connects the regular point (0, P c∗r
r (0)) and the equilibrium (1, 0). (c∗r , q∗r ) solves (5.1) with 

c = c∗r and q′(0) = c∗r
μ . If (c, q) is another solution of (5.1) satisfies q′(0) = c

μ , then it corresponds to a 
trajectory of (5.2) that connects (0, c ) and (1, 0) in set S. Since for each c ≥ 0, there is only one trajectory 
μ
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connecting (1, 0) in S, it coincides with p = P c
r (q) for q ∈ [0, 1). Thus we have P c

r (0) = c
μ , and hence c = c∗r , 

it follows that q = q∗r . �
To estimate the asymptotic spreading speed of the left free boundary g(t), we need to consider another 

semi-wave
{
q′′ − ( c+q

d )q′ + q(1−q)
d = 0, z ∈ (0,+∞),

q(0) = 0, q(+∞) = 1, q(z) > 0, z ∈ (0,+∞).
(5.5)

The first equation of (5.5)) is equivalent to the following system:

{
q′ = p,

p′ = c+q
d p− q(1−q)

d .
(5.6)

For any point satisfies p �= 0, the trajectory has a slope

dp
dq = c + q

d
− q(1 − q)

dp
. (5.7)

For any c ≥ 0, the critical points of (5.6) are (0, 0) and (1, 0), by direct calculations, the linearized system 
of (5.6) at (0, 0) is

{
q′ = p,

p′ = −q
d + c

dp

and the corresponding eigenvalues are

λ±
0 = c±

√
c2 − 4d
2d .

The linearized system of (5.6) at (1, 0) is

{
q′ = p,

p′ = q
d + (c+1)

d p

and the corresponding eigenvalues are

λ±
1 =

(c + 1) ±
√

(c + 1)2 + 4d
2d .

Thus, (1, 0) is a saddle point, and (0, 0) is a center if c = 0, or a unstable spiral point if 0 < c < 2
√
d, or a 

unstable nodal if c ≥ 2
√
d. Similar to the discussion of semi-wave (5.1), let p = P c

l (q) represent the part of 
trajectory T c

l that lies in S := {(q, p) : 0 ≤ q ≤ 1, p ≥ 0} and passes through (1, 0) and (0, P c
l (0)), where 

P c
l (0) ≥ 0.
For any d > 0, define cl0 := 2

√
d. Similarly as (5.1), we have the following propositions.

Proposition 5.5. If 0 ≤ c1 < c2 < cl0, then P c1
l > P c2

l for q ∈ [0, 1), and for any c̄ ≥ 0, lim
c→c̄

P c
l = P c̄

l

uniformly in [0, 1]. Moreover, for any c ≥ c0 = cl0, P c
l (0) = 0, and P c

l (q) > 0 in (0, 1).
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Proposition 5.6. For any μ > 0, there exists a unique c∗l = c∗l,μ ∈ (0, cl0) such that P c∗

l (0) = c∗l
μ , and 

(5.5) admits a unique solution (c∗l , q∗l ) satisfying q′(0) = c∗l
μ . Moreover, if c∗l,μ increases in variable μ, then 

lim
μ→∞

c∗l,μ = cl0.

Next, we shall estimate the spreading speeds of the free boundaries h(t) and g(t).
We make some suitable perturbations of f(u) = u(1 −u), and the corresponding semi-waves can be used 

to construct upper and lower solutions of (1.6). For any small ε > 0, let

f
ε
(u) := f(u) − ε

1 − ε
u2 = u(1 − 1

1 − ε
u),

f̄ε(u) := f(u) + ε

1 + ε
u2 = u(1 − 1

1 + ε
u).

We can see that f
ε
(u) is strictly decreasing in ε, f̄ε(u) is strictly increasing in ε, f

ε
(u) has exactly two zeros 

0 and 1 − ε, and f̄ε(u) has two zeros 0 and 1 + ε.
When f(q) = q(1 − q) replaced by f

ε
(q), the problem (5.1) admits a unique solution (c∗r , q∗r) satisfying 

μ(q∗
r
)′(0) = c∗r , where c∗r ∈ (0, cr0). When f(q) = q(1 − q) replaced by f̄ε(q), the problem (5.1) admits a 

unique solution (c̄∗r , q̄∗r ) satisfying μ(q̄∗r )′(0) = c̄∗r , where c̄∗r ∈ (0, cr0). c∗r and c̄∗r depend on ε.
Similarly, when f(q) = q(1 − q) replaced by f

ε
(q), the problem (5.5) has a unique solution (c∗l , q∗l ) such 

that μ(q∗
l
)′(0) = c∗l , where c∗l ∈ (0, cl0). When f(q) = q(1 − q) replaced by f̄ε(q), the problem (5.5) admits a 

unique solution (c̄∗l , q̄∗l ) such that μ(q̄∗l )′(0) = c̄∗l , where c̄∗l ∈ (0, cl0).

Proposition 5.7. The following conclusions hold.

c∗r < c∗r < c̄∗r , lim
ε→0

c∗r = lim
ε→0

c̄∗r = c∗r .

c∗l < c∗l < c̄∗l , lim
ε→0

c∗l = lim
ε→0

c̄∗l = c∗l .

Proof. We first prove c∗r < c∗r . For any c ∈ [0, cr0), p = P c
r,ε is a solution of (5.3) with f(q) = q(1 − q)

replaced by f
ε
(q), it corresponds to the trajectory passing through (1 − ε, 0), and p > 0 in (0, 1 − ε). 

Similarly to Lemma 5.3, we have P c
r,ε(0) > 0 for c ∈ [0, cr0). Moreover, because f

ε
(q) < f(q) for q ∈ (0, 1 −ε], 

P c
r,ε(1 − ε) = 0 and P c

r (1 − ε) > 0, we claim that P c
r,ε < P c

r for q ∈ (0, 1 − ε]. Otherwise, there exists a 
q1 ∈ (0, 1 − ε) such that P c

r,ε(q1) = P c
r (q1) = Q1 and

dP c
r,ε(q1)
dq <

dP c
r (q1)
dq .

On the other hand, by

dP c
r,ε(q1)
dq = c− q1

d
−

f
ε
(q1)

dQ1
,

dP c
r (q1)
dq = c− q1

d
− f(q1)

dQ1
,

we have

f
ε
(q1) = dQ1

[
c− q1

d
−

dP c
r,ε(q1)
dq

]
, f(q1) = dQ1

[
c− q1

d
− dP c

r (q1)
dq

]
,

it follows that f(q1) < f
ε
(q1), however, this contradicts to the fact that f

ε
(q) < f(q) for any q ∈ (0, 1 − ε]. 

Thus, P c
r,ε < P c

r for q ∈ (0, 1 − ε].
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Next, we prove that for any c ∈ [0, cr0), the following conclusion holds:

0 < P c
r,ε(0) < P c

r (0). (5.8)

Otherwise P c
r,ε(0) = P c

r (0). Define η(q) = P c
r (q) − P c

r,ε(q), we can see that η satisfies

η′(q) = − f(q)
P c
r (q) +

f
ε
(q)

P c
r,ε(q)

= 1
P c
rP

c
r,ε

(f
ε
P c
r − fP c

r,ε)

<
f
ε

P c
rP

c
r,ε

(P c
r − P c

r,ε) := a(q)η(q).

Since a(q) > 0 in (0, 1 − ε) and η(0) = 0, we have η(q) < 0 for q ∈ (0, 1 − ε). This contradicts to P c
r,ε < P c

r

for q ∈ (0, 1 − ε]!
Define

ζ(c) := P c
r,ε(0) − c

μ
.

By (5.8) we have ζ(c) < ζ(c) for c ∈ [0, cr0) and P cr0
r,ε(0) = 0. Since ζ(c) and ζ(c) are decreasing functions for 

c ∈ [0, cr0), and

ζ(cr0) = ζ(cr0) = −cr0
μ
.

By the definitions of c∗r and c∗r , we have ζ(c∗r) = ζ(c∗r) = 0, and hence, c∗r < c∗r . In a similar way, we can 
prove c∗r < c̄∗r .

Next we prove lim
ε→0

c∗r = c∗r . Since f
ε
(q) is monotonically decreasing in ε, by Lemma 5.1 we know that 

for any δ ∈ (0, 1), P c
r,ε(q) is monotonically decreasing in ε for q ∈ [0, 1 − δ], and P c

r,ε < P c
r . Therefore, for 

any δ ∈ (0, 1), P c
r,ε(q) converges to some function R(q) in [0, 1 − δ] as ε → 0. Since p = R(q) corresponds 

to a trajectory of (5.2) that lies in S and approaches (1, 0), we have R(q) ≡ P c
r . Consequently, if ε → 0, 

then P c
r,ε(0) → P c

r (0), which means lim
ε→0

c∗r = c∗r . In a similar way as above, we can prove lim
ε→0

c̄∗r = c∗r , 
c∗l < c∗l < c̄∗l , and lim

ε→0
c∗l = lim

ε→0
c̄∗l = c∗l . �

Theorem 5.8. Let (u, h, g) be a solution of (1.6) for which spreading happens, then the asymptotic spreading 
speed of the left free boundary h(t) is c∗r:

lim
t→∞

h(t)
t

= c∗r .

The asymptotic spreading speed of the right free boundary g(t) is c∗l :

lim
t→∞

−g(t)
t

= c∗l .

Proof. For any small ε > 0, define

ω(t, x) = q∗
r
(c∗rt− x), x ∈ [0, c∗rt].

Since (c∗r , q∗) satisfies

r
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{
q′′ − ( c−q

d )q′ + f
ε
(q)
d = 0, z ∈ (0,+∞),

q(0) = 0, q(+∞) = 1 − ε, q(z) > 0, q′(0) = c
μ , z ∈ (0,+∞),

then for t > 0 and x ∈ [0, c∗rt], we have

ω(t, x) ≤ 1 − ε, c∗r = −μωx(t, c∗rt).

Since spreading happens, we have lim
t→∞

u(t, x) = 1 locally uniformly in R. Then there exists a T > 0 such 

that

u(t, 0) > 1 − ε for t > T.

By comparison principle, (ω(t, x), c∗rt) is a lower solution of (1.6) on {(t, x) : x ∈ [0, c∗rt], t > T}, and for 
{(t, x) : x ∈ [0, c∗rt], t > T}, we have:

c∗rt ≤ h(t + T ), ω(t, x) ≤ u(t + T, x).

This implies that

lim inf
t→∞

h(t)
t

≥ c∗r . (5.9)

Solve the problem

{
η′(t) = f(η), t > 0,
η(0) = ‖u0‖∞ + 1.

We can get

η(t) =
(

1 − ‖u0‖∞
‖u0‖∞ + 1e

−t

)−1

.

By comparison principle we can see that u(t, x) ≤ η(t) in [g(t), h(t)] for t > 0. Therefore, for any small 
ε > 0, there exists a T̄ > 0 such that

u(t, x) ≤ 1 + ε

2 , x ∈ [0, h(t)], t ≥ T̄ .

Recall that (c̄∗r , q̄∗r ) is the unique solution of (5.1) with f(u) = u(1 − u) replaced by f̄ε(u), which satisfies 
μ(q̄∗r )′(0) = c̄∗r and q̄∗r (∞) = 1 + ε. Therefore, there exists x̄ > h(T̄ ) such that

u(T̄ , x) ≤ 1 + ε

2 < q̄∗r (x̄− x), x ∈ [0, h(T̄ )].

Let

w(t, x) = q̄∗r (c̄∗rt + x̄− x), x ∈ [0, c̄∗rt + x̄], t > 0.

We can see that (w, ̄c∗rt + x̄) is a upper solution of (1.6) over {(t, x) : x ∈ [0, h(t + T̄ )], t > 0}. Thus for 
{(t, x) : x ∈ [0, h(t + T̄ )], t > 0}, we have

h(t + T̄ ) ≤ c̄∗rt + x̄, u(t + T̄ , x) ≤ w(t, x).
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This implies

lim sup
t→∞

h(t)
t

≤ c̄∗r . (5.10)

Because (5.9) and (5.10) hold for any small ε > 0, we get

lim
t→∞

h(t)
t

= c∗r .

In a similar way as above, we can prove

lim
t→∞

−g(t)
t

= c∗l .

This completes the proof. �
Now we try to use phase plane analysis to compare c∗l and c∗r .
Let (P ) represent the problem (1.6) without convection term uux. The semi-wave corresponding to 

problem (P ) is

{
q′′ − ( c

d )q′ + q(1−q)
d = 0, z ∈ (0,+∞),

q(0) = 0, q(+∞) = 1, q(z) > 0, z ∈ (0,+∞).

Consider the problem

dp
dq = c

d
− q(1 − q)

dp
, p(1) = 0. (5.11)

According to the results of [9], we know that for any c ∈ [0, 2
√
d), (5.11) admits a solution (c, Pc(q)), and 

Pc(0) decreases to Pc0(0) = 0 as c increases to c0 = 2
√
d. Moreover, (5.11) has a unique solution (c∗, Pc∗(q))

satisfying Pc∗(0) = c∗

μ , where c∗ is the leftward and rightward spreading speed of problem (P ) for which 
spreading happens.

Theorem 5.9. For any μ > 0, we have c∗l < c∗ < c∗r. Particularly, if d ≥ 1
4 , then c∗l = c∗ = c∗r as μ → ∞.

Proof. Since P c
r (0), P c

l (0) and Pc(0) all depend on variable c, for c ∈ [0, 2
√
d) we define

γr(c) := P c
r (0), γl(c) := P c

l (0), γ(c) := Pc(0).

If d ≥ 1
4 and c = 2

√
d, then P c

r (0) = P c
l (0) = Pc(0) = 0. If 0 < d < 1

4 , since 2d + 1
2 > 2

√
d, then for c = 2

√
d

we have P c
l (0) = Pc(0) = 0 and P c

r (0) > 0.
Denote f(q) = q(1 − q), for any c ∈ [0, 2

√
d), similar to the proof of Lemma 5.1, we define

Pc(q) − P c
l (q) − f(q)

dPc(q)P c
l (q) (Pc(q) − P c

l (q)) = − q

d
.

Multiplying two sides of the last equation by

h(q) := exp

⎧⎨
⎩−

q∫
f(t)

dPc(t)P c
l (t)dt

⎫⎬
⎭

1−δ
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and defining Gl(q) = (Pc(q) − P c
l (q))h(q), we have

dG
dq = − q

d
h(q), q ∈ [0, 1).

Fix small δ > 0, let

K =
1− δ

2∫
1−δ

f(t)
dPc(t)P c

l (t)dt.

According the formulation of (Pc(1))′ and (P c
l (1))′ we know that P c

l (q) < Pc(q) for q ∈ [1 − δ
2 , 1). If K is 

divergent, then

lim
q→(1− δ

2 )−
Gl(q) = 0.

If K is convergent, then since − q
d < 0 for q ∈ (0, 1), we have

lim
q→(1− δ

2 )−
Gl(q) ≥ 0; dG

dq < 0, q ∈ (0, 1 − δ

2).

Thus G(q) > 0 for q ∈ [0, 1), which further implies that

Pc(q) > P c
l (q), q ∈ [0, 1).

In particular, we have

Pc(0) > P c
l (0). (5.12)

Similarly, consider

P c
r (q) − Pc(q) = − f(q)

dPc(q)P c
r (q) (P c

r (q) − Pc(q)) = − q

d
.

By similar discussion as above, we have

P c
r (0) > Pc(0). (5.13)

Since (5.12) and (5.13) hold for any c ∈ [0, 2
√
d), we can see that if c ∈ [0, 2

√
d), then

γl(c) < γ(c) < γr(c).

For any fixed μ > 0, these three curves intersect the straight line γ = c
μ at points (c∗l , 

c∗l
μ ), (c∗, c

∗

μ ) and 

(c∗r , 
c∗r
μ ). It is clearly that for any μ > 0,

c∗l < c∗ < c∗r .

Moreover, since γl
(
2
√
d
)

= γ
(
2
√
d
)

= γr

(
2
√
d
)

= 0 if d ≥ 1
4 , we have c∗l = c∗ = c∗r as μ → ∞ for 

d ≥ 1
4 . �
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