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The asymptotic behavior of the solution of an infinite set of Smoluchowski’s discrete 
coagulation–fragmentation–diffusion equations with non-homogeneous Neumann 
boundary conditions, defined in a periodically perforated domain, is analyzed. 
Our homogenization result, based on Nguetseng–Allaire two-scale convergence, is 
meant to pass from a microscopic model (where the physical processes are properly 
described) to a macroscopic one (which takes into account only the effective or 
averaged properties of the system). When the characteristic size of the perforations 
vanishes, the information given on the microscale by the non-homogeneous Neumann 
boundary condition is transferred into a global source term appearing in the limiting 
(homogenized) equations. Furthermore, on the macroscale, the geometric structure 
of the perforated domain induces a correction in the diffusion coefficients.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

This paper is devoted to the homogenization of an infinite set of Smoluchowski’s discrete coagulation–
fragmentation–diffusion equations in a periodically perforated domain. The system of evolution equations 
considered describes the dynamics of cluster growth, that is the mechanisms allowing clusters to coalesce 
to form larger clusters or break apart into smaller ones. These clusters can diffuse in space with a diffu-
sion constant which depends on their size. Since the size of clusters is not limited a priori, the system of 
reaction–diffusion equations that we consider consists of an infinite number of equations. The structure of 
the chosen equations, defined in a perforated medium with a non-homogeneous Neumann condition on the 
boundary of the perforations, is useful for investigating several phenomena arising in porous media [14], [8], 
[13] or in the field of biomedical research [11].

Typically, in a porous medium, the domain consists of two parts: a fluid phase where colloidal species 
or chemical substances, transported by diffusion, are dissolved and a solid skeleton (formed by grains or 
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pores) on the boundary of which deposition processes or chemical reactions take place. In recent years, 
the Smoluchowski equation has been also considered in biomedical research to model the aggregation and 
diffusion of β-amyloid peptide (Aβ) in the cerebral tissue, a process thought to be associated with the 
development of Alzheimer’s disease. One can define a perforated geometry, obtained by removing from a fixed 
domain (which represents the cerebral tissue) infinitely many small holes (the neurons). The production of 
Aβ in monomeric form from the neuron membranes can be modeled by coupling the Smoluchowski equation 
for the concentration of monomers with a non-homogeneous Neumann condition on the boundaries of the 
holes.

The results of this paper constitute a generalization of some of the results contained in [14], [11], by 
considering an infinite system of equations where both the coagulation and fragmentation processes are 
taken into account. Unlike previous theoretical works, where existence and uniqueness of solutions for an 
infinite system of coagulation–fragmentation equations (with homogeneous Neumann boundary conditions) 
have been studied [19], [15], we focus in this paper on a distinct aspect, that is, the averaging of the system 
of Smoluchowski’s equations over arrays of periodically-distributed microstructures.

Our homogenization result, based on Nguetseng–Allaire two-scale convergence [17], [1], is meant to pass 
from a microscopic model (where the physical processes are properly described) to a macroscopic one (which 
takes into account only the effective or averaged properties of the system).

1.1. Setting of the problem

Let Ω be a bounded open set in R3 with a smooth boundary ∂Ω. Let Y be the unit periodicity cell [0, 1[3
(having the paving property). We perforate Ω by removing from it a set Tε of periodically distributed holes 
defined as follows. Let us denote by T an open subset of Y with a smooth boundary Γ, such that T ⊂ IntY . 
Set Y ∗ = Y \ T which is called in the literature the solid or material part. We define τ(εT ) to be the set of 
all translated images of εT of the form ε(k + T ), k ∈ Z3. Then,

Tε := Ω ∩ τ(εT ).

Introduce now the periodically perforated domain Ωε defined by

Ωε = Ω \ T ε.

For the sake of simplicity, we make the following standard assumption on the holes [6], [9]: there exists 
a ‘security’ zone around ∂Ω without holes, that is the holes do not intersect the boundary ∂Ω, so that Ωε

is a connected set.
The boundary ∂Ωε of Ωε is then composed of two parts. The first one is the union of the boundaries of 

the holes strictly contained in Ω. It is denoted by Γε and is defined by

Γε := ∪
{
∂(ε(k + T )) | ε(k + T ) ⊂ Ω

}
.

The second part of ∂Ωε is its fixed exterior boundary denoted by ∂Ω. It is easily seen that (see [2], Eq. (3))

lim
ε→0

ε | Γε|2 = |Γ|2
|Ω|3
|Y |3

, (1)

where | · |N is the N -dimensional Hausdorff measure.
The previous definitions and Assumptions on Ω (and, T , Γ, Ωε, Tε, Γε, ∂Ω) will be denoted in the rest 

of the paper as Assumption 0.
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Throughout this paper, we will abuse notations by denoting by ε a sequence of positive real numbers 
which converges to zero. We will consider in the following a discrete coagulation–fragmentation–diffusion 
model for the evolution of clusters [3], [4]. Denoting by uε

i := uε
i(t, x) ≥ 0 the density of clusters with integer 

size i ≥ 1 at position x ∈ Ωε and time t ≥ 0, and by di > 0 the diffusion constant for clusters of size i, the 
corresponding system can be written as a family of equations in Ωε, the first one being:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂uε
1

∂t − d1 Δxu
ε
1 + uε

1
∑∞

j=1 a1,ju
ε
j =

∑∞
j=1 B1+j β1+j,1 u

ε
1+j in [0, T ] × Ωε,

∂uε
1

∂ν := ∇xu
ε
1 · n = 0 on [0, T ] × ∂Ω,

∂uε
1

∂ν := ∇xu
ε
1 · n = ε ψ(t, x, xε ) on [0, T ] × Γε,

uε
1(0, x) = U1 in Ωε.

(2)

We shall systematically make the following assumption on ψ and U1:

Assumption A. We suppose that ψ is a given (bounded) function satisfying the following conditions:

(i) ψ ∈ C1([0, T ]; B) with B = C1[Ω; C1
#(Y )] (C1

#(Y ) being the space of periodic C1 functions with period 
relative to Y ),

(ii) ψ(t = 0, x, xε ) = 0 for x ∈ Ωε,

and U1 is a constant such that 0 ≤ U1 ≤ ‖ψ‖L∞([0,T ];B).

In addition, if i ≥ 2, we introduce the following equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂uε
i

∂t
− di Δxu

ε
i = Qε

i + F ε
i in [0, T ] × Ωε,

∂uε
i

∂ν
:= ∇xu

ε
i · n = 0 on [0, T ] × ∂Ω,

∂uε
i

∂ν
:= ∇xu

ε
i · n = 0 on [0, T ] × Γε,

uε
i(0, x) = 0 in Ωε,

(3)

where the terms Qε
i , F ε

i due to coagulation and fragmentation, respectively, are given by

Qε
i := 1

2

i−1∑
j=1

ai−j,j u
ε
i−j u

ε
j −

∞∑
j=1

ai,j u
ε
i u

ε
j , (4)

F ε
i :=

∞∑
j=1

Bi+j βi+j,i u
ε
i+j −Bi u

ε
i . (5)

The parameters Bi, βi,j and ai,j , for integers i, j ≥ 1, represent the total rate Bi of fragmentation of clusters 
of size i, the average number βi,j of clusters of size j produced by fragmentation of a cluster of size i, and 
the coagulation rate ai,j of clusters of size i with clusters of size j. These parameters represent rates, so 
they are always nonnegative; single particles do not break up further, and mass should be conserved when 
a cluster breaks up into smaller pieces, so one always imposes the:

Assumption B. The coagulation and fragmentation coefficients satisfy:

ai,j = aj,i ≥ 0, βi,j ≥ 0, (i, j ≥ 1), (6)

B1 = 0, Bi ≥ 0, (i ≥ 2), (7)
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i =
i−1∑
j=1

j βi,j , (i ≥ 2). (8)

In order to prove the bounds presented in the sequel, we need to impose additional restrictions on the 
coagulation and fragmentation coefficients, together with constraints on the diffusion coefficients. They are 
summarized in the:

Assumption C. There exists C > 0, ζ ∈]0, 1] such that

aij ≤ C (i + j)1−ζ . (9)

Moreover, for each m ≥ 1, there exists γm > 0 such that

Bj βj,m ≤ γm am,j for j ≥ m + 1. (10)

Finally, there exist constants D0, D1 > 0 such that

∀i ∈ N− {0}, 0 < D0 ≤ di ≤ D1. (11)

Note that the assumption (9) on the coagulation coefficients aij is quite standard: it enables to show 
that no gelation occurs in the considered system of coagulation–fragmentation equations, provided that the 
diffusion coefficients satisfy the bound (11), cf. [4]. For a set of alternative assumptions (more stringent on 
the coagulation coefficients, but less stringent on the diffusion coefficients), see [3]. Finally, assumption (10)
is used in existence proofs for systems where both coagulation and fragmentation are considered, see [19].

1.2. Main statement and comments

Our aim is to study the homogenization of the set of equations (2)–(3) as ε → 0, i.e., to study the 
behavior of uε

i (i ≥ 1), as ε → 0, and obtain the equations satisfied by the limit. Since there is no obvious 
notion of convergence for the sequence uε

i (i ≥ 1) (which is defined on a varying set Ωε: this difficulty is 
specific to the case of perforated domains), we use the natural tool of two-scale convergence as elaborated 
by Nguetseng–Allaire, [17], [1].

We first state a proposition for the existence of strong solutions to system (2)–(3) for a given ε > 0:

Proposition 1.1. Let ε > 0 small enough be given, Ωε be a bounded regular open set of R3, and consider 
data satisfying Assumptions A, B and C. Then there exists a solution (uε

i)i≥1 ≥ 0 to system (2)–(3), which 
is strong in the following sense: For all T > 0 and i ≥ 1, uε

i ∈ L∞([0, T ] × Ωε), ∂uε
i

∂t ∈ L2([0, T ] × Ωε), 
∂2uε

i

∂xk∂xl
∈ L2([0, T ] × Ωε) for all k, l ∈ {1, .., 3}, and moreover 

∑∞
i=1 i u

ε
i ∈ L2([0, T ] × Ωε).

Our main statement shows that it is possible to homogenize the equations:

Theorem 1.2. We now introduce the notation ˜ for the extension by zero outside Ωε, and we denote by 
χ := χ(y) the characteristic function of Y ∗, and by uε

i the nonnegative strong solutions to system (2)–(3)
(for ε > 0 small enough).

Then the sequences ũε
i and ∇̃xuε

i (i ≥ 1) two-scale converge (up to a subsequence) to (t, x, y) �→
[χ(y) ui(t, x)] and (t, x, y) �→ [χ(y)(∇xui(t, x) + ∇yu

1
i (t, x, y))] (i ≥ 1), respectively, where the limiting 

functions [(t, x) �→ ui(t, x), (t, x, y) �→ u1
i (t, x, y)] (i ≥ 1) are weak solutions lying in L2(0, T ; H1(Ω)) ×

L2([0, T ] × Ω; H1
#(Y )/R) of the following two-scale homogenized systems:
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If i = 1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ
∂u1

∂t
(t, x) − d1 ∇x ·

[
A∇xu1(t, x)

]
+ θ u1(t, x)

∞∑
j=1

a1,j uj(t, x)

= θ
∞∑
j=1

B1+j β1+j,1 u1+j(t, x) + d1

∫
Γ

ψ(t, x, y) dσ(y) in [0, T ] × Ω,

[A∇xu1(t, x)] · n = 0 on [0, T ] × ∂Ω,

u1(0, x) = U1 in Ω;

(12)

If i ≥ 2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ ∂ui

∂t (t, x) − di ∇x ·
[
A∇xui(t, x)

]
+ θ ui(t, x)

∑∞
j=1 ai,j uj(t, x)

+θ Bi ui(t, x) = θ
2
∑i−1

j=1 aj,i−juj(t, x)ui−j(t, x)

+θ
∑∞

j=1 Bi+j βi+j,i ui+j(t, x) in [0, T ] × Ω,

[A∇xui(t, x)] · n = 0 on [0, T ] × ∂Ω,

ui(0, x) = 0 in Ω,

(13)

where θ =
∫
Y
χ(y)dy = |Y ∗| is the volume fraction of material, and A is a matrix (with constant coefficients) 

defined by

Ajk =
∫
Y ∗

(∇ywj + êj) · (∇ywk + êk) dy,

with êj being the j-th unit vector in R3, and (wj)1≤j≤3 the family of solutions of the cell problem
⎧⎪⎪⎨
⎪⎪⎩
−∇y · [∇ywj + êj ] = 0 in Y ∗,

(∇ywj + êj) · n = 0 on Γ,
y �→ wj(y) Y − periodic.

(14)

Finally,

u1
i (t, x, y) =

3∑
j=1

wj(y)
∂ui

∂xj
(t, x) (i ≥ 1).

1.3. Structure of the rest of the paper

The paper is organized as follows. In Section 2, we derive all the a priori estimates needed for the existence 
result and the two-scale homogenization result. In particular, in order to prove the uniform L2-bound 
on the infinite sums appearing in our set of Eqs. (2)–(3), we extend to the case of non-homogeneous 
Neumann boundary conditions a duality method first devised by M. Pierre and D. Schmitt [18] and largely 
exploited afterwards [3], [4]. Then, Section 3 is devoted to the proof of our main results on existence and 
on the homogenization of the infinite Smoluchowski discrete coagulation–fragmentation–diffusion equations 
in a periodically perforated domain. Finally, Appendix A and Appendix B are introduced to summarize, 
respectively, some fundamental inequalities in Sobolev spaces tailored for perforated media, and some basic 
results on the two-scale convergence method (used to perform the homogenization procedure).
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2. Estimates

We first obtain the a priori estimates for the sequences uε
i , ∇xu

ε
i , ∂tuε

i in [0, T ] ×Ωε, that are independent 
of ε. We start with an adapted duality lemma in the style of [18].

Lemma 2.1. Let Ωε be an open set satisfying Assumption 0. We suppose that Assumptions A, B, C hold. 
Then, for all T > 0, the strong solutions to system (2)–(3) obtained in Proposition 1.1 satisfy the following 
bound:

T∫
0

∫
Ωε

[ ∞∑
i=1

i uε
i(t, x)

]2

dt dx ≤ C, (15)

where C is a positive constant independent of ε.

Proof. Let us consider the following fundamental identity (or weak formulation) of the coagulation and 
fragmentation operators [3], [4]:

∞∑
i=1

ϕi Q
ε
i = 1

2

∞∑
i=1

∞∑
j=1

ai,j u
ε
i u

ε
j (ϕi+j − ϕi − ϕj), (16)

∞∑
i=1

ϕi F
ε
i = −

∞∑
i=2

Bi u
ε
i

(
ϕi −

i−1∑
j=1

βi,j ϕj

)
, (17)

which holds at the formal level for any sequence of numbers (ϕi)i≥1 such that the sums are defined.
By choosing ϕi := i above and thanks to (8), we have (still at the formal level) the mass conservation 

property for the operators Qε
i and F ε

i :

∞∑
i=1

iQε
i =

∞∑
i=1

i F ε
i = 0. (18)

Note that thanks to the fact (for a given ε) that 
∑∞

i=1 i u
ε
i ∈ L2([0, T ] × Ωε), it is possible (under Assump-

tion C) to show that 
∑∞

i=1 i ln(1 + i) uε
i ∈ L∞([0, T ]; L1(Ωε)), so that identity (18) rigorously holds. We 

refer to [4] for a complete proof.
Therefore, summing together Eq. (2) and Eq. (3) multiplied by i, taking into account the identity (18), 

we get the (local in x) mass conservation property for the system:

∂

∂t

[ ∞∑
i=1

i uε
i

]
− Δx

[ ∞∑
i=1

i di u
ε
i

]
= 0. (19)

Denoting

ρε(t, x) =
∞∑
i=1

i uε
i(t, x), (20)

and

Aε(t, x) = [ρε(t, x)]−1
∞∑

i di u
ε
i(t, x), (21)
i=1
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the following system can be derived from Eqs. (2), (3) and (19):
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ρε

∂t
− Δx(Aε ρε) = 0 in [0, T ] × Ωε,

∇x(Aε ρε) · n = 0 on [0, T ] × ∂Ω,

∇x(Aε ρε) · n = d1 ε ψ(t, x, x
ε
) on [0, T ] × Γε,

ρε(0, x) = U1 in Ωε.

(22)

We observe that (for all t ∈ [0, T ])

‖Aε(t, ·)‖L∞(Ωε) ≤ sup
i

di. (23)

Multiplying the first equation in (22) by the function wε defined by the following dual problem:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−
(
∂wε

∂t
+ Aε Δxw

ε

)
= Aε ρε in [0, T ] × Ωε,

∇xw
ε · n = 0 on [0, T ] × ∂Ω,

∇xw
ε · n = 0 on [0, T ] × Γε,

wε(T, x) = 0 in Ωε,

(24)

and integrating by parts on [0, T ] × Ωε, we end up with the identity

T∫
0

∫
Ωε

Aε(t, x) (ρε(t, x))2 dt dx =
∫
Ωε

wε(0, x) ρε(0, x) dx

+ε d1

T∫
0

∫
Γε

ψ(t, x, x
ε
)wε(t, x) dt dσε(x) := I1 + I2, (25)

where dσε is the measure on Γε.
Note that inf Aε ≥ infi di > 0. For a detailed explanation of the approximation process underlying the 

choice of multiplicator in the beginning of the duality lemma above, we refer to [18].
Let us now estimate the terms I1 and I2. From Hölder’s inequality we obtain

I1 =
∫
Ωε

wε(0, x) ρε(0, x) dx ≤ U1 |Ωε|1/2 ‖wε(0, ·)‖L2(Ωε). (26)

Applying once more Hölder’s inequality and using estimate (23), we get

∫
Ωε

|wε(0, x)|2 dx =
∫
Ωε

∣∣∣∣
T∫

0

√
Aε

∂t w
ε

√
Aε

dt

∣∣∣∣2 dx

≤ T ‖Aε‖L∞(Ωε)

T∫
0

∫
Ωε

(Aε)−1
∣∣∣∣ ∂∂twε(t, x)

∣∣∣∣2 dt dx

≤ T (sup
i

di)
T∫ ∫

(Aε)−1
∣∣∣∣ ∂∂twε(t, x)

∣∣∣∣2 dt dx. (27)

0 Ωε
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By exploiting the dual problem (24), Eq. (27) becomes

∫
Ωε

|wε(0, x)|2 dx ≤ T (sup
i

di)
T∫

0

∫
Ωε

(Aε)−1 |Aε Δxw
ε + Aε ρε|2 dt dx

≤ T (sup
i

di)
T∫

0

∫
Ωε

(Aε)−1
[
2 (Aε)2 (Δxw

ε)2 + 2 (Aε)2 (ρε)2
]
dt dx. (28)

Let us now estimate the first term on the right-hand side of (28). Multiplying the first equation in (24) by 
(Δxw

ε), we see that

∫
Ωε

(Δxw
ε)
(
∂wε

∂t

)
dx +

∫
Ωε

Aε (Δxw
ε)2 dx = −

∫
Ωε

Aε ρε (Δxw
ε) dx, (29)

and integrating by parts on Ωε, we get

− ∂

∂t

∫
Ωε

|∇xw
ε|2

2 dx +
∫
Ωε

Aε (Δxw
ε)2 dx = −

∫
Ωε

Aε ρε(Δxw
ε) dx. (30)

Then, integrating once more over the time interval [0, T ] and using Young’s inequality for the right-hand 
side of (30), one finds that

∫
Ωε

|∇xw
ε(0, x)|2 dx +

T∫
0

∫
Ωε

Aε (Δxw
ε)2 dt dx ≤

T∫
0

∫
Ωε

(ρε)2 Aε dt dx. (31)

Since the first term of the left-hand side of (31) is nonnegative, we conclude that

T∫
0

∫
Ωε

Aε (Δxw
ε)2 dt dx ≤

T∫
0

∫
Ωε

(ρε)2 Aε dt dx. (32)

Inserting Eq. (32) into Eq. (28), one obtains

∫
Ωε

|wε(0, x)|2 dx ≤ 4T (sup
i

di)
T∫

0

∫
Ωε

Aε (ρε)2 dt dx. (33)

Therefore, we end up with the estimate

I1 ≤ 2U1

[
|Ωε|T sup

i
di

]1/2 [ T∫
0

∫
Ωε

Aε (ρε)2 dt dx
]1/2

. (34)

By using Lemma A.1 of Appendix A and Hölder’s inequality, the term I2 in (25) can be rewritten as

I2 = ε d1

T∫ ∫
ψ(t, x, x

ε
)wε(t, x) dt dσε(x)
0 Γε
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≤
√

C1 C̃ d1

T∫
0

‖ψ(t)‖B
{[∫

Ωε

|wε|2 dx
]1/2

+ ε

[ ∫
Ωε

|∇xw
ε|2 dx

]1/2}
, (35)

where we have taken into account the following estimate (see Lemma B.7 of Appendix B):

ε

∫
Γε

|ψ(t, x, x
ε
)|2 dσε(x) ≤ C̃ ‖ψ(t)‖2

B (36)

(with C̃ being a positive constant independent of ε and B = C1[Ω; C1
#(Y )]). Note that we do not really 

need that ψ be of class C1 in the estimate above, continuity would indeed be sufficient.
Since ψ ∈ L∞([0, T ]; B), using the Cauchy–Schwarz inequality, Eq. (35) reads

I2 ≤ C d1 ‖wε‖L2(0,T ;L2(Ωε)) + C d1 ε ‖∇xw
ε‖L2(0,T ;L2(Ωε)) := J1 + J2, (37)

where C > 0 is a constant independent of ε. Let us now estimate the terms J1 and J2. Using Hölder’s 
inequality and estimate (23), by following the same strategy as the one leading to (33), we get

T∫
0

∫
Ωε

|wε(t, x)|2 dt dx =
T∫

0

∫
Ωε

∣∣∣∣
T∫
t

√
Aε

∂sw
ε(s, x)√
Aε

ds

∣∣∣∣2 dt dx

≤ T 2 (sup
i

di)
T∫

0

∫
Ωε

(Aε)−1
∣∣∣∣∂wε

∂t
(t, x)

∣∣∣∣2 dt dx (38)

≤ 4T 2 (sup
i

di)
T∫

0

∫
Ωε

Aε (ρε)2 dt dx,

so that

J1 = C d1

[ T∫
0

∫
Ωε

|wε(t, x)|2 dt dx
]1/2

≤ 2C d1 T (sup
i

di)1/2
[ T∫

0

∫
Ωε

Aε (ρε)2 dt dx
]1/2

. (39)

In order to estimate J2, we go back to Eq. (30). Integrating over [t, T ], one obtains

1
2

T∫
t

∫
Ωε

∂

∂s
|∇xw

ε(s, x)|2 ds dx−
T∫
t

∫
Ωε

Aε (Δxw
ε)2 ds dx

=
T∫
t

∫
Ωε

Aε ρε (Δxw
ε) ds dx. (40)

Young’s inequality applied to the right-hand side of Eq. (40) leads to
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∫
Ωε

|∇xw
ε(t, x)|2 dx +

T∫
t

∫
Ωε

Aε (Δxw
ε)2 ds dx ≤

T∫
t

∫
Ωε

Aε (ρε)2 ds dx. (41)

Taking into account that the second term on the left-hand side of (41) is nonnegative and integrating once 
more over time, we get

T∫
0

∫
Ωε

|∇xw
ε(t, x)|2 dt dx ≤ T

T∫
0

∫
Ωε

Aε (ρε)2 dt dx. (42)

Therefore, we conclude that

J2 = C d1 ε

[ T∫
0

∫
Ωε

|∇xw
ε(t, x)|2 dt dx

]1/2

≤ C d1 ε (T )1/2
[ T∫

0

∫
Ωε

Aε (ρε)2 dt dx
]1/2

. (43)

By combining (39) and (43), we end up with the estimate

I2 ≤ d1

[
2C T

√
sup
i

di + C ε
√
T

] [ T∫
0

∫
Ωε

Aε (ρε)2 dt dx
]1/2

. (44)

Hence, inserting estimates (34) and (44) in Eq. (25), one obtains

T∫
0

∫
Ωε

Aε(t, x) (ρε(t, x))2 dt dx ≤ C2
3 , (45)

where

C3 = max
(

2U1

√
|Ωε|T sup

i
di, d1 [2C T

√
sup
i

di + C
√
T ]

)
. (46)

Thus, recalling the definitions of Aε and ρε, and using the lower bound on the diffusion rates in Assumption C, 
the assertion of the Lemma immediately follows. �
Corollary 2.2. Let Ωε be an open set satisfying Assumption 0. Under Assumptions A, B and C, the following 
bound holds for all strong solutions of (2), (3), when i ≥ 1:

T∫
0

∫
Ωε

∣∣∣∣
∞∑
j=1

ai,j u
ε
j(t, x)

∣∣∣∣2 dt dx ≤ Ci, (47)

where Ci does not depend on ε (but may depend on i).
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Proof. Thanks to estimate (15), we see that

T∫
0

∫
Ωε

∣∣∣∣
∞∑
j=1

j uε
j(t, x)

∣∣∣∣2 dt dx ≤ C.

We conclude using estimate (9) of Assumption C. �
Remark 2.3. We first notice that in order to get Corollary 2.2 (and the results of this section which use it), 
it would be sufficient to assume that ai,j ≤ C (i + j). We will however need the more stringent estimate 
(9) of Assumption C in the proof of the homogenization result in next section. Note that this Assumption 
ensures that no gelation occurs in the coagulation–fragmentation process that we consider (cf. [4]).

We also could relax the hypothesis that the diffusion rates di be bounded below (and replace it by 
the assumption that di behaves as a (negative) power law), provided that the assumption on the growth 
coefficients ai,j be made more stringent (cf. [3]). In that situation, the duality lemma reads

T∫
0

∫
Ωε

[ ∞∑
i=1

i di u
ε
i(t, x)

] [ ∞∑
i=1

i uε
i(t, x)

]
dt dx ≤ C.

We now turn to L∞ estimates. We start with the

Lemma 2.4. Let Ωε be an open set satisfying Assumption 0. We also suppose that Assumptions A, B, and C
hold. We finally consider T > 0, and a strong solution uε

i (i ≥ 1), of (2)–(3). Then, the following estimate 
holds:

‖uε
1‖L∞(0,T ;L∞(Ωε)) ≤ |U1| + ‖uε

1‖L∞(0,T ;L∞(Γε)) + γ1 + 1. (48)

Proof. Let us test the first equation of (2) with the function

φ1 := p (uε
1)(p−1) p ≥ 2.

We stress that the function φ1 is strictly positive and continuously differentiable on [0, t] × Ω, for all t > 0. 
Integrating, the divergence theorem yields

t∫
0

ds

∫
Ωε

∂

∂s
(uε

1)p(s) dx + d1 p (p− 1)
t∫

0

ds

∫
Ωε

|∇xu
ε
1|2 (uε

1)(p−2) dx

= −p

t∫
0

ds

∫
Ωε

a1,1 (uε
1)(p+1) dx− p

t∫
0

ds

∫
Ωε

(uε
1)p

∞∑
j=2

a1,j u
ε
j dx

+p

t∫
0

ds

∫
Ωε

(uε
1)(p−1)

∞∑
j=2

Bj βj,1 u
ε
j dx + ε d1 p

t∫
0

ds

∫
Γε

ψ(s, x, x
ε
) (uε

1)(p−1) dσε(x)

≤ −p

t∫
0

ds

∫
Ωε

∞∑
j=2

[a1,j u
ε
1 −Bj βj,1]uε

j (uε
1)(p−1) dx

+ε d1 p

t∫
ds

∫
ψ(s, x, x

ε
) (uε

1)(p−1) dσε(x). (49)

0 Γε
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Exploiting Assumption C, we end up with the estimate

t∫
0

ds

∫
Ωε

∂

∂s
(uε

1)p(s) dx + d1 p (p− 1)
t∫

0

ds

∫
Ωε

|∇xu
ε
1|2 (uε

1)(p−2) dx

≤ ε d1 p

t∫
0

ds

∫
Γε

ψ(s, x, x
ε
) (uε

1)(p−1) dσε(x)

+p γp
1

t∫
0

ds

∫
Ωε

∞∑
j=2

a1,j u
ε
j dx. (50)

Hölder’s inequality applied to the right-hand side of (50), together with the duality estimate (47), leads to

∫
Ωε

(uε
1(t, x))p dx + d1 p (p− 1)

t∫
0

ds

∫
Ωε

|∇xu
ε
1|2 (uε

1)(p−2) dx

≤
∫
Ωε

Up
1 dx + ε d1 p ‖ψ‖L∞(0,T ;L∞(Γε))

t∫
0

ds

∫
Γε

(uε
1)(p−1) dσε(x) + C pγp

1 |Ωε|1/2. (51)

Since the second term of the left-hand side of (51) is nonnegative, one gets∫
Ωε

(uε
1(t, x))p dx ≤

∫
Ωε

Up
1 dx

+ε d1 p ‖ψ‖L∞(0,T ;L∞(Γε))

t∫
0

ds

∫
Γε

[1 + (uε
1)p] dσε(x) + C pγp

1 |Ωε|1/2

≤
∫
Ωε

Up
1 dx + ε d1 p ‖ψ‖L∞(0,T ;L∞(Γε)) T |Γε|

+ε d1 p ‖ψ‖L∞(0,T ;L∞(Γε))

t∫
0

ds

∫
Γε

(uε
1)p dσε(x) + C pγp

1 |Ω|1/2. (52)

Hence, we conclude that

sup
t∈[0,T ]

lim
p→∞

[ ∫
Ωε

(uε
1(t, x))p dx

]1/p

≤ |U1| + ‖uε
1‖L∞(0,T ;L∞(Γε)) + γ1 + 1. � (53)

The boundedness of uε
1 in L∞([0, T ] × Γε), uniformly in ε, can then be immediately deduced from 

Lemma 2.5 below.

Lemma 2.5. Let Ωε be an open set satisfying Assumption 0. We also suppose that Assumptions A, B, and C
hold. We finally consider T > 0, and a strong solution uε

i (i ≥ 1), of (2)–(3). Then, for ε > 0 small enough,

‖uε
1‖L∞(0,T ;L∞(Γε)) ≤ C, (54)

where C does not depend on ε.
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In order to establish Lemma 2.5, we will first need the following preliminary result, proven in [11]:

Proposition 2.6 ([11], Theorem 5.2, p. 730–732). Let Ωε be an open set satisfying Assumption 0, and T > 0. 
We consider a sequence wε := wε(t, x) ≥ 0 defined on [0, T ] × Ωε such that, for some k̂ > 0, β > 0, and all 
k ≥ k̂,

‖(wε − k)+‖2
Qε(T ) := sup

0≤t≤T

∫
Ωε

|(wε − k)+|2 dx +
T∫

0

dt

∫
Ωε

|∇[(wε − k)+]|2 dx (55)

≤ ε β k2
T∫

0

dt

∫
Γε

1{wε>k} dx.

Then

‖wε‖L∞([0,T ]×Γε) ≤ C(β, T,Ω) k̂, (56)

where the positive constant C(β, T, Ω) may depend on β, but not on k̂ and ε.

Proof of Lemma 2.5. Since this proof is close to the proof of Lemma 5.2 in [11], we only sketch it. Let T > 0
and k ≥ 0 be fixed. We define: u(k)

ε (t) := (uε
1(t) − k)+ for t ≥ 0. Its derivatives are

∂u
(k)
ε

∂t
= ∂uε

1
∂t

1{uε
1>k}, (57)

∇xu
(k)
ε = ∇xu

ε
1 1{uε

1>k}. (58)

Moreover,

u(k)
ε |∂Ω= (uε

1 |∂Ω −k)+, (59)

u(k)
ε |Γε

= (uε
1 |Γε

−k)+. (60)

We define k̂ := max(‖ψ‖L∞(0,T ;B), γ1), and consider k ≥ k̂. Then,

uε
1(0, x) = U1 ≤ k̂ ≤ k. (61)

For t ∈ [0, T1] with T1 ≤ T , we get therefore

1
2

∫
Ωε

|u(k)
ε (t)|2 dx =

t∫
0

d

ds

[
1
2

∫
Ωε

|u(k)
ε (s)|2 dx

]
ds

=
t∫

0

∫
Ωε

∂u
(k)
ε (s)
∂s

u(k)
ε (s) dxds. (62)

Taking into account Eq. (57) and Eq. (2), we obtain that for all s ∈ [0, T1]:

∫
∂u

(k)
ε (s)
∂s

u(k)
ε (s) dx =

∫
∂uε

1(s)
∂s

u(k)
ε (s) dx
Ωε Ωε
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=
∫
Ωε

[
d1 Δxu

ε
1 − uε

1

∞∑
j=1

a1,ju
ε
j +

∞∑
j=1

B1+j β1+j,1 u
ε
1+j

]
u(k)
ε (s) dx

= ε d1

∫
Γε

ψ

(
s, x,

x

ε

)
u(k)
ε (s) dσε(x) − d1

∫
Ωε

∇xu
ε
1(s) · ∇xu

(k)
ε (s) dx

−
∫
Ωε

(uε
1(s))2 a1,1 u

(k)
ε (s) dx−

∫
Ωε

uε
1(s)

∞∑
j=2

[
a1,j u

ε
j(s)

]
u(k)
ε (s) dx

+
∫
Ωε

[ ∞∑
j=2

Bj βj,1 u
ε
j(s)

]
u(k)
ε (s) dx

≤ ε d1

∫
Γε

ψ

(
s, x,

x

ε

)
u(k)
ε (s) dσε(x) − d1

∫
Ωε

∇xu
ε
1(s) · ∇xu

(k)
ε (s) dx

−
∫
Ωε

∞∑
j=2

[
a1,j u

ε
1(s) −Bj βj,1

]
uε
j(s)u(k)

ε (s) dx. (63)

By using Assumption C, Lemma A.1 and Young’s inequality, one has, remembering that k ≥ γ1,

∫
Ωε

∂u
(k)
ε (s)
∂s

u(k)
ε (s) dx ≤ ε d1

2

∫
Bε

k(s)

∣∣∣∣ψ
(
s, x,

x

ε

)∣∣∣∣2 dσε(x)

+C1 d1

2

∫
Aε

k(s)

|u(k)
ε (s)|2 dx− d1

(
1 − C1ε

2

2

)∫
Ωε

|∇xu
(k)
ε (s)|2 dx, (64)

where we denote by Aε
k(t) and Bε

k(t) the set of points in Ωε and on Γε, respectively, at which uε
1(t, x) > k. 

We observe that

|Aε
k(t)| ≤ |Ωε|, |Bε

k(t)| ≤ |Γε|,

where | · | is the (resp. 3-dimensional and 2-dimensional) Lebesgue measure. Inserting Eq. (64) into Eq. (62)
and varying over t, we end up with the estimate:

sup
0≤t≤T1

[
1
2

∫
Ωε

|u(k)
ε (t)|2 dx

]
+ d1

(
1 − C1 ε

2

2

) T1∫
0

dt

∫
Ωε

|∇xu
(k)
ε (t)|2 dx

≤ C1 d1

2

T1∫
0

dt

∫
Aε

k(t)

|u(k)
ε (t)|2 dx + ε d1

2

T1∫
0

dt

∫
Bε

k(t)

∣∣∣∣ψ
(
t, x,

x

ε

)∣∣∣∣2 dσε(x). (65)

Introducing the norm (as in the Prop. above):

‖u‖2
Qε(T ) := sup

0≤t≤T

∫
Ωε

|u(t)|2 dx +
T∫

0

dt

∫
Ωε

|∇u(t)|2 dx, (66)

inequality (65) can be rewritten as follows:
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min
{

1
2 , d1

(
1 − C1 ε

2

2

)}
‖u(k)

ε ‖2
Qε(T1) ≤

C1 d1

2

T1∫
0

dt

∫
Aε

k(t)

|u(k)
ε (t)|2 dx

+ε d1

2

T1∫
0

dt

∫
Bε

k(t)

∣∣∣∣ψ
(
t, x,

x

ε

)∣∣∣∣2 dσε(x). (67)

Let us estimate the right-hand side of (67). From Hölder’s inequality, we obtain

T1∫
0

dt

∫
Aε

k(t)

|u(k)
ε (t)|2 dx ≤ ‖u(k)

ε ‖2
Lr1 (0,T1;Lq1 (Ωε)) ‖1Aε

k
‖
Lr′1 (0,T1;Lq′1 (Ωε))

, (68)

with r′1 = r1
r1 − 1 , q′1 = q1

q1 − 1 , r1 = 2 r1, q1 = 2 q1, where r1 ∈ (2, ∞) and q1 ∈ (2, 6) have been chosen in 

such a way that

1
r1

+ 3
2 q1

= 3
4 .

In particular, r′1, q′1 < ∞, so that (68) yields

T1∫
0

dt

∫
Aε

k(t)

|u(k)
ε (t)|2 dx ≤ ‖u(k)

ε ‖2
Lr1 (0,T1;Lq1 (Ωε)) |Ω|1/q′1 T 1/r′1

1 . (69)

If we choose (for ε > 0 small enough)

T
1/r′1
1 <

min{1, d1}
2C1d1c2

|Ω|−1/q′1 ≤
min

{
1
2 , d1

(
1 − C1 ε2

2

)}
C1d1c2

|Ω|−1/q′1 ,

then from Lemma A.3 (i) (and c being the constant appearing in formula (118) of this Lemma) it follows 
that

C1 d1

2

T1∫
0

dt

∫
Aε

k(t)

|u(k)
ε (t)|2 dx ≤ 1

2 min
{

1
2 , d1

(
1 − C1 ε

2

2

)}
‖u(k)

ε ‖2
Qε(T1). (70)

Analogously, from Hölder’s inequality, we have (remember that k ≥ k̂)

ε d1

2

T1∫
0

dt

∫
Bε

k(t)

∣∣∣∣ψ
(
t, x,

x

ε

)∣∣∣∣2 dσε(x) ≤ ε d1 k
2

2

(
k̂2

k2

)
‖1Bε

k
‖L1(0,T1;L1(Γε))

≤ ε d1 k
2

2

T1∫
0

dt |Bε
k(t)|. (71)

Thus, estimate (67) yields



L. Desvillettes, S. Lorenzani / J. Math. Anal. Appl. 467 (2018) 1100–1128 1115
‖u(k)
ε ‖2

Qε(T1) ≤ ε β k2
T1∫
0

dt |Bε
k(t)|, (72)

with β := max(1, d1) + 1/2.
Hence, using Proposition 2.6 for wε := uε

1, we obtain

‖uε
1‖L∞(0,T1;L∞(Γε)) ≤ C(Ω, β, T1) k̂,

where the positive constant C(Ω, β, T1) does not depend on ε or k̂.
The same argument can be repeated on the cylinder [T1, 2 T1] with k ≥ k̂1 := max(γ1, C(Ω, β, T1) ̂k), 

yielding

‖uε
1‖L∞(0,2 T1;L∞(Γε)) ≤ C(Ω, β, T1) k̂1.

Thanks to a straightforward induction, one gets the bound for uε
1 in L∞(0, T ; L∞(Γε)). �

We finally write the following L∞ bound for all uε
i :

Lemma 2.7. Let Ωε be an open set satisfying Assumption 0. We also suppose that Assumptions A, B, and C
hold. We finally consider T > 0, and a strong solution uε

i (i ∈ N − {0}) of (2), (3). Then, the following 
uniform with respect to ε > 0 (small enough) estimate holds for all i ∈ N − {0}:

‖uε
i‖L∞(0,T ;L∞(Ωε)) ≤ Ki, (73)

where K1 is given by Lemma 2.4, estimate (48) and Lemma 2.5, estimate (54), and, for i ≥ 2,

Ki = 1 +

[∑i−1
j=1 aj,i−jKjKi−j

]
(Bi + ai,i)

+ γi. (74)

Proof. The Lemma can be proved directly by induction following the proof reported in [19] (Lemma 2.2, 
p. 284). Since we have a zero initial condition for the system (3), we have chosen a function slightly different 
from the one used in [19] to test the i-th equation of (3), namely

φi := p (uε
i)(p−1) p ≥ 2.

We stress that the functions φi are strictly positive and continuously differentiable on [0, t] ×Ω, for all t > 0.
Therefore, multiplying the i-th equation in system (3) by φi and reorganizing the terms appearing in the 

sums, we can write the estimate

||uε
i ||pLp(Ωε) + di p (p− 1)

t∫
0

∫
Ωε

|∇xu
ε
i |2 (uε

i)p−2dxds

≤
t∫

0

∫
Ωε

[
1
2

i−1∑
j=1

ai−j,j u
ε
j u

ε
i−j − ai,i |uε

i |2 −Bi u
ε
i

]
p (uε

i)p−1dxds

−
t∫ ∫ [ i−1∑

j=1
ai,j u

ε
i u

ε
j +

∞∑
j=i+1

(ai,j uε
i −Bj βj,i) uε

j

]
p (uε

i)p−1dxds.
0 Ωε
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We now work using an induction on i. Supposing that we already know that ‖uε
j‖L∞(0,T ;L∞(Ωε)) ≤ Kj for 

all j < i, and using assumption C, the previous estimate leads to

||uε
i ||pLp(Ωε) ≤

t∫
0

∫
Ωε

[
1
2

i−1∑
j=1

ai−j,j Kj Ki−j − ai,i |uε
i |2 −Bi u

ε
i

]
p (uε

i)p−1dxds

+
t∫

0

∫
Ωε

∞∑
j=i+1

ai,j (−uε
i + γi) uε

j p (uε
i)p−1dxds =: I1 + I2.

Then, optimizing w.r.t. uε
i ,

I1 ≤
[( i−1∑

j=1
ai−j,j Kj Ki−j

)p

(Bi + ai,i)1−p

]
|Ωε|T + p ai,i |Ωε|T,

and

I2 ≤
t∫

0

∫
Ωε

∞∑
j=i+1

ai,j (γi − uε
i)uε

j 1{uε
i≤γi} p (uε

i)p−1dxds

≤ p γp
i

t∫
0

∫
Ωε

( ∞∑
j=i+1

ai,j u
ε
j

)
dxds

≤ C pγp
i (|Ωε|T )1/2,

where Cauchy–Schwarz inequality and the duality Lemma (more precisely Eq. (47)) have been exploited.
Using these estimates for bounding ||uε

i ||Lp(Ωε) and letting p → ∞, we end up with the desired esti-
mate. �

We end up this section with bounds for the derivatives of uε
i .

Lemma 2.8. Let Ωε be an open set satisfying Assumption 0. We also suppose that Assumptions A, B, and C
hold. We finally consider T > 0, and a strong solution uε

i (i ∈ N − {0}, ε > 0 small enough) of (2), (3). 
Then, the family ∂tuε

i is bounded in L2([0, T ] ×Ωε), and the family ∇xu
ε
i is bounded in L∞([0, T ]; L2(Ωε)), 

uniformly in ε (but not in i).

Proof. Since this proof is close to the proof of Lemma 5.9 in [11], we only sketch it.
Case i = 1: Let us multiply the first equation in (2) by the function ∂tuε

1(t, x). Integrating, the divergence 
theorem yields

∫
Ωε

∣∣∣∣∂uε
1(t, x)
∂t

∣∣∣∣2 dx + d1

2

∫
Ωε

∂

∂t
(|∇xu

ε
1(t, x)|2) dx

= ε d1

∫
Γε

ψ

(
t, x,

x

ε

)
∂uε

1
∂t

dσε(x) −
∫
Ωε

uε
1

( ∞∑
j=1

a1,j u
ε
j

)
∂uε

1
∂t

dx

+
∫ ( ∞∑

j=1
B1+j β1+j,1 u

ε
1+j

)
∂uε

1
∂t

dx. (75)

Ωε
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Using Young’s inequality and exploiting the boundedness of uε
1 in L∞(0, T ; L∞(Ωε)), one gets

C1

∫
Ωε

∣∣∣∣∂uε
1(t, x)
∂t

∣∣∣∣2 dx + d1

2

∫
Ωε

∂

∂t
(|∇xu

ε
1(t, x)|2) dx

≤ ε d1

∫
Γε

ψ

(
t, x,

x

ε

)
∂uε

1
∂t

dσε(x) + C2

∫
Ωε

∣∣∣∣
∞∑
j=1

a1,j u
ε
j

∣∣∣∣2 dx

+C3

∫
Ωε

∣∣∣∣
∞∑
j=2

Bj βj,1 u
ε
j

∣∣∣∣2 dx, (76)

where C1, C2 and C3 are positive constants which do not depend on ε. Integrating over [0, t] with t ∈ [0, T ], 
thanks to estimate (47) and Assumption C, we end up with the estimate

C1

t∫
0

ds

∫
Ωε

∣∣∣∣∂uε
1

∂s

∣∣∣∣2 dx + d1

2

∫
Ωε

|∇xu
ε
1(t, x)|2 dx ≤ C4

+ ε d1

∫
Γε

ψ

(
t, x,

x

ε

)
uε

1(t, x) dσε(x)

− ε d1

t∫
0

ds

∫
Γε

∂

∂s
ψ

(
s, x,

x

ε

)
uε

1(s, x) dσε(x),

(77)

since ψ
(
t = 0, x, x

ε

)
≡ 0.

Applying once more Young’s inequality and taking into account estimate (36) and Lemma A.1, estimate 
(77) can be rewritten as follows

C1

t∫
0

ds

∫
Ωε

∣∣∣∣∂uε
1

∂s

∣∣∣∣2 dx + d1

2 (1 − ε2 C5)
∫
Ωε

|∇xu
ε
1(t, x)|2 dx (78)

≤ C6 + C1
d1

2 ε2
t∫

0

∫
Ωε

|∇xu
ε
1(s, x)|2 dxds,

where the positive constants C1, C5, C6 do not depend on ε, since ψ ∈ L∞(0, T ; B), uε
1 is bounded in 

L∞(0, T ; L∞(Ωε)), and the following inequality holds:

ε

∫
Γε

∣∣∣∣∂tψ
(
t, x,

x

ε

)∣∣∣∣2 dσε(x) ≤ C7 ‖∂tψ(t)‖2
B ≤ C8, (79)

with C7 and C8 which do not depend on ε. Then, using Gronwall’s lemma,

‖∂tuε
1‖2

L2(0,T ;L2(Ωε)) ≤ C, (80)

and
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‖∇xu
ε
1‖2

L∞(0,T ;L2(Ωε)) ≤ C, (81)

where C ≥ 0 is a constant which does not depend on ε.
Case i ≥ 2: Let us multiply the first equation in (3) by the function ∂tuε

i(t, x). Integrating, the divergence 
theorem yields

∫
Ωε

∣∣∣∣∂uε
i(t, x)
∂t

∣∣∣∣2 dx + di
2

∫
Ωε

∂

∂t
(|∇xu

ε
i(t, x)|2) dx

= 1
2

∫
Ωε

( i−1∑
j=1

ai−j,j u
ε
i−j u

ε
j

)
∂uε

i

∂t
dx−

∫
Ωε

uε
i

( ∞∑
j=1

ai,j u
ε
j

)
∂uε

i

∂t
dx

+
∫
Ωε

( ∞∑
j=1

Bi+j βi+j,i u
ε
i+j

)
∂uε

i

∂t
dx−

∫
Ωε

Bi u
ε
i

∂uε
i

∂t
dx. (82)

Using Young’s inequality and exploiting the boundedness of uε
i in L∞(0, T ; L∞(Ωε)), one gets

C1

∫
Ωε

∣∣∣∣∂uε
i(t, x)
∂t

∣∣∣∣2 dx + di
2

∫
Ωε

∂

∂t
(|∇xu

ε
i(t, x)|2) dx

≤ C2 + C3

∫
Ωε

∣∣∣∣
∞∑
j=1

ai,j u
ε
j

∣∣∣∣2 dx + C4

∫
Ωε

∣∣∣∣
∞∑

j=i+1
Bj βj,i u

ε
j

∣∣∣∣2 dx, (83)

where C1, C2, C3 and C4 are positive constants which do not depend on ε.
Integrating over [0, t] with t ∈ [0, T ], thanks to estimate (47) and Assumption C, we end up with the 

estimate

C1

t∫
0

ds

∫
Ωε

∣∣∣∣∂uε
i

∂s

∣∣∣∣2 dx + di
2

∫
Ωε

|∇xu
ε
i(t, x)|2 dx ≤ C5, (84)

with C5 ≥ 0 independent of ε (but not on i). We conclude that

‖∂tuε
i‖2

L2(0,T ;L2(Ωε)) ≤ C, (85)

and

‖∇xu
ε
i‖2

L∞(0,T ;L2(Ωε)) ≤ C, (86)

where C ≥ 0 is a constant independent of ε (but not on i). �
This concludes the section devoted to a priori estimates which are uniform w.r.t. the homogenization 

parameter ε.

3. Proof of the main results

3.1. Existence of solutions for a given ε > 0

We first explain how to get a proof of existence, for a given ε > 0, of a (strong) solution to system (2)–(3), 
as stated in Proposition 1.1.
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Proof of Proposition 1.1. We introduce a finite size truncation of this system, which writes (once the nota-
tion of the dependence w.r.t. ε of the unknowns has been eliminated for readability):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂un
1

∂t − d1 Δxu
n
1 + un

1
∑n

j=1 a1,ju
n
j =

∑n−1
j=1 B1+j β1+j,1 u

n
1+j in [0, T ] × Ωε,

∂un
1

∂ν := ∇xu
n
1 · n = 0 on [0, T ] × ∂Ω,

∂un
1

∂ν := ∇xu
n
1 · n = ε ψ(t, x, xε ) on [0, T ] × Γε,

un
1 (0, x) = U1 in Ωε,

(87)

and, if i = 2, .., n,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂un
i

∂t − di Δxu
n
i = Qn

i + Fn
i in [0, T ] × Ωε,

∂un
i

∂ν := ∇xu
n
i · n = 0 on [0, T ] × ∂Ω,

∂un
i

∂ν := ∇xu
n
i · n = 0 on [0, T ] × Γε,

un
i (0, x) = 0 in Ωε,

(88)

where the truncated coagulation and breakup kernels Qn
i , Fn

i write

Qn
i := 1

2

i−1∑
j=1

ai−j,j u
n
i−j u

n
j −

n∑
j=1

ai,j u
n
i u

n
j , (89)

Fn
i :=

n−i∑
j=1

Bi+j βi+j,i u
n
i+j −Bi u

n
i . (90)

We then observe that the duality lemma (that is, Lemma 2.1 and Corollary 2.2) is still valid in this 
setting (with a proof that exactly follows the proof written above), so that we end up with the a priori
estimate

T∫
0

∫
Ωε

∣∣∣∣
n∑

i=1
i un

i (t, x)
∣∣∣∣2 dtdx ≤ C, (91)

where C is a constant which does not depend on n.
Using now a proof analogous to that of Lemmas 2.4 to 2.7, we can obtain the a priori estimate

||un
i ||L∞([0,T ]×Ωε) ≤ Ci, (92)

where Ci > 0 is a constant which also does not depend on n (but may depend on i).
At this point, we use standard theorems for systems of reaction–diffusion equations in order to get the 

existence and uniqueness of a smooth nonnegative solution to system (87)–(88) (for a given n ∈ N − {0}). 
We refer to [10], Prop. 3.2 p. 97 and Thm. 3.3 p. 105 for a complete description of a case with a slightly 
different boundary condition (homogeneous Neumann instead of inhomogeneous Neumann) and a different 
right-hand side (but having the same crucial property, that is leading to an L∞ a priori bound on the 
components of the unknown).

We now briefly explain how to pass to the limit when n → ∞ in such a way that the limit of un
i satisfies 

the system (2)–(3). First, we notice that thanks to the duality estimate (91), each component sequence 
(un

i )n≥i is bounded in L2([0, T ] × Ωε). As a consequence, we can extract a subsequence from (un
i )n≥i still 
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denoted by (un
i )n≥i (the extraction is done diagonally in such a way that it gives a subsequence which is 

common for all i) which converges in L2([0, T ] × Ωε) weakly towards some function ui ∈ L2([0, T ] × Ωε). 
Using then the a priori estimates (92) and (91), we see that

‖∂u
n
i

∂t
− diΔxu

n
i ‖L2([0,T ]×Ωε) ≤ Ci, (93)

where Ci may depend on i but not on n, so that the convergence in fact holds for a.e. (t, x) ∈ [0, T ] × Ωε. 
This is sufficient to pass to the limit in system (87)–(88) and get a weak solution (ui)i≥1 to system (2)–(3). 
Moreover, thanks to estimates (92) and (93), this solution is strong, in the sense that for all T > 0, 
uε
i ∈ L∞([0, T ] ×Ωε), ∂u

ε
i

∂t ∈ L2([0, T ] ×Ωε), ∂2uε
i

∂xk∂xl
∈ L2([0, T ] ×Ωε) for all k, l ∈ {1, .., 3}. Moreover, thanks 

to estimate (91), 
∑∞

i=1 i u
ε
i ∈ L2([0, T ] × Ωε). �

3.2. Homogenization

We now present the proof of our main Theorem 1.2, in which we use the solutions to system (2)–(3) for a 
given ε > 0 obtained in Proposition 1.1, and the (uniform w.r.t. ε) a priori estimates of Section 2, in order 
to perform the homogenization process corresponding to the limit ε → 0.

We recall that we use the notation ˜ for the extension by 0 to Ω of functions defined on Ωε, and the 
notation χ for the characteristic function of Y ∗.

Proof of Theorem 1.2. In view of Lemmas 2.7 and 2.8, the sequences ũε
i , ∇̃xuε

i and 
∂̃uε

i

∂t
(i ≥ 1) are bounded 

in L2([0, T ] × Ω). Using Proposition B.2 and Proposition B.4, and following [1], Thm 2.9, p. 1498 which is 
specially designed for perforated domains (in the elliptic case, but the transfer to the parabolic case is easy) 
they two-scale converge, up to a subsequence, respectively, to functions of the form: [(t, x, y) �→ χ(y) ui(t, x)], 

[(t, x, y) �→ χ(y) (∇xui(t, x) + ∇yu
1
i (t, x, y))], and 

[
(t, x, y) → χ(y) ∂ui

∂t
(t, x)

]
, for i ≥ 1.

In the formulas above, ui ∈ L2(0, T ; H1(Ω)) and u1
i ∈ L2([0, T ] × Ω; H1

#(Y )/R).
In the case when i = 1, let us multiply the first equation of (2) by the test function (t, x) �→ φε(t, x, xε ), 

where

φε(t, x, y) := φ(t, x) + ε φ1(t, x, y), (94)

with φ ∈ C1([0, T ] × Ω), and φ1 ∈ C1([0, T ] × Ω; C∞
# (Y )). Integrating, the divergence theorem yields

T∫
0

∫
Ωε

∂uε
1

∂t
φε(t, x,

x

ε
) dt dx + d1

T∫
0

∫
Ωε

∇xu
ε
1 · ∇x

[
(t, x) �→ φε(t, x,

x

ε
)
]
dt dx

+
T∫

0

∫
Ωε

uε
1

∞∑
j=1

a1,j u
ε
j φε(t, x,

x

ε
) dt dx = ε d1

T∫
0

∫
Γε

ψ

(
t, x,

x

ε

)
φε(t, x,

x

ε
) dt dσε(x)

+
T∫

0

∫
Ωε

∞∑
j=1

B1+j β1+j,1 u
ε
1+j φε(t, x,

x

ε
) dt dx. (95)

Using the two-scales convergences described above, we can directly pass to the limit in the two first terms 
of this weak formulation. It is also easy to pass to the limit in the fourth one thanks to Proposition B.6.

The passage to the limit in the last infinite sum can be performed thanks to Assumption C, the duality 
Lemma 2.1 (estimate (15)), and Cauchy–Schwarz inequality (used in the last inequality below), indeed
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∣∣∣∣
T∫

0

∫
Ωε

∞∑
j=K

B1+j β1+j,1 u
ε
1+j φε dt dx

∣∣∣∣

≤
T∫

0

∫
Ωε

∞∑
j=K

γ1 a1,1+j uε
1+j dt dx ||φε||∞

≤ C

T∫
0

∫
Ωε

∞∑
j=K

(1 + j)1−ζ uε
1+j dt dx

≤ C K−ζ ,

where C does not depend on ε.
The infinite sum in the third term of identity (95) can be treated in the same way, using moreover 

Lemma 2.7, indeed

∣∣∣∣
T∫

0

∫
Ωε

uε
1

∞∑
j=K

a1,j u
ε
j φε dt dx

∣∣∣∣

≤ C

T∫
0

∫
Ωε

∞∑
j=K

a1,j uε
j dt dx

≤ C K−ζ ,

where C does not depend on ε.
Note that the passage to the limit in quadratic terms like uε

1 u
ε
j can be performed thanks to Prop. B.3 

(and the remark after this proposition), as done in [11].
Finally, the passage to the limit leads to the variational formulation:

T∫
0

∫
Ω

∫
Y ∗

∂u1

∂t
(t, x)φ(t, x) dt dx dy

+d1

T∫
0

∫
Ω

∫
Y ∗

[∇xu1(t, x) + ∇yu
1
1(t, x, y)] · [∇xφ(t, x) + ∇yφ1(t, x, y)] dt dx dy

+
T∫

0

∫
Ω

∫
Y ∗

u1(t, x)
∞∑
j=1

a1,j uj(t, x)φ(t, x) dt dx dy

= d1

T∫
0

∫
Ω

∫
Γ

ψ(t, x, y)φ(t, x) dt dx dσ(y)

+
T∫

0

∫
Ω

∫
Y ∗

∞∑
j=1

B1+j β1+j,1 u1+j(t, x)φ(t, x) dt dx dy. (96)

Thanks to an integration by parts, we see that (96) can be put in the strong form (associated to the 
following homogenized system):
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−∇y · [d1(∇xu1(t, x) + ∇yu
1
1(t, x, y))] = 0 in [0, T ] × Ω × Y ∗, (97)

[∇xu1(t, x) + ∇yu
1
1(t, x, y)] · n = 0 on [0, T ] × Ω × Γ, (98)

θ
∂u1

∂t
(t, x) −∇x ·

[
d1

∫
Y ∗

(∇xu1(t, x) + ∇yu
1
1(t, x, y))dy

]

+ θ u1(t, x)
∞∑
j=1

a1,j uj(t, x) = d1

∫
Γ

ψ(t, x, y) dσ(y)

+ θ
∞∑
j=1

B1+j β1+j,1 u1+j(t, x) in [0, T ] × Ω,

(99)

[ ∫
Y ∗

(∇xu1(t, x) + ∇yu
1
1(t, x, y)) dy

]
· n = 0 on [0, T ] × ∂Ω, (100)

where

θ =
∫
Y

χ(y)dy = |Y ∗|

is the volume fraction of material. Furthermore, a direct passage to the limit shows that

u1(0, x) = U1 in Ω.

Eqs. (97) and (98) can be reexpressed as follows:

�yu
1
1(t, x, y) = 0 in [0, T ] × Ω × Y ∗, (101)

∇yu
1
1(t, x, y) · n = −∇xu1(t, x) · n on [0, T ] × Ω × Γ. (102)

Then, u1
1 satisfying (101)–(102) can be written as

u1
1(t, x, y) =

3∑
j=1

wj(y)
∂u1

∂xj
(t, x), (103)

where (wj)1≤j≤3 is the family of solutions of the cell problem:

⎧⎪⎪⎨
⎪⎪⎩
−∇y · [∇ywj + êj ] = 0 in Y ∗,

(∇ywj + êj) · n = 0 on Γ,
y �→ wj(y) Y − periodic,

(104)

and êj is the j-th unit vector of the canonical basis of R3.
By using the relation (103) in Eqs. (99) and (100), the system (12) can be immediately derived (cf. [1]).
We now consider i ≥ 2, and multiply the first equation of (3) by the same test function (t, x) �→ φε(t, x, xε )

as previously (with φε defined by (94)). We get

T∫ ∫
∂uε

i

∂t
φε(t, x,

x

ε
) dt dx + di

T∫ ∫
∇xu

ε
i · ∇x

[
(t, x) �→ φε(t, x,

x

ε
)
]
dt dx
0 Ωε 0 Ωε



L. Desvillettes, S. Lorenzani / J. Math. Anal. Appl. 467 (2018) 1100–1128 1123
= −
T∫

0

∫
Ωε

uε
i

∞∑
j=1

ai,j u
ε
j φε(t, x,

x

ε
) dt dx + 1

2

T∫
0

∫
Ωε

i−1∑
j=1

aj,i−j u
ε
j u

ε
i−j φε(t, x,

x

ε
) dt dx

+
T∫

0

∫
Ωε

∞∑
j=1

Bi+j βi+j,i u
ε
i+j φε(t, x,

x

ε
) dt dx−

T∫
0

∫
Ωε

Bi u
ε
i φε(t, x,

x

ε
) dt dx. (105)

The passage to the two-scale limit can be done exactly as in the case when uε
1 was concerned, and leads 

to

T∫
0

∫
Ω

∫
Y ∗

∂ui

∂t
(t, x)φ(t, x) dt dx dy

+di

T∫
0

∫
Ω

∫
Y ∗

[∇xui(t, x) + ∇yu
1
i (t, x, y)] · [∇xφ(t, x) + ∇yφ1(t, x, y)] dt dx dy

= −
T∫

0

∫
Ω

∫
Y ∗

ui(t, x)
∞∑
j=1

ai,j uj(t, x)φ(t, x) dt dx dy

+1
2

T∫
0

∫
Ω

∫
Y ∗

i−1∑
j=1

aj,i−j uj(t, x)ui−j(t, x)φ(t, x) dt dx dy

+
T∫

0

∫
Ω

∫
Y ∗

∞∑
j=1

Bi+j βi+j,i ui+j(t, x)φ(t, x) dt dx dy

−
T∫

0

∫
Ω

∫
Y ∗

Bi ui(t, x)φ(t, x) dt dx dy. (106)

An integration by parts shows that (106) is a variational formulation associated to the following homog-
enized system:

−∇y · [di(∇xui(t, x) + ∇yu
1
i (t, x, y))] = 0 in [0, T ] × Ω × Y ∗, (107)

[∇xui(t, x) + ∇yu
1
i (t, x, y)] · n = 0 on [0, T ] × Ω × Γ, (108)

θ
∂ui

∂t
(t, x) −∇x ·

[
di

∫
Y ∗

(∇xui(t, x) + ∇yu
1
i (t, x, y))dy

]

= −θ ui(t, x)
∞∑
j=1

ai,j uj(t, x) + θ

2

i−1∑
j=1

aj,i−juj(t, x)ui−j(t, x)

+ θ
∞∑
j=1

Bi+j βi+j,i ui+j(t, x) − θ Bi ui(t, x) in [0, T ] × Ω,

(109)

[ ∫
Y ∗

(∇xui(t, x) + ∇yu
1
i (t, x, y)) dy

]
· n = 0 on [0, T ] × ∂Ω, (110)

where θ still is the volume fraction of material. Once again, a direct passage to the limit shows that
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ui(0, x) = 0 in Ω.

Eqs. (107) and (108) can be reexpressed as follows:

�yu
1
i (t, x, y) = 0 in [0, T ] × Ω × Y ∗, (111)

∇yu
1
i (t, x, y) · n = −∇xui(t, x) · n on [0, T ] × Ω × Γ. (112)

Then, u1
i satisfying (111)–(112) can be written as

u1
i (t, x, y) =

3∑
j=1

wj(y)
∂ui

∂xj
(t, x), (113)

where (wj)1≤j≤3 is the family of solutions of the cell problem (104).
By using the relation (113) in Eqs. (109) and (110), the system (13) can be immediately derived (cf. [1]).
This concludes the proof of our main Theorem (Theorem 1.2). �
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Appendix A

We introduce in this Appendix some results related to the theory of perforated domains, proven in 
previous works. In the three Lemmas stated below, Ωε is a perforated domain satisfying Assumption 0.

Lemma A.1. There exists a constant C1 > 0 which does not depend on ε, such that when v ∈ Lip (Ωε), then

‖v‖2
L2(Γε) ≤ C1

[
ε−1

∫
Ωε

|v|2 dx + ε

∫
Ωε

|∇xv|2 dx
]
. (114)

Proof. The inequality (114) can be easily obtained from the standard trace theorem by means of a scaling 
argument, cf. [2]. �
Lemma A.2. There exists a family of linear continuous extension operators

Pε : W 1,p(Ωε) → W 1,p(Ω)

and a constant C > 0 which does not depend on ε, such that

Pεv = v in Ωε,

and ∫
|Pεv|pdx ≤ C

∫
|v|pdx , (115)
Ω Ωε
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∫
Ω

|∇(Pεv)|pdx ≤ C

∫
Ωε

|∇v|pdx, (116)

for each v ∈ W 1,p(Ωε) and for any p ∈ (1, +∞).

Proof. For the proof of this Lemma, see for instance [5]. �
As a consequence of the existence of those extension operators, one can obtain Sobolev inequalities in 

W 1,p(Ωε) with constants which do not depend on ε.

Lemma A.3 (Anisotropic Sobolev inequalities in perforated domains). (i) For q1 and r1 satisfying the con-
ditions

⎧⎨
⎩

1
r1

+ 3
2q1

= 3
4 ,

r1 ∈ [2,∞], q1 ∈ [2, 6] ,
(117)

the following estimate holds (for v ∈ H1(0, T ; L2(Ωε)) ∩ L2(0, T ; H1(Ωε))):

‖v‖Lr1 (0,T ;Lq1 (Ωε)) ≤ c ‖v‖Qε(T ), (118)

where c > 0 does not depend on ε, and (we recall that)

‖v‖2
Qε(T ) := sup

0≤t≤T

∫
Ωε

|v(t)|2 dx +
T∫

0

dt

∫
Ωε

|∇v(t)|2 dx; (119)

(ii) For q2 and r2 satisfying the conditions

⎧⎨
⎩

1
r2

+ 1
q2

= 3
4 ,

r2 ∈ [2,∞], q2 ∈ [2, 4] ,
(120)

the following estimate holds (for v ∈ H1(0, T ; L2(Ωε)) ∩ L2(0, T ; H1(Ωε))):

‖v‖Lr2 (0,T ;Lq2 (Γε)) ≤ c ε−
3
2+ 2

q2 ‖v‖Qε(T ), (121)

where c > 0 does not depend on ε.

Proof. For the proof of this Lemma, see [11]. �
Appendix B

We present in this Appendix some results on two-scale convergence (cf. [1], [2], [17], [7], [12], [16]). Up 
to Proposition B.5, Ω is a bounded open set of R3 with smooth boundary, and Y = [0, 1[3. Then, for 
Proposition B.6 and Lemma B.7, Ωε is a perforated domain satisfying Assumption 0.

We start with the:
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Definition B.1. A sequence of functions vε in L2([0, T ] ×Ω) two-scale converges to v0 ∈ L2([0, T ] ×Ω ×Y ) if

lim
ε→0

T∫
0

∫
Ω

vε(t, x)φ
(
t, x,

x

ε

)
dt dx =

T∫
0

∫
Ω

∫
Y

v0(t, x, y)φ(t, x, y) dt dx dy, (122)

for all φ ∈ C1([0, T ] × Ω; C∞
# (Y )).

We recall then the following classical Proposition:

Proposition B.2. If vε is a bounded sequence in L2([0, T ] × Ω), then there exists a function v0 := v0(t, x, y)
in L2([0, T ] × Ω × Y ) such that, up to a subsequence, vε two-scale converges to v0.

Then, the following Proposition is useful for obtaining the limit of the product of two two-scale convergent 
sequences.

Proposition B.3. Let vε be a sequence of functions in L2([0, T ] × Ω) which two-scale converges to a limit 
v0 ∈ L2([0, T ] × Ω × Y ). Suppose furthermore that

lim
ε→0

T∫
0

∫
Ω

|vε(t, x)|2 dt dx =
T∫

0

∫
Ω

∫
Y

|v0(t, x, y)|2 dt dx dy. (123)

Then, for any sequence wε in L2([0, T ] ×Ω) that two-scale converges to a limit w0 ∈ L2([0, T ] ×Ω × Y ), we 
get the limit

lim
ε→0

T∫
0

∫
Ω

vε(t, x)wε(t, x)φ
(
t, x,

x

ε

)
dt dx

=
T∫

0

∫
Ω

∫
Y

v0(t, x, y)w0(t, x, y)φ(t, x, y) dt dx dy,

(124)

for all φ ∈ C1([0, T ] × Ω; C∞
# (Y )).

Remark. Note that, in the setting of this paper, identity (123) can be obtained by standard computations, 
used in problems with perforated domains, thanks to the existence of the extension operators Pε (stated in 
Lemma A.2).

The next Propositions yield a characterization of the two-scale limits of gradients of bounded sequences vε. 
This result is crucial for applications to homogenization problems.

Proposition B.4. Let vε be a bounded sequence in L2(0, T ; H1(Ω)) that converges weakly to a limit v := v(t, x)
in L2(0, T ; H1(Ω)). Then, vε also two-scale converges to v, and there exists a function v1 := v1(t, x, y) in 
L2([0, T ] ×Ω; H1

#(Y )/R) such that, up to extraction of a subsequence, ∇vε two-scale converges to ∇xv(t, x) +
∇yv1(t, x, y).

Proposition B.5. Let vε be a bounded sequence in L2([0, T ] ×Ω), such that ε∇xv
ε also is a bounded sequence 

in L2([0, T ] × Ω). Then, there exists a function v1 := v1(t, x, y) in L2([0, T ] × Ω; H1
#(Y )/R) such that, up 

to extraction of a subsequence, vε and ε∇vε respectively two-scale converge to v1 and ∇yv1.
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The main result of two-scale convergence can be generalized to the case of sequences defined in 
L2([0, T ] × Γε).

Proposition B.6. Let vε be a sequence in L2([0, T ] × Γε) such that

ε

T∫
0

∫
Γε

|vε(t, x)|2 dt dσε(x) ≤ C, (125)

where C is a positive constant, independent of ε. There exist a subsequence (still denoted by ε) and a 
two-scale limit v0(t, x, y) ∈ L2([0, T ] × Ω; L2(Γ)) such that vε(t, x) two-scale converges to v0(t, x, y) in the 
sense that

lim
ε→0

ε

T∫
0

∫
Γε

vε(t, x)φ
(
t, x,

x

ε

)
dt dσε(x) =

T∫
0

∫
Ω

∫
Γ

v0(t, x, y)φ(t, x, y) dt dx dσ(y) (126)

for any function φ ∈ C1([0, T ] × Ω; C∞
# (Y )).

The proof of Proposition B.6 is very similar to the usual two-scale convergence theorem [1]. It relies on 
the following lemma [2]:

Lemma B.7. Let B = C[Ω; C#(Y )] be the space of continuous functions φ(x, y) on Ω×Y which are Y -periodic 
in y. Then, B is a separable Banach space which is dense in L2(Ω; L2(Γ)), and such that any function 
φ(x, y) ∈ B satisfies

ε

∫
Γε

∣∣∣∣φ(x, x
ε
)
∣∣∣∣2 dσε(x) ≤ C ‖φ‖2

B, (127)

and

lim
ε→0

ε

∫
Γε

∣∣∣∣φ
(
x,

x

ε

)∣∣∣∣2 dσε(x) =
∫
Ω

∫
Γ

|φ(x, y)|2 dx dσ(y). (128)
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