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In this paper we study the stability and moment boundedness of the solutions to the 
linear age-structured model with randomly-varying immigration or harvesting. For 
this model, we study stability and the asymptotic behavior of the first moment and 
the results are identical to that of the corresponding deterministic age-structured 
model and the linear age-structured model with the white noise. However, the 
stability and boundedness of the second moment are complicated and depend 
on the randomly-varying immigration or harvesting. For the linear age-structured 
model with randomly-varying immigration or harvesting, we directly prove that 
the second moment M(t, a) is bounded for 0 ≤ t < a. When t > a ≥ 0, 
using the Laplace transform in the framework of Itô–Doob integral, we give the 
explicit expressions of the second moments M(t, 0) and M(t, a) and then establish 
the sufficient conditions for the second moments to be bounded and unbounded, 
respectively, through the supreme of the real parts of all characteristic roots. We 
also study the asymptotic behaviors of the second moments M(t, 0) and M(t, a) and 
give the sufficient condition for stochastically ultimately boundedness of the model.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The age-structured population model was first proposed by Sharpe and Lotka [20] in 1911 and it has 
received a great deal of attention all the time. In 1926, introducing the age variable into the fertility and 
mortality rates, McKendrick [15] obtained the following age-structured population model

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u(t, a)
∂t

+ ∂u(t, a)
∂a

= −μ(a)u(t, a), t ≥ 0, a ≥ 0,

u(t, 0) =
∫ +∞
0 β(a)u(t, a)da, t ≥ 0,

u(0, a) = u0(a), a ≥ 0,

(1.1)
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where u(t, a) denotes the population at time t in the age-interval (a, a + da); μ(a) > 0 is the death-rate at 
age a per unit population of age a; β(a) > 0 is the average number of newborn per unit time produced by 
an individual of age a.

In 1974, Gurtin and MacCamy [8] established the first nonlinear continuous model and their model had 
been extensively studied both in specific situations and in possible generalizations ([2,5,7,11,22]).

As well known, stochastic perturbations influence population dynamics. Two common methods [1] to 
introduce the effect of environmental variability into a population model are: to assume that the parameters 
in the model satisfy mean-reverting stochastic processes or to assume that the parameters are linear functions 
of Gaussian white noise processes.

In 2001, Chowdhury and Allen [6] derived a continuous-time age-structured model perturbed by the white 
noise. In 2004, for the general nonlinear age-structured model with the white noise, Zhang et al. [23] studied 
the existence and uniqueness of the strong solution and obtained some criteria for the exponential stability. 
We ([25,26]) also considered the stability and moment boundedness for age-structured model perturbed by 
the white noise. The results of stochastic dynamics on the stochastic age-structured models driven by the 
white noises can also be referred to [4,18,19,24].

Allen [1] studied the two methods of introducing the effect of environmental variability into a mathemati-
cal model analytically and computationally and showed that mean-reverting processes are more conceptually 
and biologically realistic than the white noise process in modeling biological systems. The classic mean-
reverting processes are the Ornstein–Uhlenbeck processes. Thus the stochastic processes driven by the 
Ornstein–Uhlenbeck processes (i.e., colored noises) are attracting much attention ([10,13,14]).

Many authors incorporated the harvesting ([9,16,17]) or immigration ([21]) of the population into linear 
age-structured population model (1.1) to describe the dynamics of an age-structured population with the 
extraneous gain or loss term S(t, a). The mathematical model for this special phenomenon has the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u(t, a)
∂t

+ ∂u(t, a)
∂a

= −μ(a)u(t, a) + S(t, a), t ≥ 0, a ≥ 0,

u(t, 0) =
∫ +∞
0 β(a)u(t, a)da, t ≥ 0,

u(0, a) = u0(a), a ≥ 0.

(1.2)

In [9,16,21], this term S(t, a) = E(t)u(t, a) is deterministic and dependent of population size u(t, a), but it 
is not assumed that S(t, a) depends on u(t, a) in [17].

In model (1.2), if the term S(t, a) is assumed that S(t, a) = ση(t), where σ is a constant and η(t) is 
the colored noise (usually with zero mean and positive variance, see Section 2) modeled by the Ornstein–
Uhlenbeck process [3], then the loss or gain term S(t, a) is independent of age a and population size u(t, a). 
And S(t, a) = ση(t) represents an age-independent randomly varying extraneous loss/gain term, for ex-
ample, randomly varying immigration/emigration or harvesting/propagation of the population. Thus the 
special phenomenon models a very specific type of biological processes with a gain/loss term that is asymp-
totically normal with zero mean and positive variance.

Motivated by the above, in this paper, we are going to study the stochastic stability and moment bound-
edness of the solutions for the linear age-structured model with a randomly-varying gain/loss term

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u(t, a)
dt

+ ∂u(t, a)
∂a

= −μ(a)u(t, a) + ση(t), t ≥ 0, a ≥ 0,

u(t, 0) =
+∞∫
0

β(a)u(t, a)da, t ≥ 0,

u(0, a) = u (a), a ≥ 0.
0
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In the real age-structured model, the maximum age of the population is a positive real number amax < +∞, 
hence u(t, 0) =

∫ amax

0 β(a)u(t, a)da. But in this paper, for the convenience of study and calculation, we still 
assume amax = +∞ (as in [9,16,17,21]) (the detailed reasons see Remark 2.2).

Rest of the paper is organized as follows. In Section 2, we study stabilities and the asymptotic behaviors of 
the first moments Eu(t, 0) and Eu(t, a) (t > a) for the linear age-structured model with a randomly-varying 
gain/loss term. The stabilities of the first moments are identical to that of the corresponding deterministic 
age-structured model and the linear age-structured model with the additive white noise. However, the 
stability and boundedness of the second moment are complicated and depend on the randomly-varying 
gain/loss term. In Section 3, for the linear age-structured model with the randomly-varying gain/loss term, 
when 0 ≤ t < a, we can directly prove that the second moment M(t, a) is bounded; when t > a ≥ 0, using 
the Laplace transform in the sense of Itô–Doob integral [12], we first give the explicit expressions of the 
second moments M(t, 0) and M(t, a), and then establish the sufficient conditions for the boundedness and 
unboundedness of the second moments M(t, 0) and M(t, a), respectively, through the supreme of the real 
parts of all characteristic roots. We also study the asymptotic behaviors of the second moments M(t, 0) and 
M(t, a) and show that linear age-structured model with the randomly-varying immigration or harvesting is 
stochastically ultimately bounded when the supreme of the real parts of all characteristic roots is negative 
in Section 3.

2. The first moment stability of the linear age-structured model with the randomly-varying immigration 
or harvesting

In this paper, we consider that the linear age-structured model with the randomly-varying immigration 
or harvesting (i.e., perturbed by the additive colored noise)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u(t, a)
dt

+ ∂u(t, a)
∂a

= −μ(a)u(t, a) + ση(t), t ≥ 0, a ≥ 0,

u(t, 0) =
+∞∫
0

β(a)u(t, a)da, t ≥ 0,

u(0, a) = u0(a), a ≥ 0,

(2.1)

where μ(a) = μ (0 < μ < 1), β(a) = e−βa (β > 0), u0 ∈ L1 ([0,+∞), [0,+∞)). Here η(t) is the colored noise 
modeled by the Ornstein–Uhlenbeck process, which satisfies the Langevin equation

dη(t)
dt

= −γη(t) + ρξ(t) (2.2)

where γ > 0, ρ > 0 are constants and ξ(t) is a scalar white noise process with E(ξ(t)) = 0 and E(ξ(t)ξ(s)) =
δ(t − s).

The corresponding stochastic differential equation of Eq. (2.2) is

dη(t) = −γη(t)dt + ρdW (t), t > 0, η(0) = η0, (2.3)

where W (t) is a one dimensional Wiener process, η0 is a random variable independent of Wiener process 
W (t) and E(η0) = 0, E(η2

0) > 0. Eq. (2.3) has a unique solution

η(t) = η0e
−γt + ρ

t∫
0

e−γ(t−s)dW (s). (2.4)

Thus the Ornstein–Uhlenbeck process η(t) is stationary, E(η(t)) = E(η0) = 0 and its correlation function
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E(η(t)η(s)) =
(
E(η2

0) − ρ2

2γ

)
e−γ(t+s) + ρ2

2γ e
−γ|t−s| (2.5)

is exponentially decreasing.
From Theorem 2.1.1 in [2] and the characteristics, model (2.1) has a unique solution satisfying

u(t, a) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u0(a− t)e−μt + σ

t∫
0

e−μ(t−s)η(s)ds, 0 ≤ t ≤ a,

u(t− a, 0)e−μa + σ

t∫
t−a

e−μ(t−s)η(s)ds, 0 ≤ a < t,

(2.6)

hence

E(u(t, a)) =

⎧⎨
⎩

u0(a− t)e−μt, 0 ≤ t ≤ a,

E(u(t− a, 0))e−μa, 0 ≤ a < t.
(2.7)

From (2.7), we find that Eu(t, a) depends on Eu(t, 0), thus we first compute Eu(t, 0).

Since u(t, 0) =
+∞∫
0

β(a)u(t, a)da, from (2.6), we have

u(t, 0) =
t∫

0

β(a)u(t, a)da +
+∞∫
t

β(a)u(t, a)da

=
t∫

0

β(a)u(t− a, 0)e−μada + σ

t∫
0

β(a)
t∫

t−a

e−μ(t−s)η(s)dsda

+e−μt

+∞∫
t

β(a)u0(a− t)da + σ

+∞∫
t

β(a)da
t∫

0

e−μ(t−s)η(s)ds. (2.8)

Define

J(t) = σ

t∫
0

β(a)
t∫

t−a

e−μ(t−s)η(s)dsda + e−μt

+∞∫
t

β(a)u0(a− t)da

+σ

+∞∫
t

β(a)da
t∫

0

e−μ(t−s)η(s)ds.

Then

u(t, 0) =
t∫

0

e−(μ+β)(t−s)u(s, 0)ds + J(t), t ≥ 0.

Thus we get



Z. Wang / J. Math. Anal. Appl. 471 (2019) 423–447 427
Eu(t, 0) =
t∫

0

e−(μ+β)(t−s)
Eu(s, 0)ds + E

(
J(t)

)
, (2.9)

where

E
(
J(t)

)
= e−μt

+∞∫
t

β(a)u0(a− t)da = e−(μ+β)t
+∞∫
0

e−βau0(a)da ≥ 0

and lim
t→+∞

E
(
J(t)

)
= 0.

Taking the Laplace transform on the both sides of (2.9), we have

L (Eu(t, 0)) (λ) =
+∞∫
0

e−λt

⎛
⎝ t∫

0

e−(μ+β)(t−s)
Eu(s, 0)ds

⎞
⎠ dt +

+∞∫
0

e−λt
E
(
J(t)

)
dt

= L (Eu(t, 0)) (λ)L
(
e−(μ+β)t

)
(λ) + L

(
E
(
J(t)

))
(λ),

that is,

L (Eu(t, 0)) (λ) = L(EJ)(λ)
1 − L(e−(μ+β)t)(λ)

=

+∞∫
0

e−βau0(a)da

λ + μ + β − 1 .

The above equation implies that the characteristic equation for Eu(t, 0) is

L(e−(μ+β)t)(λ) = 1, (2.10)

which is the same as the characteristic equations (2.5) and (3.6) in [26] for u(t, 0) in the deterministic and 
stochastic age-structured model when μ(a) = μ, β(a) = e−βa and A = T = +∞.

Let

α1 = sup
{

Re(λ) : L(e−(μ+β)t)(λ) = 1, λ ∈ C

}
. (2.11)

Then α1 = 1 − μ − β (it is identical to formula (3.7) in [26]) and

L (Eu(t, 0)) (λ) = 1
λ− α1

+∞∫
0

e−βau0(a)da.

By the inverse Laplace transform, we have

Eu(t, 0) = eα1t

+∞∫
0

e−βau0(a)da, t ≥ 0. (2.12)

Thus we know that when α1 < 0, the first moment Eu(t, 0) of the boundary u(t, 0) satisfies lim
t→+∞

Eu(t, 0) = 0; 
when α1 = 0, the first moment Eu(t, 0) is a positive constant; when α1 > 0, lim Eu(t, 0) = +∞.
t→+∞
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From (2.7) and (2.12), we obtain

E(u(t, a)) =

⎧⎨
⎩

u0(a− t)e−μt, 0 ≤ t ≤ a,

e−μaeα1t
∫ +∞
0 e−βau0(a)da, 0 ≤ a < t.

(2.13)

Hence from (2.13), when 0 ≤ t ≤ a, the first moment Eu(t, a) of the solution u(t, a) of model (2.1) is 
bounded. For any fixed a ≥ 0 and t > a ≥ 0, we have the following results of the asymptotic behavior for 
Eu(t, a).

Theorem 2.1. For any fixed a ≥ 0, when t > a ≥ 0, the first moment Eu(t, a) of u(t, a) satisfies

(1) when α1 < 0, lim
t→+∞

Eu(t, a) = 0;
(2) when α1 > 0, lim

t→+∞
Eu(t, a) = +∞;

(3) when α1 = 0, Eu(t, a) = e−μa
∫ +∞
0 e−βau0(a)da is bounded.

Thus the asymptotic behaviors of Eu(t, 0) and Eu(t, a) are separately identical with the age-structured 
model perturbed by the white noise (see Lemma 3.3 and Theorem 3.4 in [26]). Therefore for the asymptotic 
behaviors of u(t, 0) and u(t, a) in the sense of the first moments, the colored noise perturbation and the 
white noise perturbation have the same effect on the linear age-structured model.

When σ = 0 in model (2.1), it is a deterministic equation and its stationary solution u(t; a) ≡ 0 of 
Eq. (2.1) is locally asymptotically stable if α1 = 1 − μ − β < 0 (see Theorem 2.4 in [26]). The result (1) 
of Theorem 2.1 indicates that for any fixed a ≥ 0, when α1 < 0, the population u(t, a) is extinct in mean 
when t → +∞. Thus for the deterministic age-structured model, the dynamics in the sense of mean have 
not been changed drastically by the randomly-varying gain/loss term (i.e., the additive colored noise).

In the end of this section, we explain the reasons that we assume the ideal maximum age amax = +∞.

Remark 2.2. In the real age-structured model, the maximum age of the population is a positive real number 
amax < +∞, hence u(t, 0) =

∫ amax

0 β(a)u(t, a)da. Then from (2.6), when 0 ≤ t ≤ amax,

u(t, 0) =
t∫

0

e−(μ+β)au(t− a, 0)da + σ

t∫
0

e−βa

t∫
t−a

e−μ(t−s)η(s)dsda

+e−μt

amax∫
t

e−βau0(a− t)da + σ

amax∫
t

e−βada

t∫
0

e−μ(t−s)η(s)ds; (2.14)

when t > amax,

u(t, 0) =
amax∫
0

e−(μ+β)au(t− a, 0)da + σ

amax∫
0

e−βa

t∫
t−a

e−μ(t−s)η(s)dsda

=
t∫

t−amax

e−(μ+β)(t−a)u(a, 0)da + σ

amax∫
0

e−βa

t∫
t−a

e−μ(t−s)η(s)dsda

=
t∫
e−(μ+β)(t−a)u(a, 0)da− e−(μ+β)amax

t−amax∫
e−(μ+β)(t−amax−a)u(a, 0)da
0 0
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+σ

amax∫
0

e−βa

t∫
t−a

e−μ(t−s)η(s)dsda. (2.15)

In (2.14), the maximum of t is amax, we can not study the asymptotic behaviors of u(t, 0) and u(t, a) when 
t → +∞. The first two terms of (2.15) are convolutions, thus we can apply the same method (Laplace 
transform) to study E(u(t, 0)) as in the case of (2.8).

Therefore for the convenience of study and calculation, we assume amax = +∞ (as in [9,16,17,21]) in 
this paper.

3. Boundedness of the second moment for the linear age-structured model with the randomly-varying 
immigration or harvesting

In this section, we will investigate the boundedness and the asymptotic behavior of the second moment 
for the linear age-structured model with a randomly-varying gain/loss term (2.1).

From (2.6) and (2.7), we have

u(t, a) − Eu(t, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ

t∫
0

e−μ(t−s)η(s)ds, 0 ≤ t ≤ a,

[u(t− a, 0) − Eu(t− a, 0)] e−μa

+σ

t∫
t−a

e−μ(t−s)η(s)ds, 0 ≤ a < t.

(3.1)

When 0 ≤ t ≤ a, the second moment of the solution u(t, a) of model (2.1) is

M(t, a) � E(u(t, a) − Eu(t, a))2 = σ2
E

⎛
⎝ t∫

0

e−μ(t−s)η(s)ds

⎞
⎠

2

. (3.2)

When t > a ≥ 0, the second moment of the solution u(t, a) of model (2.1) is

M(t, a) = E(u(t, a) − Eu(t, a))2

= e−2μaM(t− a, 0) + σ2
E

⎛
⎝ t∫
t−a

e−μ(t−s)η(s)ds

⎞
⎠

2

+2σe−μa
E

⎛
⎝[u(t− a, 0) − Eu(t− a, 0)

] t∫
t−a

e−μ(t−s)η(s)ds

⎞
⎠ , (3.3)

where M(t, 0) � E [u(t, 0) − Eu(t, 0)]2.

3.1. The second moment M(t, a) of the solution u(t, a) when t ≤ a

When 0 ≤ t ≤ a, from (2.5), applying Itô integral, some calculation yields

0 ≤ M(t, a) = E

⎛
⎝σ

t∫
e−μ(t−s)η(s)ds

⎞
⎠

2

= σ2
t∫
e−μ(t−s)

t∫
e−μ(t−l)

E (η(s)η(l)) dlds

0 0 0
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= σ2
(
E(η2

0) − ρ2

2γ

)⎛⎝ t∫
0

e−μ(t−s)e−γsds

⎞
⎠

2

+σ2ρ2

2γ

t∫
0

e−μ(t−s)
t∫

0

e−μ(t−l)e−γ|s−l|dlds. (3.4)

Thus when t ≤ a, we have the following results on the boundedness for the second moment M(t, a) of model 
(2.1).

Theorem 3.1. For every fixed a ≥ 0, when t ≤ a, the second moment M(t, a) of model (2.1) is bounded and

(1) when μ �= γ,

M(t, a) = σ2
(
E(η2

0) − ρ2

2γ

) (
e−μt − e−γt

)2
(μ− γ)2

+ σ2ρ2

2γ

[
1

μ(μ + γ) + e−2μt

μ(μ− γ) − 2e−(μ+γ)t

μ2 − γ2

]
;

(2) when μ = γ,

M(t, a) = σ2
(
E(η2

0) − ρ2

2γ

)
t2e−2γt + σ2ρ2

2γ

[
1

2γ2 −
(
t

γ
+ 1

2γ2

)
e−2γt

]
.

Proof. (1) When μ �= γ, we obtain

⎛
⎝ t∫

0

e−μ(t−s)e−γsds

⎞
⎠

2

= e−2μt

⎛
⎝ t∫

0

e(μ−γ)sds

⎞
⎠

2

=
(
e−μt − e−γt

)2
(μ− γ)2

(3.5)

and

t∫
0

e−μ(t−l)e−γ|s−l|dl =
s∫

0

e−μ(t−l)e−γ(s−l)dl +
t∫

s

e−μ(t−l)e−γ(l−s)dl

= e−μte−γs

s∫
0

e(μ+γ)ldl + e−μteγs
t∫

s

e(μ−γ)ldl

= 2γe−μ(t−s)

γ2 − μ2 − e−μte−γs

μ + γ
+ e−γ(t−s)

μ− γ
.

Hence when μ �= γ, we get

t∫
0

e−μ(t−s)
t∫

0

e−μ(t−l)e−γ|s−l|dlds =
t∫

0

e−μ(t−s)

(
2γe−μ(t−s)

γ2 − μ2 − e−μte−γs

μ + γ
+ e−γ(t−s)

μ− γ

)
ds

= 1
μ(μ + γ) + e−2μt

μ(μ− γ) − 2e−(μ+γ)t

μ2 − γ2 . (3.6)

Thus from (3.4)–(3.6), when μ �= γ, we obtain
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M(t, a) = σ2
(
E(η2

0) − ρ2

2γ

) (
e−μt − e−γt

)2
(μ− γ)2

+ σ2ρ2

2γ

[
1

μ(μ + γ) + e−2μt

μ(μ− γ) − 2e−(μ+γ)t

μ2 − γ2

]
,

which implies that the second moment M(t) of model (2.1) is bounded for every fixed a ≥ 0 and t ≤ a.
(2) When μ = γ, we have

⎛
⎝ t∫

0

e−μ(t−s)e−γsds

⎞
⎠

2

= e−2μt

⎛
⎝ t∫

0

e(μ−γ)sds

⎞
⎠

2

= t2e−2μt = t2e−2γt (3.7)

and

t∫
0

e−μ(t−l)e−γ|s−l|dl = e−μte−γs

s∫
0

e(μ+γ)ldl + e−μteγs
t∫

s

dl

= e−μteμs − e−μte−γs

μ + γ
+ (t− s)e−μteγs

= e−γteγs − e−γte−γs

2γ + (t− s)e−γteγs.

Hence when μ = γ, we get

t∫
0

e−μ(t−s)
t∫

0

e−μ(t−l)e−γ|s−l|dlds =
t∫

0

e−γ(t−s)
(
e−γteγs − e−γte−γs

2γ + (t− s)e−γteγs
)
ds

= 1
2γ2 −

(
t

γ
+ 1

2γ2

)
e−2γt. (3.8)

Thus from (3.7) and (3.8), when μ = γ, we know that

M(t, a) = σ2
(
E(η2

0) − ρ2

2γ

)
t2e−2γt + σ2ρ2

2γ

[
1

2γ2 −
(
t

γ
+ 1

2γ2

)
e−2γt

]
,

which indicates that the second moment M(t) of model (2.1) is bounded for every fixed a ≥ 0 and t ≤ a. 
Therefore this theorem is proved. �
3.2. The second moment M(t, 0) of the boundary u(t, 0)

When t > a, from (3.3), we know that M(t, a) depends on M(t − a, 0), thus we first consider the 
boundedness of the second moment M(t, 0) for the boundary u(t, 0), and then study the boundedness and 
the asymptotic behavior of the second moment M(t, a) for t > a.

From (2.8) and (2.9), we obtain

u(t, 0) − Eu(t, 0) =
t∫

0

β(a)e−μa [u(t− a, 0) − Eu(t− a, 0)] da

+σ

∞∫
β(a)da

t∫
e−μ(t−s)η(s)ds + σ

t∫
β(a)

t∫
e−μ(t−s)η(s)dsda
t 0 0 t−a
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=
t∫

0

β(a)e−μa [u(t− a, 0) − Eu(t− a, 0)] da + σF (t), (3.9)

where

F (t) =
∞∫
t

β(a)da
t∫

0

e−μ(t−s)η(s)ds +
t∫

0

β(a)
t∫

t−a

e−μ(t−s)η(s)dsda

=
∞∫
t

β(a)da
t∫

0

e−μ(t−s)η(s)ds

+
t∫

0

β(a)

⎛
⎝ t∫

0

e−μ(t−s)η(s)ds−
t−a∫
0

e−μ(t−s)η(s)ds

⎞
⎠ da

=
∞∫
0

β(a)da
t∫

0

e−μ(t−s)η(s)ds−
t∫

0

β(a)
t−a∫
0

e−μ(t−s)η(s)dsda

= 1
β

t∫
0

e−μ(t−s)η(s)ds−
t∫

0

e−(μ+β)a
t−a∫
0

e−μ(t−a−s)η(s)dsda

= 1
β
A(t) −B(t) (3.10)

with

A(t) =
t∫

0

e−μ(t−s)η(s)ds, B(t) =
t∫

0

e−(μ+β)aA(t− a)da =
t∫

0

e−(μ+β)(t−a)A(a)da.

In the following, we will investigate the expression of u(t, 0) −Eu(t, 0) according to (3.9). For this purpose, 
we first study the properties of F (t) and get the following lemma.

Lemma 3.2. The first moment of F (t) is E(F (t)) = 0 and the second moment E(F (t))2 is bounded and 
satisfies

E(F (t))2 ≤
(
E(η2

0) + ρ2

2γ

)(
1

μ2β2 + 1
μ2(μ + β)2

)
.

Proof. From the expressions of A(t) and B(t) and (3.10), we know that E(A(t)) = E(B(t)) = 0, which 
implies that E(F (t)) = 0.

From (3.10), we have

E(F (t))2 = 1
β2E(A2(t)) + E(B2(t)) − 2

β
E(A(t)B(t)). (3.11)

By (2.5), for any t, s > 0, we get

E(η(t)η(s)) = E(η2
0)e−γ(t+s) + ρ2 (

e−γ|t−s| − e−γ(t+s)
)
,
2γ
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which indicates that

0 ≤ E(η(t)η(s)) ≤ E(η2
0) + ρ2

2γ (3.12)

since γ > 0. Thus, from (3.10) and (3.12), for any t, s > 0, we obtain

0 ≤ E(A(t)A(s)) = E

⎛
⎝ t∫

0

e−μ(t−l)η(l)dl
s∫

0

e−μ(s−p)η(p)dp

⎞
⎠

=
t∫

0

e−μ(t−l)
s∫

0

e−μ(s−p)
E (η(l)η(p)) dldp

≤
(
E(η2

0) + ρ2

2γ

) t∫
0

e−μ(t−l)dl

s∫
0

e−μ(s−p)dp

=
(
E(η2

0) + ρ2

2γ

)
(1 − e−μt)(1 − e−μs)

μ2 . (3.13)

Hence

E(A2(t)) ≤
(
E(η2

0) + ρ2

2γ

)
(1 − e−μt)2

μ2 . (3.14)

By the expression of B(t) and (3.13), we get

E(B2(t)) = E

⎛
⎝ t∫

0

e−(μ+β)(t−s)A(s)ds
t∫

0

e−(μ+β)(t−a)A(a)da

⎞
⎠

=
t∫

0

e−(μ+β)(t−s)
t∫

0

e−(μ+β)(t−a)
E(A(s)A(a))dads

≤
(
E(η2

0) + ρ2

2γ

)
1
μ2

⎛
⎝ t∫

0

e−(μ+β)(t−a)da

⎞
⎠

2

=
(
E(η2

0) + ρ2

2γ

) (
1 − e−(μ+β)t

)2

μ2(μ + β)2
(3.15)

and

0 ≤ E(A(t)B(t)) =
t∫

0

e−(μ+β)a
E (A(t)A(t− a)) da

≤
(
E(η2

0) + ρ2

2γ

)
1
μ2

t∫
0

e−(μ+β)ada

=
(
E(η2

0) + ρ2 ) 1 − e−(μ+β)t

2 . (3.16)
2γ μ (μ + β)
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Thus, from (3.11) and (3.14)–(3.16), we obtain

E(F (t))2 ≤ 1
β2E(A2(t)) + E(B2(t))

≤ 1
β2

(
E(η2

0) + ρ2

2γ

)
(1 − e−μt)2

μ2 +
(
E(η2

0) + ρ2

2γ

) (
1 − e−(μ+β)t

)2

μ2(μ + β)2

≤
(
E(η2

0) + ρ2

2γ

)(
1

μ2β2 + 1
μ2(μ + β)2

)
,

which implies E(F (t))2 is bounded. Hence this lemma is proved. �
Now we want to use the Laplace transform in the framework of Itô–Doob integral [12] to study u(t, 0) −

Eu(t, 0). From Lemma 3.2, we can take the Laplace transform in the sense of Itô–Doob integral on F (t). 
Here we first give the properties of the Laplace transform L(F ) of F (t) for preparation.

Lemma 3.3. When Re(λ) > 0, the Laplace transform L(F ) of F (t) satisfies

L(F (t))(λ) = η0 + ρλL(W (t))(λ)
β(λ + μ + β)(λ + γ) . (3.17)

Then E (L(F (t))(λ)) = 0 and

lim
|λ|→+∞
Re(λ)>0

L(F (t))(λ) = 0 in probability.

Proof. Taking the Laplace transform in the framework of Itô–Doob integral on both sides of (3.10), when 
Re(λ) > 0, we obtain

L(F (t)) = 1
β
L(A(t))(λ) − L(B(t))(λ) (3.18)

and

L(A(t))(λ) = L(e−μt)(λ) · L(η(t))(λ) = L(η(t))(λ)
λ + μ

,

L(B(t))(λ) = L(e−(μ+β)t)(λ) · L(A(t))(λ) = L(A(t))(λ)
λ + μ + β

. (3.19)

By Itô’s formula, we get

d(eγsW (s)) = γeγsW (s)ds + eγsdW (s),

which implies that

eγtW (t) − 0 = γ

t∫
0

eγsW (s)ds +
t∫

0

eγsdW (s),

hence
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t∫
0

e−γ(t−s)dW (s) = W (t) − γ

t∫
0

e−γ(t−s)W (s)ds. (3.20)

From (2.4), we have

η(t) = η0e
−γt + ρ

⎛
⎝W (t) − γ

t∫
0

e−γ(t−s)W (s)ds

⎞
⎠ .

Thus when Re(λ) > 0,

L (η(t)) = η0L(e−γt) + ρ
[
L(W (t)) − γL(e−γt)L(W (t))

]
= η0

λ + γ
+ ρ

[
L(W (t)) − γ

λ + γ
L(W (t))

]
= η0 + ρλL(W (t))

λ + γ
.

Therefore when Re(λ) > 0,

L(A(t))(λ) = 1
λ + μ

· L(η(t))(λ) = η0 + ρλL(W (t))
(λ + μ)(λ + γ) . (3.21)

From (3.18), (3.19) and (3.21), for Re(λ) > 0, we obtain

L(F (t))(λ) = λ + μ

β(λ + μ + β)L(A(t)) = η0 + ρλL(W (t))
β(λ + μ + β)(λ + γ) ,

thus (3.17) holds. Hence E (L(F (t))(λ)) = 0 since E(η0) = E (L(W (t))(λ)) = 0.
Let λ̄ be the complex conjugate of λ. Then when Re(λ) > 0, we have

E
∣∣L(W (t))(λ)

∣∣2 = E

⎛
⎝ +∞∫

0

e−λtW (t)dt
+∞∫
0

e−λ̄sW (s)ds

⎞
⎠

=
+∞∫
0

+∞∫
0

e−λte−λ̄s
E(W (t)W (s))dsdt

=
+∞∫
0

+∞∫
0

e−λte−λ̄s(t ∧ s)dsdt

=
+∞∫
0

e−λt

⎛
⎝ t∫

0

se−λ̄sds +
+∞∫
t

te−λ̄sds

⎞
⎠ dt

= 1
λλ̄(λ + λ̄)

= 1
2Re(λ)|λ|2

,

hence when Re(λ) > 0,

lim
|λ|→+∞

E
∣∣L(W (t))(λ)

∣∣2 = 0. (3.22)

From (3.17) and Chebyshev’s inequality, for any ε > 0, we obtain
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P
(∣∣L(F (t))(λ)

∣∣ ≥ ε
)
≤ 1

ε2E
∣∣L(F (t))(λ)

∣∣2 =
E
∣∣η0 + ρλL(W (t))

∣∣2
ε2β2|(λ + μ + β)(λ + γ)|2

≤
2E(η0)2 + 2ρ2|λ|2E

∣∣L(W (t))
∣∣2

ε2β2|(λ + μ + β)(λ + γ)|2
,

thus, by (3.22), we get

lim
|λ|→+∞
Re(λ)>0

L(F (t))(λ) = 0 in probability.

Therefore this lemma is proved. �
Now from (3.9), Lemmas 3.2–3.3 and [12], for λ ∈ C with Re(λ) > 0, taking Laplace transform in 

framework of Itô–Doob integral on the both sides of Eq. (3.9) yields that

L(u(t, 0) − Eu(t, 0)) = L(e−(μ+β)t) · L(u(t, 0) − Eu(t, 0)) + σL(F (t)),

which implies that when L(e−(μ+β)t) �= 1,

L(u(t, 0) − Eu(t, 0)) = σL(F (t))
1 − L(e−(μ+β)t)

. (3.23)

Thus L(u(t, 0) − Eu(t, 0))(λ) only has poles, which are the roots of the characteristic equation

L(e−(μ+β)t)(λ) = 1 (3.24)

which is the same as the characteristic equations (2.10).
Hence, for the linear age-structured model with a randomly-varying gain/loss term (2.1), the charac-

teristic equations for the first and the second moments are identical with that of the deterministic linear 
age-structured model and the linear age-structured model with the additive white noise (see model (4.2) 
in [26]).

Let α2 be the supreme of the real parts of all characteristic roots of Eq. (3.24), thus α2 = 1 −μ −β = α1
is the unique and simple real solution of Eq. (3.24).

In the following lemma, using the inverse Laplace transform, we will give the expression of u(t, 0) −Eu(t, 0)
depending on eα2t.

Lemma 3.4. Let α2 = 1 − μ − β. The expression of u(t, 0) − Eu(t, 0) is that

(1) when α2 �= −γ,

u(t, 0) − Eu(t, 0) = ση0

β(α2 + γ)
(
eα2t − e−γt

)

+ σρ

β(α2 + γ)

t∫
0

(
eα2(t−s) − e−γ(t−s)

)
dW (s); (3.25)

(2) when α2 = −γ,

u(t, 0) − Eu(t, 0) = ση0

β
te−γt + σρ

β

t∫
0

(t− s)e−γ(t−s)dW (s). (3.26)
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Proof. From (3.17) and (3.23), when Re(λ) > 0, we have

L(u(t, 0) − Eu(t, 0))(λ) = σ(λ + μ + β)
λ + μ + β − 1 · η0 + ρλL(W (t))

β(λ + μ + β)(λ + γ)

= ση0 + σρλL(W (t))
β(λ− α2)(λ + γ) . (3.27)

(1) When α2 �= −γ, it is easy to see that

1
(λ− α2)(λ + γ) = 1

α2 + γ

(
1

λ− α2
− 1

λ + γ

)

and

λ

(λ− α2)(λ + γ) = 1
α2 + γ

(
α2

λ− α2
+ γ

λ + γ

)
;

moreover, when Re(λ) > max{α2, −γ},

L
(
eα2t

)
(λ) = 1

λ− α2
, L

(
e−γt

)
(λ) = 1

λ + γ
.

Thus, when Re(λ) > max{0, α2, −γ}, taking the inverse of the Laplace transform on both sides of (3.27), 
we obtain

u(t, 0) − Eu(t, 0) = ση0

β(α2 + γ)
(
eα2t − e−γt

)

+ σρ

β(α2 + γ)

⎛
⎝α2

t∫
0

eα2(t−s)W (s)ds + γ

t∫
0

e−γ(t−s)W (s)ds

⎞
⎠ .

By (3.20), we have

α2

t∫
0

eα2(t−s)W (s)ds = −W (t) +
t∫

0

eα2(t−s)dW (s).

Thus

u(t, 0) − Eu(t, 0) = ση0

β(α2 + γ)
(
eα2t − e−γt

)
+ σρ

β(α2 + γ)

(
−W (t)

+
t∫

0

eα2(t−s)dW (s) + W (t) −
t∫

0

e−γ(t−s)dW (s)
)

= ση0

β(α2 + γ)
(
eα2t − e−γt

)
+ σρ

β(α2 + γ)

t∫
0

(
eα2(t−s) − e−γ(t−s)

)
dW (s).

(2) When α2 = −γ, from (3.27), when Re(λ) > 0, we have

L(u(t, 0) − Eu(t, 0))(λ) = ση0
2 + σρλ

2L(W (t)). (3.28)

β(λ + γ) β(λ + γ)
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Obviously,

λ

(λ + γ)2
= 1

λ + γ
− γ

(λ + γ)2
, L

(
te−γt

)
(λ) = 1

(λ + γ)2
(Re(λ) > −γ) .

Thus, when Re(λ) > max{0, −γ} = 0, taking the inverse of the Laplace transform on both sides of (3.28), 
we obtain

u(t, 0) − Eu(t, 0) = ση0

β
te−γt + σρ

β

( t∫
0

e−γ(t−s)W (s)ds− γ

t∫
0

(t− s)e−γ(t−s)W (s)ds
)

= ση0

β
te−γt + σρ

β

(
(1 − γt)

t∫
0

e−γ(t−s)W (s)ds + γ

t∫
0

se−γ(t−s)W (s)ds
)
. (3.29)

By Itô’s formula, we get

d(seγsW (s)) = eγsW (s)ds + γseγsW (s)ds + seγsdW (s),

which implies that

teγtW (t) − 0 =
t∫

0

eγsW (s)ds + γ

t∫
0

seγsW (s)ds +
t∫

0

seγsdW (s),

that is,

γ

t∫
0

se−γ(t−s)W (s)ds = tW (t) −
t∫

0

e−γ(t−s)W (s)ds−
t∫

0

se−γ(t−s)dW (s). (3.30)

By (3.20), we have

t∫
0

e−γ(t−s)W (s)ds = 1
γ

⎛
⎝W (t) −

t∫
0

e−γ(t−s)dW (s)

⎞
⎠ , (3.31)

thus from (3.30), we get

γ

t∫
0

se−γ(t−s)W (s)ds = tW (t) + 1
γ

⎛
⎝−W (t) +

t∫
0

e−γ(t−s)dW (s)

⎞
⎠−

t∫
0

se−γ(t−s)dW (s)

=
(
t− 1

γ

)
W (t) + 1

γ

t∫
0

e−γ(t−s)dW (s) −
t∫

0

se−γ(t−s)dW (s). (3.32)

From (3.29), (3.31) and (3.32), we obtain

u(t, 0) − Eu(t, 0) = ση0

β
te−γt + σρ

β

(
(1 − γt)

t∫
e−γ(t−s)W (s)ds + γ

t∫
se−γ(t−s)W (s)ds

)

0 0
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= ση0

β
te−γt + σρ

β

[
(1 − γt) 1

γ

⎛
⎝W (t) −

t∫
0

e−γ(t−s)dW (s)

⎞
⎠

+
(
t− 1

γ

)
W (t) + 1

γ

t∫
0

e−γ(t−s)dW (s) −
t∫

0

se−γ(t−s)dW (s)
]

= ση0

β
te−γt + σρ

β

t∫
0

(t− s)e−γ(t−s)dW (s).

Hence the lemma is complete. �
Thus, from Lemma 3.4, we have the asymptotic behavior of the second moment M(t, 0) for the boundary 

u(t, 0) of model (2.1).

Theorem 3.5. Let u(t, 0) be the boundary of model (2.1) and α2 = 1 − μ − β. Then

(i) the second moment M(t, 0) of the boundary u(t, 0) is bounded if α2 < 0, and it approaches to 
σ2ρ2

2α2β
2γ(α2 − γ) exponentially as t tends to +∞;

(ii) the second moment M(t, 0) of the boundary u(t, 0) is unbounded if α2 > 0 and α2 �= γ, and it approaches 
to +∞ exponentially as t tends to +∞.

Proof. When α2 �= −γ, by (3.25), we obtain

M(t, 0) = E [u(t, 0) − Eu(t, 0)]2

= E

[
ση0

β(α2 + γ)
(
eα2t − e−γt

)
+ σρ

β(α2 + γ)

t∫
0

(
eα2(t−s) − e−γ(t−s)

)
dW (s)

]2

=
σ2

E
(
η2
0
)

β2(α2 + γ)2
(eα2t − e−γt)2 + σ2ρ2

β2(α2 + γ)2

t∫
0

(
eα2(t−s) − e−γ(t−s)

)2
ds (3.33)

since η0 is a random variable independent of Wiener process W (t). When α2 �= γ, we get

t∫
0

(
eα2(t−s) − e−γ(t−s)

)2
ds =

t∫
0

e2α2(t−s)ds +
t∫

0

e−2γ(t−s)ds− 2
t∫

0

eα2(t−s)e−γ(t−s)ds

=
t∫

0

e2α2sds +
t∫

0

e−2γsds− 2e(α2−γ)t
t∫

0

e−(α2−γ)sds

= e2α2t − 1
2α2

+ 1 − e−2γt

2γ +
2
(
1 − e(α2−γ)t

)
α2 − γ

. (3.34)

Hence from (3.33) and (3.34), when α2 �= ±γ, we have
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M(t, 0) =
σ2

E
(
η2
0
)

β2(α2 + γ)2
(eα2t − e−γt)2

+ σ2ρ2

β2(α2 + γ)2

⎡
⎣e2α2t − 1

2α2
+ 1 − e−2γt

2γ +
2
(
1 − e(α2−γ)t

)
α2 − γ

⎤
⎦ . (3.35)

When α2 = −γ, by (3.26), we have

M(t, 0) = E [u(t, 0) − Eu(t, 0)]2 = E

⎡
⎣ση0

β
te−γt + σρ

β

t∫
0

(t− s)e−γ(t−s)dW (s)

⎤
⎦

2

= σ2
E(η2

0)
β

t2e−2γt + σ2ρ2

β2

t∫
0

s2e−2γsds

= σ2
E(η2

0)
β

t2e−2γt + σ2ρ2

β2

[
1

4γ3 −
(
t2

2γ + t

2γ2 + 1
4γ3

)
e−2γt

]
. (3.36)

(i) When α2 < 0 and α2 �= −γ, from (3.35), we know that the second moment M(t, 0) is bounded and

lim
t→+∞

M(t, 0) = σ2ρ2

β2(α2 + γ)2

[
−1
2α2

+ 1
2γ + 2

α2 − γ

]

= σ2ρ2

β2(α2 + γ)2
(α2 + γ)2

2α2γ(α2 − γ) = σ2ρ2

2α2β
2γ(α2 − γ)

(3.37)

exponentially since α2 < 0 and γ > 0.
When α2 = −γ, formula (3.36) implies that the second moment M(t, 0) is bounded and

lim
t→+∞

M(t, 0) = σ2ρ2

4β2γ3 (3.38)

exponentially since γ > 0.
From (3.37) and (3.38), we have

lim
α2→−γ

σ2ρ2

2α2β
2γ(α2 − γ)

= σ2ρ2

4β2γ3 ,

thus if we permit α2 = −γ in (3.37), then the right-hand sides of (3.37) and (3.38) are the same. Therefore 
when α2 < 0, the second moment M(t, 0) is bounded and

lim
t→+∞

M(t, 0) = σ2ρ2

2α2β
2γ(α2 − γ)

.

(ii) If α2 > 0, then α2 �= −γ. Thus when 0 < α2 �= γ, from (3.35), we obtain

M(t, 0) =
σ2

E
(
η2
0
)

β2(α2 + γ)2
(eα2t − e−γt)2 + σ2ρ2

β2(α2 + γ)2
×

(
eα2t

[
(α2 − γ)eα2t − 4α2e

−γt
]

2α2(α2 − γ) + 3α2 + γ

2α2(α2 − γ) + 1 − e−2γt

2γ

)
,

thus
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lim
t→+∞

M(t, 0) = +∞

exponentially and the second moment M(t, 0) is unbounded. Hence the theorem is completed. �
3.3. The second moment M(t, a) when t > a ≥ 0

From now on, we will study the boundedness and asymptotic behavior of the second moment M(t, a) of 
the solution u(t, a) of model (2.1) when t > a.

From Theorem 3.1, we know that when t ≤ a, the second moment M(t, a) of model (2.1) is bounded 
for the two cases μ �= γ and μ = γ. Here for convenience of the computation, we assume that μ �= γ in 
the following. Thus we have the following results on the boundedness and the asymptotic behavior for the 
second moment M(t, a) when t > a ≥ 0 and the stochastically ultimate boundedness for the model (2.1).

Theorem 3.6. Let u(t, a) be the solution of model (2.1) and α2 = 1 − μ − β. Assume that μ �= γ. Then for 
any fixed a ≥ 0, when t > a,

(1) lim
a→0

M(t, a) = M(t, 0);
(2) if α2 < 0, then the second moment M(t, a) is bounded and there exist two nonnegative functions 

C1(a), C2(a) such that

lim
t→+∞

M(t, a) =
{

C1(a), α2 �= −γ,

C2(a), α2 = −γ

exponentially and

lim
a→0

C1(a) = lim
a→0

C2(a) = lim
t→+∞

M(t, 0);

moreover, the solution u(t, a) of model (2.1) is stochastically ultimate bounded.
(3) if α2 > 0 and α2 �= γ, μ, then the second moment M(t, a) is unbounded and it approaches to +∞

exponentially for any fixed a ≥ 0 as t tends to +∞.

Proof. Denote that

C(t, a) � E

⎛
⎝ t∫
t−a

e−μ(t−s)η(s)ds

⎞
⎠

2

and

D(t, a) � E

⎛
⎝[u(t− a, 0) − Eu(t− a, 0)

] t∫
t−a

e−μ(t−s)η(s)ds

⎞
⎠ ,

where t > a ≥ 0. Thus from (3.3), when t > a ≥ 0, we know that the second moment M(t, a) of model (2.1)
is

M(t, a) = e−2μaM(t− a, 0) + σ2C(t, a) + 2σe−μaD(t, a),

where M(t, 0) � E [u(t, 0) − Eu(t, 0)]2 (see (3.35) and (3.36)).
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Hence we first calculate the two formulas C(t, a) and D(t, a). In the following proofs, we always assume 
that μ �= γ. We need 3 steps to prove the results (1)–(3).
Step 1: computation of C(t, a). By (2.5), we get

C(t, a) =
t∫

t−a

e−μ(t−s)
t∫

t−a

e−μ(t−l)
E (η(s)η(l)) dlds

=
(
E(η2

0) − ρ2

2γ

)⎛⎝ t∫
t−a

e−μ(t−s)e−γsds

⎞
⎠

2

+ ρ2

2γ

t∫
t−a

e−μ(t−s)
t∫

t−a

e−μ(t−l)e−γ|s−l|dlds. (3.39)

When t > a and μ �= γ, it is easy to see that

⎛
⎝ t∫
t−a

e−μ(t−s)e−γsds

⎞
⎠

2

= e−2μt

⎛
⎝ t∫
t−a

e(μ−γ)sds

⎞
⎠

2

=
e−2γt

(
1 − e(γ−μ)a

)2

(μ− γ)2
(3.40)

and

t∫
t−a

e−μ(t−l)e−γ|s−l|dl =
s∫

t−a

e−μ(t−l)e−γ(s−l)dl +
t∫

s

e−μ(t−l)e−γ(l−s)dl

= e−μte−γs

s∫
t−a

e(μ+γ)ldl + e−μteγs
t∫

s

e(μ−γ)ldl

= 2γe−μ(t−s)

γ2 − μ2 − eγ(t−s)e−(μ+γ)a

μ + γ
+ e−γ(t−s)

μ− γ
.

Hence when t > a, we have

t∫
t−a

e−μ(t−s)
t∫

t−a

e−μ(t−l)e−γ|s−l|dlds

=
t∫

t−a

e−μ(t−s)

(
2γe−μ(t−s)

γ2 − μ2 − eγ(t−s)e−(μ+γ)a

μ + γ
+ e−γ(t−s)

μ− γ

)
ds

= 1
μ(μ + γ) + e−2μa

μ(μ− γ) − 2e−(μ+γ)a

μ2 − γ2 . (3.41)

Thus by (3.39)–(3.41), when t > a, we obtain

C(t, a) =
(
E(η2

0) − ρ2

2γ

) e−2γt
(
1 − e(γ−μ)a

)2

(μ− γ)2

+ ρ2

2γ

(
1

μ(μ + γ) + e−2μa

μ(μ− γ) − 2e−(μ+γ)a

μ2 − γ2

)
. (3.42)
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Step 2: calculation of D(t, a). When α2 �= −γ and t > a, from (3.25),

D(t, a) =
σ
(
eα2t − e−γt

)
β(α2 + γ) E

⎛
⎝η0

t∫
t−a

e−μ(t−s)η(s)ds

⎞
⎠+ σρ

β(α2 + γ) ×

E

[ t∫
t−a

e−μ(t−s)η(s)ds
t∫

0

(
eα2(t−s) − e−γ(t−s)

)
dW (s)

]
. (3.43)

By (2.4), we obtain

E

⎛
⎝η0

t∫
t−a

e−μ(t−s)η(s)ds

⎞
⎠ = E(η2

0)e−μt

t∫
t−a

e(μ−γ)sds = E(η2
0)e−γt(1 − e−(μ−γ)a)

μ− γ
(3.44)

and when α2 �= ±γ and α2 �= μ,

E

⎛
⎝ t∫
t−a

e−μ(t−s)η(s)ds
t∫

0

eα2(t−s)dW (s)

⎞
⎠

= E

⎛
⎝ t∫
t−a

e−μ(t−s)

⎡
⎣η0e

−γs + ρ

s∫
0

e−γ(s−l)dW (l))dl

⎤
⎦ ds

t∫
0

eα2(t−p)dW (p)

⎞
⎠

= ρ

t∫
t−a

e−μ(t−s)
E

⎛
⎝ s∫

0

e−γ(s−l)dW (l))dl
t∫

0

eα2(t−p)dW (p)

⎞
⎠ ds

= ρ

t∫
t−a

e−μ(t−s) e
α2t(e−α2s − e−γs)

γ − α2

= ρ(1 − e−(μ−α2)a)
(γ − α2)(μ− α2)

− ρe(α2−γ)t(1 − e−(μ−γ)a)
(γ − α2)(μ− γ) . (3.45)

Similarly, when μ �= γ, we get

E

⎛
⎝ t∫
t−a

e−μ(t−s)η(s)ds
t∫

0

e−γ(t−s)dW (s)

⎞
⎠ = ρ(1 − e−(μ+γ)a)

2γ(μ + γ) − ρe−2γt(1 − e−(μ−γ)a)
2γ(μ− γ) . (3.46)

Hence from (3.43)–(3.46), when α2 �= ±γ and α2 �= μ, we obtain

D(t, a) =
σE(η2

0)e−γt(1 − e−(μ−γ)a)
(
eα2t − e−γt

)
β(α2 + γ)(μ− γ)

+ σρ2

β(α2 + γ)

[
1 − e−(μ−α2)a

(γ − α2)(μ− α2)
− e(α2−γ)t(1 − e−(μ−γ)a)

(γ − α2)(μ− γ)

−1 − e−(μ+γ)a
+ e−2γt(1 − e−(μ−γ)a)

]
. (3.47)
2γ(μ + γ) 2γ(μ− γ)
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When α2 = −γ and μ �= γ, from (3.26), we get

D(t, a) = σte−γt

β
E

⎛
⎝η0

t∫
t−a

e−μ(t−s)η(s)ds

⎞
⎠

+σρ

β
E

[ t∫
t−a

e−μ(t−s)η(s)ds
t∫

0

(t− s)e−γ(t−s)dW (s)
]

(3.48)

and

E

⎛
⎝ t∫

t−a

e−μ(t−s)η(s)ds
t∫

0

(t− s)e−γ(t−s)dW (s)

⎞
⎠

= ρe−(μ+γ)t
t∫

t−a

eμse−γs
E

⎛
⎝ s∫

0

eγldW (l)
t∫

0

(t− p)eγpdW (p)

⎞
⎠ ds

= ρe−(μ+γ)t
t∫

t−a

e(μ−γ)s
s∫

0

(t− l)e2γldlds

= ρe−(μ+γ)t
t∫

t−a

e(μ−γ)s
(

(2γt + 1 − 2γs)e2γs

4γ2 − 2γt + 1
4γ2

)
ds

= ρ(2γt + 1)(1 − e−(μ+γ)a)
4γ2(μ + γ)

− ρ[t− (t− a)e−(μ+γ)a]
2γ(μ + γ)

+ρ(1 − e−(μ+γ)a)
2γ(μ + γ)2

− ρ(2γt + 1)e−2γt(1 − e−(μ−γ)a)
4γ2(μ− γ)

= ρ[1 − (1 + 2γa)e−(μ+γ)a]
4γ2(μ + γ)

+ ρ(1 − e−(μ+γ)a)
2γ(μ + γ)2

− ρ(2γt + 1)e−2γt(1 − e−(μ−γ)a)
4γ2(μ− γ)

. (3.49)

Thus from (3.44), (3.48) and (3.49) when α2 = −γ, we obtain

D(t, a) = σE(η2
0)te−2γt(1 − e−(μ−γ)a)

β(μ− γ) + σρ2

β

[
1 − (1 + 2γa)e−(μ+γ)a

4γ2(μ + γ)

+1 − e−(μ+γ)a

2γ(μ + γ)2
− (2γt + 1)e−2γt(1 − e−(μ−γ)a)

4γ2(μ− γ)

]
. (3.50)

Step 3: the proofs of the results (1)–(3).
(1) From the expressions of C(t, a) and D(t, a), when t > a, we have

lim
a→0

C(t, a) = lim
a→0

D(t, a) = 0,

thus

lim
a→0

M(t, a) = lim
a→0

[
e−2μaM(t− a, 0) + σ2C(t, a) + 2σe−μaD(t, a)

]
= M(t, 0).

Note that we can also obtain the result lim M(t, a) = M(t, 0) from (3.42), (3.47) and (3.50).

a→0
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(2) If α2 < 0, then α2 �= μ, when α2 �= −γ and t > a, by (3.42), (3.47) and Theorem 3.5 (i), we get

lim
t→+∞

M(t, a) = lim
t→+∞

[
e−2μaM(t− a, 0) + σ2C(t, a) + 2σe−μaD(t, a)

]

= σ2ρ2e−2μa

2α2β
2γ(α2 − γ)

+ σ2ρ2

2γ

(
1

μ(μ + γ) + e−2μa

μ(μ− γ) − 2e−(μ+γ)a

μ2 − γ2

)

+2σ2ρ2e−μa

β(α2 + γ)

[
1 − e−(μ−α2)a

(γ − α2)(μ− α2)
− 1 − e−(μ+γ)a

2γ(μ + γ)

]
� C1(a)

exponentially for any fixed a ≥ 0 since γ > 0, which implies that the second moment M(t, a) is bounded 
and

lim
a→0

lim
t→+∞

M(t, a) = lim
a→0

C1(a) = σ2ρ2

2α2β
2γ(α2 − γ)

= lim
t→+∞

M(t, 0).

When α2 = −γ and μ �= γ, by Theorem 3.5 (i), (3.42) and (3.50), we obtain

lim
t→+∞

M(t, a) = σ2ρ2e−2μa

2α2β
2γ(α2 − γ)

+ σ2ρ2

2γ

(
1

μ(μ + γ) + e−2μa

μ(μ− γ) − 2e−(μ+γ)a

μ2 − γ2

)

+2σ2ρ2e−μa

β

[
1 − (1 + 2γa)e−(μ+γ)a

4γ2(μ + γ)
+ 1 − e−(μ+γ)a

2γ(μ + γ)2

]
� C2(a)

exponentially for any fixed a ≥ 0 since γ > 0, which indicates that the second moment M(t, a) is bounded 
and

lim
a→0

lim
t→+∞

M(t, a) = lim
a→0

C2(a) = σ2ρ2

2α2β
2γ(α2 − γ)

= lim
t→+∞

M(t, 0).

By Chebyshev’s inequality, for any δ > 0, we have

P
(∣∣u(t, a) − E(u(t, a))

∣∣ ≥ δ
)
≤ V ar(u(t, a))

δ2 = M(t, a))
δ2 .

When α1 = α2 < 0, for any fixed a ≥ 0, lim
t→+∞

E(u(t, a)) = 0, and then for any ε ∈ (0, 1), there is a positive 

constant δ =
√

max{C1(a), C2(a)}
ε such that for any initial u0 ∈ L1 ([0,+∞), [0,+∞)), the solution u(t, a)

of model (2.1) satisfies

lim
t→+∞

P
(∣∣u(t, a)

∣∣ ≥ δ
)

= lim
t→+∞

P
(∣∣u(t, a) − E(u(t, a))

∣∣ ≥ δ
)
≤ lim

t→+∞
M(t, a)

δ2 ≤ ε,

that is

lim
t→+∞

P
(∣∣u(t, a)

∣∣ ≤ δ
)
≥ 1 − ε,

which implies that the solution u(t, a) of model (2.1) is stochastically ultimate bounded.
(3) If α2 > 0 and α2 �= γ, μ, from Theorem 3.5 (ii), (3.42) and (3.47), we have

lim
t→+∞

M(t, a)

= +∞ + σ2ρ2

2γ

(
1

μ(μ + γ) + e−2μa

μ(μ− γ) − 2e−(μ+γ)a

μ2 − γ2

)
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+2σ2ρ2e−μa

β(α2 + γ)

[
1 − e−(μ−α2)a

(γ − α2)(μ− α2)
− 1 − e−(μ+γ)a

2γ(μ + γ)

]

+ lim
t→+∞

2σ2
E(η2

0)e−μae(α2−γ)t(1 − e−(μ−γ)a)
β(α2 + γ)(μ− γ) − 2σ2ρ2e−μa

β(α2 + γ) lim
t→+∞

e(α2−γ)t(1 − e−(μ−γ)a)
(γ − α2)(μ− γ)

= +∞ + σ2ρ2

2γ

(
1

μ(μ + γ) + e−2μa

μ(μ− γ) − 2e−(μ+γ)a

μ2 − γ2

)

+2σ2ρ2e−μa

β(α2 + γ)

[
1 − e−(μ−α2)a

(γ − α2)(μ− α2)
− 1 − e−(μ+γ)a

2γ(μ + γ)

]

+ σ2

β(α2 + γ) lim
t→+∞

e(α2−γ)t
[
2E(η2

0)e−μa(1 − e−(μ−γ)a)
μ− γ

+ 2ρ2e−μa(1 − e−(μ−γ)a)
(α2 − γ)(μ− γ)

]
= +∞

exponentially for any fixed a ≥ 0 since the last limit term is 0 when 0 < α2 < γ or +∞ when α2 > γ, thus 
the second moment M(t, a) is unbounded. Therefore the proof is proved. �

Effects of environmental fluctuations are measured in terms of the second moments, which indicates the 
dynamical behaviors of stochastic model systems along with the fluctuations of population distribution 
around their mean values. From Theorem 3.6, for any fixed a ≥ 0, when t > a and α2 < 0, the second 
moment M(t, a) is bounded, thus we know that the solution u(t, a) of model (2.1) is stochastically ulti-
mate bounded, which is important for stochastic population model. The finite second moment indicates 
that the environmental fluctuation plays a significant role in the dynamical behavior exhibited by the lin-
ear age-structured model with randomly varying immigration/emigration or harvesting/propagation of the 
population (i.e., the additive colored noise).

For the results in Sections 2 and 3, we know that the dynamics have not been changed drastically 
by the randomly varying immigration/emigration or harvesting/propagation of the population when the 
deterministic age-structured model is asymptotically stable. Specially, from Section 2, we know that when 
α1 = α2 = 1 − μ − β < 0, the first moment Eu(t, a) approaches to 0 as t tends to +∞ for any a ≥ 0. By 
Theorem 3.6, when t > a ≥ 0 and α2 = 1 − μ − β < 0, the second moment M(t, a) is bounded. However, 
M(t, a) is non-zero as t tends to +∞ for any a ≥ 0, which indicates that it is the limitation of the additive 
colored noise in a population model.

When the extraneous gain or loss term S(t, a) = [σ0+σ2η(t)]u(t, a) in model (1.2) (i.e., the age-dependent 
population model is perturbed by the state-dependent colored noise), where η(t) is the Ornstein–Uhlenbeck 
process, the sufficient conditions for the boundedness of the first and second moments and the dependence 
of the moments on the state-dependent colored noise are not clear now. This question will be considered in 
the future.
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