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1. Introduction

Musknelishvilli [24] and Litvinchuk [21] studied the singular integral-differential equations in the case of
normal type. Bologna [1] considered the solvability of singular integral equations in the class of differentiable
function. Wojcik, etc. [27] extended the results of [1,21,24] to the class of continuous function and the class of
discontinuous coefficients. Later on, De-Bonis, etc. [3] discussed singular integral equations of convolution
type with Cauchy kernel and constant coefficients. Recently, Li and Ren [10-12,15,20] dealed with some
classes of singular integral equations of convolution type with singular kernel and obtained the solvability
and the explicit solutions.

For operators containing both Cauchy principal value integral and convolution, the conditions of their
Noethericity were discussed in [2,4] in more general cases.

The main aim of this paper is to extend the theory to the following singular integral-differential equations
with convolution kernels of the form:
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appear frequently in the practical problems, such as fluid dynamics, shell theory, underwater acoustics,
theory of elasticity, and quantum mechanics [2,4,15]. In Eq. (1.1), a;, b; (j =0,1,...,n) are constants and
b; not all equal to zero simultaneously. The known functions k;1(t), k;2(t),g(t) € {0} (for notation {0},
see the following section 2), and an unknown function w(t) as well as its derivatives w@) (¢)(j = 1,2,...,n)
are required to be in {0} too. For applications, the problem to find its solutions is very important.

Compared with the classical methods of solution for Eq. (1.1), we give new methods of solution. Via
applying Fourier analysis theory, Eq. (1.1) is transformed into boundary value problems of analytic functions
with discontinuous coefficients. By means of the classical Riemann boundary value problems, and of the
principle of analytic continuation, we prove the existence of the solution and then give the explicit solution
under certain conditions, in the case of non-normal type. At the end of the paper, by using the theory of
integral equation and linear algebra, we study some properties of the solution at nodes. Thus, the classical
theory of integral equations are enriched and generalized. Meanwhile, we also provide the methods of solution
for other singular integral-differential equations with convolution, such as Wiener-Hopf equation and dual
equations.

2. Definitions and lemmas

In this section we present some definitions and lemmas. It is necessary for us to introduce certain new
classes of functions in advance and to point out some of their properties.

Definition 2.1. The Fourier transform F of f(¢) is denoted by

+o0
Flfle) = em 7t [ feiar (2.1)

and the inverse transform F~! of F(z) is defined by
400
F-L[F(t) := (27)~} / Flz)e—"dy. (2.2)
— o0

Generally, we denote F(z) = F[f](z), f(t) = F~1[F](t), respectively.
The Fourier transforms used in this paper understood to be performed in L?(R) and the functions involved
certainly belong to this space.

Definition 2.2. If f(z) fulfills the following two conditions

(1) f(z) € H([-N, N]) for any N > 0, where H is the class of Holder continuous functions;
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(2) for any x1,x9 € R\[—N, N], there exists B € R™ such that
1 L,
[f (1) = fla)] < Bl— = — ", pc(0,1), (2.3)
X T2
then we call f(z) € H*(R), or, f(z) € H". For simplification, we also write f(z) € H.

The concepts of classes {0} and {{0}} are introduced as follows.

Definition 2.3. Assume that F'(z) satisfies the following conditions:
(1) F(z) € H; (2) F(a) € L*(R),

we say that F(x) belongs to class {{0}}, where L?(R) denotes the space of Lebesgue integrable functions
on R with the standard norm

—+o0
||F||2=</ | F(z) |2 do)?.

Obviously, {{0}} = L2(R)N H C L%(R) N H.
Definition 2.4. If F'(z) € {{0}}, we say that f(t) = F~'[F](t) belongs to class {0}.

Definition 2.5. The Cauchy principal value integral operator T is introduced as follows
“+ o0
(TF)(t) = P.V.(mi) ! / LT)th. (2.4)
T _
—0o0

Definition 2.6. For two functions f(¢) and g¢(¢), their convolution is given by formula

(f *g)(t) = (2m)~2 +/Ooﬂt — 5)g(s)ds. (2.5)
Then it is well known that
F(fxg)=Ff -Fg=FG, (2.6)
where F(z) = F[f](x), G(x) = F[g] ().
Denote
fa(t) = (st £ 11 (0), (27)

obviously, () = f+(t) — f_(t).
Lemma 2.1. Assume that fU)(t) € {0} (j =1,2,...,n). Then for any j € {1,2,...,n}, we have
j—1

> (=ia)™m fOm(0), (2.8)

m=0

N

F[f)(2) = (—iz) F*(z) — (27)~

where F*(z) = F|[f+](z).
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Proof. Note that F*(co) = F~(o0) = 0. By induction on j and integration by parts, the conclusion can be
proved.

Lemma 2.2. Let fU)(t) € {0}(j = 0,1,...,n), then

FIfD)(z) = (—iz)' F(2). (2.9)
Proof. By (2.7) and (2.8), we have

FIf9)(2) = F[f)(@) ~ F[fV)(2) = (~ia) F*(2) - (~ix) F~(z) = (~iz) F(a).

Lemma 2.3. (See [27].) If f(t) € {0}, F £(0) = 0, then

FT[f](x) = —sgnaF (), (2.10)
where F(z) = F[f](x).
Lemma 2.4. Let fU)(t) € {0}(j = 0,1...n), then we have

F[Tf9D)(z) = —(—iz)! sgnaF (). (2.11)
Proof. By (2.9) and (2.10), we can obtain the conclusion.
Lemma 2.5. If f(t) € {0}, Ff(0) = 0, then T[f](t) € {0}.
Proof. From f(t) € {0}, we have F(z) € {{0}}. It follows from F(co) = F(0) = 0 that F(z)sgnz € {{0}}.
By (2.10), we have FTf € {{0}}, therefore, T'f € {0}.
By Lemma 2.5, it is trivial to see that T maps {0} into {0} and T? = I (identity).

3. The solvability of equation (1.1)

In this section, we discuss the solutions and the solvable conditions to Eq. (1.1). In order to solve Eq. (1.1),
we may write it as

S {ajw D (1) + b;Tw (1) + iy + W (1) + kjo x 0P (1)} = g(t), —00 <t < +o0. (3.1)
j=0

By using the Bekya regularization method [8,22], Eq. (3.1) can be directly solved, namely, Eq. (3.1) is
transformed to the classical Fredholm integral equations. In this paper, we shall apply the theory of complex
analysis, Fourier transform and bilinear transform to solve Eq. (3.1). Here, our methods of solution is novel
and effective, and the methods mentioned here may be also used to solve other singular integral-differential
equations with convolution.

By (2.8)—(2.10), we take Fourier transforms on both sides of (3.1) and obtain the following Riemann-
Hilbert problem (R-HP):

QF(z) = P(2)Q (z) + Q(z), —o0 <z < +o0, (3.2)

where
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Glz) + (2m) > S0, 30 (i)™ (K (2) = Kja ()

e) = ST lag — bysen w + K (@) (—i)] |

> j—ola; — bjsgn @ + Kj»(z))(—iz)’
>jolaj = bjsgn @ + K1 (x))(—ix)?”’

Q(‘T) = F[w](x)7 G(‘T) - F[g](x)a ijp(x) = F[kj,P](z)v pe {172}7 J€ {Oa L,2,.. "n}'

Since k; ,(t), g(t) € {0}, therefore their Fourier transforms belong to the class {{0}}. It is easy to see that
(3.2) is a R-HP on the real axis.
Consider the linear fractional transformation

i§
z=— -, 3.3
§+i (3:3)
and (3.3) maps the real axis R onto a circle T' : |€ 4+ %| = %, which surrounds an interior region X% and

an exterior region X7, and maps the upper half-plane Z* and lower half-plane Z~ onto the conformal XV,
3.7, respectively.
Denote

Q(Z) = F(E)’ G('z> = C<§>7 K%P('Z) = Ejyp(f), pE {172}7j € {07 1,2,... ’n}'

where

_ &) T*l T mT) 2 T ym 7)— E;o(T
U0 = G W= GO0+ @073 3 ) (et - Bialrl
Up(r) = Y lay = bi6(r) + By~ =V pe{L.2hie{0.1.2....n},

3=0
1, T€F1,
§(7) =
-1, 7€Tls.

'y, [y are the left half and the right half circles of T', respectively, and I' =T'; U T's.

Note that Egs. (3.1), (3.2), and (3.4) are equivalent to each other. We now solve (3.4) in the case of
non-normal type, that is, U(7) has some zero-points and pole-points on I'. In fact, this case includes that
in Refs. [21,24] as a special case, thus the results in this paper generalize ones in Refs. [1,3,21,24,27].

Let Uy (7) have some zero points u; (j € {1,2...,s}) with the orders o (j € {1,2...,s}) respectively.
Us(7) has some zero points v; (j € {1,2...,1}) with the orders §; (j € {1,2...,1}) respectively. U;(7) and
Us(7) have common and the same order zero points g; (j € {1,2...,¢}) with the orders r; (j € {1,2...,¢})
respectively.

Again let

S

1
() = [[(r —u)®, Ta(r) =] —v)%,

j=1 j=1
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s l q
Zaj:Nl, Zﬂj:NQ, ZTj:Ng.
Jj=1 j=1 j=1

Then (3.4) can be written as

Fr(r)= Uo(n)F~ (1) + W(r), 7€T, (3.5)

where U(7) = gfg:; Uo(7), and Up(1) # 0 on I'y UT5. Since w(t) € {0}, we have Q(z) € {{0}} and

hence F(7) € H on I'. From our previous discussions, we know that F(7) is continuous and bounded near

0j (j €{1,2...,q}), thus the following Noether conditions of solvability must be satisfied

(€ + @0 YIS ()N Ea () = Bia(r )} Plmy, =0 (36)

for any k € {0,1,...,r; — 1}, j € {1,2,...,q}.

Therefore, it follows from our previous discussions that the derivatives C(7), E; ,(7) (p = 1,2) must exist
until order 7; — 1 (j € {1,2,...,¢}) in the neighborhood of g;, and all order derivatives satisfy Holder
conditions.

In view of the values of a; £b; (j € {0,1,2,...,n}), without loss of generality, we only discuss the

following two cases.
Case (1):

a—bi £0, a;+b; £0, j=0,1,2,....m (3.7)
and case (2):
aj—bj:(), aj+bj7éO, j:0,1,2,...,n. (38)
Other cases can be transformed to the cases (1) and (2), or similar to the discussion in [11,12,20].
3.1. Solution of R-HP (3.5) under conditions (3.7)
Under conditions (3.7), we know that (3.5) is a R-HP with discontinuous coefficients and nodal point
T=0.
Denote

. 1
Yo = oo +ify = %{bgUo(‘f'O) —logUp(—0)}, (3.9)

in which we have taken the definite branch of logUy(t).
Then we choose an integer u, the index of (3.5), such that 0 < o = ap — p < 1, and denote

A=70—p=a+ib. (3.10)

Let

T(€) = L/wdr, €4, (3.11)
r
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note that Y(€) is analytic in ¥ and X7, and Y(co) = 0. In general, Y(£) has a singularity of logarithmic
type at £ = 0. We define the following function:

el'@), Eext
X(€) = (3.12)
g el ® cexn,

then, we have

XT(r)=U(r)X"(r), Te€Tl. (3.13)

Ft(r)= Uo(T)F~ (1), Te€eTl. (3.14)

By using the generalized Liouville theorem [22], (3.14) has the following general solution:

Fue) = M2() X (E)pu-n, (€), §€ET; (3.15)

()X ()pu—n, (), €%,

In (3.15), when pr— N1 > 0, p,—n, (§) is an arbitrary polynomial with degree p — N1; and when p— Ny <0,
Pu—n, (§) =0, in this case, (3.14) has a unique solution (zero solution).

In the following, we shall solve R-HP (3.5). To do this, we define the following Cauchy principal value
integral:

1 I, ()W (7)

T 2mi ) XH(1)(r —¢€)
I

o(¢) dr, ¢¢T. (3.16)

It is clear that %

‘(/Z)(T) € Hy, where Hy denotes the class of Holder continuous functions on any closed

interval exterior to 7 = 0.

Since Q(x) € {{0}}, ©(&) is bounded and has no singularity at u;, vy (j € {1,2,...,s},k € {1,2,...,1}).
We first discuss a particular solution to the problem (3.5), hence we need to introduce a Hermite interpolation
polynomial B,(§) (p = N1 + N — 1), which has some zero-points p; (j € {1,2,...,s}) and v, (k €
{1,2,...,1}) with the orders o, B, respectively. It is easy to prove that B,({) exists uniquely. Similar to
the discussion in [16,25,26], we consider the following function

pie) = [ TEXOOEO - Bi©), sz o

X (€O - B,(¢), €2

and we easily prove that (3.17) is a particular solution to (3.5). By using the theory of linear algebra, we
obtain a general solution of (3.5)

F(g):D(£)+F*(§)’ gezzl:,

that is,

1 _ :
F(e) = X (€O = B,(&)) + X (M2 (Epu—n, (§), & € X (3.18)

H;(f)X(g)(@(g) - BP(&)) + X(f)Hl(f)Pu—Nl (5), EeX.
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Since F(§) € H, thus F(£) has no singularity at 7 = p;, 7 = v, (j € {1,2,...,s},k € {1,2,...,1}).
Therefore, we also have the following Noether conditions of solvability

LEOWE
X
g (3.19)
ILOW()
XH(T)(1 — )
r
forany j € {1,2,...,s}, p€{0,1,2,...,0;}; r€{1,2,...,1}, g€ {0,1,2,...,5,}.
We take the boundary values for F'(£) in (3.18) and obtain
F(r) = W) + g g X (1)O() = By () + X (1)Tl(r)pyn (7):
I (1) W () 1 (3.20)
F_(T) QHQ(T)PO(T) HQ(T)X_(T)(G(T) - BP(T)) + X_(T)HI(T>p/L7N1 (T)
for any 7 € T.
Thus, we get the explicit solutions of (3.5) as follows
F(r)y=FY(r)-F (1), 7€l (3.21)

By (3.18) and (3.20), we know that if Ny —u—1 > 0, then D(&) has a pole point with the order Ny —p—1
at co. In order that F'(§) is bounded at £ = oo, if we assume that B,() given by the equality

B,(&) = eol” + 1€’ + ...+ e,

then one must have

=€ =...=en—u—2=0, (3.22)

where e; are constants. Therefore, we have the following conclusions:
(1) when p— (N1 —p— 1) = No 4+ > —1, (3.5) has always a solution;
(2) when N2 + 1 < —1 and the following conditions of solvability

IL(N)W(T) kor, _
/ Xt " dr=0, k=1,2,...,—Ns—p (3.23)
I

are fulfilled, (3.5) has a solution.
Therefore, we have

Theorem 3.1. Assume that (3.6) and a; —b; # 0,a; +b; # 0 (j € {0,1,2,...,n}) are fulfilled, the general
solution of problem (5.5) is given by formula (3.21), where X*(€) are expressed by (3.12), and p,—n, (§) is
an arbitrary polynomial with degree p — Ny. If p — N1 > 0, (3.21) contains p — Ny arbitrary constants; if
p— Ny <0, then py_n,(§) =0, and (3.5) has a unique solution. Once F(§) is obtained, we can determine
Q(s), therefore Eq. (1.1) has a solution given by w(t) = F~1Q(s).
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3.2. Solution of R-HP (5.5) under conditions (3.8)

Under conditions (3.8), we can easily verify that (3.5) is a R-HP with discontinuous coefficients and nodal
points 7 = 0, —i.

At node 7 = —i, it is easy to know that U(—i+0) = 1. But, for U(—i — 0) (see [20] for the definitions of
U(—i=+0)), we have

(I) U(=i—0)=C (C #0,0).
(II) U(—i —0) = 0.
(III) U(—i —0) = oo.

At node 7 = 0, without loss of generality, we assume that E1(0) # 0, a0 + bo + Ep,1(0) # 0. Therefore,
we need to consider the following three cases (T1), (T»), (T3):

(T1) ao +bo + Eo2(0) # 0, Ep2(0) # 0, that is, Up(+0) # 0, Up(—0) #
(T2) Eo,2(0) =0, ag + bo + Eo,2(0) # 0, that is, Up(+0) # 0, Up(—0) =
(T3) ap + bo + E072(0) = 0, E072(0) 7& 0, that iS, U0(+0) = O, Uo(—O) 7& 0

Denote C7 = —i,Cy = 0. Since C1, Cy are the nodes of (3.5), according to the method used in [7,17], we
can obtain that, near Cy(k = 1,2),

Uo(7) = Up(7)(1 — Ci)*, (3.24)
where
21)7 Tely, U,El)(T), TeTly,
B IHC) U =1 e
v, T €Ty U,/ (1), T€Ty,

Up(7) 20 (k=1,2) on T and BY) (k,j = 1,2) are real numbers.
Since Ui (1) # 0 (k = 1,2), we can take a single-valued continuous branch of logUy(7) on I' and introduce
the following piece-wise holomorphic function:

AE) = 2% / %dﬂ €4T. (3.25)
I

Note that, A(€) has a singularity of logarithmic type at £ = Cy, Cs. By using Sokhotski-Plemelj formula [3]
for A(€) in (3.25), we have, near Cy, (k =1,2),

AH(E) = \y%(g) log(¢ — Ci) + AL(€), € €x™; (3.26)
k

(§)log(€§ = Cr) + AL (§), e X,

where

e 0OBY =8P argUP(C +0) —arg UV (Cp —0) | B + g
k 2 2 2

0r(€) = arg(é — Cy), £ € DE\{CL}, DFf =Xt NGy, Dy =X NGy, k=1,2,

and Gi(k = 1,2) are sufficiently small neighborhood of Cy. And |Re{AF(€)}| < M (M € RY), ¢ € Di.
Suppose that the tangential direction of I' at C is the same as the forward direction of T".
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Tt is readily seen that, when z (near Cj) moves along the positive direction around Cj, according to the
values of Wi (Cy, & 0), we can define the index of (3.5). Let

A = min{\IJ;:(Ck- + 0),‘1’;:(6% — 0),\1112(6% + 0), \I/];(Ck — 0)} (k = 1,2),

where the definitions of W3 (Cj, +0) are the same as U(—i 4 0). When Ay, is an integer, we call Cj, a special
node and take oy, = — Ay, otherwise, Cy, is called ordinary node and take o, = —[Ax]. Moreover, we call

2
.y (327)
j=1
the index of (3.5). We define the following function
X(€)=(-C)" (- C)7e® £ gT. (3.28)

It is not difficult to verify that (3.28) is the canonical function of R-HP (3.5).
By using the principle of analytic continuation, we take the boundary values for X (£) in (3.28) and obtain

XE(r) = (1 — C) PV OM(r), k=12, (3.29)

where M(7) and ﬁ are the bounded functions in the neighborhood of Cy, (k =1,2).

Under conditions (3.8), the problem to find solutions of R-HP (3.5) is similar to the discussion in Sub-
section 3.1, and further discussion is omitted here.

Therefore, we have

Theorem 3.2. If (5.6) and aj —b; = 0,a; +b; #0 (j € {0,1,2,...,n}) are fulfilled, then (3.5) is solvable in
class {0}, and all the conditions of solvability and its solution are similar to these in Theorem 5.1, that is,
the solution of (3.5) is also expressed by (5.21), but XT(£) are given by (5.29).

4. The properties of the solution at nodes 0, —2

In Section 3, we discuss the general solution and the conditions of solvability to problem (3.5). In this
section we shall consider the situations of the solution at nodes 0, —i.

4.1. The behaviors of the solution at T =0
At node 7 = 0, according to our previous assumption, that is,
E071(0) ;é O, apn —+ bo —+ EQJ(O) }é 0 (41)

Therefore, we need to discuss three cases mentioned above: the cases (1), (1), (T3).
Now we set

arg USY (—0) — arg US? (+0)

R = 2w

For case (T1), we have

W5 (+0) = W5 (—0) = U5 (~0) = U5 (+0) = Rs.
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For case (Tz), we have

3

UE(+0) = R+ 555", W3 (-0) = Ry + 85"
1

Uy (+0) = Ry — 5657, W5 (=0) = Ry + 35,

and we also obtain the relation between the index and the node: Ay = ¥ (40).
For case (T3), we have

1
VS (+0) = Ry — oy, W3 (-0) = Ry;

_ 1 _
U (+0) = Ro + 557, W3 (~0) = Ry — 57,

in this case, Ay = U5 (—0).
We denote by 0H the order of zero-point of the following function

H(O = CO)+ (r) 4 3 Y ()™ (Eial€) ~ Bralo) (4.3

at £ = 0.
Since Q(z) € {{0}}, so ©(0) = 0 and hence F(0) = 0, by (3.6) and (3.29), we have the following condition
of solvability

OH > max{oq + V5 (+0), 0o + U5 (-0)}. (4.4)

Let 7 = 0 be an ordinary nodal point. For cases (T1), (T2), (T3), if the following condition

(E£;,1(0) — E;,2(0)) =0 (4.5)

C(0) + (27) 2

]:
is fulfilled, (3.5) is always solvable.

Let 7 = 0 be a special nodal point. For case (T%), in addition to (4.5), the constant term of p,_n, ()
should take the value

P, (0) = (I (0)112(0)) ™1 (B, (0) — F(0)). (4.6)
For case (Ty), we have
OH > o3 + U3 (+0). (4.7)
For case (T3), we get
OH > o9 + U (—0). (4.8)

Moreover, in cases (T3) and (T3), besides (4.7) and (4.8), (4.6) is also fulfilled.
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4.2. The behaviors of the solution at T = —i

Now, we discuss the case of the solution at 7 = —i. Note that when U(—i—0) = 1, 7 = —i is not a nodal
point; when U(—i — 0) # 1, 7 = —i is a nodal point, in this case, we consider the following three cases.

(I) fU(-i—0)=C (#£0,1,00), then we have
U (—i4+0) =V (—i—0) =V (~i—0) =V, (—-i+0) =Ry,
where R; is defined by

arg U1”) (=i — 0) — arg U{*) (—i + 0)
Ry = o .

(IT) If U(—i — 0) = 0, then we get
+_; _ Loy g—(_s _ Lo,
W1(_Z+O)—R1+§51 ) \Ill(_l_‘_o)_Rl_'—Eﬂl )
Uf(—i—0)=Ri + 8",  U(=i—0)=R .

Therefore, we have Ay = ¥ (—i — 0).
(IIT) If U(—i — 0) = oo, then

_ 1 o 1
\1:1+(—z+0):R1+§ﬁ§”, U (—z+0):Rl+§ﬂ§”;
UH(—i—0)=R + 8", W7 (=i—0)=R —pY,

and Ay = ¥} (—i—0).

In order to discuss the solvable conditions for (3.5), we need to check the behavior of W(r) at 7 = —i
and denote
Wi(r), TeTly,
Wwin = e (19)
Way(r), 7 €Ts.

Under conditions aj —b; =0, a; +b; #0 (j =0,1,...n), owing to 6(—i — 0) = 1, we denote by Vi(7)
and V(1) the numerator and the denominator of W () multiplied by (—=)"~1

= respectively, namely,

n—1 n

Vi) = 0@ (- e Y S (T (B () - Biar), (410)
7=0 m=j+1
n—1
Va(r) = 3 (=) I Ea(r) = () Baa (7). (4.11)

We denote by OW;, 0Ws, 0V, 0Va the orders of zero-points of Wi(7), Wa(7), Vi(7), Va(7r) at 7 = —i,
respectively. Because W (7) is bounded on T, it is easy to obtain that

Wy > U (=i +0)+o1, OV4>0Va+ Ul (—i—0)+o0;. (4.12)
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Following the method used in [9,13,18], we can deduce from (3.14) that

_ DR T (D) W(n) log(T +18) |
Fr) = 2mi Tli}IIl’L X+ (1) +Ei ()
for any 7 € I'y with k = 1,2, where F}’(7) € H near 7 = —i and its limit exists as 7 — —i.

By (3.20) and (4.11), we have the following results.
For case (I), if

Ena(7)

T—i—0 T+1

b

then we have

Py (=) = (I (=) Lz (=) (B (—i) — F (1)),
where ¢ # 0, co. If

E,
lim 71(7) =0,
T——i—0 T 41

owing to the boundedness of W (7), we have 9V; > 9V, and (4.15).
For case (II), if

lim Ln’l(T) =c
r-i0 T 414 ’

similar to the case (I), we have the following solvable conditions (4.18) and (4.19)
oWy > U (=i —0)+o1, OWy> VU (—i+0)+ oy,

and

Pu—n, (=) = (T (=)Mo (=)~ (B,(—i) — Fy (=),
where ¢ is as the above. If

i En,l(T)
T—=—i—0 T +1

i

then the solvable conditions are (4.19) and the following (4.21)

VL > Vo + U (=i —0) + 01, OWy > VUT(=i+0)+01.

For case (III), if

E,
lim —I(T) =c,
T——i—0 T 4+1

then, (4.19) and the following (4.23) are fulfilled

OWy > U (=i +0) + oy,

13

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)
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where c is as the above. If

i Zna(D) 0, (4.24)

T——i—=0 T 41
then, (4.19) and the following (4.25) are fulfilled
OWq > Ul (=i +0)+ 01, Vi > OVa. (4.25)
On the other hand, when §(—i 4+ 0) = —1, we let

Ay + bn + En’l(’r)

lim - =c, (4.26)
T——i+0 T+
where ¢ # oo. Similar to the case lim,_,_; g E’;'—i(;), we need to consider two cases: ¢ # 0 and ¢ = 0 in

(4.26). The remaining discussion is the same as the above.
From our previous discussions, we can state the main results of this paper in following form.

Theorem 4.1. Under conditions (3.7) and (3.8), the necessary conditions of solvability to the FEq. (1.1) are
(5.6) and (4.4). Assume that this is fulfilled. If T = 0 is an ordinary nodal point of (3.5), then (4.5) is true.
If 7 =0 is a special nodal point of (3.5), then (4.5) and (4.6) are true. If T = —i is an ordinary nodal point
of (3.5), then (4.12) is true. If T = —i is a special nodal point of (3.5), then (4.5) is true. Assume that
(4.5), (4.6) and (4.12) are fulfilled, Eq. (5.5) has the solutions and its solutions are given by (3.21). Once
F(x) is obtained, Q(x) also is obtained and so the solution of Eq. (1.1) is of the form w(t) = F~[Q(x)].

In this paper, we have solved Eq. (1.1) in class {0}. Indeed, it is possible to study the above mentioned
equation in Clifford analysis, which is similar to that in [5,6,14,19,23]. Further discussion is omitted here.
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