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EXPLICIT EXPRESSIONS FOR FINITE TRIGONOMETRIC

SUMS

YUAN HE

Abstract. In this paper, we perform a further investigation for finite trigono-

metric sums. We establish some connections between the higher-order trigono-
metric functions and Zeta functions. As applications, various known finite
trigonometric sums are explicitly expressed as linear combinations of the Bernoulli
and Euler polynomials and numbers.

1. Introduction

As is well known, the mathematical literature contains many evaluations of finite
trigonometric sums of one sort such as (see, e.g., [10] and [33, p. 234])

q−1∑
r=1

cot2
(
πr

q

)
=

(q − 1)(q − 2)

3
(q ≥ 2), (1.1)

and
q−1∑
r=1

csc2
(
πr

q

)
=

(q − 1)(q + 1)

3
(q ≥ 2). (1.2)

It will become more difficult to find an explicit evaluation when we replace the power
2 on the left side of (1.1) and (1.2) by arbitrary positive even power, respectively.
The earliest evaluation of finite trigonometric sums of another sort was posed by
Eisenstein [22] in 1844 that for positive integers q,m with 1 ≤ m ≤ q − 1,

q−1∑
r=1

sin

(
2πmr

q

)
cot

(
πr

q

)
= q − 2m, (1.3)

which was first proved by Stern [32] in 1861. It is worth mentioning that Eisenstein
[22] used (1.3) to give a proof of the law of quadratic reciprocity. Williams and
Zhang [36] in 1994 used inductive hypotheses to generalize (1.3), and obtained that
for positive integers q,m, n with 1 ≤ m ≤ q − 1,

q−1∑
r=1

sin

(
2πmr

q

)
cot2n−1

(
πr

q

)

=
n−1∑
k=0

(−1)n−k (2q)
2n−2k−1Â(2n− 1, 2k)

(2n− 2k − 1)!
B2n−2k−1

(
m

q

)
. (1.4)
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Here the rational numbers Â(n, k) are determined recursively for positive integer n
and non-negative k with 0 ≤ k ≤ n− 1 by

Â(n, k) =
n− k − 1

n− 1
Â(n− 1, k)− Â(n− 2, k − 2) (2 ≤ k ≤ n− 2),

with the initial values Â(n, 0) = 1, Â(n, 1) = 0 and Â(n, n− 1) = 0 or (−1)(n−1)/2

according to n is an even integer or n is an odd integer, and Bn(x) are the Bernoulli
polynomials given by the generating function (see, e.g., [1, 29])

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
.

In particular, the rational numbers Bn = Bn(0) are called the Bernoulli numbers.
The earliest evaluation known to us of a sum of the type (1.4) is attributed to
Dowker, who first in detail examined and explicitly evaluated the sums

C2n(q,m) :=

q−1∑
r=1

cos

(
2πmr

q

)
csc2n

(
πr

q

)
, (1.5)

where q is a positive integer with q ≥ 2, and m is a non-negative integer such
that 0 ≤ m ≤ q − 1. More precisely, the sums (1.5) appear in Dowker’s [19, 20, 21]
work in his theory of the Casimir effect, short-time expansion of the integrated heat
kernel on locally flat generalized cones, and in connection with Verlinde’s formula
for the dimensions of vector bundles on moduli spaces.

Chu and Marini [14] in 1999 used generating functions to evaluate in closed
form 24 different classes of finite trigonometric sums in terms of multiple sums of
binomial coefficients. Berndt and Yeap [10] in 2002 used contour integration to
establish some general theorems for cotangent sums and alternating cosecant sums,
which include as special cases many explicit evaluations for finite trigonometric
sums, and some reciprocity theorems for Dedekind sums stated in [9, 30]. For
example, Berndt and Yeap [10, Corollaries 2.2 and 3.2] showed that for positive
integers q, n with q ≥ 2,

1

q

q−1∑
r=1

cot2n
(
πr

q

)
= (−1)n − (−1)n22n

∑
k0+k1+···+k2n=n
k0,k1,...,k2n≥0

q2k0−1
2n∏
j=0

B2kj

(2kj)!
, (1.6)

and

1

q

q−1∑
r=1

(−1)r csc2n
(
πr

q

)

= (−1)n22n+1
∑

k0+k1+···+k2n=n
k0,k1,...,k2n≥0

q2k0−1
2n∏
j=0

(22kj−1 − 1)
B2kj

(2kj)!
. (1.7)

Meanwhile, Berndt and Yeap [10, Theorem 4.1] used contour integration to study
the sums on the left side of (1.4), and determined that for positive integers q,m, n
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with 1 ≤ m ≤ q − 1,

q−1∑
r=1

sin

(
2πmr

q

)
cot2n−1

(
πr

q

)

= −22n−1
∑

2k1+···+2k2n−1+μ+υ=2n−1
k1,...,k2n−1,μ,υ≥0

(−1)
μ+υ−1

2
mμ

μ!

qυBυ

υ!

2n−1∏
j=1

B2kj

(2kj)!
. (1.8)

Two explicit evaluations for the sums (1.5) were also obtained by Berndt and Yeap
[10] using contour integration. Cvijović and Srivastava [18] in 2012 used contour
integration to further explore the sums (1.5), and derived the closed-form formulas
for 12 different classes of finite trigonometric sums including the sums (1.5). All of
Cvijović and Srivastava’s [18] results involve the higher-order Bernoulli polynomials.
Fonseca, Glasser and Kowalenko [24] in 2018 used integral approach to evaluate a
trigonometric inverse power sum considered by Gardner [25] in 1969 and the case
m = 0 in the sums (1.5) in terms of the symmetric polynomials over the set of
quadratic powers up to (n− 1)2.

Motivated and inspired by the work of the above authors, in this paper we
perform a further investigation for finite trigonometric sums. We establish some
connections between the higher-order trigonometric functions and the period zeta
function and the Lerch zeta function. As applications, various finite trigonometric
sums studied by Williams and Zhang [36], Byrne and Smith [12], Chu and Marini
[14], Berndt and Yeap [10], Cvijović and Srivastava [18], Kowalenko [24, 28], etc., are
explicitly expressed as linear combinations of the Bernoulli and Euler polynomials
and numbers. Moreover, we also depict that a finite trigonometric sum considered
by Zhang and Lin [37] in 2018 is explicitly expressed by Dirichlet L-functions.

It is well known that the tangent function and the secant function can be con-
verted by the cotangent function and the cosecant function, respectively. To avoid
the repetition and tediousness of arguments, we confine our attention for finite
trigonometric sums to only cotangent sums and cosecant sums, which are orga-
nized in the second section and in the third second, respectively.

2. Expressions for cotangent sums

For convenience, in the following we always denote by i the square root of −1
such that i2 = −1, and denote by s(n, k) the Stirling numbers of the first kind given
for non-negative integers n, k with 0 ≤ k ≤ n by the generating function (see, e.g.,
[16]) (

ln(1 + t)
)k

k!
=

∞∑
n=k

s(n, k)
tn

n!
.

We also write, for positive integer n, α(n) = 0 or (−1)n/2 according to n is an odd
integer or n is an even integer. We firstly state the following result.

Theorem 2.1. Let n be a positive integer. Then, for real number a,

cotn(a) = α(n) +
+∞∑

j=−∞

n∑
k=1

A(n, k)

(a+ jπ)k
(a �= 0,±π,±2π, . . .), (2.1)
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and

tann(a) = α(n) + (−1)n
+∞∑

j=−∞

n∑
k=1

A(n, k)(
a+ (j + 1

2 )π
)k (a �= ±π

2
,±3π

2
, . . .), (2.2)

where A(n, k) is given for positive integers n, k with 1 ≤ k ≤ n by

A(n, k) = in−k (k − 1)!

2k

n∑
l=k

(
n

l

)
2ls(l, k)

(l − 1)!
. (2.3)

Proof. It is easily seen from Euler’s formula eia = cos(a) + i sin(a) that

cot(a) =
cos(a)

sin(a)
= i

eia + e−ia

eia − e−ia
= i

(
2

e2ia − 1
+ 1

)
, (2.4)

and
1

1− e2ia
=

i

2
cot(a) +

1

2
. (2.5)

It follows from (2.4) and the binomial theorem that for positive integer n,

cotn(a) = in
n∑

l=0

(
n

l

)
(−2)l

1

(1− e2ia)l
. (2.6)

Let
(
α
l

)
be the binomial coefficients given for non-negative integer l and complex

number α by (
α

0

)
= 1,

(
α

l

)
=

α(α− 1) · · · (α− l + 1)

l!
(l ≥ 1).

Since the binomial series is defined for complex number α by

(1 + t)α =
∞∑

n=0

(
α

n

)
tn,

so we obtain that for non-negative integer l,

1

(1− e2ia)l
=

∞∑
j=0

(−l

j

)
(−e2ia)j =

∞∑
j=0

(
j + l − 1

j

)
e2iaj , (2.7)

and for positive integer k,

∂k−1

∂ak−1

(
1

1− e2ia

)
=

∞∑
j=0

(2ij)k−1e2iaj . (2.8)

Notice that the Stirling numbers of the first kind can be characterized by the
identity (see, e.g., [16, p. 213])

x(x− 1) · · · (x− l + 1) =
l∑

k=0

s(l, k)xk (l ≥ 1).

Hence, by taking x = −j in above identity, in light of s(l, 0) = 0 for positive integer
l (see, e.g., [16, p. 214]), we get

(j + 1) · · · (j + l − 1) =

l∑
k=1

(−1)l−ks(l, k)jk−1 (l ≥ 1),
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which can be rewritten as(
j + l − 1

j

)
=

1

(l − 1)!

l∑
k=1

(−1)l−ks(l, k)jk−1 (l ≥ 1). (2.9)

If we apply (2.9) to (2.7), in view of (2.8), we discover that for positive integer l,

1

(1− e2ia)l
=

1

(l − 1)!

l∑
k=1

(−1)l−ks(l, k)
1

(2i)k−1

∂k−1

∂ak−1

(
1

1− e2ia

)
. (2.10)

It follows from (2.5), (2.6) and (2.10) that

cotn(a) = in + in
n∑

l=1

(
n

l

)
2l

(l − 1)!

l∑
k=1

(−1)ks(l, k)
1

(2i)k−1

× ∂k−1

∂ak−1

(
i

2
cot(a) +

1

2

)
.

Changing the order of the above summation gives

cotn(a) = in + in
n∑

k=1

(−1)k
1

(2i)k−1

∂k−1

∂ak−1

(
i

2
cot(a) +

1

2

)

×
n∑

l=k

(
n

l

)
2ls(l, k)

(l − 1)!
,

which means that for positive integer n ≥ 2,

cotn(a) = in − in
(
i

2
cot(a) +

1

2

) n∑
l=1

(
n

l

)
2ls(l, 1)

(l − 1)!

+in
n∑

k=2

(−1)k
1

2kik−2

∂k−1

∂ak−1

(
cot(a)

) n∑
l=k

(
n

l

)
2ls(l, k)

(l − 1)!
. (2.11)

Since s(l, 1) = (−1)l−1(l − 1)! for positive integer l (see, e.g., [16, p. 214]), so we
have

n∑
l=1

(
n

l

)
2ls(l, 1)

(l − 1)!
= −

n∑
l=1

(
n

l

)
(−2)l = 1− (−1)n (n ≥ 1), (2.12)

which together with (2.11) yields that for positive integer n ≥ 2,

cotn(a) = in − in
(
i

2
cot(a) +

1

2

)(
1− (−1)n

)
+in

n∑
k=2

(−1)k
1

2kik−2

∂k−1

∂ak−1

(
cot(a)

) n∑
l=k

(
n

l

)
2ls(l, k)

(l − 1)!
. (2.13)

It is well known that cot(a) has the following expression in partial fractions (see,
e.g., [1, p. 75] or [31, p. 327])

cot(a) =
1

a
+ 2a

∞∑
j=1

1

a2 − j2π2

=
+∞∑

j=−∞

1

a+ jπ
(a �= 0,±π,±2π, . . .). (2.14)



6 YUAN HE

Hence, from (2.14) we have

in − in
(
i

2
cot(a) +

1

2

)(
1− (−1)n

)
= in

1 + (−1)n

2
− in+1 1− (−1)n

2
cot(a)

= in
1 + (−1)n

2
− in+1 1− (−1)n

2

+∞∑
j=−∞

1

a+ jπ
, (2.15)

and for positive integer k,

∂k−1

∂ak−1

(
cot(a)

)
= (−1)k−1(k − 1)!

+∞∑
j=−∞

1

(a+ jπ)k
. (2.16)

Thus, by applying (2.15) and (2.16) to (2.13), in light of (2.12), we obtain (2.1).
Clearly, cot(π/2 + a) = − tan(a) for a �= ±π

2 ,± 3π
2 , . . .. It follows that replacing a

by π/2 + a in (2.1) gives (2.2). This completes the proof of Theorem 2.1. �

It becomes obvious from (2.1) and (2.3) that A(n, k) = 0 if n �≡ k (mod 2).
We next show some applications of Theorem 2.1. The following theorem can be
regarded as the new development of the computational problem for a finite trigono-
metric sum considered by Zhang and Lin [37, Equation (1)].

Theorem 2.2. Let q, n be positive integers with q ≥ 2, and let χ be a non-principal
Dirichlet character modulo q. Then

q−1∑
r=1

χ(r) cotn
(
πr

q

)
=

n∑
k=1

qkA(n, k)

πk
L(k, χ)

+χ(−1)

n∑
k=1

(−1)k
qkA(n, k)

πk
L(k, χ), (2.17)

where A(n, k) is as in (2.3), and L(s, χ) is the Dirichlet L-function given for Dirich-
let character χ modulo q and complex number s = σ + it by (see, e.g., [6, 15])

L(s, χ) =
∞∑

n=1

χ(n)

ns
(σ > 1).

Proof. Since χ is a non-principal Dirichlet character modulo q, so in this case L(k, χ)
converges for positive integer k and

q−1∑
r=1

χ(r) = 0.

It follows that taking a = πr/q in Theorem 2.1 and then making the operation∑q−1
r=1 χ(r) on both sides of (2.1) gives

q−1∑
r=1

χ(r) cotn
(
πr

q

)
=

n∑
k=1

qkA(n, k)

πk

∞∑
j=0

q−1∑
r=1

χ(r)

(r + qj)k

+
n∑

k=1

qkA(n, k)

πk

∞∑
j=1

q−1∑
r=1

χ(r)

(r − qj)k
. (2.18)
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Observe that for positive integer k,

∞∑
j=0

q−1∑
r=1

χ(r)

(r + qj)k
=

∞∑
j=0

q∑
r=1

χ(r + qj)

(r + qj)k
=

∞∑
n=1

χ(n)

nk
= L(k, χ),

and

∞∑
j=1

q−1∑
r=1

χ(r)

(r − qj)k
=

∞∑
j=1

q−1∑
r=1

χ(q − r)

(q − r − qj)k

= χ(−1)(−1)k
∞∑
j=1

q−1∑
r=1

χ(r)(
r + q(j − 1)

)k
= χ(−1)(−1)k

∞∑
j=0

q−1∑
r=1

χ(r)

(r + qj)k

= χ(−1)(−1)kL(k, χ).

Thus, we know from (2.18) that Theorem 2.2 is complete. �

Corollary 2.3. Let q, n be positive integers with q ≥ 2, and let χ be a non-principal
Dirichlet character modulo q. If χ(−1) = 1 then

q−1∑
r=1

χ(r) cot2n
(
πr

q

)
= 2

n∑
k=1

(−1)n−k q
2k(2k − 1)!Ã(2n, 2k)

(2π)2k
L(2k, χ), (2.19)

and if χ(−1) = −1 then

q−1∑
r=1

χ(r) cot2n−1

(
πr

q

)

= 2
n∑

k=1

(−1)n−k q
2k−1(2k − 2)!Ã(2n− 1, 2k − 1)

(2π)2k−1
L(2k − 1, χ), (2.20)

where Ã(n, k) is given for positive integers n, k with 1 ≤ k ≤ n by

Ã(n, k) =

n∑
l=k

(
n

l

)
2ls(l, k)

(l − 1)!
. (2.21)

Proof. We obtain from Theorem 2.2 that if χ(−1) = 1 then

q−1∑
r=1

χ(r) cotn
(
πr

q

)
=

n∑
k=1

(
1 + (−1)k

)
in−k q

k(k − 1)!Ã(n, k)

2kπk
L(k, χ),

and if χ(−1) = −1 then

q−1∑
r=1

χ(r) cotn
(
πr

q

)
=

n∑
k=1

(
1− (−1)k

)
in−k q

k(k − 1)!Ã(n, k)

2kπk
L(k, χ).

Since A(n, k) = 0 when n �≡ k (mod 2), which means Ã(n, k) = 0 when n �≡ k (mod
2), so the desired results follow immediately. �
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It is interesting to point out that one can find the corresponding relationships
between cotangent sums and Gauss sums if we apply the special values of Dirichlet
L-function at positive integers stated in [2, Theorem 1] to Corollary 2.3. For another
finite trigonometric sums associated to Dirichlet character, one is referred to [7, 11].
We now use Theorem 2.1 to establish the following connections between the higher-
order cotangent and tangent functions and the period zeta function.

Theorem 2.4. Let q, n be positive integers with q ≥ 2, and let θr be a real function
defined on positive integer r. If θr �= 0,±q,±2q, . . . then

cotn
(
πθr
q

)
= α(n)− in

1− (−1)n

2

+in
n∑

k=1

(−1)kÃ(n, k)F (θr/q, 1− k), (2.22)

and if θr �= ± q
2 ,± 3q

2 , . . . then

tann
(
πθr
q

)
= α(n) + in

1− (−1)n

2

+(−i)n
n∑

k=1

(−1)kÃ(n, k)F (1/2 + θr/q, 1− k), (2.23)

where Ã(n, k) is as in (2.21), and F (a, s) is the period zeta function given for real
number a and complex number s = σ + it by (see, e.g., [6])

F (a, s) =
∞∑

n=1

e2πina

ns
(σ > 1).

Note that the series also converges for σ > 0 when a is not an integer.

Proof. Clearly, from Theorem 2.1 we have

cotn
(
πθr
q

)
= α(n)+

n∑
k=1

A(n, k)

+∞∑
j=−∞

1(
πθr
q + jπ

)k (θr �= 0,±q,±2q, . . .). (2.24)

It is easily seen from (2.16) that for positive integer k,

+∞∑
j=−∞

1(
πθr
q + jπ

)k =
(−1)k−1

(k − 1)!

∂k−1

∂ak−1

(
cot(a)

)∣∣∣∣
a=πθr

q

=
(−1)k−1

πk−1(k − 1)!

∂k−1

∂ak−1

(
cot(πa)

)∣∣∣∣
a= θr

q

. (2.25)

Since the period zeta function satisfies

F (a, s− 1) =
1

2πi

∂

∂a

(
F (a, s)

)
,

which holds true for all s by analytic continuation, so by using the above identity
repeatedly, we discover

F
(
a, s− (k − 1)

)
=

1

(2πi)k−1

∂k−1

∂ak−1

(
F (a, s)

)
(k ≥ 1). (2.26)
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In particular, from F (a, 1) = − ln(1− e2πia) (a �= integer) and (2.5), we have

F (a, 0) =
1

2πi

∂

∂a

(− ln(1− e2πia)
)
=

e2πia

1− e2πia
=

i

2
cot(πa)− 1

2
. (2.27)

By taking s = 0 in (2.26), in light of (2.27), we get that for positive integer k,

∂k−1

∂ak−1

(
cot(πa)

)∣∣∣∣
a= θr

q

=
δ1,k
i

+ 2kπk−1ik−2F (θr/q, 1− k), (2.28)

where δ1,k is the Kronecker delta given by δ1,k = 1 or 0 according to k = 1 or k �= 1.
Hence, by combining (2.24), (2.25) and (2.28), in view of (2.3) and (2.12), we have

cotn
(
πθr
q

)
= α(n) +

1

i
A(n, 1) +

n∑
k=1

(−1)k−1 2
kik−2A(n, k)

(k − 1)!
F (θr/q, 1− k)

= α(n)− in
1− (−1)n

2
+ in

n∑
k=1

(−1)kÃ(n, k)F (θr/q, 1− k),

as desired. If we substitute q/2+θr for θr in (2.22), we obtain (2.23). This completes
the proof of Theorem 2.4. �

It follows that we improve Williams and Zhang’s formula (1.4) and unify Berndt
and Yeap’s formulas (1.6) and (1.8), as follows.

Corollary 2.5. Let q, n be positive integers with q ≥ 2. Then, for non-negative
integer m, if 1 ≤ m ≤ q − 1 then

q−1∑
r=1

sin

(
2πmr

q

)
cot2n−1

(
πr

q

)

= (−1)n
n∑

k=1

q2k−1Ã(2n− 1, 2k − 1)

2k − 1
B2k−1

(
m

q

)
, (2.29)

and if 0 ≤ m ≤ q − 1 then

q−1∑
r=1

cos

(
2πmr

q

)
cot2n

(
πr

q

)

= (−1)n(qδ0,m − 1)− (−1)n
n∑

k=1

Ã(2n, 2k)

2k

{
q2kB2k

(
m

q

)
−B2k

}
, (2.30)

where δ0,m is the Kronecker delta given by δ0,m = 1 or 0 according to m = 0 or
m �= 0.

Proof. We know from [6, Theorem 12.13] or [15, Corollary 9.6.10] that for non-
negative integer k,

ζ(−k, x) = − 1

k + 1
Bk+1(x), (2.31)

where ζ(s, x) is the Hurwitz zeta function given for real number x > 0, and complex
number s = σ + it by

ζ(s, x) =
∞∑

n=0

1

(n+ x)s
(σ > 1).
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It follows from (2.31) that for positive integers k, r,

F (r/q, 1− k) =
∞∑
j=0

q∑
l=1

e
2πi(qj+l)r

q

(qj + l)1−k
= − 1

kq1−k

q∑
l=1

e
2πilr

q Bk

(
l

q

)
. (2.32)

By taking θr = r in Theorem 2.4 and then making the operation
∑q−1

r=1 e
2πimr

q on
both sides of (2.22), in view of (2.32) and the familiar geometric sum stated in [6,
Theorem 8.1], we arrive at

q−1∑
r=1

e
2πimr

q cotn
(
πr

q

)
=

(
α(n)− in

1− (−1)n

2

)
(qδ0,m − 1)

+in
n∑

k=1

(−1)k−1 Ã(n, k)

kq1−k

q∑
l=1

Bk

(
l

q

)q−1∑
r=1

e
2πir(m+l)

q . (2.33)

It is well known that the Bernoulli polynomials satisfy the symmetric relation

Bk(1− x) = (−1)kBk(x) (k ≥ 0), (2.34)

and the multiplication formula

Bk(qx) = qk−1

q−1∑
l=0

Bk

(
x+

l

q

)
(k ≥ 0, q ≥ 1), (2.35)

which can be found in [1, p. 804] or [15, Proposition 9.1.3]. Hence, from (2.34) and
(2.35) we have

q∑
l=1

Bk

(
l

q

)q−1∑
r=1

e
2πir(m+l)

q =

q−1∑
l=0

Bk

(
1− l

q

)q−1∑
r=1

e
2πir(m+q−l)

q

= (−1)k
q−1∑
l=0

Bk

(
l

q

){q−1∑
r=0

e
2πir(m−l)

q − 1

}
= (−1)kqBk

(
m

q

)
−(−1)kq1−kBk,

which together with (2.33) yields

q−1∑
r=1

{
cos

(
2πmr

q

)
+i sin

(
2πmr

q

)}
cotn

(
πr

q

)
=

(
α(n)− in

1− (−1)n

2

)
(qδ0,m − 1)

−in
n∑

k=1

Ã(n, k)

kq1−k

{
qBk

(
m

q

)
−q1−kBk

}
. (2.36)

Since B1 = −1/2 and B2k−1 = 0 for positive integer k ≥ 2 (see, e.g., [6, pp. 265-

266]), so by (2.12), (2.36) and Ã(n, k) = 0 when n �≡ k (mod 2), we complete the
proof of Corollary 2.5. �
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It is easy from s(2, 2) = 1 and B2 = 1/6 to check the formula (1.1) when taking
m = 0 and n = 1 in (2.30). An alternative version of (2.30) on condition that
1 ≤ m ≤ q − 1 was obtained by Williams and Zhang [36], where they expressed

the left side of (2.30) by the rational numbers Â(n, k) appearing in (1.4) and the
Bernoulli polynomials. We also mention that different proofs and formulations of
the case m = 0 in (2.30) have been given by Chu and Marini [14, pp. 137-139] and
Cvijović and Klinowski [17]. For an alternative version of Corollary 2.5, see [18,
Equations (2.1) and (2.2)] for details. We next present the explicit expressions for
alternating cotangent sums.

Corollary 2.6. Let q, n be positive integers with q ≥ 2. If q is an even integer then

q−1∑
r=1

(−1)r cot2n
(
πr

q

)

= −(−1)n − (−1)n
n∑

k=1

(
q2k(21−2k − 1)− 1

)
Ã(2n, 2k)

2k
B2k, (2.37)

and if q is an odd integer then

q−1∑
r=1

(−1)r cot2n−1

(
πr

q

)

= −(−1)n
n∑

k=1

q2k−2Ã(2n− 1, 2k − 1)

(2k − 1)

q−1∑
l=1

tan

(
πl

q

)
B2k−1

(
l

q

)
. (2.38)

Proof. In a similar consideration to (2.33), we have

q−1∑
r=1

(−1)r cotn
(
πr

q

)
= −

(
α(n)− in

1− (−1)n

2

)
1 + (−1)q

2

+in
n∑

k=1

(−1)k−1 Ã(n, k)

kq1−k

q∑
l=1

Bk

(
l

q

)q−1∑
r=1

(−1)re
2πilr

q . (2.39)

It is easily seen that for positive integer l with 1 ≤ l ≤ q and l �= q
2 ,

q−1∑
r=1

(−1)re
2πilr

q = −1− (−1)q−1e−
2πil
q

1 + e−
2πil
q

=

{
−1, 2 | q,
−i tan

(
πl
q

)
, 2 � q,

and the case q = 2 and x = 0 in (2.35) implies

Bk

(
1

2

)
= (21−k − 1)Bk (k ≥ 0). (2.40)
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It follows from (2.34), (2.35) and (2.40) that if q is an even integer then

q∑
l=1

Bk

(
l

q

)q−1∑
r=1

(−1)re
2πilr

q = qBk

(
1

2

)
−

q∑
l=1

Bk

(
l

q

)

= qBk

(
1

2

)
−

q−1∑
l=0

Bk

(
1− l

q

)
=

{
(21−k − 1)q − (−1)kq1−k

}
Bk,

and if q is an odd integer then

q∑
l=1

Bk

(
l

q

)q−1∑
r=1

(−1)re
2πilr

q = −i

q∑
l=1

tan

(
πl

q

)
Bk

(
l

q

)
.

Thus, by applying the above two identities to (2.39), in view of Ã(n, k) = 0 when
n �≡ k (mod 2), we get the desired results immediately. �

It is trivially seen that the sum on the left side of (2.37) is equal to zero when
q is an odd integer, and the sum on the left side of (2.38) is equal to zero when q
is an even integer. For an alternative version of (2.37), see [14, pp. 155-156] for
details.

We now turn to another cotangent sums. Byrne and Smith [12, Theorems 1 and
2] in 1997 used the Lagrange formula for polynomial interpolation based on the
zeros of the Chebyshev polynomial of the first kind to discover that for positive
integers q, n,

q∑
r=1

(−1)r−1 cot2n−1

(
π(2r − 1)

4q

)
=

n∑
k=1

an,kq
2k−1, (2.41)

and
q∑

r=1

cot2n
(
π(2r − 1)

4q

)
= (−1)nq +

n∑
k=1

bn,kq
2k, (2.42)

where an,k and bn,k can be determined recursively for positive integers k, n with
1 ≤ k ≤ n by

an,k =
1

22(n−k) − 1

n−k∑
j=1

(
2n− 1

j

)
(−1)jan−j,k (1 ≤ k ≤ n− 1)

with the special values an,1 = (−1)n−1 and an,1 + · · ·+ an,n = 1, and

bn,k =
1

22(n−k) − 1

n−k∑
j=1

(
2n

j

)
(−1)jbn−j,k (1 ≤ k ≤ n− 1)

with the special values bn,1 + · · · + bn,n = 1 + (−1)n−1, respectively. To illustrate
the advantage of the results and methods presented here, we improve Byrne and
Smith’s formulas (2.41) and (2.42), as follows.
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Corollary 2.7. Let q, n be positive integers. Then

q∑
r=1

(−1)r−1 cot2n−1

(
π(2r − 1)

4q

)

= − (−1)n

2

n∑
k=1

q2k−1Ã(2n− 1, 2k − 1)E2k−2, (2.43)

and

q∑
r=1

cot2n
(
π(2r − 1)

4q

)

= (−1)nq − (−1)n
n∑

k=1

q2k22k(22k − 1)Ã(2n, 2k)

4k
B2k, (2.44)

where En(x) are the Euler polynomials given by the generating function (see, e.g.,
[1, 29])

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
.

In particular, the integers En = 2nEn(1/2) are called the Euler numbers.

Proof. It is clear from Theorem 2.4 that for positive integer r with 1 ≤ r ≤ q,

cotn
(
π(2r − 1)

4q

)
= α(n)− in

1− (−1)n

2

+in
n∑

k=1

(−1)kÃ(n, k)

∞∑
j=1

e
2πij(2r−1)

4q

j1−k
. (2.45)

Notice that from (2.31) we have

∞∑
j=1

e
2πij(2r−1)

4q

j1−k
=

∞∑
m=0

4q∑
l=1

e
2πi(4qm+l)(2r−1)

4q

(4qm+ l)1−k

= − 1

k(4q)1−k

4q∑
l=1

e
2πil(2r−1)

4q Bk

(
l

4q

)
.

It follows from (2.45) that

q∑
r=1

(−1)r−1 cotn
(
π(2r − 1)

4q

)
=

(
α(n)− in

1− (−1)n

2

)
1− (−1)q

2

−in
n∑

k=1

(−1)k
Ã(n, k)

k(4q)1−k

4q∑
l=1

Bk

(
l

4q

) q∑
r=1

(−1)r−1e
2πil(2r−1)

4q , (2.46)
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and
q∑

r=1

cotn
(
π(2r − 1)

4q

)

= α(n)q − in
(
1− (−1)n

)
q

2

−in
n∑

k=1

(−1)k
Ã(n, k)

k(4q)1−k

4q∑
l=1

Bk

(
l

4q

) q∑
r=1

e
2πil(2r−1)

4q . (2.47)

By a simple calculation, we obtain that for positive integer l such that 1 ≤ l ≤ 4q
and l �= q, 3q,

q∑
r=1

(−1)r−1e
2πil(2r−1)

4q = e
πil
2q

1− (−1)q+l

1 + e
πil
q

=
1− (−1)q+l

2 cos( πl2q )
,

and for positive integer l such that 1 ≤ l ≤ 4q and l �= 2q, 4q,

q∑
r=1

e
2πil(2r−1)

4q = e
πil
2q

1− (−1)l

1− e
πil
q

=
(−1)l − 1

2i sin( πl2q )
.

Hence, we get from (2.34), (2.46), (2.47) and Ã(n, k) = 0 when n �≡ k (mod 2) that

q∑
r=1

(−1)r−1 cot2n−1

(
π(2r − 1)

4q

)

= −(−1)n
2n−1∑
k=1

(−1)k
Ã(2n− 1, k)

k(4q)1−k

{
qBk

(
1

4

)
−qBk

(
3

4

)}

= −(−1)n
n∑

k=1

qÃ(2n− 1, 2k − 1)

(2k − 1)(4q)2−2k

{
B2k−1

(
3

4

)
−B2k−1

(
1

4

)}
, (2.48)

and
q∑

r=1

cot2n
(
π(2r − 1)

4q

)

= (−1)nq − (−1)n
2n∑
k=1

(−1)k
Ã(2n, k)

k(4q)1−k

{
−qBk

(
1

2

)
+qBk(1)

}

= (−1)nq − (−1)n
n∑

k=1

qÃ(2n, 2k)

2k(4q)1−2k

{
B2k −B2k

(
1

2

)}
. (2.49)

Since the Euler polynomials can be expressed by the Bernoulli polynomials in the
following way (see, e.g., [1, p. 806])

Ek(x) =
2k+1

k + 1

{
Bk+1

(
x+ 1

2

)
−Bk+1

(
x

2

)}
(k ≥ 0), (2.50)

which can be easily proved by using the generating functions of the Bernoulli and
Euler polynomials, so by taking x = 1/2 in (2.50), we have

Bk+1

(
3

4

)
−Bk+1

(
1

4

)
=

k + 1

22k+1
Ek (k ≥ 0). (2.51)
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Thus, by applying (2.40) and (2.51) to (2.48) and (2.49), we complete the proof of
Corollary 2.7. �

In fact, from the proof of Corollary 2.7, the corresponding expression can be
easily obtained when the odd power 2n− 1 on the left side of (2.43) is replaced by
an even power 2n or the even power 2n on the left side of (2.44) is replaced by an
odd power 2n− 1. By almost identically the same argument, one can improve the
results for cotangent sums stated in [3, Theorems 3.2 and 3.3] and [27, Theorem 4.3].
In addition, some explicit expressions for tangent sums can be easily established by
using the identity (see, e.g., [13, Corollary 3])

η(−k, x) =
1

2
Ek(x) (k ≥ 0), (2.52)

where η(s, x) is the alternating Hurwitz zeta function (also called Hurwitz Euler-
zeta function) given for real number x > 0 and complex number s = σ + it by

η(s, x) =

∞∑
n=0

(−1)n
1

(n+ x)s
(σ > 0).

For example, let q, n be positive integers with q ≥ 2 and let m be a non-negative
integer with 0 ≤ m ≤ q − 1. We obtain from (2.31) and (2.52) that for positive
integers k, r,

F (1/2 + r/q, 1− k) =

∞∑
j=0

q∑
l=1

(−1)qj+l e
2πi(qj+l)r

q

(qj + l)1−k

=

{
− 1

kq1−k

∑q
l=1(−1)le

2πilr
q Bk

(
l
q

)
, 2 | q,

1
2q1−k

∑q
l=1(−1)le

2πilr
q Ek−1

(
l
q

)
, 2 � q.

By applying the above identity to Theorem 2.4 , with the help of the geometric
sum and some basic properties of the Bernoulli and Euler polynomials described in
[1, pp. 804-806], one can evaluate

q−1∑
r=1

(r �= q
2 ,q is even)

e
2πi(m+ε)r

q tann
(
πr

q

)
and

q−1∑
r=1

(q is odd)

e
2πi(m+ε)r

q tann
(
πr

q

)

in terms of linear combinations of the Bernoulli and Euler polynomials and numbers,
where ε ∈ {0, q/2}. In particular, one can improve the results presented in [18,
Equations (2.7), (2.8), (2.10) and (2.11)].

3. Expressions for cosecant sums

Before stating the connections between the higher-order cosecant and secant
functions and the Lerch zeta function, we firstly give the following results.

Theorem 3.1. Let n be a positive integer. Then, for real number a,

cscn(a) =
+∞∑

j=−∞
(−1)j

n−1∑
k=0

B(n, k)

(a+ jπ)k+1
(a �= 0,±π,±2π, . . .), (3.1)

and

secn(a) =
+∞∑

j=−∞
(−1)j

n−1∑
k=0

B(n, k)(
a+ (j + 1

2 )π
)k+1

(a �= ±π

2
,±3π

2
, . . .), (3.2)
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where B(n, k) is given for positive integer n and non-negative integer k with 0 ≤
k ≤ n− 1 by

B(n, k) = −in+1−k 2
nk!eia(n−1)

(n− 1)!

n∑
l=k+1

(
l − 1

k

)
s(n, l)

2l
. (3.3)

Proof. Clearly, the following identities are complete

csc(a) =
1

sin(a)
=

2i

eia − e−ia
= −2ieia

1

1− e2ia
, (3.4)

and

1

1− e2ia
= −csc(a)

2ieia
=

i

2
e−ia csc(a). (3.5)

It follows from (2.10), (3.4) and (3.5) that for positive integer n,

cscn(a) =
(−2ieia)n

(n− 1)!

n∑
l=1

s(n, l)(−1)n−l 1

(2i)l−1

∂l−1

∂al−1

(
1

1− e2ia

)

=
(−2ieia)n

(n− 1)!

n∑
l=1

s(n, l)(−1)n−l 1

2lil−2

∂l−1

∂al−1

(
e−ia csc(a)

)
. (3.6)

It is well known that csc(a) has the following expression in partial fractions (see,
e.g., [1, p. 75] or [31, p. 329])

csc(a) =
1

a
+ 2a

∞∑
j=1

(−1)j

a2 − j2π2

=
+∞∑

j=−∞
(−1)j

1

a+ jπ
(a �= 0,±π,±2π, . . .), (3.7)

which implies that for non-negative integer k,

∂k

∂ak
(
csc(a)

)
= (−1)kk!

+∞∑
j=−∞

(−1)j
1

(a+ jπ)k+1
. (3.8)

With the help of the familiar Leibniz rule, we obtain that for positive integer l,

∂l−1

∂al−1

(
e−ia csc(a)

)
=

l−1∑
k=0

(
l − 1

k

)
∂l−1−k

∂al−1−k

(
e−ia

) ∂k

∂ak
(
csc(a)

)
. (3.9)

It follows from (3.8) and (3.9) that

∂l−1

∂al−1

(
e−ia csc(a)

)
= e−ia

l−1∑
k=0

(
l − 1

k

)
(−i)l−1−k(−1)kk!

×
+∞∑

j=−∞
(−1)j

1

(a+ jπ)k+1
. (3.10)
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Applying (3.10) to (3.6) gives

cscn(a) = −2neia(n−1)

(n− 1)!

n∑
l=1

s(n, l)
1

2l

l−1∑
k=0

(
l − 1

k

)
in+1−kk!

×
+∞∑

j=−∞
(−1)j

1

(a+ jπ)k+1
. (3.11)

Thus, by changing the order of the summation in (3.11), we obtain (3.1). Since
csc(π/2 + a) = sec(a) for a �= ±π

2 ,± 3π
2 , . . ., so by replacing a by π/2 + a in (3.1),

we get (3.2). This completes the proof of Theorem 3.1. �

We now use Theorem 3.1 to establish the following connections between the
higher-order cosecant and secant functions and the Lerch zeta function.

Theorem 3.2. Let q, n be positive integers, and let θr be a real function defined
on positive integer r. If θr �= 0,±q,±2q, . . . then

cscn
(
πθr
q

)
= −in

2n+1e
nπiθr

q

(n− 1)!

n−1∑
k=0

(−1)kB̃(n, k)φ(θr/q, 1/2,−k), (3.12)

and if θr �= ± q
2 ,± 3q

2 , . . . then

secn
(
πθr
q

)
= −(−1)n

2n+1e
nπiθr

q

(n− 1)!

n−1∑
k=0

(−1)kB̃(n, k)φ(1/2 + θr/q, 1/2,−k), (3.13)

where B̃(n, k) is given for positive integer n and non-negative integer k with 0 ≤
k ≤ n− 1 by

B̃(n, k) =

n∑
l=k+1

(
l − 1

k

)
s(n, l)

2l−k
, (3.14)

and φ(a, x, s) is the Lerch zeta function given for real number a, x �= negative
integer or zero, and complex number s = σ + it by (see, e.g., [5, 8])

φ(a, x, s) =
∞∑

n=0

e2πina

(n+ x)s
(σ > 1).

Note that the series is an entire function of s when a is not an integer.

Proof. It is easily seen from Theorem 3.1 and (3.8) that

cscn
(
πθr
q

)
= −2ne

(n−1)πiθr
q

(n− 1)!

n−1∑
k=0

in+1−kk!B̃(n, k)

2k

+∞∑
j=−∞

(−1)j

(πθrq + jπ)k+1

= −2ne
(n−1)πiθr

q

(n− 1)!

n−1∑
k=0

(−1)k
in+1−kB̃(n, k)

2kπk

× ∂k

∂ak
(
csc(πa)

)∣∣∣∣
a= θr

q

(θr �= 0,±q,±2q, . . .). (3.15)

Clearly, the Lerch zeta function satisfies

φ(a, x, s− 1)− xφ(a, x, s) =
1

2πi

∂

∂a

(
φ(a, x, s)

)
, (3.16)
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which holds true for all s by analytic continuation. Hence, by taking x = 1/2 in
(3.16), we discover

eπiaφ(a, 1/2, s− 1) =
1

2πi

∂

∂a

(
eπiaφ(a, 1/2, s)

)
.

Applying the above identity repeatedly gives

eπiaφ(a, 1/2, s− k) =
1

(2πi)k
∂k

∂ak
(
eπiaφ(a, 1/2, s)

)
(k ≥ 0). (3.17)

Since
eπiaφ(a, 1/2, 1) = ln(1 + eπia)− ln(1− eπia),

so by (3.5) and (3.17), we have

eπiaφ(a, 1/2, 0) =
1

2πi

∂

∂a

(
ln(1 + eπia)− ln(1− eπia)

)
=

i

2
csc(πa). (3.18)

By taking s = 0 in (3.17), in view of (3.18), we obtain

∂k

∂ak
(
csc(πa)

)∣∣∣∣
a= θr

q

= 2k+1πkik−1e
πiθr

q φ(θr/q, 1/2,−k). (3.19)

Thus, by combining (3.15) and (3.19), we obtain (3.12). If we substitute q/2 + θr
for θr in (3.12), we get (3.13). This completes the proof of Theorem 3.2. �

We next show some applications of Theorem 3.2. We firstly give the following
explicit expressions for the sums (1.5).

Corollary 3.3. Let q, n be positive integers with q ≥ 2, and let m be a non-
negative integer with 0 ≤ m ≤ q − 1. Assume that n ≡ p (mod q) with 1 ≤ p ≤ q.
If 1 ≤ m+ p ≤ q then

q−1∑
r=1

cos

(
2πmr

q

)
csc2n

(
πr

q

)

= −(−1)n
22n+1

(2n− 1)!

2n−1∑
k=0

B̃(2n, k)

k + 1

×
{
qk+1Bk+1

(
2(m+ p)− 1

2q

)
−Bk+1

(
1

2

)}
, (3.20)

and if q + 1 ≤ m+ p ≤ 2q − 1 then

q−1∑
r=1

cos

(
2πmr

q

)
csc2n

(
πr

q

)

= −(−1)n
22n+1

(2n− 1)!

2n−1∑
k=0

B̃(2n, k)

k + 1

×
{
qk+1Bk+1

(
2(m+ p− q)− 1

2q

)
−Bk+1

(
1

2

)}
. (3.21)

Proof. By substituting 2n for n and r for θr in Theorem 3.2, we obtain that for
positive integer r with 1 ≤ r ≤ q − 1,

csc2n
(
πr

q

)
= −(−1)n

22n+1e
2πipr

q

(2n− 1)!

2n−1∑
k=0

(−1)kB̃(2n, k)
∞∑
j=0

e
2πijr

q

(j + 1
2 )

−k
. (3.22)
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It is easily seen from (2.31) that

∞∑
j=0

e
2πijr

q

(j + 1
2 )

−k
=

q−1∑
l=0

∞∑
m=0

e
2πi(qm+l)r

q

(qm+ l + 1
2 )

−k

= − qk

k + 1

q−1∑
l=0

e
2πilr

q Bk+1

(
2l + 1

2q

)
.

It follows from (3.22) that for positive integer r with 1 ≤ r ≤ q − 1,

csc2n
(
πr

q

)
= (−1)n

22n+1

(2n− 1)!

2n−1∑
k=0

(−1)k
qkB̃(2n, k)

k + 1

×
q−1∑
l=0

Bk+1

(
2l + 1

2q

)
e

2πir(p+l)
q . (3.23)

Hence, making the operation
∑q−1

r=1 e
2πimr

q on both sides of (3.23) gives

q−1∑
r=1

{
cos

(
2πmr

q

)
+i sin

(
2πmr

q

)}
csc2n

(
πr

q

)

= (−1)n
22n+1

(2n− 1)!

2n−1∑
k=0

(−1)k
qkB̃(2n, k)

k + 1

×
q−1∑
l=0

Bk+1

(
2l + 1

2q

)q−1∑
r=1

e
2πir(m+p+l)

q . (3.24)

Notice that from (2.34) we have

q−1∑
l=0

Bk+1

(
2l + 1

2q

)q−1∑
r=1

e
2πir(m+p+l)

q

=

q∑
l=1

Bk+1

(
1− 2l − 1

2q

)q−1∑
r=1

e
2πir(m+p+q−l)

q

= (−1)k+1

q∑
l=1

Bk+1

(
2l − 1

2q

){q−1∑
r=0

e
2πir(m+p−l)

q − 1

}

= (−1)k+1

q∑
l=1

Bk+1

(
2l − 1

2q

)q−1∑
r=0

e
2πir(m+p−l)

q

−(−1)k+1

q−1∑
l=0

Bk+1

(
1

2q
+

l

q

)
.

Hence, we get from (2.35) that if 1 ≤ m+ p ≤ q then

q−1∑
l=0

Bk+1

(
2l + 1

2q

)q−1∑
r=1

e
2πir(m+p+l)

q

= (−1)k+1qBk+1

(
2(m+ p)− 1

2q

)
−(−1)k+1q−kBk+1

(
1

2

)
, (3.25)
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and if q + 1 ≤ m+ p ≤ 2q − 1 then

q−1∑
l=0

Bk+1

(
2l + 1

2q

)q−1∑
r=1

e
2πir(m+p+l)

q

= (−1)k+1qBk+1

(
2(m+ p− q)− 1

2q

)
−(−1)k+1q−kBk+1

(
1

2

)
. (3.26)

Thus, by applying (3.25) and (3.26) to (3.24), we complete the proof of Corollary
3.3. �

The different formulations of Corollary 3.3 have been derived by Berndt and
Yeap [10, Theorems 5.1 and 5.3] and Cvijović and Srivastava [18, Equation (2.3)].
For another expressions of the case m = 0 on the left side of (3.20), see [14, pp.
126-128] and [24, Theorem 4.2] for details. We are now in the position to present
an alternative version of Berndt and Yeap’s formula (1.7).

Corollary 3.4. Let q, n be positive integers with q being an even integer. Assume
that n ≡ p (mod q) such that 1 ≤ p ≤ q. If 1 ≤ p ≤ q/2 then

q−1∑
r=1

(−1)r csc2n
(
πr

q

)

= (−1)n
22n+1

(2n− 1)!

2n−1∑
k=0

(−1)k
B̃(2n, k)

k + 1

×
{
qk+1Bk+1

(
q + 1− 2p

2q

)
−Bk+1

(
1

2

)}
, (3.27)

and if q/2 + 1 ≤ p ≤ q then

q−1∑
r=1

(−1)r csc2n
(
πr

q

)

= (−1)n
22n+1

(2n− 1)!

2n−1∑
k=0

(−1)k
B̃(2n, k)

k + 1

×
{
qk+1Bk+1

(
3q + 1− 2p

2q

)
−Bk+1

(
1

2

)}
. (3.28)

Note that the sum on the left side of (1.7) is trivially equal to zero when q is an
odd integer.

Proof. It is easily seen from (3.23) that

q−1∑
r=1

(−1)r csc2n
(
πr

q

)
= (−1)n

22n+1

(2n− 1)!

2n−1∑
k=0

(−1)k
qkB̃(2n, k)

k + 1

×
q−1∑
l=0

Bk+1

(
2l + 1

2q

)q−1∑
r=1

(−1)re
2πir(p+l)

q . (3.29)
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Since 1 ≤ p + l ≤ 2q − 1 for non-negative integer l with 0 ≤ l ≤ q − 1, so if
p+ l �= q/2, 3q/2 then

q−1∑
r=0

(−1)re
2πir(p+l)

q =
1− (−1)q

1 + e
2πi(p+l)

q

= 0.

It follows from (2.34) and (2.35) that if 1 ≤ p ≤ q/2 then

q−1∑
l=0

Bk+1

(
2l + 1

2q

)q−1∑
r=1

(−1)re
2πir(p+l)

q

=

q−1∑
l=0

Bk+1

(
2l + 1

2q

){q−1∑
r=0

(−1)re
2πir(p+l)

q − 1

}

= qBk+1

(
q + 1− 2p

2q

)
−

q−1∑
l=0

Bk+1

(
1

2q
+

l

q

)
= qBk+1

(
q + 1− 2p

2q

)
−q−kBk+1

(
1

2

)
, (3.30)

and if q/2 + 1 ≤ p ≤ q then

q−1∑
l=0

Bk+1

(
2l + 1

2q

)q−1∑
r=1

(−1)re
2πir(p+l)

q

=

q−1∑
l=0

Bk+1

(
2l + 1

2q

){q−1∑
r=0

(−1)re
2πir(p+l)

q − 1

}

= qBk+1

(
3q + 1− 2p

2q

)
−

q−1∑
l=0

Bk+1

(
1

2q
+

l

q

)
= qBk+1

(
3q + 1− 2p

2q

)
−q−kBk+1

(
1

2

)
. (3.31)

Thus, applying (3.30) and (3.31) to (3.29) gives the desired results. �
It is worth noticing that the alternating cosecant sums of Corollary 3.4 appear

in another formula for vector bundles due to Thaddeus [34], and was also evaluated
by Chu and Marini [14, pp. 149-150].

To conclude this paper, we consider a trigonometric inverse power sum. Gardner
[25] in 1969 asked whether it was possible to obtain a simple closed-form expression
for Sn,2(q) given for positive integers q, n with q ≥ 2 by

Sn,2(q) :=
π2n

(2q)2n

q−1∑
r=1

cos−2n

(
πr

2q

)
. (3.32)

Fisher [23] in 1971 studied in an equivalent form the sum

Sn,2(q) :=
π2n

(2q)2n

q−1∑
r=1

sin−2n

(
πr

2q

)
, (3.33)

and used generating function to derive the identities

S1,2(q) =
π2

6

(
1− 1

q2

)
, S2,2(q) =

π4

90

(
1 +

5

2q2
− 7

2q4

)
,
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and the asymptotic formula for enough large q,

Sn,2(q) = ζ(2n) +
n

12q2
ζ(2n− 2) +O(q−4),

where ζ(·) is the Riemann zeta function. Kowalenko [28] in 2011 used empirical
method to give some series expansions of Sn,2(q), and tabulated the first ten values
of Sn,2(q). Fonseca, Glasser and Kowalenko [24, Theorem 3.1] in 2018 used integral
approach to discover

Sn,2(q) =
1

(2n− 1)!

n−1∑
k=0

π2k

q2k
Γ(2n− 2k)ζ(2n− 2k)s̃(n, k)

(
1− 1

q2n−2k

)
,

where Γ(·) is the Gamma function, and s̃(n, k) represents the k-th elementary sym-
metric polynomial obtained by summing over the entire sequence of quadratic pow-
ers or squares of integers from 12 to (n− 1)2. We here give the explicit expression
of the cosecant sums appearing in (3.33) in terms of the Bernoulli polynomials.

Corollary 3.5. Let q, n be positive integers with q ≥ 2. Assume that n ≡ p (mod
2q) such that 1 ≤ p ≤ 2q. Then

q−1∑
r=1

csc2n
(
πr

2q

)
= −(−1)n

22n+1

(2n− 1)!

2n−1∑
k=0

B̃(2n, k)

k + 1

×
{
2kqk+1Bk+1

(
2p− 1

4q

)
−Bk+1

(
1

2

)}
. (3.34)

Proof. By substituting 2n for n and r/2 for θr in Theorem 3.2 and then making

the operation
∑q−1

r=1 on both sides of (3.12), we obtain

q−1∑
r=1

csc2n
(
πr

2q

)
= −(−1)n

22n+1

(2n− 1)!

2n−1∑
k=0

(−1)kB̃(2n, k)

×
q−1∑
r=1

e
2πipr

2q

∞∑
j=0

e
2πijr
2q

(j + 1
2 )

−k
. (3.35)

It is easily seen from (2.31) that

∞∑
j=0

e
2πijr
2q

(j + 1
2 )

−k
=

2q−1∑
l=0

∞∑
m=0

e
2πi(2qm+l)r

2q

(2qm+ l + 1
2 )

−k

= − (2q)k

k + 1

2q−1∑
l=0

e
2πilr
2q Bk+1

(
2l + 1

4q

)
,

which together with (3.35) yields

q−1∑
r=1

csc2n
(
πr

2q

)
= (−1)n

22n+1

(2n− 1)!

2n−1∑
k=0

(−1)k
(2q)kB̃(2n, k)

k + 1

×
2q−1∑
l=0

Bk+1

(
2l + 1

4q

)q−1∑
r=1

e
2πir(p+l)

2q . (3.36)
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Clearly, from (2.34) and (2.35) we have

2q−1∑
l=0

Bk+1

(
2l + 1

4q

)q−1∑
r=1

e
2πir(p+l)

2q

=

2q∑
l=1

Bk+1

(
1− 2l − 1

4q

){q−1∑
r=0

e
2πir(p+2q−l)

2q − 1

}

= (−1)k+1

2q∑
l=1

Bk+1

(
2l − 1

4q

)q−1∑
r=0

e
2πir(p−l)

2q

−(−1)k+1

2q−1∑
l=0

Bk+1

(
1

4q
+

l

2q

)
= (−1)k+1qBk+1

(
2p− 1

4q

)
−(−1)k+1(2q)−kBk+1

(
1

2

)
. (3.37)

Thus, by applying (3.37) to (3.36), we conclude the proof of Corollary 3.5. �

It is obvious that multiplying on both sides of (3.34) by π2n/(2q)2n gives the
explicit expression of Sn,2(q). It is worth noticing that one can use Theorem 3.2 to
evaluate the secant sums

q−1∑
r=1

(r �= q
2 ,q is even)

e
2πi(m+ε)r

q sec2n
(
πr

q

)
and

q−1∑
r=1

(q is odd)

e
2πi(m+ε)r

q sec2n
(
πr

q

)
,

where q, n are positive integers with q ≥ 2, m is a non-negative integer with 0 ≤
m ≤ q − 1, and ε ∈ {0, q/2}. It turns out that the results showed in [18, Equations
(2.9) and (2.12)] can be improved. Moreover, one can also use Theorems 2.4 and 3.2
to evaluate some finite trigonometric sums dealt in [4, 26, 27, 35] in terms of linear
combinations of the Bernoulli and Euler polynomials and numbers. For another
applications of Theorems 2.1, 2.4, 3.1 and 3.2, we leave them to the interested read
for further exploration.
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[18] D. Cvijović, H.M. Srivastava, Closed-form summations of Dowker’s and related trigonometric
sums, J. Phys. A: Math. Theor., 45 (2012), Article ID 374015, 10 pages.

[19] J.S. Dowker, Casimir effect around a cone, Phys. Rev. D, 36 (1987), 3095-3101.

[20] J.S. Dowker, Heat kernel expansion on a generalized cone, J. Math. Phys., 30 (1989), 770-773.
[21] J.S. Dowker, On Verlinde’s formula for the dimensions of vector bundles on moduli spaces,

J. Phys. A: Math. Gen., 25 (1992), 2641-2648.
[22] G. Eisenstein, Aufgaben und Lehrsätze, J. Reine Angew. Math., 27 (1844), 281-283.
[23] M.E. Fisher, Sum of inverse powers of cosines (L.A. Gardner, Jr.), SIAM Review, 13 (1971),

116-119.
[24] C.M.d. Fonseca, M.L. Glasser, V. Kowalenko, Generalized cosecant numbers and trigonomet-

ric inverse power sums, Appl. Anal. Discrete Math., 12 (2018), 70-109.

[25] L.A. Gardner, Jr., Sum of inverse powers of cosines, SIAM Review, 11 (1969), 621.
[26] P.J. Grabner, H. Prodinger, Secant and cosecant sums and Bernoulli-Nörlund polynomials,

Quaest. Math., 30 (2007), 159-165.

[27] H.A. Hassan, New trigonometric sums by sampling theorem, J. Math. Anal. Appl., 339
(2008), 811-827.

[28] V. Kowalenko, On a finite sum involving inverse powers of cosines, Acta Appl. Math., 115

(2011), 139-151.
[29] N.E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
[30] H. Rademacher, E. Grosswald, Dedekind Sums, in: Carus Math. Monograph, Vol. 16, Math.

Assoc. of America, Washington, DC, 1972.
[31] R. Remmert, Theory of Complex Functions, Springer, New York, 1991.
[32] M. Stern, Ueber einige Eigenschaften der Function Ex, J. Reine Angew. Math., 59 (1861),

146-162.
[33] K.R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth, Belmont, CA, 1981.
[34] M. Thaddeus, Conformal field theory and the cohomology of the moduli space of stable

bundles, J. Differ. Geom., 35 (1992), 131-149.
[35] X. Wang, D.-Y. Zheng, Summation formulae on trigonometric functions, J. Math. Anal.

Appl., 335 (2007), 1020-1037.
[36] K.S. Williams, N.Y. Zhang, Evaluation of two trigonometric sums, Math. Slovaca, 44 (1994),

575-583.

[37] W.P. Zhang, X. Lin, Identities involving trigonometric functions and Bernoulli numbers,
Appl. Math. Comput., 334 (2018), 288-294.

School of Mathematics and Information Science, Neijiang Normal University, Nei-
jiang 641100, Sichuan, People’s Republic of China

Email address: hyyhe@aliyun.com, hyyhe@outlook.com


