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Let p be a prime of the form 2� + 1 or 4� + 1, where � is also a prime. We prove 
θ(χ, i) �= 0 for all primitive Dirichlet characters χ with conductor p except for the 
quadratic and the quartic ones. Our results generalize a theorem of Bengoechea, 
which asserts θ(χ, i) �= 0 for non-quadratic χ with “large” prime conductor p =
2� + 1, where � is also a prime.
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1. Introduction

Let χ be a primitive Dirichlet character of conductor N . The theta function associated to χ, denoted 
θ(χ, τ), is defined on the upper half plane as

θ(χ, τ) =

⎧⎪⎨
⎪⎩

∞∑
n=1

χ(n)en2
N πiτ , if χ is even,

∞∑
n=1

nχ(n)en2
N πiτ , if χ is odd.

(1.1)

If θ(χ, i) �= 0 then the normalized Gauss sum can be expressed as

W (χ) = θ(χ, i)
θ(χ, i) . (1.2)

One can use (1.1) to compute efficiently the numerical value of W (χ). So it is hoped that θ(χ, i) does not 
vanish for “many” χ.
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Cohen and Zagier [2] showed that θ(χ, i) vanishes for only two characters and their complex conjugates 
and for no other primitive characters of conductor ≤ 52100. Louboutin [3] proved that there is a positive 
constant c such that for prime p, at least cp/ log(p) of the characters χ of conductor p have θ(χ, i) �= 0. He 
raised the question whether θ(χ, i) is always nonzero.

Bengoechea [1] calculated the Galois action on the special values of theta functions and proved:

Theorem 1.1 ([1], Theorem 4.7). There is a constant c > 0 such that for all non-quadratic χ with prime 
conductor p = 2� + 1, where � is prime, satisfying p > c, we have θ(χ, i) �= 0.

Bengoechea’s proof uses the following theorem, which is due to Louboutin for odd characters and 
Louboutin-Munsch for even characters.

Theorem 1.2. There is a constant c > 0 such that θ(χ, i) �= 0 for at least cp/ log(p) characters of the (p −1)/2
odd characters with conductor p and of the (p − 1)/2 even ones.

For a fixed prime p, denote by X the group of Dirichlet characters modulo p, which is a cyclic group of 
order p − 1. For any nonempty subset T of X, the second and fourth mean value of theta functions at i for 
characters ranging in T , are defined respectively to be

S2(T ) : =
∑
χ∈T

|θ(χ, i)|2,

S4(T ) : =
∑
χ∈T

|θ(χ, i)|4.
(1.3)

Let N(T ) be the number of characters χ in T such that θ(χ, i) �= 0. Then Cauchy-Schwarz inequality yields

N(T ) � S2
2(T )/S4(T ). (1.4)

Louboutin and Munsch [4] gave the following asymptotic estimations for the set X+ of the 
p− 1

2 even 

characters as well as the set X− of the 
p− 1

2 odd ones:

S2(X+) ∼ p
3
2

4
√

2
, S2(X−) ∼ p

5
2

16π
√

2
,

S4(X+) ∼ 3p2 log p
16π , S4(X−) ∼ 3p4 log p

512π3 .

(1.5)

Theorem 1.2 follows from (1.4) and (1.5).
In this paper we take a more direct approach to prove the non-vanishing of theta values. We consider 

the first moment of the theta values

S1(T ) :=
∑
χ∈T

θ(χ, i). (1.6)

Louboutin and Munsch [4] have studied S1(X+) and S1(X−). They showed that

S1(X+) ∼ p

2 , S1(X−) ∼ p

2 . (1.7)

We shall give lower and upper bounds of S1(T ) for some specific subsets T . Since N(T ) = 0 implies 
S1(T ) = 0, we can get N(T ) �= 0 as long as we prove S1(T ) �= 0. In particular, when T is a Galois orbit 
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and N(T ) �= 0, then a theorem of Bengoechea will force all the characters in T to have non-vanishing theta 
values.

The prime p in Theorem 1.1 is called a safe prime, and the prime � is called a Sophie Germain prime. 
The heuristic estimate for the number of Sophie Germain primes less than x is

C
x

(log x)2 , (1.8)

where

C = 2
∏
p>2

p(p− 2)
(p− 1)2 ≈ 1.32032.

We shall prove that Theorem 1.1 holds not just for large enough safe primes, it is actually valid for all
safe primes:

Theorem 1.3. θ(χ, i) �= 0 for all non-quadratic χ with prime conductor p = 2� + 1, where � is a prime.

In this paper, we will also generalize Theorem 1.1 to the characters χ with prime conductor p = 4� + 1, 
where � is a prime.

Theorem 1.4. Let p be a prime of the form 4� +1, where � is also a prime. If a primitive Dirichlet character 
χ with conductor p is neither quadratic nor quartic, then θ(χ, i) �= 0.

The heuristic estimate for the number of primes � < x such that p = 4� + 1 is also prime is the same as
(1.8). One can see Conjecture 5.24 and 5.25 of [5].

2. Main results

Let χ be a primitive character with odd conductor N and order m. Let M = 24mN2. Consider the order 
O = Z[iN ] in K = Q(i). Let HO = K(j(iN)) be the ring class field of O and HM,O be the ray class field 
with conductor M over HO. As in [1], we define

Aχ(τ) = θ(χ, τ/N)
η(τ/N)1+2ε , Bχ(τ) = |Aχ(τ)|2 = Aχ(τ)Aχ(τ),

where

ε =
{

0, if χ is even;
1, if χ is odd;

and η is the classical Dedekind η-function. In particular, if the conductor N is a prime, say p, we denote 
by X(p, m) the set of characters with conductor p and order m up to complex conjugation. With these 
notations Bengoechea proved the following theorem.

Theorem 2.1 ([1], Theorem 4.2 (i)). The set

{
Bχ(ip)2 | χ ∈ X(p,m)

}
is an orbit for the action of the group Gal(HM,O/HO).
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This theorem leads to a straightforward result, which plays a crucial role in our argument:

Proposition 2.2. Once there exists a χ ∈ X(p, m) such that θ(χ, i) �= 0, it is so for each χ ∈ X(p, m).

We will make a frequent use of a simple fact from elementary calculus: Let f(x) be a nonnegative descend-
ing continuous real function on the interval [n0, +∞), where n0 is an integer. If the integral 

∫ +∞
n0

f(x) dx
converges, then it is an upper bound of the series 

∑∞
n=n0+1 f(n).

In what follows p is always an odd prime, X is the character group modulo p, X+ is the subgroup of 
X consisting of all even characters modulo p, and χ0 is the trivial character modulo p. For convenience we 
establish a lemma concerning S1 of a general subgroup of X+.

Lemma 2.3. Let G be a subgroup of X+ with order d. Then

S1(G) = d

∞∑
n=1

n
p−1
d ≡1 (mod p)

e−
π
p n2

,

which has the obvious lower bound d e−
π
p .

Proof. The orthogonality relation on G reads

∑
χ∈G

χ(n) =
{

d, if n p−1
d ≡ 1 (mod p),

0, otherwise.

Then

S1(G) =
∑
χ∈G

θ(χ, i) =
∑
χ∈G

∞∑
n=1

χ(n) e−
π
p n2

=
∞∑

n=1

⎛
⎝∑

χ∈G

χ(n)

⎞
⎠ e−

π
p n2

= d

∞∑
n=1

n
p−1
d ≡1 (mod p)

e−
π
p n2

> de−
π
p . �

2.1. Even characters and odd characters

By definition,

θ(χ0 , i) =
∞∑

n=1
n �≡0 (mod p)

e−
π
p n2

<
∞∑

n=1
e−

π
p n2

�
+∞∫
0

e−
π
p x2

dx =
√
p

2 , (2.1)

and by Lemma 2.3,

S1(X+) � p− 1
2 e−

π
p . (2.2)

Thus

S1(X+\{χ0}) = S1(X+) − θ(χ0 , i) � p− 1
2 e−

π
p −

√
p

2 . (2.3)

One sees the RHS of the above inequality stays positive when p � 7. Hence we obtain



X. Guo, Y. Peng / J. Math. Anal. Appl. 487 (2020) 123971 5
Proposition 2.4. For any prime p � 7 there exists a nontrivial χ ∈ X+ such that θ(χ, i) �= 0.

Then consider the set X− of odd characters modulo p, that is, X− = X\X+. Combining the orthogonality 
relations on X and on X+, we have

∑
χ∈X−

χ(n) =

⎧⎪⎪⎨
⎪⎪⎩

(p− 1)/2, if n ≡ 1 (mod p),
−(p− 1)/2, if n ≡ −1 (mod p),
0, if n �≡ ±1 (mod p).

Hence

S1(X−) =
∑

χ∈X−

θχ(i) =
∑

χ∈X−

∞∑
n=1

nχ(n) e−
π
p n2

=
∞∑

n=1

⎛
⎝ ∑

χ∈X−

χ(n)

⎞
⎠n e−

π
p n2

= p− 1
2

⎛
⎜⎝ ∞∑

n=1
n≡1 (mod p)

n e−
π
p n2

−
∞∑

n=1
n≡−1 (mod p)

n e−
π
p n2

⎞
⎟⎠ .

(2.4)

It is clear that

∞∑
n=1

n≡1 (mod p)

n e−
π
p n2

> e−
π
p > 1 − π

p
.

For the series 
∑∞

n=1, n≡−1 (mod p) n e−
π
p n2

, notice that the function f(x) = x e−
π
p x2

descends on the interval 
[
√

p
2π , +∞), and particularly on [p − 2, +∞), we have

∞∑
n=1

n≡−1 (mod p)

n e−
π
p n2

<
∞∑

n=p−1
n e−

π
p n2

�
+∞∫

p−2

x e−
π
p x2

dx = p

2π e−
π(p−2)2

p .

So

∞∑
n=1

n≡1 (mod p)

n e−
π
p n2

−
∞∑

n=1
n≡−1 (mod p)

n e−
π
p n2

> 1 − π

p
− p

2π e−
π(p−2)2

p , (2.5)

and

S1(X−) > p− 1
2

(
1 − π

p
− p

2π e−
π(p−2)2

p

)
. (2.6)

Note the RHS of the above inequality is positive when p � 5. Thus for any prime p � 5, there exists a 
χ ∈ X− such that θ(χ, i) �= 0.

2.2. Quadratic character

Let χ1 be the unique quadratic character in X, which is even when p ≡ 1 (mod 4) and odd when p ≡ 3
(mod 4). Note χ1(n) = ±1 for any n � 1.
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Case p ≡ 1 (mod 4). The theta value of χ1 is

θ(χ1 , i) =
∞∑

n=1
n≡±1 (mod p)

e−
π
p n2

+
∞∑

n=1
n �≡0,±1 (mod p)

χ1(n) e−
π
p n2

, (2.7)

hence

θ(χ1 , i) <
∞∑

n=1
e−

π
p n2

�
+∞∫
0

e−
π
p x2

dx =
√
p

2 . (2.8)

Hence by (2.6) and (2.8),

S1(X−\{χ1}) >
p− 1

2

(
1 − π

p
− p

2π e−
π(p−2)2

p

)
−

√
p

2 (2.9)

and the RHS of the above inequality is positive when p � 5.
Case p ≡ 3 (mod 4). The theta value of χ1 is

θ(χ1 , i) =
∞∑

n=1
n≡1 (mod p)

n e−
π
p n2

−
∞∑

n=1
n≡−1 (mod p)

n e−
π
p n2

+
∞∑

n=1
n �≡0,±1 (mod p)

nχ1(n) e−
π
p n2

. (2.10)

Note that

∞∑
n=1

n �≡0,±1 (mod p)

nχ1(n) e−
π
p n2

<
∞∑

n=1
n �≡0,±1 (mod p)

n e−
π
p n2

<
∞∑

n=1
n e−

π
p n2

.

Since the function f(x) = x e−
π
p x2

ascends on the interval [0, 
√

p
2π ] and descends on the interval [

√
p
2π , +∞), 

it takes its maximum value 
√

p
2π e−

1
2 at x =

√
p
2π . Therefore,

∞∑
n=1

n e−
π
p n2

<

√
p

2π ·
√

p

2π e−
1
2 +

+∞∫
√

p
2π

x e−
π
p x2

dx = p

π
e−

1
2 .

So

S1(X−\{χ1}) = S1(X−) − θ(χ1 , i)

=p− 3
2

⎛
⎜⎝ ∞∑

n=1
n≡1 (mod p)

n e−
π
p n2

−
∞∑

n=1
n≡−1 (mod p)

n e−
π
p n2

⎞
⎟⎠−

∞∑
n=1

n �≡±1 (mod p)

nχ1(n) e−
π
p n2

>
p− 3

2

(
1 − π

p
− p

2π e−
π(p−2)2

p

)
− p

π
e−

1
2 .

(2.11)

One sees the RHS of the above inequality (2.11) is positive when p � 11. By (2.9) and (2.11), we have 
proved the following proposition.

Proposition 2.5. For any prime p � 11, there exists a non-quadratic χ ∈ X− such that θ(χ, i) �= 0.
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Table 1
Table of primitive characters with 
conductor p = 2� + 1.

order d #X(p, d) parity
1 1 even
2 1 odd
� � − 1 even
2� � − 1 odd

2.3. Quartic characters

Let χ2 and χ2 be the two quartic characters in X, which are even when p ≡ 1 (mod 8) and odd otherwise. 
To deduce our main result we only need to provide an upper bound for θ(χ2 , i) + θ(χ2 , i). Note that 
χ2(n) + χ2(n) = 0, ±2 for any n � 1.

Case p ≡ 1 (mod 8). By definition, θ(χ2 , i) + θ(χ2 , i) is

∞∑
n=1

n �≡0 (mod p)

(χ2(n) + χ2(n)) e−
π
p n2

,

which is less than 2 
∞∑

n=1
e−

π
p n2

. So

θ(χ2 , i) + θ(χ2 , i) < 2
∞∑

n=1
e−

π
p n2

� 2
+∞∫
0

e−
π
p x2

dx = √
p.

Case p �≡ 1 (mod 8). In this case θ(χ2 , i) + θ(χ2 , i) is

2
∞∑

n=1
n≡1 (mod p)

n e−
π
p n2

− 2
∞∑

n=1
n≡−1 (mod p)

n e−
π
p n2

+
∞∑

n=1
n �≡0,±1 (mod p)

n (χ2(n) + χ2(n)) e−
π
p n2

, (2.12)

wherein

∞∑
n=1

n �≡0,±1 (mod p)

n (χ2(n) + χ2(n)) e−
π
p n2

< 2
∞∑

n=1
n e−

π
p n2

= 2p
π

e−
1
2 .

Therefore,

θ(χ2 , i) + θ(χ2 , i) < 2

⎛
⎜⎝ ∞∑

n=1
n≡1 (mod p)

n e−
π
p n2

−
∞∑

n=1
n≡−1 (mod p)

n e−
π
p n2

+ p

π
e−

1
2

⎞
⎟⎠ . (2.13)

2.4. Primes of type 2� + 1

Let p = 2� +1 be a prime, where � is also a prime. Then the character group X is a cyclic group of order 
2�. The sizes and parity of each orbit X(p, d) for d | 2� are listed in Table 1.

Theorem 2.6. θ(χ, i) �= 0 for all non-quadratic characters χ with prime conductor p = 2� + 1, where � is 
also a prime.
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Table 2
Table of primitive characters with 
conductor p = 4� + 1.

order d #X(p, d) parity
1 1 even
2 1 even
4 2 odd
� � − 1 even
2� � − 1 even
4� 2(� − 1) odd

Proof. Since X+ = X(p, �) ∪ {χ0}, it follows from Proposition 2.4 that, when p � 7 there exists a χ ∈
X(p, �) such that θ(χ, i) �= 0, and then by Proposition 2.2, θ(χ, i) �= 0 for all χ ∈ X(p, �). Similarly, 
X− = X(p, 2�) ∪{χ1} and it follows from Propositions 2.2 and 2.5 that θ(χ, i) �= 0 for all χ ∈ X(p, 2�) when 
p � 11. Since Cohen and Zagier proved θ(χ, i) = 0 for only two characters of conductors 300 and 600 and 
their complex conjugates and for no other primitive characters of conductor ≤ 52100, the theorem holds 
also for p < 11. �
2.5. Primes of type 4� + 1

Now let p = 4� + 1, where � is also a prime. The least such prime is 13. In this situation the sizes and 
parity of each orbit X(p, d) for d | 4� are listed in Table 2.

Note

X+ = {χ0} ∪ {χ1} ∪X(p, �) ∪X(p, 2�), X− = {χ2 , χ2} ∪X(p, 4�).

Lemma 2.7. S1(X(p, �)) > 0 for p � 13, and S1(X(p, 2�)) > 0 for p � 29.

Proof. We assume that p � 13. Since X(p, �) together with χ0 constitutes a subgroup of X+, it follows 
from Lemma 2.3 that S1(X(p, �) ∪ {χ0}) > � e−

π
p . Combining this with (2.1) yields

S1(X(p, �)) = S1(X(p, �) ∪ {χ0}) − θ(χ0 , i) > � e−
π
p −

√
p

2 ,

wherein � e−
π
p −

√
p

2 is positive for any p � 13.

To show S1(X(p, 2�)) is also positive an upper bound of S1(X(p, �) ∪{χ0}) is needed. In view of Lemma 2.3,

S1(X(p, �) ∪ {χ0}) = �
∞∑

n=1
n4≡1 (mod p)

e−
π
p n2

.

Let b be the solution of the congruence equation x2 ≡ −1 (mod p) with 2 � b � p−1
2 . Since b2 ≡ −1

(mod p) and the least positive integer satisfying this congruence condition is p − 1, we have

b2 � p− 1. (2.14)

Similarly,

(p− b)2 � 2p− 1. (2.15)

Note that 1, b, p − b and p − 1 are the four solutions of the congruence equation x4 ≡ 1 (mod p) between 
1 and p − 1.
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Thus

∞∑
n=1

n4≡1 (mod p)

e−
π
p n2

=
∞∑
k=0

(
e−

π(kp+1)2
p + e−

π(kp+b)2
p + e−

π(kp+p−b)2
p + e−

π(kp+p−1)2
p

)

< e−
π
p + e−

πb2
p + e−

π(p−b)2
p + e−

π(p−1)2
p + 4

∞∑
k=1

e−
π(kp+1)2

p .

By (2.14) and (2.15),

e−
πb2
p + e−

π(p−b)2
p � 2 e−

π(p−1)
p < 2 e− 12π

13 < 0.12.

For the item e−
π(p−1)2

p , it is no greater than e−
122π
13 < 0.01. Meanwhile, the sum 

∞∑
k=1

e−
π(kp+1)2

p has an upper 

bound

+∞∫
0

e−
π(px+1)2

p dx <
1

√
πp

+∞∫
0

e−t2 dt = 1
2√p

.

Summing up all the above estimates, we obtain

S1(X(p, �) ∪ {χ0}) = �
∞∑

n=1
n4≡1 (mod p)

e−
π
p n2

< �

(
e−

π
p + 0.13 + 2

√
p

)
. (2.16)

Finally, from (2.2), (2.8) and (2.16) it follows that

S1(X(p, 2�)) = S1(X+) − S1(X(p, �) ∪ {χ0}) − θ(χ1 , i)

> 2� e−
π
p − �

(
e−

π
p + 0.13 + 2

√
p

)
−

√
p

2

= �

(
e−

π
p − 0.13 − 2

√
p

)
−

√
p

2 .

(2.17)

One checks that � 
(
e−

π
p − 0.13 − 2√

p

)
−

√
p

2 > 0 for any p � 29. �
Lemma 2.8. S1(X(p, 4�)) is positive for p � 53.

Proof. By (2.4) and (2.13),

S1(X(p, 4�)) =S1(X−) − θ(χ2 , i) − θ(χ2 , i)

>2�

⎛
⎜⎝ ∞∑

n=1
n≡1 (mod p)

n e−
π
p n2

−
∞∑

n=1
n≡−1 (mod p)

n e−
π
p n2

⎞
⎟⎠

− 2

⎛
⎜⎝ ∞∑

n=1
n e−

π
p n2

−
∞∑

n=1
n e−

π
p n2

+ p

π
e−

1
2

⎞
⎟⎠
n≡1 (mod p) n≡−1 (mod p)
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=(2�− 2)

⎛
⎜⎝ ∞∑

n=1
n≡1 (mod p)

n e−
π
p n2

−
∞∑

n=1
n≡−1 (mod p)

n e−
π
p n2

⎞
⎟⎠− 2p

π
e−

1
2 .

In view of (2.5), we have

S1(X(p, 4�)) > (2�− 2)
(

1 − π

p
− p

2π e−
π(p−2)2

p

)
− 2p

π
e−

1
2 .

It suffices to show

p− 5
4

(
1 − π

p
− p

2π e−
π(p−2)2

p

)
− p

π
e−

1
2 > 0,

or equivalently,
(

1 − 5
p

)(
1 − π

p
− p

2π e−
π(p−2)2

p

)
− 4

π
√
e
> 0.

One easily checks that the above inequality holds for p � 53. �
Theorem 2.9. θ(χ, i) �= 0 for all non-quadratic, non-quartic characters χ with prime conductor p = 4� + 1, 
where � is also a prime.

Proof. This theorem follows from Proposition 2.2, Lemma 2.7, Lemma 2.8 and the fact that Cohen and 
Zagier proved θ(χ, i) = 0 for only two characters of conductors 300 and 600 and their complex conjugates 
and for no other primitive characters of conductor ≤ 52100. �
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