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This paper concerns with a class of elliptic anisotropic Dirichlet problems depending 
of one real parameter on bounded Euclidean domains. Our approach is based on 
variational and topological methods. More concretely, along the paper we show 
the existence of at least two weak solutions for the treated problem by using a 
direct consequence of the celebrated Pucci and Serrin theorem in addition to a local 
minimum result for differentiable functionals due to Ricceri. This abstract approach 
has been developed for equations on Carnot groups; see [15].
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1. Introduction

It is well-known that a great attention in the last years has been focused by many authors on the study 
of anisotropic equations on bounded Euclidean domains. See, among others, the papers [2–6,9,11,13] as well 
as [14,17–19,22,23,28] and references therein.

Motivated by this large interest in the current literature, we study here the existence of weak solutions 
for the following anisotropic Dirichlet problem

(P f
λ )

{
−Δp(x)u = λf(x, u) in Ω
u = 0 on ∂Ω,

where Δp(x)u := div(|∇p(x)−2∇u) denotes the p(·)-Laplace operator, Ω ⊂ IRN is a bounded domain with 
smooth boundary ∂Ω, λ is a positive real parameter, and p : Ω̄ → IR is a continuous function satisfying

1 < p− := inf
x∈Ω

p(x) ≤ p(x) ≤ p+ := sup
x∈Ω

p(x) < +∞. (1)

Moreover, f : Ω̄ × IR → IR is a continuous function such that
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(f1) there exist a1, a2 > 0 and q ∈ C(Ω̄) with 1 < p(x) < p∗ for each x ∈ Ω̄, such that

|f(x, t)| ≤ a1 + a2|t|q(x)−1,

for each (x, t) ∈ Ω × IR, where

p∗(x) :=
{

Np(x)
N−p(x) if p(x) < N

∞ if p(x) ≥ N
.

Inspired by [1,15,24], we prove that, for small values of λ, problem (P f
λ ) admits at least two weak solutions 

[see Theorem 3.1] requiring that the continuous and subcritical nonlinear term f satisfies the celebrated 
Ambrosetti-Rabinowitz condition without the usual additional assumption at zero, that is

lim
t→0

f(x, t)
t

= 0, (2)

uniformly in Ω̄.
A special case of our result reads as follows.

Theorem 1.1. Let Ω be a smooth and bounded domain of the Euclidean space IRN , p > 1, and f : IR → IR
be a continuous function for which

(f ′
1) there exist a1, a2 > 0 and q ∈

(
2, 2

(
N(p− 1) + p

N − p

))
such that

|f(t)| ≤ a1 + a2|t|q−1,

for every t ∈ IR;
(f ′

2) there are μ > 2 and r > 0 such that

0 < μ

t∫
0

f(τ)dτ ≤ tf(t),

for any |t| ≥ r.

Then, there exists an open interval Λ ⊂ (0, +∞) such that, for every λ ∈ Λ, the following problem
{

−Δp = λf(u) in Ω
u = 0, on ∂Ω

admits at least two (distinct) weak solutions in the Sobolev W 1,p
0 (Ω).

The interval Λ in the above result can be explicitly determined. Set

cs := sup
u∈W

1,p(x)
0 (Ω)\{0}

‖u‖Ls(Ω)

‖u‖
W

1,p(x)
0 (Ω)

, (with s ∈ {1, q})

Our abstract tool for proving the main result is the following abstract theorem that we recall here in a 
convenient form.
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Theorem 1.2. Let E be a reflexive real Banach space, and let Φ, Ψ : E → IR be two continuously Gâteaux 
differentiable functionals such that Φ is sequentially weakly lower semicontinuous and coercive. Further, 
assume that Ψ is sequentially weakly continuous. In addition, assume that, for each α > 0, the functional 
Jα := αΦ − Ψ satisfies the classical compactness Palais-Smale (briefly (PS)) condition. Then, for each 
� > inf

E
Φ and each

α > inf
u∈Φ−1

(
(−∞,�)

)
sup

v∈Φ−1
(
(−∞,�)

)Ψ(v) − Ψ(u)

�− Φ(u) ,

the following alternative holds: either the functional Jα has a strict global minimum which lies in 
Φ−1((−∞, �)), or Jα has at least two critical points one of which lies in Φ−1((−∞, �)).

The above critical point result comes out from a joint application of the classical Pucci-Serrin theorem 
(see [20]) and a local minimum result due to Ricceri (see [25]). For a proof of Theorem 1.2 see, for instance, 
[24, Theorem 6]. We refer the interested reader to [16,26,27] and references therein for recent applications 
of the Ricceri’s variational principle.

The plan of the paper is as follows. Section 2 is devoted to our abstract framework and preliminaries. 
Successively, in Section 3, Theorem 3.1 and some preparatory results concerning the compactness Palais-
Smale condition (see Lemmas 3.2 and 3.3) are presented.

In the last section, Theorem 3.1 has been proved and a concrete example of an application is presented 
in Example 4.3.

2. Abstract framework

Here and in the sequel, we assume that p ∈ C(Ω̄) verifies the previous condition and is globally log-Hölder 
continuous on Ω. The variable exponent Lebesgue space Lp(x)(Ω) is defined

Lp(x)(Ω) :=
{
u : Ω → IR : u is measurable and ρp(u) :=

∫
Ω

|u|p(x)dx < +∞
}
. (3)

On Lp(x)(Ω) we consider the Luxemburg norm

‖u‖Lp(x)(Ω) := inf
{
λ > 0 :

∫
Ω

∣∣∣u
λ

∣∣∣p(x)
dx ≤ 1

}
.

The generalized Lebesgue-Sobolev space W 1,p(x)(Ω) is defined by putting

W 1,p(x)(Ω) :=
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}

and it is endowed with the following norm

‖u‖W 1,p(Ω) := ‖u‖Lp(x)(Ω) + ‖ |∇u| ‖Lp(x)(Ω).

By W 1,p(x)
0 (Ω), we denote the closure of C∞

0 (Ω) in W 1,p(x)
0 (Ω). We recall that, since p is globally log-

Hölder continuous on Ω, the Poincaré inequality is true.
On W 1,p(x)

0 (Ω) we consider the norm

‖u‖ := ‖ |∇u| ‖Lp(x)(Ω). (4)
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It is well known that, in the view of (1), both Lp(x)(Ω) and W 1,p(Ω), with the respective norms, are 
separable, reflexive and uniformly convex Banach spaces.

The following result generalizes the well-known Sobolev embedding theorem.

Theorem 2.1. Assume that p ∈ C(Ω̄) with p(x) > 1 for each x ∈ Ω̄. If q ∈ C(Ω̄) and 1 < q(x) < p∗(x) for 
all x ∈ Ω, then there exists a continuous and compact embedding W 1,p(x)(Ω) → Lq(x)(Ω).

Set

Φ(u) =
∫
Ω

1
p(x) |∇u|p(x)dx,

for all u ∈ W
1,p(x)
0 (Ω). It is known that Φ ∈ C1(W 1,p(x)

0 , IR), and

〈
Φ′(u), v

〉
=

∫
Ω

|∇u|p(x)−2〈∇u,∇v〉 dx

for each u, v ∈ W
1,p(x)
0 (Ω). Moreover, the functional Φ is convex, sequentially weakly lower semicontinuous 

and its derivative Φ′ : W 1,p(x)
0 (Ω) → (W 1,p(x)

0 (Ω))∗ is a homeomorphism.

Proposition 2.2. If we denote

ρ (u) =
∫
Ω

|u|p(x)
dx ∀u ∈ Lp(x) (Ω)

then

(i) |u|p(x)
< 1 (= 1;> 1) ⇔ ρ (u) < 1 (= 1;> 1);

(ii) |u|p(x)
> 1 ⇒ |u|p

−

p(x) ≤ ρ (u) ≤ |u|p
+

p(x); |u|p(x) < 1 ⇒ |u|p
−

p(x) ≥ ρ (u) ≥ |u|p
+

p(x);
(iii) |u|p(x) → 0 ⇔ ρ (u) → 0; |u|p(x) → ∞ ⇔ ρ (u) → ∞.

See Fan and Zhao [8] and Zhao et al. [31].

Proposition 2.3. The following fact holds

(i) W 1,p(x) (Ω) and W 1,p(x)
0 (Ω) are separable reflexive Banach spaces;

(ii) If q ∈ C+
(
Ω
)

and q (x) < p∗ (x) for any x ∈ Ω, then the imbedding from W 1,p(x) (Ω) to Lq(x) (Ω) is 
compact and continuous;

(iii) There is a constant C > 0, such that

|u|p(x) ≤ C |∇u|p(x) ∀u ∈ W
1,p(x)
0 (Ω) .

By (iii) of Proposition 2.5, we know that |∇u|p(x) and ‖u‖ are equivalent norms on W 1,p(x)
0 (Ω). We will use 

|∇u|p(x) to replace ‖u‖ in the following discussions.
See Fan and Zhao [8].

Moreover, for α > 0 and h ∈ C(Ω) with 1 < h−, we put

[α]h := max
{
αh−

, αh+
}
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and set

cs := sup
u∈W

1,p(x)
0 (Ω)\{0}

‖u‖Ls(Ω)

‖u‖
W

1,p(x)
0 (Ω)

, (with s ∈ {1, q})

We cite the monograph [28] for a nice introduction on anisotropic spaces and [12] for related topics on 
variational methods used in this paper. See also [21].

3. The main result and some technical lemmas

The aim of this section is to prove that, under natural assumptions on the nonlinear term f , weak 
solutions to problem (P f

λ ) below do exist. With the above notations the main result reads as follows.

Theorem 3.1. Let f : Ω̄ × IR → IR be a continuous function such that

(f1) there exist a1, a2 > 0 and q ∈ C(Ω̄) with 1 < q(x) < p∗ for each x ∈ Ω̄, such that

|f(x, t)| ≤ a1 + a2|t|q(x)−1,

for each (x, t) ∈ Ω × IR, where

p∗(x) :=
{

Np(x)
N−p(x) if p(x) < N

∞ if p(x) ≥ N
;

(f2) there are μ > p+ and r > 0 such that

0 < μ

t∫
0

f(x, τ)dτ ≤ tf(x, t),

for any x ∈ Ω̄, and |t| ≥ r.

Then, for every � > 0 and each

0 < λ <
�

a1c1(p+)
1

p− [�]
1
p + a2

q− [cq]q(p+)
q+
p− [[�]

1
p ]q

, (5)

problem (P f
λ ) admits at least two weak solutions one of which lies in

B� :=
{
u ∈ W

1,p(x)
0 (Ω) : ‖u‖ < min

{
(p+�)

1
p− , (p+�)

1
p+

}}
.

We recall that a weak solution for the problem (P f
λ ), is a function u : Ω → IR such that

⎧⎪⎨
⎪⎩

∫
Ω

|∇u|p(x)−2〈∇u,∇v〉 dx = λ

∫
Ω

f(x, u)vdx, ∀ v ∈ W
1,p(x)
0 (Ω)

u ∈ W
1,p(x)
0 (Ω).

Now, for the sake of completeness, we recall that a C1-functional J : E → IR, where E is a real Banach 
space with topological dual E∗, satisfies the Palais-Smale condition at level ζ ∈ IR, (abbreviated (PS)ζ) 
when:
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(PS)ζ Every sequence {un} in E such that

J(un) → ζ, and ‖J ′(un)‖E∗ → 0,

as n → +∞, possesses a convergent subsequence.

We say that J satisfies the Palais-Smale condition (abbreviated (PS)) if (PS)ζ holds for every ζ ∈ IR.
For our goal, in the next two lemmas we shall verify the compactness (PS) condition for the functional 

Jλ : W 1,p(x)
0 (Ω) → IR defined by

Jλ(u) := 1
λ

∫
Ω

|∇u|p(x)

p(x) dx−
∫
Ω

F (x, u)dx, ∀u ∈ W
1,p(x)
0 (Ω) (6)

where λ > 0 and, as usual, we set F (x, t) :=
t∫

0

f(x, τ)dτ .

Note that the functional Jλ ∈ C1(W 1,p(x)
0 (Ω)) and its derivative at u ∈ W

1,p(x)
0 (Ω) is given by

〈J ′
λ(u), v〉 = 1

λ

∫
Ω

|∇u|p(x)−2〈∇u,∇v〉 dx−
∫
Ω

f(x, u)vdx,

for every v ∈ W
1,p(x)
0 (Ω).

Lemma 3.2. Assume that conditions (f1) and (f2) are verified. Then, every Palais-Smale sequence for the 
functional Jλ is bounded in the Sobolev space W 1,p(x)

0 (Ω).

Proof. Suppose that {un} ⊂ X, {ϕ (un)} is bounded and ‖ϕ′ (un)‖ → 0. Then

C ≥ ϕ (un) =
∫
Ω

1
p (x) |∇un|p(x)

dx−
∫
Ω

F (x, u) dx

≥
∫
Ω

1
p (x) |∇un|p(x)

dx−
∫
Ω

un

μ
f (x, un) dx− c

≥
∫
Ω

(
1

p (x) − 1
μ

)
|∇un|p(x)

dx +
∫
Ω

1
μ

(
|∇un|p(x) − unf (x, un)

)
dx− c

≥
(

1
p+ − 1

μ

)
|∇un|p

−

p(x) −
1
μ
‖ϕ′ (un)‖ ‖un‖ − c.

Hence, the sequence {‖un‖} is bounded. �
We say that a map L : E → E∗ satisfies the (S+) condition if: un ⇀ u in E and lim supn→∞

〈
L(un) −

L(u), un − u
〉
≤ 0, then un → u in E.

Next lemma is quite standard and directly follows by [7]. However, for the sake of completeness, we give 
direct proof of it.

Lemma 3.3. Assume that conditions (f1) and (f2) are verified. Then, the functional Jλ satisfies the com-
pactness (PS) condition.
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Proof. Consider the following functional:

Φ (u) =
∫
Ω

1
p (x) |∇u|p(x)

dx, u ∈ X := W
1,p(x)
0 (Ω) .

Standard computations improve that the functional J ∈ C1(X, R); see [7]. Moreover, p (x)-Laplace op-
erator is the derivative operator of J in the weak sense. Let us consider Φ′ : X → X∗, the functional given 
by

〈
Φ′(u), v

〉
=

∫
Ω

|∇u|p(x)−2 ∇u∇vdx, ∀v, u ∈ X.

(i) The functional Φ′ is continuous and bounded. Indeed, for any ξ, η ∈ IRN , we have the following relations 
(see [7])

[(
|ξ|p−2

ξ − |η|p−2
η
)
· (ξ − η)

]
(|ξ|p + |η|p)(p−2)/p ≥ (p− 1) |ξ − η|p , (7)

wherever 1 < p < 2

(
|ξ|p−2

ξ − |η|p−2
η
)

(ξ − η) ≥
(

1
2

)p

|ξ − η|p , p ≥ 2. (8)

The above inequalities ensure that Φ′ is strictly monotone.
(ii) By put (i), if un → u and lim supn→∞

〈
Φ(un) − Φ(u), un − u

〉
≤ 0 it follows that

lim sup
n→∞

〈
Φ(un) − Φ(u), un − u

〉
= 0.

By of (1) and (2), ∇un converges in measure to ∇u in Ω, so we get a subsequence (which we still denote 
by ∇un) satisfying ∇un (x) → ∇u (x), a.e. x ∈ Ω. The Fatou’s Lemma gives

lim inf
n→∞

∫
Ω

1
p (x) |∇un|p(x)

dx ≥
∫
Ω

1
p (x) |∇u|p(x)

dx. (9)

Since un → u it follows that

lim
〈
Φ′(un), un − u

〉
= lim

〈
Φ′(un) − Φ′(u), un − u

〉
= 0. (10)
n→∞ n→∞
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On the other hand

〈
Φ′(un), un − u

〉
=

∫
Ω

|∇un|p(x)
dx−

∫
Ω

|∇un|p(x)−2 ∇u∇vdx

≥
∫
Ω

|∇un|p(x)
dx−

∫
Ω

|∇un|p(x)−1 |∇u| dx

≥
∫
Ω

|∇un|p(x)
dx−

∫
Ω

(p(x) − 1
p(x) |∇un|p(x)

dx

−
∫
Ω

1
p(x) |∇u|p(x)

dx

≥
∫
Ω

1
p (x) |∇un|p(x)

dx−
∫
Ω

1
p (x) |∇u|p(x)

dx,

for x → ∞.
Taking into account (14) and (15) one has

lim
n→∞

∫
Ω

1
p (x) |∇un|p(x)

dx =
∫
Ω

1
p (x) |∇u|p(x)

dx. (11)

By (6) it follows that the integrals of the functions family

{
(1/p (x)) |∇un|p(x)

}

possess absolutely equicontinuity on Ω. Since

|∇un(x) −∇u(x)|p(x)

p(x) ≤ C

(
1

p (x) |∇un (x)|p(x) + 1
p (x) |∇u (x)|p(x)

)
, (12)

the integrals of the family 
{
(1/p (x)) |∇un (x) −∇u (x)|p(x)

}
are also absolutely equicontinuous on Ω (see 

[30, Chapter 6, Section 3]) and therefore

lim
n→∞

∫
Ω

1
p (x) |∇un (x) −∇u (x)|p(x)

dx = 0. (13)

By (8)

lim
n→∞

∫
Ω

|∇un (x) −∇u (x)|p(x)
dx = 0. (14)

By Proposition 2.4 and (9) it follows that un → u, i.e. Φ′ is of type (S+).
(iii) By the strictly monotonicity, Φ′ is an injection. Since

lim
〈
Φ′u, u

〉
= lim

∫
Ω |∇u|p(x)

dx
= ∞,
‖u‖→∞ ‖u‖ ‖u‖→∞ ‖u‖
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the functional Φ′ is coercive, thus Φ′ is a surjection in view of Minty-Browder Theorem (see [32, Theorem 
26A]). Hence Φ′ has an inverse mapping Φ−1 : X∗ → X. Therefore, the continuity of Φ−1 is sufficient to 
ensure Φ′ to be a homeomorphism.

If fn, f ∈ X∗, fn → f , let un = Φ−1 (fn), u = Φ−1 (f), then Φ′ (un) = fn, Φ′ (u) = f .
So {un} is bounded in X. Without loss of generality, we can assume that un → u0.
Since fn → f , then

lim
n→∞

〈
Φ′(un) − Φ′(u0), un − u0

〉
= lim

n→∞

〈
fn, un − u0

〉
= 0. (15)

Since Φ′ is of type (S+), un → u0, we conclude that un → u0, so Φ−1 is continuous.
Indent, let Ψ(u) =

∫
Ω F (x, u)dx, and Ψ′ : X → X∗ its derivative, without loss of generality, we assume 

that un → u0, then Ψ′ (un) → Ψ′ (x0).
Since J ′

λ(un) = Φ′(un) − Ψ′ (un) → 0, Φ′ (un) → Ψ′ (u0). Since Φ′ is a homeomorphism, un → u0, and 
so the functional Jλ satisfies (PS) condition. �
4. Proof of Theorem 3.1

For the proof of our result, we observe that problem (P f
λ ) has a variational structure, indeed it is the Euler-

Lagrange equation of the functional Jλ. Note that the functional Jλ is continuously Gâteaux differentiable 
in u ∈ W

1,p(x)
0 (Ω) and one has

〈J ′
λ(u), v〉 = 1

λ

∫
Ω

|∇u|p(x)−2〈∇u,∇v〉 dx −
∫
Ω

f(x, u)vdx

for every v ∈ W
1,p(x)
0 (Ω). Thus, the critical points of Jλ are exactly the weak solutions to problem (P f

λ ). 
Let � > 0 and set α := 1/λ, with λ as in the statement.

Hence, let us apply Theorem 1.2, taking E := W
1,p(x)
0 (Ω), endowed by the norm (3), Jα := Jλ, and 

setting

Φ(u) :=
∫
Ω

|∇u|p(x)

p(x) dx,

as well as

Ψ(u) :=
∫
Ω

F (x, u)dx,

for every u ∈ W
1,p(x)
0 (Ω).

Now, Φ is sequentially weakly lower semicontinuous and coercive and Ψ is sequentially weakly continuous 
thanks to the Rellich-Kondrachov theorem. Hence, the regularity assumptions on the functional Jα are 
verified.

Now, we observe that there exists u0 ∈ W
1,p(x)
0 (Ω) such that

Jα(tu0) → −∞, (16)

as t → +∞.
Indeed by (f1) it follows that

F (x, t) ≥ C |t|μ ∀x ∈ Ω, |t| ≥ M.
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For u0 ∈ X\ {0} and t > 1, we have

ϕ (tu0) =
∫
Ω

1
p (x) |t∇u0|p(x)

dx−
∫
Ω

F (x, tu0) dx

≤ tp
+
∫
Ω

1
p (x) |∇u0|p(x) − ctμ

∫
Ω

|u0|μ dx− C1,

which implies ϕ (tu0) → −∞ as t→+∞.
Hence, the functional Jμ is unbounded from below and, by Lemmas 3.2 and 3.3, the compactness (PS)

condition is verified.
We claim that

μ > χ(�) := inf
u∈Φ−1((−∞,�))

sup
v∈Φ−1((−∞,�))

∫
Ω

F (ξ, v)dx−
∫
Ω

F (ξ, u(x))dx

�− ‖u‖2
W

1,p(x)
0 (Ω)

, (17)

for every � > 0. For our goal, let us fix � > 0. Since 0 ∈ Φ−1((−∞, �)), it follows that

χ(�) ≤

sup
v∈Φ−1((−∞,�))

∫
Ω

F (x, v)dx

�
. (18)

On the other hand, one has

1
�

sup
Φ(u)≤�

Ψ(u) ≤ 1
�

{
a1c1(p+)

1
p− [�]

1
p + a2

q−
[cq]q(p+)

q+

p− [[�]
1
p ]q

}
. (19)

See, for instance, [3].
Indeed by Theorem 1.3 of [14] and from the compact embedding X ↪→ Lq(x)(Ω), we have

∫
Ω

|u|q(x)dx = �q(u) ≤ [‖u‖Lq(x)(Ω]q ≤ [cq‖u‖]q

for each u ∈ X.
For each u ∈ Φ−1((−∞, �)), thanks to Proposition 2.2, one has

‖u‖ ≤ [p+Φ(u)]
1
p < [p+�]

1
p ≤ (p+)

1
p− [�]

1
p .

So, the compact embedding X ↪→ L1(Ω), (f1) and (23) imply that, for each u ∈ Φ−1((−∞, �)), we have

Ψ(u) ≤ a1

∫
Ω

|u|dx + a2

q−

∫
Ω

|u|q(x)dx

≤ a1c1‖u‖ + a2

q−
[cq‖u‖]q

≤ a1c1‖u‖ + a2

q−
[cq]q[‖u‖]q

< a1c1(p+)
1

p− [�]
1
p + a2

− [cq]q(p+)
q+

p− [[�]
1
p ]q.
q
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Then, thanks to

sup
v∈Φ−1((−∞,�))

∫
Ω

F (x, v)dx ≤ a1c1(p+)
1

p− [�]
1
p + a2

q−
[cq]q(p+)

q+

p− [[�]
1
p ]q,

inequality (19) immediately holds.
Since (5) holds, conditions (18) and (19) immediately yield

χ(�) ≤ 1
�

(
a1c1(p+)

1
p− [�]

1
p + a2

q−
[cq]q(p+)

q+

p− [[�]
1
p ]q

)
<

1
λ

= α.

Thus, inequality (17) is proved.
Then, owing to Theorem 1.2, problem (P f

λ ) admits at least two weak solutions one of which lies in 
Φ−1((−∞, �)). This completes the proof.

Remark 4.1. Theorem 3.1 can be viewed as a subelliptic counterpart of [24, Theorem 4].

Remark 4.2. We emphasize that Theorem 3.1 ensures the existence of at least two weak solutions whenever

λ ∈ Λ :=
(

0,max
�>0

h(�)
)
,

where h : [0, +∞) → [0, +∞) is the continuous function given by

h(�) := �

a1c1(p+)
1

p− [�]
1
p + a2

q− [cq]q(p+)
q+
p− [[�]

1
p ]q

.

Note that max
�>0

h(�) < +∞, since q > 2.
Hence, Proposition 1.1 in Introduction is an immediate consequence of Theorem 3.1 taking into account 

of Section 2. Moreover, we also point out that, in Theorem 1.1, due to the presence of the parameter λ, on 
the contrary of [10, Theorem 3.1], no conditions at zero on the nonlinear term f is requested.

In conclusion, we present a direct application of the main result.

Example 4.3. Let Ω be a bounded domain with smooth boundary ∂Ω, and p, q ∈ C(Ω̄) such that 1 < p+ <

q− ≤ q(x) < p∗(x) for each x ∈ Ω̄. Then, owing to Theorem 3.1, there exists an open interval Λ ⊂ (0, +∞)
such that, for every λ ∈ Λ, the following problem

{
−Δp(x)u = λf(x, u) in Ω
u = 0 on ∂Ω,

where the function f : Ω̄ × IR → IR is given by

f(x, t) =
{

1 + q(x)tq(x)−1 x ∈ Ω̄, t ≥ 0
1 − q(x)(−t)q(x)−1 x ∈ Ω̄, t < 0,

admits at least two distinct and non-trivial weak solutions in W 1,p(x)
0 (Ω). Note that in our setting, condition 

(2) is clearly not verified.
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Remark 4.4. Taking into account the results contained in [3] a concrete upper bound for the constants c1
and cq in Theorem 3.1 can be done. More precisely, one has

c1 ≤ k(p−)∗ |Ω| (p
−)∗ − 1
(p−)∗

and

cq ≤ (|Ω| + 1)2k(p−)∗ |Ω| (p
−)∗ − q+

(p−)∗q+ ,

where q ∈ C0(Ω̄), and 1 < q(x) ≤ q+ ≤ (p−)∗ ≤ p∗(x) for each x ∈ Ω̄. Here, we recall that, by Talenti’s 
result [29], if 1 < p− < N

kp∗ = 1√
π

1
N

1
p−

(
p− − 1
N − p−

)1− 1
p
[ Γ

(
1 + N

2
)
Γ(N)

Γ
(

N
p−

)
Γ(1 + N − N

p− )

] 1
N

.

Finally, we notice that Theorem 3.1 (and its consequences) represents a more precise version of Theorem 
4.1 in [3].
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